
Why approximate when you can get the exact?
Optimal Targeted Viral Marketing at Scale

Xiang Li, J. David Smith
CISE Department

University of Florida
Gainesville, FL, 32611

Email: {xixiang, jdsmith}@cise.ufl.edu

Thang N. Dinh
CS Department

Virginia Commonwealth University
Richmond, VA 23284

Email: tndinh@vcu.edu

My T. Thai
CISE Department

University of Florida
Gainesville, FL, 32611
Email: mythai@ufl.edu

Abstract—One of the most central problems in viral marketing
is Influence Maximization (IM), which finds a set of k seed users
who can influence the maximum number of users in online social
networks. Unfortunately, all existing algorithms to IM, including
the state of the art SSA and IMM, have an approximation ratio of
(1−1/e−ε). Recently, a generalization of IM, Cost-aware Target
Viral Marketing (CTVM), asks for the most cost-effective users
to influence the most relevant users, has been introduced. The
current best algorithm for CTVM has an approximation ratio of
(1− 1/

√
e− ε).

In this paper, we study the CTVM problem, aiming to
optimally solve the problem. We first highlight that using a
traditional two stage stochastic programming to exactly solve
CTVM is not possible because of scalability. We then propose
an almost exact algorithm TIPTOP, which has an approximation
ratio of (1 − ε). This result significantly improves the current
best solutions to both IM and CTVM. At the heart of TIPTOP
lies an innovative technique that reduces the number of samples
as much as possible. This allows us to exactly solve CTVM
on a much smaller space of generated samples using Integer
Programming. While obtaining an almost exact solution, TIPTOP
is very scalable, running on billion-scale networks such as
Twitter under three hours. Furthermore, TIPTOP lends a tool
for researchers to benchmark their solutions against the optimal
one in large-scale networks, which is currently not available.

Keywords—Viral Marketing; Influence Maximization; Algo-
rithms; Online Social Networks; Optimization

I. INTRODUCTION

With billions of active users, Online Social Networks
(OSNs) have been one of the most effective platforms for mar-
keting and advertising. Through “word-of-mouth” exchanges,
so-called viral marketing, the influence and product adoption
can spread from few key users to billions of users in the
network. To identify those key users, a great amount of work
has been devoted to the Influence Maximization (IM) problem
which asks for a set of k seed users that maximize the expected
number of influenced nodes. Taking into account both arbitrary
cost for selecting a node and arbitrary benefit for influencing
a node, a generalized problem, Cost-aware Targeted Viral
Marketing (CTVM), has been introduced recently [1]. Given
a budget B, the goal is to find a seed set S with the total cost
at most B that maximizes the expected total benefit over the
influenced nodes.

Solutions to both IM and CTVM either suffer from scal-
ability issues or limited performance guarantees. Since IM
is NP-hard, Kempe et al. [2] introduced the first (1 − 1

e −
ε)−approximation algorithm for any ε > 0. However, it is not
scalable. This work has motivated a vast amount of work on IM

in the past decade [3]–[10] (and references therein), focusing
on solving the scalability issue. The most recent noticeable
results are IMM [5] and SSA [6] algorithms, both of which
can run on large-scale networks with the same performance
guarantee of (1− 1

e − ε). Meanwhile, BCT was introduced to
solve CTVM with a ratio of (1− 1/

√
e− ε) [1].

Despite a great amount of aforementioned works, none of
these attempts to solve IM or CTVM exactly. The lack of
such a solution makes it impossible to evaluate the practical
performance of existing algorithms in real-world datasets. That
is: how far from optimal are the solutions given by existing
algorithms on billion-scale OSNs, in addition to their theo-
retical performance guarantees? This question has remained
unanswered til now.

Unfortunately, obtaining exact solutions to CTVM (and
thus to IM) is very challenging as the running time is no longer
in polynomial time. Due to the nature of the problem, stochas-
tic programming (SP) is a viable approach for optimization
under uncertainty when the probability distribution governs
the data is given [11]. However traditional SP-based solutions
to various problems in NP-hard class are only for small net-
works with a few hundreds nodes [11]. Thus directly applying
existing techniques to IM and CTVM is not suitable as OSNs
consist of millions of users and billions of edges. Furthermore,
the theory developed to assess the solution quality such as
those in [11], [12], and the references therein, only provide
approximate confidence interval. Therefore, sufficiently large
samples are needed to justify the quality assessment. This re-
quires us to develop novel stochastic programming techniques
to exactly solve CTVM on large-scale networks.

In this paper, we provide the very first (almost) exact so-
lutions to CTVM. To tackle the above challenges, we develop
two innovative techniques: 1) Reduce the number of samples
as much as possible so that the SP can be solved in a very
short time. This requires us to tightly bound the number of
samples needed to generate a candidate solution. 2) Develop
novel computational method to assess the solution quality with
just enough samples, where the quality requirement is given a
priori. These results break the tradition and cross the barriers
in stochastic programming theory where solving SP on large-
scale networks had been thought impractical. Our contributions
are summarized as follows:
• Design an (almost) exact solution to CTVM using

two-stage stochastic programming (T-EXACT) which
utilizes the sample average approximation method to
reduce the number of realizations. Using T-EXACT,
we illustrate that traditional stochastic programming
techniques badly suffer the scalability issue.

• Develop a scalable and exact algorithm to CTVM with
an approximation ratio of (1 − ε): The Tiny Integer
Program with Theoretically OPtimal results (TIPTOP).
Being able to obtain the near exact solution, TIPTOP
is used as a benchmark to evaluate the absolute per-
formance of existing solutions in billion-scale OSNs.

• Conduct extensive experiments confirming that the
theoretical performance of TIPTOP is attained in prac-
tice. That said, it is feasible to compute 98% optimal
solutions to CTVM on billion-scale OSNs in under
three hours. The experiments further confirm that our
sampling reductions are significant in practice – with
reductions by a factor of 103 on average.

Related works. Kempe et al. [2] is the first to formulate
viral marketing as the IM optimization problem. They showed
the problem to be NP-complete and devised an (1− 1/e− ε)
approximation algorithm on two fundamental cascade models,
Linear Threshold (LT) and Independent Cascade (IC). In
addition, IM cannot be approximated within a factor (1− 1

e+ε)
[13] under a typical complexity assumption. Computing the
exact influence is shown to be #P-hard [4]. Following [2], a
series of work have been proposed, focused on improving time
complexity. A notable one is Leskovec et al [3], in which the
lazy-forward heuristic (CELF) was used to obtain about 700-
fold speed up. The major bottle-neck in these works is the
inefficiency in estimating the influence spread. The diffusion
process also used to restrain propagation in social networks
[14].

