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Cost-effective Viral Marketing for Time-critical
Campaigns in Large-scale Social Networks

Thang N. Dinh, Huiyuan Zhang, Dung T. Nguyen, and My T. Thai

Abstract—Online social networks (OSNs) have become one
of the most effective channels for marketing and advertising.
Since users are often influenced by their friends, “word-
of-mouth” exchanges, so-called viral marketing, in social
networks can be used to increase product adoption or widely
spread content over the network. The common perception
of viral marketing about being cheap, easy, and massively
effective makes it an ideal replacement of traditional ad-
vertising. However, recent studies have revealed that the
propagation often fades quickly within only few hops from the
sources, counteracting the assumption on the self-perpetuating
of influence considered in literature. With only limited influ-
ence propagation, is massively reaching customers via viral
marketing still affordable? How to economically spend more
resources to increase the spreading speed?

We investigate the cost-effective massive viral marketing
problem, taking into the consideration the limited influence
propagation. Both analytical analysis based on power-law
network theory and numerical analysis demonstrate that the
viral marketing might involve costly seeding. To minimize
the seeding cost, we provide mathematical programming to
find optimal seeding for medium-size networks and propose
VirAds, an efficient algorithm, to tackle the problem on large-
scale networks. VirAds guarantees a relative error bound
of O(1) from the optimal solutions in power-law networks
and outperforms the greedy heuristics which realizes on the
degree centrality. Moreover, we also show that, in general,
approximating the optimal seeding within a ratio better than
O(log n) is unlikely possible.

Index Terms—Approximation algorithm, hardness proof,
social media, influence propagation, power-law networks;

I. INTRODUCTION

Digitizing real world connections, online social networks

(OSNs) such as Twitter and Facebook have been steadily

growing. Two-third of everyone online is using social

networks with more than one billion active Facebook users

[1], 200 million twitters, 40 millions Google+ subscribers

and so on. Social network sites such as Facebook and

Youtube are often among top-ten visited websites on the

Internet [2]. Much like real-world social networks, OSNs

inherent the viral property in which information can spread

and disseminate widely into networks via ‘word-of-mouth’

exchanges. They are effective channels to increase brand
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awareness, encourage discussion on improving products,

and recruit new employees. Notable examples include the

recent unrest in many Arab countries which are triggered

by Facebook shared posts [3]; the customer outreach of

Toyota on Twitter to repair its image after the massive

safety recalls of its vehicles [4], and many others. Despite

the huge economic and political impact, viral marketing

in large scale OSNs is not well understood due to the

extremely large numbers of users and complex structures

of social links.

A major portion of viral marketing research has been

devoted to the question of efficiently targeting a set of

influential nodes in order to spread information widely into

the network [5]–[7]. Two essential components to address

the question are the diffusion models and the algorithms

to select an initial set of nodes, called seeding. For a

social network represented as a graph, a diffusion model

defines the stochastic process that specifies how influence is

propagated from the seeding to their neighbors, and further.

In [5], Kempe et al. proposed two basic diffusion models,

namely independent cascade and linear threshold models.

These two models and their extensions set the foundation

to almost all existing algorithms to find seeding in social

networks [6]–[9].

However, all the mentioned models and algorithms ig-

nore one important aspect of influence propagation in the

real world, i.e., influence propagation often happens only

within a close proximity of the seeding. For example, a

study of Flickr [10] reveals that the typical chain length

is less than four; another study of Leskovec et. al. [11]

suggests that social influence happens on the level of direct

friends. Moreover, shared information in social networks

such as Facebook can usually be seen only by friends or

friends of friends i.e. the propagation is basically limited

within two hops from the source. Thus it is often sufficient

to consider the propagation within a few hops of the

seeding. When the influence only propagates locally, is

massively reaching customers via viral marketing still af-

fordable? Also, can we speed up the information spreading

for time-critical applications such as political campaigns?

We formulate a new optimization problem, called the
cost-effective, fast, and massive viral marketing (CFM)

problem. The problem seeks for a minimal cost seeding,

measured as the number of nodes, to massively and quickly

spread the influence to the whole network (or a large

segment of the network). The new aspect in our model is

that the influence is limited to the nodes that are within

d hops from the seeding for some constant d ≥ 1. In
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other words, the influence is forced to spread to the whole

networks within d propagation rounds. Hence, adjusting

d gives us an important ability to control how fast the

spread of influence within a network. Unfortunately, the

huge magnitude of OSN users and data available on OSNs

poses a substantial challenge to control how information

can quickly spread out to the whole network.

In this paper, we develop solutions to the CFM problem

and address the above two questions. Our contributions are

summarized as follows:

• Our first finding shows that the seeding for fast and

massive spreading must contain a non-trivial fraction

of nodes in the networks, which is cost-prohibitive for

large social networks. This is confirmed by both our

theoretical analysis based on the power-law model in

[12] and our extensive experiments.

• We propose VirAds, a scalable algorithm to find a

set of minimal seeding to expeditiously propagate the

influence to the whole network. VirAds outperforms

the greedy heuristics based on well-known degree

centrality and scales up to networks of hundred of

million links. We prove that the algorithm guarantees

a relative error bound of O(1), assuming that the

network is power-law.

• We show how hard to obtain a near optimal solution

for CFM by proving the impossibility to approxi-

mate the optimal solution within a ratio better than

O(log n).

