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Abstract

Topological relationships between spatial objects have been a focus of research
on spatial data handling and reasoning for a long time. Especially as predicates
they support the design of suitable query languages for data retrieval and
analysis in spatial databases and geographical information systems. Whereas
research on this topic has always been dominated by qualitative methods
and by an emphasis of a strict separation of topological and metric, that is,
quantitative, properties, this paper investigates their possible coexistence and
cooperation. Metric details can be exploited to refine topological relationships
and to make important semantic distinctions that enhance the expressiveness
of spatial query languages. The metric refinements introduced in this paper
have the feature of being topologically invariant under affine transformations.
Since the combination of a topological predicate with a metric refinement leads
to a single unified quantitative measure, this measure has to be interpreted
and mapped to a lexical item. This leads to vague topological predicates, and
we demonstrate how these predicates can be integrated into a spatial query
language.
Keywords. Vague topological relationship, metric refinement, quantitative
refinement, 9-intersection model, lexical item, spatial data type, spatial query
language

1 Introduction

In recent years, the exploration of topological relationships between objects
in space has turned out to be a multi-disciplinary research issue involving dis-
ciplines like spatial databases, geographical information systems, CAD/CAM
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systems, image databases, spatial analysis, computer vision, artificial intelli-
gence, linguistics, cognitive science, psychology, and robotics. From a database
perspective, their development has been motivated by the necessity of for-
mally defined topological predicates as filter conditions for spatial selections
and spatial joins in spatial query languages, both at the user definition level
for reasons of conceptual clarity and at the query processing level for reasons
of efficiency.

Topological relationships like overlap, inside, or meet describe purely qual-
itative properties that characterize the relative positions of spatial objects to
each other and that are preserved (topologically invariant) under continuous
transformations such as translation, rotation, and scaling. They deliberately
exclude any consideration of metric, that is, quantitative, measures and are as-
sociated with notions like adjacency, coincidence, connectivity, inclusion, and
continuity. Some well known, formal, and especially computational models for
topological relationships have already been proposed for spatial objects, for
example for regions. They permit answers to queries like “Are regions A and
B disjoint?” or “Do regions A and B overlap?”.

Unfortunately, these purely qualitative approaches (topology per se) are
sometimes insufficient to express the full essence of spatial relations, since
they do not capture all details to make important semantic distinctions. This
is motivated in Figure 1 for the topological relationship overlap. Obviously, for
all three configurations the predicate overlap(A,B) yields true. But there is no
way to express the fact that in the left configuration regions A and B hardly
overlap, that the middle configuration represents a typical overlap, and that
in the right configuration regions A and B predominantly overlap. In these
statements and the corresponding resulting queries, the degree of overlapping
between two spatial objects is of decisive importance. The crucial aspect is
that this degree is a relative metric, and thus quantitative, feature which is
topologically invariant under affine transformations. This leads to metrically
refined topological relationships having a vague or blurred nature.

Transfering this observation to concrete applications, we can consider pol-
luted areas, for example. Here it is frequently not only interesting to know
the fact that areas are polluted but also to which degree they are polluted. If
two land parcels are adjacent, then often not only this fact is interesting but
also the degree of their adjacency.

Section 2 discusses some relevant related work about topological relation-
ships. Our design is based on the 9-intersection model, an approach that uses
point set topology to define a classification of binary topological relationships
in a purely qualitative manner. The goals of this paper are then pursued in the
following sections. In Section 3, we explore metrically refined topological re-
lationships on spatial regions with precisely determined boundaries (so-called
crisp regions) and show how qualitative descriptions (topological properties)
can be combined with quantitative aspects (relative metric properties) into a
single unified quantitative measure between 0 and 1. This leads us to vague
topological predicates. In Section 4, we demonstrate how the obtained quan-
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Fig. 1. Topological relationship overlap(A, B) with different degrees of overlapping.

titative measures can be mapped to lexical items corresponding to natural
language terms like “a little bit inside” or “mostly overlap”. This introduces
a kind of vagueness or indeterminacy into user queries which is an inherent
feature of human thinking, arguing, and reasoning. Section 5 deals with the
integration of these indeterminate predicates into an SQL-like query language.
Finally, Section 6 draws some conclusions.