Recently, Borgs et al. [15] have made a theoretical break-
through and introduced a novel sampling approach, called
Reverse Influence Sampling (RIS), which is a foundation for
the later works. Briefly, RIS captures the influence landscape
of G = (V,E, p) through generating a hypergraph H =
(V, {E1, E2, . . .}). Each hyperedge Ej ∈ H is a subset of nodes
in V and constructed as follows: 1) selecting a random node
v ∈ V 2) generating a sample graph g v G and 3) returning
Ej as the set of nodes that can reach v in g. Observe that
Ej contains the nodes that can influence its source v. If we
generate multiple random hyperedges, influential nodes will
likely appear more often in the hyperedges. Thus a seed set S
that covers most of the hyperedges will likely maximize the
influence spread. Here a seed set S covers a hyperedge Ej , if
S ∩ Ej 6= ∅. Therefore, IM can be solved using the following
framework. 1) Generate multiple random hyperedges from G.
2) Use the greedy algorithm for the Max-coverage problem
[16] to find a seed set S that covers the maximum number
of hyperedges and return S as the solution. The core issue in
applying the above framework is that: How many hyperedges
are sufficient to provide a good approximation solution?

Based on RIS, Borgs et al. [15] presented an O(kl2(m +
n) log2 n/ε3) time algorithm for IM under IC model. It returns
a (1 − 1/e − ε)-approximate ratio with probability at least
1− n−l. In practice, the proposed algorithm is, however, less
than satisfactory due to the rather large hidden constants. In
a sequential work, Tang et al. [5] reduce the running time
to O((k + l)(m + n) log n/ε2) and show that their algorithm
is efficient in billion-scale networks. However, the number of
generated samples can be arbitrarily large. The state of the art
SSA algorithm is introduced in [6] that outperforms existing
methods several orders of magnitudes w.r.t running time. The
algorithm keeps generating samples and stops at exponential
check points to verify (stare) if there is adequate statistical
evidence on the solution quality for termination. However, SSA

does not put an effort in minimizing the number of samples
at the stopping point to verify the candidate solution, which
is needed to solve the Integer Programming (IP). All of these
works have a (1− 1/e− ε)-approximation ratio.

In generalizing IM, Nguyen and Zheng [17] investigated
the BIM problem in which each node can have an arbitrary
selecting cost. They proposed a (1−1/

√
e− ε) approximation

algorithm (called BIM) and two heuristics. However, none
of the proposed algorithms can handle billion-scale networks.
Recently, Nguyen et. al introduced CTVM and presented a
scalable (1 − 1/

√
e − ε) algorithm [1]. They also showed

that straightforward adaption of the methods in [5], [15] for
CTVM can incur an excessive number of samples, thus, are
not efficient enough for large networks.

Organization. The rest of the paper is organized as fol-
lows. In Section II, we present the network model, propagation
models, and the problem definition. Section III presents our T-
EXACT algorithm for CTVM. Our main contribution, TIPTOP
is introduced in Section IV. We analyze the performance of
TIPTOP in Section V. Experimental results on real social
networks are shown in Section VI. And finally Section VII
concludes our paper.

II. MODELS AND PROBLEM DEFINITIONS
Let G = (V,E, c, b, p) be a social network with a node set

V and a directed edge set E, with |V | = n and |E| = m.
Each node u ∈ V has a selecting cost c(u) ≥ 0 and a benefit
b(u) ≥ 0 if u is influenced1. Each directed edge (u, v) ∈ E is
associated with an influence probability puv ∈ [0, 1].

Given G and a subset S ⊂ V , referred to as the seed
set, in the IC model the influence cascades in G as follows.
The influence propagation happens in round t = 1, 2, 3,
At round 1, nodes in the seed set S are activated and the
other nodes are inactive. The cost of activating the seed set
S is given c(S) =

∑
u∈S c(u). At round t > 1, each newly

activated node u will independently activate its neighbor v with
a probability puv . Once a node becomes activated, it remains
activated in all subsequent rounds. The influence propagation
stops when no more nodes are activated.

Denote by I(S) the expected number of activated nodes
given the seed set S. We call I(S) the influence spread of S
in G under the IC model.

Mathematically, we view the probabilistic graph G as a
generative model for deterministic graphs. A deterministic
graph g = (V,Es) is generated from G by selecting each edge
(u, v) ∈ E, independently, with probability puv . We refer to
g as a realization or a sample of G and write g v G. The
probability that g is generated from G is

Pr[g] =
∏
e∈Es

pe
∏

e∈E\Es

(1− pe).

Let m = |E|, there are W = 2m possible realizations of
G. We number those realizations as G1 = (V,E1), G2 =
(V,E2), . . . , GW = (V,EW), where E1, E2, . . . , EW are all
possible subsets of E. The influence spread of a seed set S
equals the expected number of nodes reachable from S over
all possible sample graphs, i.e.,

1The cost of node u, c(u), can be estimated proportionally to the centrality
of u (how important the respective person is), e.g., out-degree of u [17].
Additionally, the node benefit b(u) refers to the gain of influencing node u,
e.g., 1 for each node in our targeted group and 0 outside.

I(S) =
∑
gvG

Pr[g]|R(g, S)|, (1)

where v denotes that the sample graph g is generated from
G with a probability denoted by Pr[g], and R(g, S) denotes
the set of nodes reachable from S in g.

Similarly, the expected benefit of a seed set S is defined
as the expected total benefit over all influenced nodes, i.e.,

B(S) =
∑
gvG

Pr[g]
∑

u∈R(g,S)

b(u). (2)

We are now ready to define the CTVM problem as follows.

Definition 1 (Cost-aware Targeted Viral Marketing - CTVM).
Given a graph G = (V,E, c, b, p) and a budget BD > 0, find
a seed set S ⊂ V with the total cost c(S) ≤ BD to maximize
the expected benefit B(S).

III. EXACT ALGORITHM VIA STOCHASTIC
PROGRAMMING

In this section, we first present our T-EXACT (traditional
exact) algorithm based on two-stage SP. We then discuss the
scalability issue of traditional SP which is later verified in our
experiment, shown in Section VI.
A. Two-stage Stochastic Linear Program

Given an instance G = (V,E, c, b, p) of CTVM, we first
use integer variables sv to represent whether or not node v is
selected as a seed node, i.e, sv = 1 if node v is selected (aka
v ∈ S where S denotes the seed set) and 0, otherwise. Here
n = |V | is the number of nodes and we assume nodes are
numbered from 1 to n. We impose on s the budget constraint∑
v∈V svcv ≤ BD. Variables s are known as first stage

variables. The values of s are to be decided before the actual
realization of the uncertain parameters in G.

We associate with each node pair (u, v) a random Bernoulli
variable ξuv satisfying Pr[ξuv = 1] = puv and Pr[ξuv = 0] =
1−puv . For each realization of G, the values of ξuv are revealed
to be either 0 or 1 and we can compute the benefit of the seed
set S implied by s. To do so, we define integer variable xv to
be the state of node v when the propagation stops, i.e., xv = 1
if v is eventually activated and 0, otherwise.

The benefit obtained by seed set can be computed using
a second stage integer programming, denoted by B(s, x, ξ) as
follows.