Related Work. Viral marketing can be thought of as a

diffusion of information about the product and its adoption

over the network. Kempe et al. [5], [6] formulated the

influence maximization problem as an optimization prob-

lem. They showed the problem to be NP-complete and

devised an (1−1/e− ε) approximation algorithm. A major

drawback of their algorithm is that the accuracy ε, and

efficiency depends on the number of sampling times to

simulate the propagation process. Later, Leskovec et al. [13]

study the influence propagation in a different perspective

in which they aim to find a set of nodes in networks

to detect the spread of virus as soon as possible. They

improve the simple greedy method with the lazy-forward

heuristic (CELF), which is originally proposed to optimize

submodular functions in [14]. The greedy algorithm is

furthered improved by Chen et al. [8] by using an influence

estimation. For the Linear Threshold model, Chen et al.

[15] proposed to use local directed acyclic graphs (LDAG)

to approximate the influence regions of nodes.

More recently, Goyal et al. [16] studied the problem

of MINTIME in which given a coverage threshold η and

a budget threshold k, the task is to find a seed set of

size at most k such that by activating it, at least η nodes

are activated in expectation in minimum possible time.

In MINTIME, the objective is to minimize the influence

timing, when in our case, time is given as a deadline

constraint. Chen et al. in [17] extends the IC and LT

models to study the time-critical influence maximization

problem. The goal is to identify k nodes such that activating

those nodes maximizes the expectation of the number of

activated nodes within a given deadline. This objective

is different from ours that aims to minimize the seeding

cost. In addition, both [16] and [17] study the influence

propagation based on the IC and LT models, while our

study is based on a deterministic threshold model.

Influence propagation with limited number of hops is first

considered in Wang et al. [18] and Feng et al. [19] for the

special case d = 1 and ρ = 1/2. We note that none of the

mentioned approaches handled large-scale social networks

of millions of nodes as we shall study in Section VI.

Organization. We introduce the limited hop influence

model and the cost-effective, massive and fast propagation

problem (CFM) in Section II. In Section III, we answer the

question on the seeding cost by analyzing the propagation

process on power-law networks. We present VirAds, a

scalable algorithm to find a minimal seeding for the CFM

problem in Section IV. The hardness of finding a cost-

effective seeding is addressed in Section V. Finally, we

perform extensive experiments on large social networks

such as Facebook and Orkut to confirm the efficiency of

our proposed algorithm and analyze the results to give new

observations to information diffusion process in networks.

II. PROBLEM DEFINITIONS

We are given a social network modeled as an undirected

graph G = (V,E) where the vertices in V represent users

in the network and the edges in E represent social links

between users. We use n and m to denote the number of

vertices and edges, respectively. The set of neighbors of

a vertex v ∈ V is denoted by N(v) and we denote by

d(v) = |N(v)| the degree of node v.

Next we specify the diffusion model that governs the

process of influence propagation. Existing diffusion models

can be categorized into two main groups [5]:

• Threshold model. Each node v in the network has

a threshold tv ∈ [0, 1], typically drawn from some

probability distribution. Each connection (u, v) be-

tween nodes u and v is assigned a weight w(u, v).
For a node v, let F (v) be the set of neighbors of v
that are already influenced. Then v is influenced if

tv ≤∑u∈F (v) w(u, v).
• Cascade model. Whenever a node u is influenced, it is

given a single chance to activate each of its neighbor

v with a given probability p(u, v).

Most viral marketing papers assume that the probabilities

p(u, v) or weights w(u, v) and thresholds tv are given

as a part of the input. However, they are generally not

available and inferring those probabilities and thresholds

has remained a non trivial problem [20]. Thus in addition to

the bounded propagation hop, we use a simplified variation

of the linear threshold model in which a vertex is activated

if a fraction ρ of its neighbors are active as follows.

Locally Bounded Diffusion Model. Let R0 ⊂ V
be the subset of vertices selected to initiate the influence

propagation, which we call the seeding. We also call a

vertex v ∈ R0 a seed. The propagation process happens in

round, with all vertices in R0 are influenced (thus active in
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adopting the behavior) at round t = 0. At a particular round

t ≥ 0, each vertex is either active (adopted the behavior)

or inactive and each vertex’s tendency to become active

increases when more of its neighbors become active. If an

inactive vertex u has more than �ρ d(u)� active neighbors

at round t, then it becomes active at round t+ 1, where ρ
is the influence factor as discussed later. The process goes

on for a maximum number of d rounds and a vertex once

becomes active will remain active until the end. We say

an initial set R0 of vertices to be a d-seeding if R0 can

activate at least a fraction 0 < τ ≤ 1 of vertices in the

networks within at most d rounds.
The influence factor 0 < ρ < 1 is a constant that decides

how widely and quickly the influence propagates through

the network. Influence factor ρ reflects real-world factors

such as how easy to share the content with others, or some

intrinsic benefit for those who initially adopt the behavior.

In case ρ = 1/2 the model is also known as the majority
model that has many application in distributed computing,

voting system [21], etc.
In addition, we denote the desired fraction of nodes to be

activated after d rounds by τ , the coverage constant. Given

the diffusion model and constants 0 < ρ < 1, 0 < τ ≤ 1,

and d ∈ Z
+, we define the Cost-effective, Fast, and Massive

viral marketing (CFM) problem as follows.
Definition 1 (CFM Problem): Given an undirected

graph G = (V,E) modeling a social network, find in V a

minimum subset of nodes that can activate at least τ |V |
nodes within at most d rounds.
In other words, the problem asks for a minimum size d-

seeding.
Generalization. The diffusion model can be generalized

in several ways. For example, the model can be extended

naturally to cover directed and weighted networks or spec-

ify different influence factor ρv for each node v ∈ V .