2 Related Work

An important approach for characterizing topological relationships rests on
the so-called 9-intersection model (Egenhofer et al. 1989). This model allows
one to derive a complete collection of mutually exclusive topological relation-
ships for each combination of spatial types. The model is based on the nine
possible intersections of boundary (∂A), interior (A◦), and exterior (A−) of
a spatial object A with the corresponding components of another object B.
Each intersection is tested with regard to the topologically invariant criteria
of emptiness and non-emptiness. 29 = 512 different configurations are possi-
ble from which only a certain subset makes sense depending on the definition
and combination of spatial objects just considered. For each combination of
spatial types this means that each of its predicates p can be associated with
a unique boolean intersection matrix BI p (Table 1) so that all predicates are
mutually exclusive and complete with regard to the topologically invariant
criteria of emptiness and non-emptiness.

BI p(A, B) =




∂A ∩ ∂B 6= ∅ ∂A ∩B◦ 6= ∅ ∂A ∩B− 6= ∅
A◦ ∩ ∂B 6= ∅ A◦ ∩B◦ 6= ∅ A◦ ∩B− 6= ∅
A− ∩ ∂B 6= ∅ A− ∩B◦ 6= ∅ A− ∩B− 6= ∅




Table 1. The boolean 9-intersection matrix. Each matrix entry is a 1 (true) or 0
(false).

Topological relationships have been first explored for simple regions
(Clementini et al. 1993, Cui et al. 1993, Egenhofer et al. 1989). A simple
region is a bounded, regular closed set homeomorphic (that is, topologi-
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cally equivalent) to a two-dimensional closed disc1 in IR2. Regularity of a
closed point set eliminates geometric anomalies possibly arising from dan-
gling points, dangling lines, cuts, and punctures in such a point set (Behr &
Schneider 2001). From an application point of view, this means that a simple
region has a connected interior, a connected boundary, and a single connected
exterior. Hence, it does not consist of several components, and it does not
have holes. For two simple regions eight meaningful configurations have been
identified which lead to the well known eight topological predicates of the
set T = {disjoint , meet , overlap, equal , inside, contains, covers, coveredBy}.
In a vector notation from left to right and from top to bottom, their (well
known) intersection matrices are: BI disjoint(A,B) = (0, 0, 1, 0, 0, 1, 1, 1, 1),
BImeet(A,B) = (1, 0,1, 0, 0, 1, 1, 1, 1), BI overlap(A,B) = (1, 1, 1, 1, 1, 1, 1, 1, 1),
BI equal(A,B) = (1, 0, 0, 0, 1, 0, 0, 0, 1), BI inside(A,B) = (0, 1, 0, 0, 1, 0, 1, 1, 1),
BI contains(A,B) = (0, 0, 1, 1, 1, 1, 0, 0, 1), BI covers(A,B) = (1, 0, 1, 1, 1, 1, 0, 0,
1), BI coveredBy(A,B) = (1, 1, 0, 0, 1, 0, 1, 1, 1).

For reasons of simplicity and clear presentation, in this paper, we will
confine ourselves to metric refinements of topological relationships for simple
regions. An extension to general, complex regions (Schneider 1997), that is,
regions possibly consisting of several area-disjoint components and possibly
having area-disjoint holes, is straightforward. For this purpose, metric refine-
ments have to be applied to the 33 generalized topological predicates between
two complex regions (Behr & Schneider 2001).

Approaches dealing with metric refinements of spatial relationships on
crisp spatial objects are rare. In (Hernandez et al. 1995) metric refinements
of distance relationships are introduced to characterize indeterminate terms
like very close, close, far, and very far. In (Peuquet & Xiang 1987, Goyal
& Egenhofer 2004) directional relationships like north, north-west, or south-
east are metrically refined. Two papers deal at least partially with metric
refinements of topological relationships. In (Vazirgiannis 2000) refinements
which are similar to our directed topological relationships are proposed. Metric
details, which are similar to our metric refinements, are used in (Egenhofer
& Shariff 1998) to refine natural-language topological relationships between
a simple line and a simple region and between two simple lines. There are
a number of differences to our approach. First, we deal with two regions.
Second, they do not interpret the entries of a 9-intersection matrix for a
given topological predicate as optimum values, as we do in Section 3.2. Third,
our set of refinements is systematically developed and complete but not ad
hoc (see Section 3.1). Fourth, their refinements are not combined with the
9-intersection matrix into a so-called similarity matrix, as in our case (see
Section 3.2). Fifth, they do not employ our concept of applicability degree
(see Section 3.2).