B(s, x, ξ) = max
∑
v∈V

b(v)xv (3)

s. t.
∑

u∈IR(ξ,v)

su ≥ xv, v ∈ V, (4)

su ∈ {0, 1}, xv ∈ {0, 1} (5)

where IR(ξ, v) denotes the set of nodes u so that there exists
a path from u to v given the realization ξ.

The two-stage stochastic linear formulation for the CTVM
problem is as follows.

max
s∈{0,1}n

E [B(s, x, ξ)] (6)

s. t.
∑
v∈V

svcv ≤ BD (7)

where B(s, x, ξ) is given in (3)-(5) (8)

The objective is to maximize the expected benefit of the
activated nodes E [B(s, x, ξ)], where B(s, x, ξ) is the optimal

value of the second-stage problem. This stochastic program-
ming problem is, however, not yet ready to be solved with a
linear algebra solver.

1) Discretization: To solve a two-stage stochastic problem,
one often need to discretize the problem into a single (very
large) linear programming problem. That is we need to con-
sider all possible realizations Gl v G and their probability
masses Pr[Gl]. Denote by {ξl}ij the adjacency matrix of the
realization Gl = (V,El), i.e., ξlij = 1, if (i, j) ∈ El, and
0, otherwise. Since the objective involves only the expected
cost of the second stage variables xij , the two-stage stochastic
program can be discretized into a mixed integer programming,
denoted by MIPF as follows.

max

W∑
l=1

Pr[Gl]
∑
v

b(v)xlv (9)

s. t.
∑
v∈V

svcv ≤ BD (10)∑
u∈IR(Gl,v)

su ≥ xlv, v ∈ V,Gl v G (11)

su ∈ {0, 1}, xlv ∈ {0, 1} (12)

Lemma 1. The expected number of non-zeros in T-EXACT is
T
∑
u∈V I(u) where T is the number of graph realizations

and I(u) denotes the expected influence of node u.

Proof: For each node u ∈ V , the number of constraints
(11) that u was on the left hand sides equal the number of
nodes that u can reach to. The mean number of constraints
(11) that u participates into is, hence, I(u). Taking the sum
over all possible u ∈ V , we have the expected size of the
T-EXACT with T graph realizations is T ×

∑
u∈V I(u).

2) Realization Reduction: An approach to reduce the num-
ber of realizations in T-EXACT is to apply the Sample Average
Approximation (SAA) method. We generate independently T
samples ξ1, ξ2, · · · , ξT using Monte Carlo simulation (i.e. to
generate each edge (u, v) ∈ E with probability puv). The ex-
pectation objective q(s) = E[B(s, x, ξ)] is then approximated
by the sample average q̂T (x) = 1

T

∑T
l=1

∑
v(b(v)xlv), and the

new formulation is then

max 1
T

∑T
l=1

∑
v b(v)xlv

s. t. Constraints(10)− (12)

Under some regularity conditions 1
T

∑T
j=1

∑
i<j(1− xlij)

converges pointwise with probability 1 to E[B(s, x, ξ)] as
T →∞. Moreover, an optimal solution of the sample average
approximation provides an optimal solution of the stochastic
programming with probability approaching one exponentially
fast w.r.t. T . Formally, denote by s∗ and ŝ the optimal
solution of the stochastic programming and the sample average
approximation, respectively. For any ε > 0, it can be derived
from Proposition 2.2 in [18] that

Pr [E [B(s, x̂, ξ)]− E [B(s, x∗, ξ)] > ε]

≤ exp

(
−T ε

2

n4
+ k log n

)
(13)

Equivalently, if T ≥ n4

ε2 (k log n − logα), then
Pr [E [B(s, x̂, ξ)]− E [B(s, x∗, ξ)] < ε] > 1 − α for any
α ∈ (0, 1).

B. Scalability Issues of Traditional Stochastic Optimization

While T-EXACT was designed based on a standard method
for stochastic programming, traditional methods can only be
applied for small networks, up to few hundreds nodes [11].

There are three major scalability issues when applying
SAA and using T-EXACT for the influence maximization
problem. First, the samples have a large size O(m), where
m = |E| is the number of edges in the network. For
large networks, m could be of size million or billion. As a
consequence, we can only have a small number of samples,
scarifying the solution quality. For billion scale networks, even
one sample will let to an extremely large ILP, that exceeds the
capability of the best solvers. Second, the theory developed to
assess the solution quality such as those in [11], [12], only
provide approximate confidence interval. That is the quality
assessment is only justified for sufficiently large samples and
may not hold for small sample sizes. And third, most existing
solution quality assessment methods [11], [12] only provide
the assessment for a given number of sample size. Thus, if the
quality requirement is given a priori, e.g., (ε, δ) approximation,
there is not an efficient algorithmic framework to identify the
number of necessary samples.

IV. TIPTOP: (ALMOST) EXACT SOLUTION IN
LARGE-SCALE NETWORKS

In this section, we introduce our main contribution TIP-
TOP: a near exact algorithm (not approximation algorithm)
for CTVM. TIPTOP is the first exact algorithm that can return
a (1− ε)-approximation ratio, overcome the above mentioned
scalability issues and can run on billion-scale networks.

A. TIPTOP Algorithm Overview

For readability, we present our solution to CTVM in which
all nodes have uniform cost. Let BD = k, we want to find
S with |S| ≤ k so as to maximize the benefit B(S). The
generalization to the more general settings of CTVM is straight
forward and omitted due to space limit.

At a high level, TIPTOP first generates a collection R of
random RR sets which serves as the searching space to find
a candidate solution Ŝk to CTVM. It next calls the Verify
procedure which independently generates another collection
of random RR sets to closely estimate the objective function’s
value of the candidate solution. If this value is not close enough
to the optimal solution, TIPTOP generates more samples by
calling the IncreaseSamples procedure to enlarge the search
space, and thus finding another better candidate solution. When
the objective function’s value of the candidate solution is close
enough to the optimal one, TIPTOP halts and returns the found
solution. The pseudo-code of TIPTOP is presented in Alg. 1.

As shown in Theorem 2, TIPTOP has an approximation
of (1 − ε) with a probability of at least (1 − δ). The key
point to improve the current best ratio of (1 − 1/e − ε) (and
(1−1/

√
e−ε)) to (1−ε) lies in solving the Maximum Coverage

(MC) problem after generating R random RR sets of samples.
Instead of using greedy technique as in all existing algorithms
in the literature, we solve the MC exactly using Integer Linear
Program (ILP) (detailed in subsection IV-B).