Furthermore, each node v can be associated with a positive

number θv that represents the cost to add v into the seeding.

For simplicity we stick with the current model to avoid

setting parameters during the experiments. Nevertheless,

major results such as the approximation ratio of the VirAds

algorithm in Section IV or the hardness of approximation

result in Section V still hold for the generalized models.

III. COST OF MASSIVE MARKETING

In this section, we give a negative answer for the first

question in the introduction about the initial seeding cost.

We exploit the power-law topology found in most social

networks [22]–[24] to demonstrate that when the propa-

gation hop is limited, a large number of seeding nodes is

needed to spread the influence throughout the network. The

size of seeding is proved to be a constant fraction of the

number of vertices n, which is prohibitive for large social

networks of millions of nodes. We first summarize the well-

known power-law model in [25]; then we use the model to

prove the prohibitive seeding cost for the CFM problem.

A. Power-law Network Model.
Many complex systems of interest including OSNs are

found to have the degree distributions approximately fol-

lows the power laws [22]–[24]. That is the fraction of nodes

in the network having k connections to other nodes is

proportional to k−γ , where γ is a parameter whose value is

typically in the range 2 < γ < 3. Those networks have been

used in studying different aspects of the scale-free networks

[25]–[27]. We follow the P (α, γ) power-law model in [25]

in which the number of vertices of degree k is � eα

kγ 	 where

eα is the normalization factor. We note that our result do not

rely on the assumption in the P (α, γ) model that vertices

are connected at random. Thus our result in this section

holds for all random graphs in the model.

We can deduce that the maximum degree in a P (α, γ)
network is e

α
γ (since for k > e

α
γ , the number of edges will

be less than 1). The number of vertices and edges are

n =
e
α
γ∑

k=1

eα

kγ
≈

⎧⎪⎪⎨
⎪⎪⎩

ζ(γ)eα if γ > 1

αeα if γ = 1

e
α
γ

1−γ if γ < 1

,

m =
1

2

e
α
γ∑

k=1

k
eα

kγ
≈

⎧⎪⎪⎨
⎪⎪⎩

1
2ζ(γ − 1)eα if γ > 2
1
4αe

α if γ = 2

1
2
e
2α
γ

2−γ if γ < 2

(III.1)

where ζ(γ) =
∑∞

i=1
1
iγ is the Riemann Zeta function [25]

which converges for γ > 1 and diverges for all γ ≤ 1.

Without affecting the conclusion, we will use real numbers

instead of rounding down to integers. The error terms are

sufficiently small and can be bounded in our proofs.

While the scale of the network depends on α, the

parameter γ decides the connection pattern and many other

important characterizations of the network. For instance,

the larger γ, the sparser and the more “power-law” the

network is. Hence, the parameter γ is often regarded as

the characteristic constant for scale-free networks.

B. Prohibitive Seeding Costs

We prove that the seeding must contain at least Ω(n)
vertices if the propagation is locally bounded. The result is

stated in the following theorem.

Theorem 1: Given a power-law network G ∈ P (α, γ),
with γ > 2 and constants 0 < ρ < 1 and 0 < τ ≤ 1, any

d-seeding is of size at least Ω(n).
Proof: The proof consists of two parts. In the first part,

we show that the volume i.e. the total degree of vertices, of

any d-seeding must be Ω(m). In the second part, we prove

that any subset of vertices S ⊂ V with volume vol(S) =
Ω(m) in a power-law network with power-law exponent

γ > 2, will imply that |S| = Ω(n). Thus, the theorem

follows.

In the first part, we consider two separate cases

Case ρ > 1
2 : Let S = R0 be the optimal solu-

tion for the CFM problem on G = (V,E), and S =
R0, R1, R2, . . . , Rd are vertices that become active at round

0, 1, 2, . . . , d, respectively. For each 1 ≤ t ≤ d the

following inequality holds.

|φ(Rt,

t−1⋃
i=0

Ri)| ≥ ρvol(Rt) (III.2)
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where φ(A,B) denotes the set of edges connecting one

vertex in A to one vertex in B and vol(Rt) denotes the

total degree of vertices in Rt. The inequality means that at

least a fraction ρ among the edges incident to the vertices

activated in round t must be incident with active vertices

in the previous rounds.

Sum up all inequalities in (III.2) for t = 1..d, we have

d∑
t=1

|φ(Rt,

t−1⋃
i=0

Ri)| ≥ ρvol(

d⋃
i=1

Ri) (III.3)

Note that the left side can be written as

1

2

(
d∑

t=1

|φ(Rt,

t−1⋃
i=0

Ri)|+
d−1∑
i=0

|φ(
d⋃

t=i+1

Rt, Ri)|
)

≤1

2
|φ(

d⋃
t=0

Rt,

d⋃
t=0

Rt)| ≤ 1

2
vol(

d⋃
t=0

Rt) (III.4)

From Eqs. III.3 and III.4, we have

1

2
vol(

d⋃
t=0

Rt) ≥ ρvol(

d⋃
t=1

Rt)

⇒vol(R0) ≥ 2ρ− 1

ρ
vol(

d⋃
t=0

Rt) (III.5)

Since there must be at least τn activated vertices after d
rounds, we have |⋃d

t=0 Rt| ≥ τn. Then, by III.1

vol(

d⋃
t=0

Rt) ≥ |
d⋃

t=0

Rt| ≥ τn =
ζ(γ − 1)

2ζ(γ)
m = Ω(m)

Hence, when ρ > 1/2, vol(R0) = Ω(m) for any d-seeding

R0.