1 D(x, ε) denotes a two-dimensional closed disc with center x ∈ IR2 and radius
ε ∈ IR+ iff D(x, ε) = {y ∈ IR2 | d(x, y) ≤ ε} where d is a metric on IR2.
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Two completely different approaches to modeling indeterminate topolog-
ical predicates rest on the concept of so-called fuzzy topological predicates
(Schneider 2001a, Schneider 2001b), which are defined on complex fuzzy re-
gions (Schneider 1999). That is, in contrast to the assumption in this paper,
these predicates operate on (complex) regions whose extent cannot be pre-
cisely determined or is not precisely known.

3 Metric Refinements of Topological Relationships

Topological relationships are designed as binary predicates yielding a boolean
and thus strict decision whether such a relationship holds for two spatial
objects or not. Metric details based on the geometric properties of the two
spatial objects can be used to relax this strictness. As we will see in Sections 4
and 5, they enable us to describe vague nuances of topological relationships,
as they often and typically occur in natural language expressions, and hence
they allow us to refine topological relationships in an indeterminate manner.
Queries like “Which are the land parcels that are hardly adjacent to parcel
X?” or “Which landscape areas are mostly contaminated (overlapped) with
toxic substances?” can then be posed and answered.

To describe metrical details, we use relative area and length measures
provided by the operand objects (in our case two simple regions). These mea-
sures are normalized values with respect to the areas of interiors and lengths
of boundaries of two simple regions. Consequently, they are scale-independent
and topologically invariant.

3.1 Refinement Ratio Factors

We now introduce six refinement ratio factors which are illustrated in Figure 2.
For the definition of all factors we assume two simple regions A and B. The
common area ratio

CA(A,B) =
area(A◦ ∩B◦)
area(A◦ ∪B◦)

specifies the degree to which regions A and B share their areas. Obviously,
CA(A,B) = 0, if A◦ ∩ B◦ = ∅ (that is, A and B are disjoint or they meet),
and CA(A,B) = 1, if A◦ = B◦ (that is, A and B are equal). Like all the other
factors to be presented, the common area factor is independent of scaling,
translation, and rotation, and hence constant. This factor is also symmetric,
that is, CA(A,B) = CA(B,A).

The outer area ratio

OA(A,B) =
area(A◦ ∩B−)

area(A◦)

computes the ratio of that portion of A with A that is not shared with B.
Here, OA(A,B) = 0, if A◦ = B◦, and OA(A,B) = 1, if A◦ ∩ B− = A◦, that
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is, A and B are disjoint or they meet. Obviously, the outer area ratio is not
symmetric, that is, OA(A,B) 6= OA(B, A).

The exterior area ratio

EA(A,B) =
area(A− ∩B−)
area(A− ∪B−)

calculates the ratio between the area of the common exterior of A and B on
the one hand and the area of the application reference system, where all our
regions are located, minus the area of the intersection of A and B on the
other hand. The reference system is usually called the Universe of Discourse
(UoD). We assume that our UoD is bounded and thus not equal to but a
proper subset of the Euclidean plane. This is not a restriction, since all spaces
that can be dealt with in a computer are bounded. If A and B meet and their
union is the UoD, EA(A,B) = 0. If A = B, EA(A,B) = 1. The exterior area
ratio is symmetric, that is, EA(A, B) = EA(B,A).

The inner boundary splitting ratio

IBS (A,B) =
length(∂A ∩B◦)

length(∂A)

determines the degree to which A’s boundary is split by B. If A and B are
disjoint or meet , then IBS (A, B) = 0. If A is inside or coveredBy B, then
IBS (A,B) = 1. The inner boundary splitting ratio is not symmetric, that is,
IBS (A,B) 6= IBS (B, A).

The outer boundary splitting ratio

OBS (A,B) =
length(∂A ∩B−)

length(∂A)

yields the degree to which A’s boundary lies outside of B. If A is inside or
coveredBy B, then OBS (A, B) = 0. If A and B are disjoint or meet , then
OBS (A,B) = 1. The outer boundary splitting ratio is not symmetric, that is,
OBS (A,B) 6= OBS (B, A).