Trade-off: “Better approximation guarantee” vs. “More
samples”. The adoption of the ILP in the place of the greedy
method results in a trade-off between “better approximation
guarantee” and “More samples”. Given a desired approxima-
tion guarantee, say ρ = 1 − 1/e − ε, the two factors that
influence ρ are 1) the approximation factor by the algorithm

Algorithm 1 TIPTOP Algorithm

Input: Graph G = (V,E, b, c, w), budget k > 0, and ε, δ ∈ (0, 1).
Output: Seed set Sk.
1: Λ← (1 + ε)(2 + 2

3
ε) 1
ε2

ln 2
δ

2: t← 1; tmax = d2 lnn/εe; vmax ← 6
3: Λmax ← (1 + ε)(2 + 2/3ε) 2

ε2
(ln 2

δ/4
+ ln

(
n
k

)
)

4: Generate random RR sets R1, R2, . . . using BSA [1].
5: repeat
6: Nt ← Λ× eεt;Rt ← {R1, R2, . . . , RNt}
7: Ŝk ← ILPMC(Rt, c, k)
8: < passed, ε1, ε2 >←Verify(Ŝk, vmax, 2

vmaxNt)
9: if (not passed) and (CovR(Ŝk) ≤ Λmax)
then t← IncreaseSamples(t, ε1, ε2)
10: until passed or CovR(Ŝk) > Λmax
11: return Ŝk

to solve Max-Coverage problem and 2) the number of samples
that decide the quality of approximation for the objective func-
tion. On one hand, better approximation guarantee provided by
the ILP implies that our approach can obtain the guarantee ρ
with less number of samples. On the other hand, the greedy
algorithm is a lot faster than the ILP, thus can handle more
samples in the same amount of time.

The new adoption of ILP poses new challenges. Solving
ILPs is now the bottleneck in terms of both time and memory,
dominating those in the verifying counterpart (Verify proce-
dure). Thus it is critical that our approach minimize the number
of RRsets used in the ILP to find the candidate solution Ŝk.
This is different from the previous approaches SSA and D-
SSA that attempt to minimize the total number of RR sets in
both the searching and verifying.

Moreover, both the approaches in SSA and D-SSA have
design limitations that make them unsuitable for coupling with
the ILP. SSA [6] has fixed parameter settings for searching
and verifying and it is difficult to find a good settings for
different input ranges. D-SSA has a more flexible approach.
However, it is constrained to use the same amount of samples
for searching and verifying. Thus, it is also not good for
unbalanced searching/verifying.

This enforces us to take a new approach in balancing the
samples in searching and verifying. As shown in line 1 of
Alg. 1, we start with a smaller set of samples R of size
Λ. Also, we use IncreaseSamples to dynamically adjust the
sample size, ensure just enough samples to find a near-optimal
candidate solution to CTVM. We will discuss more details
about IncreaseSamples later in subsection IV-C.

Secondly, in an effort to keep the ILP size small, we
need to avoid executing IncreaseSamples as much as possible
and allow IncreaseSamples to add a large batch of samples,
if it saw the candidate solution is still far away from the
desired. Additionally, we allocate more resource into proving
the quality of candidate solutions, which is handled by Verify,
described in subsection IV-C.

And finally, as CTVM considers arbitrary benefits, we
utilize Benefit Sampling Algorithm – BSA in [1] to embed
the benefit of each node into consideration. BSA performs a
reversed influence sampling (RIS) in which the probability of
a node chosen as the source is proportional to its benefit. Ran-
dom hyperedges generated via BSA can capture the “benefit
landscape”. That is they can be used to estimate the benefit of
any seed set S as stated in the following lemma.

Lemma 2. [1] Given a fixed seed set S ⊆ V , and let
R1, R2, . . . , Rj , . . . be random RR sets generated using Benefit
Sampling Algorithm [1], define random variables

Zj =

{
1 if Rj ∩ S 6= ∅,
0 otherwise.

(14)

then

E[Zj] = Pr[Rj ∩ S 6= ∅] =
B(S)

Γ
(15)

where Γ =
∑
v∈V b(v) is the total nodes’ benefit.

For a collection of T random RR sets R =
{R1, R2, . . . , RT }, we denote CovR(S) =

∑T
j=1 Zj as the

number of RR sets that intersect S, and BR(S) = CovR(S)
T ×Γ

as the estimation of B(S) viaR. We discuss the rest of TIPTOP
in the following subsections.

B. Integer Linear Programming ILPMC

Given a collection of RR sets R, we formulate the follow-
ing ILPMC(R, c, BD), to find the optimal solution over the
generated RR sets to the MC problem, assuming uniform cost
for node selection.

maximize
∑
Rj∈R

(1− yj) (16)

subject to
∑
v∈V

sv ≤ k (17)∑
v∈Rj

sv + yj ≥ 1 ∀Rj ∈ R (18)

yj , si ∈ {0, 1} (19)

Here, sv = 1 iff node v is selected into the seed set, and
sv = 0, otherwise. The variable yj = 1 indicates that the RR
sets Rj cannot be covered by the seed set (S = {v|sv = 1})
and yj = 0, otherwise. The objective aims to cover as many
RR sets as possible while keeping the cost at most k using the
constraint (17).

We note that the benefit in selecting the node b(u) does
not appear in the above ILP as it is embedded in the Benefit
Sampling Algorithm (BSA) in [1].

On one hand, the above ILP can be seen as an SAA of
the CTVM problem as it attempts to find optimal solutions
over the randomly generated samples. On the other hand, it is
different from the traditional SAA discussed in Sec. III as it
does not require the realization of all random variables, i.e., the
status of the edges. Instead, only a local portion of the graph
surrounding the sources of RR sets need to be revealed. This
critical difference from traditional SAA significantly reduces
the size of each sample, effectively, resulting in a much more
compact ILP.

C. The Verify and IncreaseSamples Procedures
As shown in Alg. 2, Verify takes a candidate solution

Ŝk, precision limit vmax, and the maximum number of RR
sets Tcap as the input. It keeps generate RR sets to estimate
B(Ŝk) until either the relative error reaches ε/2vmax−1 or the
maximum number of generated samples Tcap is reached.

Verify uses the stopping rule algorithm in [6] to estimate
the influence. It generates a new pool of random RR sets,
denoted by Rver. For each pair ε′2, δ

′
2, derived from ε2 and

δ2, the stopping rule algorithm will stop when either the cap
Tmax is reached or there is enough evidence (i.e. cov ≥ Λ2)
to conclude that

Pr[(1− ε′2)B(Ŝk) ≤ BRver (Ŝk) ≤ (1 + ε′2)B(Ŝk)] ≥ 1− δ′2
The value of δ′2 is selected as in line 3 so that the probability

of the union of all the bad events is bounded by δ2.
If the stopping rule algorithm stops within Tcap RR sets,

the algorithm evaluates the relative difference ε1 between the
estimations of B(Ŝk) via Rt and Rver. It also estimates the
relative gap ε3 between B(S∗k) and its estimation using Rt. If
the combined gap (1 − ε1)(1 − ε2)(1 − ε3) < (1 − ε), Verify
returns ‘true’ and goes back to TIPTOP. In turn, TIPTOP will
return Ŝk as the solution and terminate.