Case ρ ≤ 1
2 : We say that an edge is active if it is incident

to at least one active vertex. At round t = 0, there are

at most vol(R0) active edges, those who are incident to

R0. Eq. III.2 implies that the number of active edges in

each round increases at most ρ−1 times. After d rounds, the

number of active edges will be bounded by vol(R0)×ρ−d.

Since the number of active edge after d rounds is at least

Ω(m), we have

vol(R0) ≥ ρ−dvol(

d⋃
t=0

Rt) = Ω(m).

This completes the first part of the proof.

In the second part of the proof, we show that if a subset

S ⊂ V has vol(S) = Ω(m), then |S| = Ω(n) whenever the

power-law exponent γ > 2. Assume that vol(S) ≥ cm, for

some positive constant c. The size of S is minimum when

S contains only the highest degree vertices of V . Let k0 be

the minimum degree of vertices in S in that extreme case,

by Eq. III.1 we have

cm =
c

2

e
α
γ∑

k=1

k
eα

kγ
≤ vol(S) ≤ 1

2

e
α
γ∑

k=k0

k
eα

kγ

Simplify two sides, we have

k0−1∑
k=1

1

kγ−1
≤ (1− c)

e
α
γ∑

k=1

1

kγ−1
= (1− c)ζ(γ − 1)

Since, the zeta function ζ(γ − 1) converges for γ > 2,

there exists a constant kρ,γ that depends only on ρ and γ
that satisfies

kρ,γ∑
k=1

1

kγ−1
> (1− c)ζ(γ − 1)

Obviously, we have k0 ≤ kρ,γ . Thus, the number of vertices

that are in S is at least

e
α
γ∑

k=kρ,γ

eα

kγ
= (1−

kρ,γ∑
k=1

1

kγ
)n = Ω(n)

We have the last step because the sum
∑kρ,γ

k=1
1
kγ is bounded

by a constant since kρ,γ is a constant.

In both cases ρ > 1/2 and ρ ≤ 1/2, the size of a

d-seeding set is at least Ω(n). However, we can see a

clear difference in the propagation speed with respect to

d between two cases. When ρ < 1/2, the number of active

edges can increase exponentially (but is still bounded if d is

a constant) and, it is likely that the number of active vertices

also exponentially increases. In contrast, when ρ > 1/2,

exploding in the number of active edges (and hence active

vertices) is impossible as the total number of active edges

after d rounds is bounded by ρ
2ρ−1 volume of the initial

d-seeding, regardless of the value of d.

IV. COST-EFFECTIVE & EXPEDITIOUS

SOCIAL MARKETING ALGORITHM

In order to understand the influence propagation when

the number of propagation hops is bounded, we propose

VirAds, an efficient algorithm for the CFM problem. With

the huge magnitude of OSN users and data available on

OSNs, scalability becomes the major problem in designing

algorithm for CFM. VirAds is scalable to network of hun-

dred of millions links and provides high quality solutions

in our experiments.

Before presenting VirAds, we consider a natural greedy

algorithm for the CFM problem in which the vertex that

can activate the largest number of inactive vertices within

d hops is selected in each step. This greedy algorithm is un-

likely to perform well in practice for following two reasons.

First, at early steps, when not many vertices are selected,

every vertex is likely to activate only itself after being

chosen as a seed. Thus, the algorithm cannot distinguish

between good and bad seeds. Second, the algorithm suffers

serious scalability problems at later selection steps. To

select a vertex, the algorithm has to evaluate for each vertex

v how many vertices will be activated after adding v to the

seeding, e.g. by invoking an O(m+n) Breadth-First Search

procedure rooted at v. In the worst-case when O(n) vertices

are needed to evaluate, this alone can take O(n(m + n)).
Moreover, as shown in the previous section, the seeding

size can be easily Ω(n); thus, the worst-case running time
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of the naive greedy algorithm is O(n2(m + n)), which is

prohibitive for large-scale networks.

As shown in Algorithm 1, our VirAds algorithm over-

comes the mentioned problems in the naive greedy by

favoring the vertex which can activate the most number

of edges (indeed, it also considers the number of active

neighbor around each vertex). This avoids the first problem

of the naive greedy algorithm. At early steps, the algorithm

behaves similar to the degree-based heuristics that favors

vertices with high degree. However, when a certain number

of vertices are selected, VirAds will make the selection

based on the information within d-hop neighbor around the

considered vertices rather than only one-hop neighbor as in

the degree-based heuristic.