The common boundary splitting ratio

CBS (A,B) =
length(∂A ∩ ∂B)
length(∂A ∪ ∂B)

calculates the degree to which regions A and B share their boundaries. Obvi-
ously, CBS (A,B) = 0, if ∂A∩∂B = ∅, and CBS (A,B) = 1, if ∂A∩∂B = ∂A,

C A ( A ,  B ) O A ( A ,  B ) E A ( A ,  B ) I B S ( A ,  B ) O B S ( A ,  B ) C B S ( A ,  B )
Fig. 2. Refinement ratio factors.
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Fig. 3. Problem configuration for the common boundary splitting ratio (a), enlarged
region Aout and reduced region Ain for region A, and 0-dimensional (c) and 1-
dimensional (d) boundary intersections with their corresponding boundary areas.

which means that A and B are equal . The common boundary splitting ratio
is also symmetric, that is, CBS (A,B) = CBS (B, A).

The common boundary splitting ratio is especially important for comput-
ing the degree of meeting of two regions. A problem arises with this factor, if
the common boundary parts do not have a linear structure but consist of a
finite set of points. Figure 3a shows such a meeting situation. The calculation
of CBS (A,B) leads to 0, because due to regularization ∂A∩ ∂B = ∅ and the
length is thus 0. Hence, common single points are not taken into account by
this factor, which should be done for correctly evaluating (the degree of) a
meeting situation. To solve this problem, for each simple region A we introduce
two additional simple regions Aout and Ain which are slightly enlarged and
reduced, respectively, by scale factors 1 + ε and 1− ε, respectively, with ε > 0
(Figure 3b). We then consider ∆A = Aout −Ain as the extended boundary of
A and redefine the common boundary splitting ratio as

CBS (A, B) =
area(∆A ∩∆B)
area(∆A ∪∆B)

In Figures 3c and d, the dark shaded regions show the extended boundaries
of A and B. The diagonally hatched regions correspond to the boundary
intersection of A and B.

The refinement ratio factors have, of course, not been defined arbitrarily.
They have been specified in a way so that each intersection occurring in a
matrix entry in BI p is contained as an argument of the area or length function
of the numerator of a refinement ratio factor. As an example, consider the
intersection ∂A ∩ B◦ included in the inequality of the first row and second
column of BI p(A,B). This intersection reappears as argument of the length
function of the numerator of IBS (A,B). The intersection A◦ ∩ ∂B (second
row, first column of BI p(A,B)) is captured by IBS (B, A). The purpose of the
denominator of a refinement ratio factor then is to make the factor a relative
and topologically invariant measure.
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3.2 Evaluation of the Applicability of a Topological Relationship

In this subsection we show how the concept of metric refinement can be used
to assess the applicability of a topological relationship for a given spatial
configuration with a single, numerical value. This then leads us to the concept
of a vague topological relationship.

The Similarity Matrix

The boolean intersection matrix BI p(A,B) contains nine strict, binary inter-
section tests leading either to true (1) or false (0). We now replace each in-
tersection test (inequality) by the corresponding refinement ratio factor. This
leads us to the real-valued similarity matrix RSp(A, B) (Table 2) which we
now employ in order to represent and estimate a topological relationship be-
tween two simple regions. Each matrix entry of RSp(A, B) represents a value
between 0 and 1 and is interpreted as the degree to which the corresponding
intersection in BI p(A,B) holds. That is, the statement about the existence of
an intersection is replaced by a statement about the degree of an intersection.

RSp(A, B) =




CBS(A, B) IBS(A, B) OBS(A, B)
IBS(B, A) CA(A, B) OA(A, B)
OBS(B, A) OA(B, A) EA(A, B)




=




area(∆A ∩∆B)

area(∆A ∪∆B)

length(∂A ∩B◦)
length(∂A)

length(∂A ∩B−)

length(∂A)
length(A◦ ∩ ∂B)

length(∂B)

area(A◦ ∩B◦)
area(A◦ ∪B◦)

area(A◦ ∩B−)

area(A◦)
length(A− ∩ ∂B)

length(∂B)

area(A− ∩B◦)
area(B◦)

area(A− ∩B−)

area(A− ∪B−)




Table 2. The real-valued similarity matrix. Each matrix entry is computed as a
value between 0 and 1.

Seen from this perspective, each matrix entry 0 or 1 of BI p can be inter-
preted in a new, different way, namely as the “optimum”, “best possible”, or
sometimes “asymptotic” degree to which the corresponding intersection oc-
curring as part of an intersection test in BI p holds. On the other hand, this
is not necessarily obvious. Hence, for each predicate p, Table 3 contains an
analysis of the suitability of a matrix entry in BI p for our interpretation.