If Ŝk does not pass the check in Verify, TIPTOP uses
the sub-procedure IncreaseSamples (Alg. 3) to increase the
size of the RR sets. Having more samples will likely lead
to better candidate solution Ŝk, however, also increase the IP
solving time. Instead of doubling the current set R as SSA
does, we carefully use the information in the values of ε1 and
ε2 from the previous round to determine the increase in the
sample sizes. Recall that the sample size is etεΛ for increasing
integer t. Thus, we increase the sample size via increasing t by
(approximately) logeε

ε21
ε2 . We force t to increase by at least one

and at most ∆tmax = d2/εe. That is the number of samples
will increase by a multiplicative factor between eε ≈ (1 + ε)
and e∆tmax ≈ e2.

Algorithm 2 Verify

Input: Candidate solution Ŝk, vmax, and Tcap.
Output: Passed/not passed, ε1, and ε2.
1: Rver ← ∅, δ2 = δ

4
, cov = 0, ε1 = ε2 =∞

2: for i← 0 to vmax − 1 do
3: ε2 = min{ε, 1}/2i, ε′2 = ε2

1−ε2
; δ′2 = δ2/(vmax × tmax)

4: Λ2 = 1 + (2 + 2/3ε′2)(1 + ε′2) ln 2
δ′2

1
(ε′2)

2

5: while cov < Λ2 do
6: Generate Rj with BSA [1] and add it to Rver
8: if Rj ∩ S 6= ∅ then cov = cov + 1
9: if |Rver| > Tcap then return < false, ε1, 2ε2 >

10: end while
11: Bver(Ŝk)← Γ cov

|Rver| , ε1 ← 1− Bver(Ŝk)
BR(Ŝk)

12: if (ε1 > ε) then return < false, ε1, ε2 >

13: ε3 ←
√

3 ln(tmax/δ1)

(1−ε1)(1−ε2)CovRt (Ŝk)
.

14: if (1− ε1)(1− ε2)(1− ε3) > (1− ε) then
return < true, ε1, ε2 >

15: end for
16: return < false, ε1, ε2 >

Algorithm 3 IncreaseSamples
Input: t, ε1, ε2.
Action: Return iteration t.
1: ∆tmax = d2/εe
2: return t+ min{max{d1/ε ln

ε21
ε2
e, 1},∆tmax}

V. OPTIMALITY OF TIPTOP
In this section, we prove that TIPTOP returns a solution

Ŝ that is optimal up to a multiplicative error 1 − ε with high
probability. Fig. 1 shows the proof map of our main Theorem.

Let R1, R2, R3, . . . , Rj , . . . be the random RR sets gener-
ated in TIPTOP. Given a seed set S, define random variables
Zj as in (14) and Yj = Zj − E[Zj]. Then Yj satisfies the
conditions of a martingale [19], i.e., E[Yi|Y1, Y2, . . . , Yi−1] =
Yi−1 and E[Yi] < +∞. This martingale view is adopted from
[5] to cope with the fact that random RR sets might not be
independent due to the stopping condition: the later RR sets

are generated only when the previous ones do not satisfy the
stopping conditions. We obtain the same results in Corollaries
1 and 2 in [5].
Lemma 3 ([5]). Given a set of nodes S and random RR sets
R = {Rj} generated in TIPTOP, define random variables
Zj as in (14). Let µZ = B(S)

Γ and µ̂Z = 1
T

∑T
i=1 Zi be an

estimation of µZ , for fixed T > 0. For any 0 ≤ ε, the following
inequalities hold

Pr[µ̂ ≥ (1 + ε)µ] ≤ e
−Tµε2

2+ 2
3
ε , and (20)

Pr[µ̂ ≥ (1 + ε)µ] ≤ e
−Tµε2

3 , and (21)

Pr[µ̂ ≤ (1− ε)µ] ≤ e
−Tµε2

2 . (22)

1 2

𝔹(𝑆𝑘) 𝔹𝑣𝑒𝑟(𝑆𝑘)≥ 1 − 𝜖2 ×
Prob. 1 − 𝛿2

3

𝔹ℛ(𝑆𝑘)
≥ 1 − 𝜖1 ×

4

≥ 1 ×

5

𝔹ℛ(𝑆𝑘
∗)× 1 − 𝜖3 ≤

Prob. 1 − 𝛿1

≥
1

−
𝜖

×

P
ro

b
. 1

−
𝛿

𝔹 𝑆𝑘
∗ 𝑂𝑃𝑇𝑘

𝐏𝐫 𝑿 ≥ 𝜶𝒀 ≥ 𝒑
if not specified
then 𝑝 = 1

𝑖

≥ 𝛼 ×
Prob. 𝑝

𝑗

𝑋 𝑌

Legend

≡

=

Fig. 1: Proof map of the main Theorem 2.
A common framework in [5], [6], [20] is to generate

random RR sets and use the greedy algorithm to select k seed
nodes that cover most of the generated RR sets. It is shown
in Lemma 3 [20] that (1− 1/e− ε) approximation algorithm
with probability 1−δ is obtained when the number of RR sets
reach a threshold

θ(ε, δ) = c× (8 + ε)

(
ln

(
n

k

)
+ ln

2

δ

)
n

OPTk

1

ε2
, (23)

for some constant c > 0.
The constant c is bounded to be 8+ε in [20], brought down

to 8(e − 2)(1 − 1/(2e))2 ≈ 3.7 in [1] . And the current best
is c = 2 + 2/3ε, inducted from Lemma 6 in [5].

Note that the threshold θ(ε, δ) cannot be used to decide
how many RR sets we need to generate. The reason is that θ
depends on the unknown value OPTk, of which computation
is #P-hard.

To overcome that hurdle, a simple stopping rule is devel-
oped in [1] to check whether we have sufficient RR sets to
guarantee, w.h.p., a (1 − 1/e − ε) approximation. The rule is
that we can stop when we can find any seed set Sk, of size k,
that coverage CovR(Sk) exceeds

Λmax = (1 + ε)θ(ε, δ/4)× OPTk
n

(24)

= (1 + ε)(2 + 2/3ε)
1

ε2
(ln

2

δ/4
+ ln

(
n

k

)
) (25)

Our algorithm TIPTOP utilizes this stopping condition to
guarantee that at most Ω(θ(ε, δ)) RR sets are used in the ILP
in the worst-case. As a result, the size of the ILP is kept to be
almost linear size, assuming k � n

Theorem 1. The expected number of non-zeros in the ILP of

TIPTOP is
Ω

((
ln

(
n

k

)
+ ln

2

δ

)
n

ε2

)
Proof: The expected number of RR sets is Ω((1 +

ε)θ(ε, δ)). Moreover, the expected size of each RR sets is
upper-bounded by OPTk

k (Lemma 4 and Eq. (7) in [20]). Thus,
the size of the ILP which is equal the total sizes of all the RR
sets plus n, the size of the cardinality constraint, is at most
Ω((1 + ε)θ(ε, δ)OPTk) = Ω

((
ln
(
n
k

)
+ ln 2

δ

)
n
ε2

)
In practice, the ILP size is much smaller than the worst-

case bound in the above theorem, as shown in Section VI.
Lemma 4. Let S∗k be a seed set of size k with maximum benefit,
i.e., B(S∗k) = OPTk. Denote by µ∗k = OPTk

Γ , δ1 = δ/4 and

ε∗t =
√

3 ln(tmax/δ1)
Ntµ∗t

. We have:

Pr[BRt(S∗k) ≥ (1− ε∗t)B(S∗k) ∀t = 1..tmax] ≥ 1− δ1
Proof: Apply Lem. 3 (Eq. 21) for seed set S∗k , mean µ∗k,

ε∗t and Nt samples. For each t ∈ [1..tmax], after some algebra
we obtain:

Pr[BRt(S∗k) < (1− εt)B(S∗k)] < δ1/tmax.