Algorithm 1: VirAds - Viral Advertising in OSNs

Input: Graph G = (V,E), 0 < ρ < 1, d ∈ N
+

Output: A small d-seeding

n
(e)
v ← d(v), n

(a)
v ← ρ · d(v), rv ← d+ 1, v ∈ V ;

r
(i)
v = 0, i = 0..d, P ← ∅;

while number of active nodes is less than τ |V | do
repeat

u ← argmaxv/∈P {n(e)
v + n(a)

v };

Recompute n
(e)
u as the number of

new active edges after adding u.
until u = argmaxv/∈P {n(e)

v + n(a)
v };

P ← P ∪ {u};

Initialize a queue: Q ← {(u, ru)};

ru ← 0;

foreach x ∈ N(u) do
n
(a)
x ← max{n(a)

x − 1, 0};

while Q �= ∅ do
(t, r̃t) ← Q.pop();
foreach w ∈ N(t) do

foreach i = rt to min{r̃t − 1, rw − 2} do
r
(i)
w = r

(i)
w + 1;

if r
(i)
w ≥ ρ · dw then
if (rw ≥ d) ∧ (i+ 1 < d) then

foreach x ∈ N(w) do
n
(a)
x ← max{n(a)

x − 1, 0};

rw = i+ 1;

if (rw < d) ∧ (w /∈ Q) then
Q.push(w, rw);

Output P ;

The scalability problem is tackled in VirAds by effi-

ciently keeping track of the following measures for each

vertex v.

• rv: the round in which v is activated

• n
(e)
v : The number of new active edges after adding v

into the seeding

• n
(a)
v : The number of extra active neighbors v needs in

order to activate v

• r
(i)
v : The number of activated neighbors of v up to

round i where i = 1..d.

Given those measures, VirAds selects in each step the

vertex u with the highest effectiveness which is defined as

n
(e)
u + n

(a)
u . After that, the algorithm needs to update the

measures for all the remaining vertices.

We use an effective updating strategy, referred as “Smart-
update”, to maintain node activation status incrementally.

In our experiments in Appendix B, the “Smart-update”

strategy reduce the running time of VirAds more than

200 times. Except for n
(e)
v , all other measures can be

effectively kept track of in only O((m + n)d) during the

whole algorithm. When a vertex u is selected, it causes a

chain-reaction and activate a sequence of vertices or lower

the rounds in which vertices are activated. New activated

vertices together with their active rounds are successively

pushed into the queue Q for further updating much like

what happens in the Bellman-Ford shortest-paths algorithm.

Every time we pop a vertex v from Q. If rv , the current

active round of v, is different from r̃v , the previous active

round of v when v is pushed into Q, we update for each

neighbor w of v the values of rw and r
(i)
w . If any neighbor

w of v changes its active round and w is not in Q, we push

w into Q for further update. The update process stops when

Q is empty. Note that for each node u ∈ V , changing of ru
can cause at most d update for r

(.)
w where w is a neighbor

of u. For all neighbors of u, the total number of update

is, hence, O(d · d(u)). Thus, the total time for updating

r
(.)
w ∀w ∈ V in VirAds will be at most O((m+ n) · d).

To maintain n
(e)
v , the easiest approach is to recompute all

n
(e)
v . This approach, called Exhaustive Update, is extremely

time-consuming as discussed in the naive greedy. Instead,

we only update n
(e)
v when “necessary”. In details, vertices

are stored in a max priority queue in which the priority

is their effectiveness. In each step, the vertex u with the

highest effectiveness is extracted and n
(e)
u is recomputed.

If after updating, u still has the highest effectiveness, u is

then selected. Otherwise, u is pushed back to the priority

queue, and the new vertex with the highest effectiveness

is considered, and so on. This strategy is similar to the

accelerated greedy proposed in [14] for maximizing sub-

modular functions and the lazy-forward heuristic (CELF)

in [13]. Note that since the CFM problem does not exhibit

submodular property, this strategy does not guarantee the

selection of the node with highest effectiveness. Neverthe-

less, the experiments suggest that this strategy outperforms

the Exhaustive Update in terms of running time and retains

high-quality solutions at the same time.

While we cannot give a better bound than O(n2(m+n))
for the worst case, the VirAds algorithm is expected to run

in an O(s · d(m+n)) time, where s is the number of seed

nodes in the solution and d is the number of propagation

round. In our experiments, VirAds reduces the running

time up to several thousand times, while retaining the high

quality solutions.

Approximation Ratio for Power-law Networks.
The CFM problem can be easily shown to be NP-hard by
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a reduction from the set cover problem. Thus, we are left

with two choices: designing heuristics which have no worst-

case performance guarantees or designing approximation

algorithms which can guarantee the produced solutions are

within a certain factor from the optimal. Formally, a β-

approximation algorithm for a minimization (maximization)

problem always returns solutions that are at most β times

larger (smaller) than an optimal solution.

Unfortunately, there is unlikely an approximation algo-

rithm with factor less than O(log n) as shown in next

section. However, under the assumption that the degree dis-

tribution follows a power-law, our VirAds, or any algorithm

that gives feasible solutions for CFM, is an approximation

algorithm for CFM with a constant factor. This follows

directly from the result in previous section that the optimal

solution has size at least Ω(n) in power-law networks. Thus,

the ratio between the VirAds’s solution and the optimal

solution is bounded by a constant.

V. HARDNESS OF IDENTIFYING

SEEDING WITH GUARANTEES

This section provides the hardness of approximating the

optimal solutions of the CFM problem, i.e., the impossi-

bility of finding near-optimal solutions in polynomial time.

In the previous section, we can obtain O(1) approximation

algorithms for CFM when the network is power-law. In

contrast, we can modify slightly the main reduction in [8] to

show that the CFM problem cannot be approximated within

a factor Ω(2log
1−ε n) for d ≥ 6 and ε > 0. This implies that

unlike Linear Threshold and Independent Cascade models

[5], the locally bounded diffusion model in this paper is

non-submodular in general.