Taking the union bound over all t ∈ [1, tmax] yields the proof.

Lemma 5. [1 → 2] The probability of the bad event that
there exists some set of t ∈ [1, tmax], i ∈ [0, vmax − 1], and
ε2 = ε/2i so that Verify returns some bad estimation of Ŝk at
line 10, i.e.,

BRver (Ŝk) >
1

(1− ε2)
B(Ŝk),

is less than δ2. Here Bver(Ŝk) = Γ × CovRver (Ŝk)
|Rver| be an

estimation of B(Ŝk) using random RR sets in Rver.
Proof: After reaching line 10 in Verify, the generated RR

sets within Verify, denoted by Rver, will satisfy the condition
that
cov = CovRver (Ŝk) ≥ Λ2 = 1 + (2 +

2

3
ε′2)(1 + ε′2) ln

2

δ′2

1

ε′22
,

where ε′2 = ε2
1−ε2 .

According to the stopping rule theorem2 in [21], this
stopping condition guarantees that

Pr[BRver (Ŝk) > (1 + ε′2)B(Ŝk)] < δ′2

Substitute ε′2 = ε2
1−ε2 and simplify, we obtain

Pr[BRver (Ŝk) >
1

1− ε2
B(Ŝk)] < δ′2

The number of times Verify invoked the stopping condition
to estimate Ŝk is at most tmax × vmax. Thus, we can use the
union bound of all possible bad events to get a lower-bound
δ′2 × tmax × vmax = δ2 for the probability of existing a bad
estimation of Ŝk.

2 → 3 : This holds due to the definition of ε1 in Verify.
Since ε1 ← 1− Bver(Ŝk)/BRt(Ŝk), it follows that

Bver(Ŝk) = (1− ε1)BRt(Ŝk).

We note that it is possible that ε1 < 0, and the whole proof
still goes through even for that case. In the experiments, we,
however, do not observe negative values of ε1.

2replacing the constant 4(e− 2) with 2+2/3ε due to the better Chernoff-
bound in Lemma 3

3 → 4 : Since Ŝk is an optimal solution of
ILPMC(R, c, B), it will be the k-size seed set that intersects
with the maximum number of RR sets in R. Let S∗k be
an optimal k-size seed set, i.e., the one that results in the
maximum expected benefit3. Since |S∗k | = k, it follows that

BRt(Ŝk) ≥ BRt(S∗k),

where BRt(Ŝk) and BRt(S∗k) denote the number of RR sets
in Rt that intersect with Ŝk and S∗k , respectively.

Theorem 2. [Main theorem 1 → 5] Let Ŝk be the solution
returned by TIPTOP (Algorithm 1). We have:

Pr[B(Ŝk) ≥ (1− ε)OPTk] ≥ 1− δ (26)
Proof: First we use the union bound to bound the prob-

ability of the bad events. Then we show if none of the bad
events happen, the algorithm will return a solution satisfying
B(Ŝk) ≥ (1− ε)OPTk.

The bad events and the bounds on their probabilities are
1) Pr[∃t : BRt(S∗k) < (1− ε∗t)B(S∗k)] < δ1 (Lem. 4)
2) Pr[∃t, i, ε2 = ε

2i : BRver (Ŝk) > 1
1−ε2B(Ŝk)] < δ2

(Lem. 5)
3) Pr[(CovRt(Ŝk) > Λmax)

and (B(Ŝk) < (1− 1/e− ε)OPTk)] < δ/4
4) Pr[(t > tmax) and (CovRt(Ŝk) ≤ Λmax)] < δ/4

The bounds in 1) and 2) come directly from Lems. 4 and
5. The bound in 3) is a direct consequence of the stopping
condition algorithm in [1]. The bound in 4) can be shown by
noticing that when t > tmax then Nt � θ(ε, δ).

Apply the union bound; the probability that none of the
above bad events happens is at most δ1 + δ2 + δ/4 + δ/4 = δ.

Assume that none of the above bad events happen, we
shall show that the algorithm returns a (1−ε) optimal solution.
If TIPTOP stops with CovRt(Ŝk) > Λmax, it is obvious that
B(Ŝk) ≥ (1 − ε)OPTk, since the bad event in 3) do not
happen. Otherwise, algorithm Verify returns ‘true’ at line 14
for some t ∈ [1, tmax] and i ∈ [0, vmax). Follow the path
1 → 2 → 3 → 4 . No bad event in 2) implies

B(Ŝk) ≥ (1− ε2)Bver(Ŝk) (27)

≥ (1− ε2)(1− ε1)BRt(Ŝk) (28)
≥ (1− ε2)(1− ε1)BRt(S∗k) (29)

No bad event in 1) implies
BRt(S∗k) ≥ (1− ε∗t)B(S∗k)

4 → 5 : To show
BRt(S∗k) ≥ (1− ε3)B(S∗k),

We prove that

ε∗t =

√
3 ln(tmax/δ1)

Ntµ∗t

≤ ε3 =

√
3 ln(tmax/δ1)

(1− ε1)(1− ε2)CovRt(Ŝk)

⇔Ntµ∗t ≥ (1− ε1)(1− ε2)CovRt(Ŝk)

⇔NtB(S∗k)/Γ ≥ (1− ε1)(1− ε2)NtBRt(Ŝk)/Γ

⇔B(S∗k) ≥ (1− ε1)(1− ε2)BRt(Ŝk)

3If there are multiple optimal solutions, we break the tie by using alpha-
betical order on nodes’ ids.

The last one holds due to the optimality of S∗k and Eq. 28.

B(S∗k) ≥ B(Ŝk) ≥ (1− ε1)(1− ε2)BRt(Ŝk)

Combine Eq. 29 and 4 → 5 , we have

B(Ŝk) ≥ (1− ε2)(1− ε1)BRt(S∗k)

≥ (1− ε2)(1− ε1)(1− ε3)B(S∗k) ≥ (1− ε)OPTk
The last one holds due to the terminating condition (1−ε2)(1−
ε1)(1− ε3) > (1− ε) in line 14 in Verify.

VI. EXPERIMENTS

We conduct several experiments to illustrate the perfor-
mance and utility of TIPTOP. First, the performance of TIPTOP
is compared to the T-EXACT ILP. Our results show that it
is magnitudes faster while maintaining solution quality (sec.
VI-A). We then apply TIPTOP as a benchmark for existing
methods, showing that they perform better than their theoreti-
cal guarantee in certain cases but have significantly degraded
performance in others. Finally, we conclude the section with
an in-depth analysis of TIPTOP’s performance characteristics.

We implemented TIPTOP in C++ using CPLEX to solve the
IP. Unless noted otherwise, each experiment is run 10 times
and the results averaged. Settings for ε are listed with each
experiment, but δ is fixed at 1/n. All influence values are
obtained by running a separate estimation program with ε =
0.02 using the seed sets produced by each algorithm as input.

Dataset Network Type Nodes Edges

US Pol. Books [22] Recommendation 105 442
GR-QC [23] Collaboration 5242 14496
Wiki-Vote [23] Voting 7115 103689
NetPHY [24] Collaboration 37149 180826
Twitter [25] Social 41M 1.5B

TABLE I: Networks used in our experiments.

A. Comparison to the T-EXACT IP
Since T-EXACT produces exact results for IM, we use it

show the optimality of TIPTOP. As T-EXACT suffers from
scalability issues, we run on the 105-node US Pol. Books net-
work only. As shown in Fig. 2, TIPTOP consistently performs
as well as T-EXACT while performing more than 100 times
faster. We exploit this behavior to place an upper bound on the
performance of approximation methods in the next section.

(a) Solution Quality (b) Running Time

Fig. 2: The performance of TIPTOP (ε = 0.02, δ = 1/n)
and T-EXACT (T = 5000) on the US Political Books [22]
network under the cost-aware setting with normalized costs as
the budget b is varied.

B. Benchmarking Greedy Methods
As shown above, TIPTOP is capable of producing almost

exact solutions significantly faster than other IP-based solu-
tions. This property allows us to bound the performance of
approximation methods, which in turn allows us to compare
their absolute performance rather than merely their relative
performance. We evaluate the performance of IMM, BCT,
and SSA under three problem settings on three networks. All
evaluations are under the IC model with edge weights set to
w(u, v) = 1/din(v), where din(v) is the in-degree of v.

The first setting we consider is the traditional IM problem
(which we term Unweighted to differentiate it from subsequent
settings). We directly apply each author’s implementation to
this problem with no modifications. Fig. 3a shows that the
decade-or-so of work on this problem has resulted in greedy
solutions that are much better than their approximation ratio
of (1−1/e−ε). Somewhat surprisingly, we find similar results
on the Cost-Aware problem setting (fig. 3b).

The Cost-Aware setting generalizes the Unweighted setting
by adding a cost to each node on the network. In a social
network setting, the costs can be understood as the relative
amount of payment each user requires to become a part of an
advertising campaign (i.e. a seed node). Note that neither IMM
nor SSA support costs natively. We extend both to this problem
by scaling their objective functions by cost and limiting the
number of selected nodes by the sum of costs instead of
the number of nodes, which gives each an approximation
guarantee of 1− 1/

√
e− ε [16]. We consider three ways users

may decide on their relative value. First, users may define the
value of their influence independently from network topology.
We model this scenario by assigning costs according to a
uniform random distribution on [0, 1).

(a) Unweighted NetPHY (b) Cost-Aware NetPHY

Fig. 3: Mean performance of each approximation algorithm
as the budget is varied under the Unweighted and Cost-Aware
problem settings with ε = 0.02. OPT is estimated assuming
that TIPTOP achieves exactly (1− ε)OPT .

Alternately, users may use the most readily-available metric
to determine their influence: follower count. We consider both
linear- and log-scaled functions of this metric as rough upper
and lower bounds. In the linear case (cost(u) = n/|E|dout(u);
dout(u) is the out-degree of u, and the n/|E| term normalizes
the cost), if a user with 2K followers requires $800 to be
influenced, then a user with 2M followers would require
$800K. However, due to cascades increasing the effective
influence of users with follower counts between the two, the
high-follower users may opt to reduce their prices. The log-
scaled function models an extreme case, with the two-million-
follower user requiring a mere $1,527. We show that the
performance of all methods remains similar when scaling is
changed, though the performance of IMM and SSA drops
significantly when costs are randomized.

Our final setting is the CTVM problem described above.
We target 5% of each network at random, assigning each
targeted user a benefit on [0.1, 1) and each non-targeted user

a benefit of 0. Fig. 4 shows the performance on the GR-QC,
Wiki-Vote, and NetPHY networks. Note that neither IMM nor
SSA can be extended to the CTVM problem without significant
modifications, and therefore each ignores the benefit values.

From Fig. 4, we can see that the topology has a significant
impact on the performance of each algorithm. Note that on
GR-QC and NetPHY, the performance of BCT relative to the
optimal tends downward while on Wiki-Vote it tends upward.
Further, on NetPHY both IMM and SSA do astonishingly
well despite being ignorant of the targeted nodes. Figure 5
shows that BCT performs similarly regardless of cost function,
while the modified IMM and SSA face a significant drop in
performance when the costs are divorced from topology.

Coverage Unweighted Cost-Aware CTVM

IMM 6.94× 106 3.96× 106 8.59× 106

SSA 2.01× 106 2.81× 106 3.42× 106

BCT 9.34× 106 4.15× 106 6.23× 106

TIPTOP 2.08× 103 1.30× 104 6.04× 103

Verification Unweighted Cost-Aware CTVM

SSA 4.02× 107 8.44× 107 4.02× 107

TIPTOP 6.25× 106 1.86× 109 2.80× 107

TABLE II: Mean required samples for each algorithm.
Approximation guarantees are 0.61 for greedy methods in
the unweighted case and 0.37 for the cost-aware case (and
the CTVM case for BCT). The guarantee for TIPTOP is 0.6
in all cases. Coverage: Samples input into the MC solver.
Verification: Samples used to verify solution quality. IMM and
BCT do not incorporate a verification stage.
C. Analyzing TIPTOP’s performance

We now turn our attention to the details of TIPTOP’s
performance. Fig. 6 compares the running time of each method
as the approximation guarantee and budget are varied. From
this, we can see that the runtime performance of TIPTOP is
not far from – and in some cases better than – greedy methods.
With a comparable guarantee, TIPTOP is as fast as SSA and
an order of magnitude faster than IMM. However, as the
guarantee tends to 1, the advantage is lost. Fig. 6b shows that
while the runtime of both IMM and BCT is smoothly linear
and for SSA is near-constant, the running time of TIPTOP
is less predictable. This is the cost of solving an IP instead
of greedily solving MC: the IP solver may quickly find the
optimal solution, or it may take exponentially long to do
so. However, on average the running time of TIPTOP is low
enough that it is practical to run even on very large networks.
To further establish the scalability of TIPTOP, we run it on the
Twitter dataset (fig. 7). While the running time of TIPTOP is
worse, it still produces 98% optimal solutions in under three
hours. Previously, solving an IP on a network with millions
of nodes and billions of edges had been thought impractical.
TIPTOP is able to accomplish this by dramatically reducing
the number of samples used to solve MC. Table II shows that
on average, TIPTOP uses on the order of 103 fewer samples
than greedy methods to solve MC. As SSA has a Stare phase
in which it verifies the quality of a generating solution, we
also compare the number of samples used in our method and
SSA. The lower section of table II shows that even then, the
number of samples used to verify the approximation guarantee
is similar. The total number of samples used in both phases of
TIPTOP, in general, in smaller that that of SSA. Further, the
approximation ratio of TIPTOP affords greater precision if one

(a) GR-QC (b) Wiki-Vote (c) NetPHY

Fig. 4: Mean performance of each approximation algorithm as the
budget is varied under the CTVM problem setting with linear costs.