For the cases d ≤ 6, we show below that there is no

algorithm that can approximate the problem within a factor

less than Ω(log n). We first prove the hardness for the case

when d = 1 and τ = 1. Then we present the hardness for

the cases 1 < d ≤ 6.

A. One-hop CFM

We prove that the CFM problem cannot be approximated

within a factor lnΔ − (ln lnΔ) in graphs of maximum

degree Δ, unless P=NP. The proof uses a gap-reduction

from an instance of the Bounded Set Cover problem (SCB)

to an instance of CFM problem whose degrees are bounded

by B′ = B poly log B. The proof can be found in the

conference version of the paper [28].

Theorem 2: [28] When d = 1, it is NP-hard to approxi-

mate the CFM problem in graphs with degrees bounded by

B′ within a factor of lnB′ − c1 ln lnB
′, for some constant

c1 > 0.

Similarly, with appropriate setting in Feige’s construction

[29], we obtain the following hardness result regarding the

network size n. The proof is given in [30] or Appendix A.

Theorem 3: [30] For any ε > 0, the CFM problem,

when d = 1, cannot be approximated within a factor ( 12 −
ε) lnn, unless NP ⊂ DTIME(nO(log logn)).
Note that Theorems 2 and 3 are incomparable in general.

Let Δ be the maximum degree, Theorem 2 implies the

hardness of approximation with factor (1− ε) lnΔ, which

is larger than ( 12 − ε) lnn if Δ ≈ n, but smaller than ( 12 −
ε) lnn when Δ <

√
n. In addition, the Theorem 3 uses a

stronger assumption than that in Theorem 2.

B. Multiple-hop CFM

We now present a gap reduction from the (d-hop) CFM

problem to the one-hop CFM problem with d ≥ 2. The

hardness result follows immediately by the Theorem 2 in

the previous section.

Given a graph G = (V,E) as an instance of the CFM

problem. We will construct an instance G′ = (V ′, E′) of

the CFM problem as follows (and as illustrated in Fig. 2).

We add c(ρ) vertices w1, w2, . . . , wc(ρ), called flashpoints,

Fig. 1. The transmitter gadget.

where c(ρ) = min{t ∈ N | t−1
t+1 ≤ ρ < t

t+1}. These

vertices will be selected at the beginning to kick off the

activation of other nodes. Furthermore, each “flashpoint”

wp is connected to a dummy vertex zp.

Fig. 2. Gap-reduction from one-hop CFM to d-hop CFM.

Replace each edge (u, v) ∈ E by a gadget called

transmitter. The transmitter connecting vertex u and v is

a chain of d−1 path, named uv1 to uvd−1. The vertex u is

connected to uv1, uv1 is connected to uv2 and so on, vertex

uvd−1 is connected to v. Each vertex uvi, i = 1..d − 1 is

connected to all flashpoints. An example for transmitter is

shown in Fig. 1. The transmitter is designed so that if all

flashpoints and vertex u are selected at the beginning, then

vertex uvd−1 will be activated after d − 1 rounds. Hence,

the number of activated neighbors of v after d− 1 rounds

will equal the number of selected neighbors of v in the

original graph.

Finally, we replace each edge (wp, zp) by a transmitter.

In order to activate all dummy vertices zp after d rounds,

assume, w.l.o.g., that all flashpoints must be selected in

an optimal solution. The following lemma follows directly

from the construction.

Lemma 1: Every solution of size k for the one-hop

(d = 1) CFM problem in G induces a solution of size

k + c(ρ) for the d-hop CFM problem in G′.
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On another direction, we also have the following lemma.

Lemma 2: An optimal solution of size k′ for the d-hop

CFM problem induces a size k′ − c(ρ) solution for the

one-hop CFM problem in G.

Proof: For a transmitter connecting u to v, if the

solution of the d-hop CFM problem contains any of the

intermediate vertices uv1, . . . , uvd−1, we can replace that

vertex in the solution with either u or v to obtain a new

solution of same size (or less). Hence, we can assume,

w.l.o.g., that none of the intermediate vertices are selected.

Therefore, all flashpoints must be selected in order to

activate the dummy vertices. It is easy to see that the

solution of d-hop CFM excluding the flashpoints will be

a solution of one-hop CFM in G with size k′ − c(ρ).
Note that the number of vertices in G′ is upper-bounded

by dn2 i.e. ln |V ′| < 2ln|V | + lnd. Thus, using the same

arguments used in the proof of Theorem 3, we can show

that a ( 14 − ε) lnn approximation algorithm algorithm lead

to a ( 12 − ε) lnn approximation algorithm for the one-hop

CFM problem (contradicts Theorem 3).

Theorem 4: The CFM problem cannot be approxi-

mated within ( 14 − ε) log n for d ≥ 1, unless NP ⊂
DTIME(nO(log logn))

VI. EMPIRICAL STUDY

In this section we perform experiments on OSNs to show

the efficiency of our algorithms in comparison with simple

degree centrality heuristic and study the trade-off between

the number of times the information is allowed to propagate

in the network and the seeding size.

A. Comparing to Optimal Seeding

One advantage of our discrete diffusion model over

probabilistic ones [5], [6] is that the exact solution can be

found using mathematical programming. This enables us

to study the exact behavior of the seeding size when the

number of propagation hop varies.

We formulate the CFM problem as an 0−1 Integer Linear

Programming (ILP) problem below.

minimize
∑
v∈V

x0
v (VI.1)

subject to
∑
v∈V

xd
v ≥ τ |V | (VI.2)

∑
w∈N(v)

xi−1
w + �ρ · d(v)�xi−1

v ≥ �ρ · d(v)� xi
v

∀v ∈ V, i = 1..d (VI.3)

xi
v ≥ xi−1

v ∀v ∈ V, i = 1..d (VI.4)

xi
v ∈ {0, 1} ∀v ∈ V, i = 0..d (VI.5)

where xi
v =

{
0 if v is inactive at round i

1 otherwise
.

The objective of the ILP is to select a minimum number

of seeds at the beginning. The constraint (VI.2) guarantees

at least a fraction τ of nodes are activated at the end; the

constraints (VI.3) capture the propagation model; and the

constraint (VI.4) is simply to keep vertices active once they

are activated.

We solve the ILP problem on Erdos collaboration net-

works, the social network of famous mathematician [23],

with τ = 1. The network consists of 6100 vertices and

15030 edges. The ILP is solved with the optimization

package GUROBI 4.5 on Intel Xeon 2.93 Ghz PC and

setting the time limit for the solver to be 2 days. The

running time of the IP solver increases significantly when d
increases. For d = 1, 2, and 3, the solver return the optimal

solutions. However, for d = 4, the solver cannot find the

optimal solutions within the time limit and returns sub-

optimal solutions with relative errors at most 15%.

The optimal (or sub-optimal) seeding sizes are shown in

Figs. 3a, 3b, and 3c for ρ = 0.4, 0.6 and 0.8, respectively.

VirAds provides close-to-optimal solutions and performs

much better Max Degree. Especially, when ρ = 0.8 the

VirAds’s seeding is only different with the optimal solutions

by one or two nodes. In addition, VirAds only takes

fractions of a second to generate the solutions.

As proven in Section III, the seeding takes a constant

fraction of nodes in the network. For Erdos Colloboration

Network, the seeding consists of 3.8% to 7% the number of

nodes in the networks. Further, the seeding can consist as

high as 20% to 40% nodes in the network for larger social

networks in next section.

Although the mathematical approach can provide accu-

rate measurement on the optimal seeding size, it cannot be

applied for larger networks. The rest of our experiments

measures the quality and scalability of our proposed algo-

rithm VirAds on a collection of large networks.

B. Large Social Networks

We select networks of various sizes including Coauthors

network in Physics sections of the e-print arXiv [5], Face-

book [31] and Orkut [32], a social networking run by

Google. Links in all three networks are undirected and

unweighted. The sizes of the networks are presented in

Table I.

TABLE I
SIZES OF THE INVESTIGATED NETWORKS

Physics Facebook Orkut
Vertices 37,154 63,731 3,072,441

Edges 231,584 817, 090 223,534,301
Avg. Degree 12.5 25.6 145.5

Physics: We shall refer the physics coauthors network

as Physics network or simply Physics. Each node in the

network represents an author and there is an edge between

two authors if they coauthor one or more papers. Facebook
dataset consists 52% of the users in the New Orleans [31].

Orkut dataset is collected by performing crawling in last

2006 [32]. It contains about 11.3% of Orkut’s users.

We compare our VirAds algorithm with the following

heuristics Random method in which vertices are picked

up randomly until forming a d-seeding and Max Degree
method in which vertices with highest degree are selected

until forming a d-hop seeding. Finally, we compare VirAds
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(a) ρ = 0.4 (b) ρ = 0.6 (c) ρ = 0.8

Fig. 3. Seeding size (in percent) on Erdos’s Collaboration network. VirAds produces close to the optimal seeding in only fractions of a second (in
comparison to 2 days running time of the IP(optimal) )

(a) Physics (b) Facebook (c) Orkut

Fig. 4. Seeding size when the number of propagation hop d varies (ρ = 0.3). VirAds consistently has the best performance.

(a) Physics (b) Facebook (c) Orkut

Fig. 5. Running time when the number of propagation hop d varies (ρ = 0.3). Even for the largest network of 110 million edges, VirAds takes less
than 12 minutes.

ρ

(a) Physics

ρ

(b) Facebook

ρ

(c) Orkut

Fig. 6. Seeding size at different influence factors ρ (the maximum number of propagation hops is d = 4).

with its naive implementation, called Exhaustive Update,

in which after selecting a vertex into the seeding, the

effectiveness of all the remaining vertices are recalculated.

With more accurate estimation on vertex effectiveness,

Exhaustive Search is expected to produce higher quality so-

lutions than those of VirAds. To compare the performance

of the presented algorithms, we vary the number of rounds

d, and the influence factor ρ. The value of τ is set to one

for this part.

Solution Quality. The seeding size with different num-

ber of propagation hop d when ρ = 0.3 are shown in Fig.

4. To our surprise, VirAds even performs equal or better

than Exhaustive Update despite that it uses significantly less

effort to update vertex effectiveness. VirAds has smaller

seeding in Physics than Exhaustive Update; both of them

give similar results for Faceboook; while Exhaustive Up-
date cannot finish on Orkut after 48 hours and was forced to

terminate. Sparingly update the vertices’ effectiveness turns

out to be efficient enough since the influence propagation

is locally bounded. In addition, the VirAds’s solutions are

almost two times smaller than Random’s.