(a) Uniform Random (b) Log-Outdegree

Fig. 5: Performance on the NetPHY network under
the CTVM setting with alternate costs.

needs to guarantee a certain level of performance, as shown in
Fig. 7. Where prior work produced results of similar quality
regardless of ε, TIPTOP enables setting guarantees to exactly
the required value. If, for instance, an application requires an
80% approximation ratio, ε can be set to exactly 0.2, at which
point TIPTOP is as fast as state-of-the-art greedy solutions.

(a) Runtime as ε is increased.
b is held constant at 50.

(b) Runtime as b is increased.
ε is held constant at 0.02.

Fig. 6: Mean running time of TIPTOP, IMM, SSA, and BCT
on the NetPHY network under the CTVM problem setting.

(a) Running Time (b) Solution Quality

Fig. 7: Mean results on the Twitter network under the
Unweighted setting. Only one repetition is used on this dataset.

VII. CONCLUSION
In this paper, we propose the first (almost) exact solutions

to the CTVM (and thus IM) problem, namely T-EXACT
and TIPTOP. T-EXACT uses the traditional stochastic pro-
gramming approach and thus suffers the scalability issue. In
contrast, our TIPTOP with innovative techniques in reducing
the number of samples to meet the requirement of ILP solver
is able to run on billion-scale OSNs such as Twitter under
three hours. As TIPTOP is an exact solution to the ratio of
(1 − ε), it significantly improves from the current best ratio
(1− 1/e− ε) for IM and (1− 1/

√
e− ε) for CTVM. TIPTOP

also lends a tool to benchmark the absolute performance of
existing algorithms on large-scale networks.

ACKNOWLEDGMENT
This work is supported in part by the NSF grant #CCF-

1422116.

REFERENCES

[1] H. T. Nguyen, M. T. Thai, and T. N. Dinh, “Cost-aware targeted viral
marketing in billion-scale networks,” in INFOCOM. IEEE, 2016.

[2] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in KDD’03. ACM New York,
NY, USA, 2003, pp. 137–146.

[3] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance, “Cost-effective outbreak detection in networks,” in ACM
KDD ’07. New York, NY, USA: ACM, 2007, pp. 420–429.

[4] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in ACM KDD
’10. New York, NY, USA: ACM, 2010, pp. 1029–1038.

[5] Y. Tang, Y. Shi, and X. Xiao, “Influence Maximization in Near-
Linear Time: A Martingale Approach,” in Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’15. ACM, pp. 1539–1554.

[6] H. T. Nguyen, M. T. Thai, and T. N. Dinh, “Stop-and-stare: Optimal
sampling algorithms for viral marketing in billion-scale networks,” in
SIGMOD. ACM, 2016.

[7] T. N. Dinh, H. Zhang, D. T. Nguyen, and M. T. Thai, “Cost-effective
viral marketing for time-critical campaigns in large-scale social net-
works,” IEEE/ACM Transactions on Networking (TON), vol. 22, no. 6,
pp. 2001–2011, 2014.

[8] H. Zhang, T. N. Dinh, and M. T. Thai, “Maximizing the spread of
positive influence in online social networks,” in Distributed Computing
Systems (ICDCS), 2013 IEEE 33rd International Conference on. IEEE,
2013, pp. 317–326.

[9] T. N. Dinh, D. T. Nguyen, and M. T. Thai, “Cheap, easy, and massively
effective viral marketing in social networks: truth or fiction?” in
Proceedings of the 23rd ACM conference on Hypertext and social
media. ACM, 2012, pp. 165–174.

[10] H. Zhang, D. T. Nguyen, H. Zhang, and M. T. Thai, “Least cost
influence maximization across multiple social networks,” IEEE/ACM
Transactions on Networking, vol. 24, no. 2, pp. 929–939, 2016.

[11] A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on Stochastic
Programming: Modeling and Theory, Second Edition. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2014.

[12] G. Bayraksan and P. D. Morton, “Assessing solution quality in stochastic
programs,” Mathematical Programming, vol. 108, no. 2, pp. 495–514,
2006.

[13] U. Feige, “A threshold of ln n for approximating set cover,” Journal of
ACM, vol. 45, no. 4, pp. 634–652, 1998.

[14] N. P. Nguyen, Y. Xuan, and M. T. Thai, “A novel method for worm
containment on dynamic social networks,” in Military Communications
Conference, 2010, pp. 2180–2185.

[15] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social
influence in nearly optimal time,” in Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’14.
SIAM, 2014, pp. 946–957.

[16] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage
problem,” Information Processing Letters, vol. 70, no. 1, pp. 39–45,
1999.

[17] H. Nguyen and R. Zheng, “On budgeted influence maximization in
social networks,” Selected Areas in Communications, IEEE Journal on,
vol. 31, no. 6, pp. 1084–1094, 2013.

[18] A. Kleywegt, A. Shapiro, and T. Homem-de Mello, “The sample
average approximation method for stochastic discrete optimization,”
SIAM Journal on Optimization, vol. 12, no. 2, pp. 479–502, 2002.

[19] F. Chung and L. Lu, “Concentration inequalities and martingale in-
equalities: a survey,” Internet Mathematics, vol. 3, no. 1, pp. 79–127,
2006.

[20] Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: Near-optimal
time complexity meets practical efficiency,” in Proceedings of the
2014 ACM SIGMOD international conference on Management of data.
ACM, 2014, pp. 75–86.

[21] P. Dagum, R. Karp, M. Luby, and S. Ross, “An optimal algorithm for
monte carlo estimation,” SIAM J. Comput., vol. 29, no. 5, pp. 1484–
1496, Mar. 2000.

[22] V. Krebs, “Books about us politics,” unpublished, compiled by M. New-
man. Retrieved from http://www-personal.umich.edu/∼mejn/netdata/.

[23] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[24] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in
social networks,” in KDD ’09. New York, NY, USA: ACM, 2009, pp.
199–208.

[25] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in Proceedings of the 19th international
conference on World wide web. ACM, 2010, pp. 591–600.