As shown in Fig. 4, the gap between VirAds and Max

Degree is narrowed when the number of maximum hops

increases. Hence, selecting nodes with high degrees as
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seeding is a good long-term strategy, but might not be

efficient for fast propagation when the number of hops is

limited. In Facebook and Orkut, when d = 1, Max Degree
has 60% to 70% more vertices in the seeding than VirAds.

In Physics, the gap between VirAds and the Max Degree is

less impressive. Nevertheless, VirAds consistently produces

the best solutions in all networks.

Scalability. The running time of all methods at different

propagation hop d are presented in Fig 5. The time is

measured in second and presented in the log scale. The

running times increase slightly together with the number

of propagation rounds d, and are proportional to the size of

the network. The Exhaustive Update has the worst running

time, taking up to 15 minutes for Physics, 20 minutes for

Facebook. For Orkut, the algorithm cannot finish within 2

days, as mentioned. The three remaining algorithms VirAds,

Max Degree, and Random take less than one second for

Physics, and less than 10 seconds for Facebook. Even on the

largest network Orkut with more than 220 million edges,

VirAds finishes in less than 12 minutes.

Influence factor. We study the performance of VirAds

and the other method at different influence factor ρ. The

number of propagation rounds d is fixed to 4. The size of

d-seeding sets are shown in Figures 6. VirAds is clearly

still the best performer. The VirAds’s solutions are nearly

5 times smaller than the solutions of Max Degree for small

ρ (although it’s hard to see this on the charts due to small

seeding sizes).

Since all tested networks are social networks with small

diameter, the seeding sizes go to zero when ρ is close to

zero. The exception is the Physics, in which the seeding

sizes do not go below 10% the number of vertices in the

networks even when ρ = 0.05. A closer look into the

Physics network reveals that the network contain many

isolated cliques of small sizes (2, 3, 4, and so on) which

correspond to authors that appear in only one paper. In

each clique, regardless of the threshold ρ, at least one vertex

must be selected, thus the seeding size cannot get below the

number of isolated cliques in the networks. To eliminate the

effect of isolated cliques, a possible approach is to restrict

the problem to the largest component in the network.

C. Phases of Going Viral

In this part, we vary the value of the desired coverage τ ,

focusing on the case τ < 1, to discover the effective seeding

size. Specifically, we measure the cost-effectiveness, the

ratio between the number of influenced nodes and the

size of seeding every time a new node is selected (the

higher cost-effectiveness, the better). The cost-effectiveness

of seeding produced by VirAds and Maxdegree for ρ = 0.2
are shown in Figs. 7 and 8, respectively. When d = 4, one

seed can activate around 100 other nodes at peak in Physics

and Facebook, while the cost-effectiveness in Orkut is more

than 250 at peak.

For ρ = 0.2 and other small values of ρ, a common trend

in three networks is that the cost-effectiveness decreases

when the seeding gets larger as shown in both Figs. 7

and 8. Moreover, we observe three different phases of

the propagation process, which can be best seen in the

Facebook network with d = 4. In the first phase, the

influence propagate quickly into the network with high

cost-effectiveness. The cost-effectiveness decreases quickly

together when more nodes are added to the seeding. When

a sufficient number of nodes in the network are influenced,

the propagation process gains enough momentum to get into

the second phase in which the cost-effectiveness increases

sharply. The cost-effectiveness gets to a (local) peak again

at the end of the second phase. Finally, in the third phase

the cost effectiveness decays rapidly i.e. it costs much more

to influence the last uninfluenced nodes in the network.

Although the cost-effectiveness peak at the beginning of

the first phase, the number of influenced nodes is often too

small at that time. Thus we argue that the best strategy

is to stop expanding the seeding before the third phase
where we can achieve both the high cost-effectiveness and
high coverage τ i.e. the fraction of influenced nodes after

d rounds. For example, at the end of the second phase we

can influence around 8% of the nodes in the networks by

selecting only around 0.1% of nodes in the seeding (Physics

and Facebook).

As shown in Figs. 7 and 8, the “local peak” at the

end of the second phase happens at the same time for

different number of propagation rounds d. However, that

“local peak” happens earlier with VirAds algorithm than

Maxdegree. This gives another evidence that VirAds can

select more effective seeding than Maxdegree.

Cost-effectiveness for ρ = 0.8 is shown in Fig. 9.

For higher values of the influence factor ρ, only the first

phase can be observed. The cost-effectiveness decreases

quickly in all three networks. In addition, there is almost

no difference among the cases d = 2, d = 3, and d = 4
which indicates that adding more propagation rounds does

not help much, when the content has little incentive to go

viral. This is consistent with the theory result developed

in Section III. The same observation can be also made by

looking at Figs. 10 and 11 in which we show the seeding

size (in percent) to get a certain coverage τ in the network.

VII. CONCLUSIONS

Massively advertising involves costly seeding when im-

posing the limit on the propagation. Moreover, allowing

more time for the content to propagate does not help, if the

content has little incentive of going viral. Thus, smarter

viral marketing strategies which lead to actual sales are

needed. For example, one of our future work is to design

algorithms to ‘direct’ the influence to potential customers

(e.g. women with respect to fashion products) rather than

trying to spread the influence to every users in the networks.
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