The left column contains a list of the topological predicates. The first
row uses shortcuts to represent the nine intersections. For example, ∂◦ means
∂A ∩B◦ (6= ∅), and ◦∂ means A◦ ∩ ∂B (6= ∅).

An entry “+” in the table indicates that the respective 0 or 1 in BI p is
the optimum, perfect, and adopted value to fulfil predicate p. For example,
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∂∂ ∂◦ ∂− ◦∂ ◦◦ ◦− −∂ −◦ −−

equal + + + + + + + + (+)
meet (+) + + + + + + + (+)

disjoint + + + + + + + + (+)
inside + + + + (+) + + (+) (+)

contains + + + + (+) (+) + + (+)
covers (+) + + + (+) (+) + + (+)

coveredBy (+) + + + (+) + + (+) (+)
overlap (+) (+) (+) (+) (+) (+) (+) (+) (+)

Table 3. Suitability of a matrix entry in BI p for interpreting it as the degree to
which the respective intersection holds.

if for disjoint the intersection of the boundary of A and the interior of B
is empty (matrix entry 0), this is the optimum that can be reached for the
inner boundary splitting ratio IBS (A,B). If for covers the intersection of
the boundary of A and the exterior of B is non-empty (matrix entry 1),
this is the optimum that can be reached for the outer boundary splitting
ratio OBS (A,B). This situation implies that the boundary of B touches the
boundary of A only in single points and not in curves.

An entry “(+)” expresses that the respective 0 or 1 in BI p is an asymptotic
value for predicate p. That is, this value can be approached in an arbitrarily
precise way but in the end it cannot and may not be reached. For example,
for meet the common boundary splitting ratio CBS (A,B) can be arbitrarily
near to 1. But it cannot become equal to one, because then the relationship
equal would hold. For our later computation, this is no problem. We simply
assume the respective asymptotic 0’s and 1’s as optimum values.

Computing the Degree of Applicability

Whereas exactly one topological relationship applies with the boolean 9-
intersection matrix, we will show now that the similarity matrix enables us to
assess all topological relationships but with different degrees of applicability.
For that purpose, we test for the similarity of RSp with BI p. Since we can
interpret the matrix entries of BI p for a predicate p as the ideal values, the
evaluation of the similarity between RSp and BI p can be achieved by mea-
suring for each matrix entry RS (x,y)

p (A,B) with x, y ∈ {∂,◦ ,− } the deviation
from the corresponding matrix entry BI (x,y)

p (A,B). The idea is then to con-
dense all nine deviation values to a single value by taking the average of the
sum of all deviations. We call the resulting value the applicability degree of a
topological relationship p with respect to two simple regions A and B. The
applicability degree is computed by a function µ taking two simple regions
and the name of a topological predicate p as operands and yielding a real
value between 0 and 1 as a result:
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µ(A,B, p) =

∑
x∈{∂,◦,−}

∑
y∈{∂,◦,−}

if BI (x,y)
p (A,B) then RS (x,y)

p (A,B)

else 1− RS (x,y)
p (A,B)

9

What we have gained is the relaxation of the strictness of a topological
predicate p : region × region → {0, 1} (region shall be the type for simple
regions) to an applicability degree function µ : region × region × T → [0, 1]
(remember that T is the set of all topological predicates). The applicability
degree µ(A,B, p) gives us the extent to which predicate p holds for two simple
regions A and B. We abbreviate µ(A,B, p) by the vague topological predicate
value pv(A, B) with pv : region × region → [0, 1]. The term pv indicates
the association to predicate p. Whereas the topological predicate p maps to
the set {0, 1} and thus results in a strict and abrupt decision, the vague
topological predicate pv maps to the closed interval [0, 1] and hence permits
a smooth evaluation. Codomain [0, 1] can be regarded as the data type for
vague booleans.

4 Mapping Quantitative Measures to Qualitative, Lexical
Items

The fact that the applicability degree yielded by a vague topological predicate
is a computationally determined quantification between 0 and 1, that is, a
vague boolean, impedes a direct integration into a query language. First, it
is not very comfortable and user-friendly to use such a numeric value in a
query. Second, spatial selections and spatial joins are not able to cope with
vague predicates and expect strict and exact predicates as filter conditions
that yield true or false.

As a solution which maintains this requirement, we propose to embed
adequate qualitative linguistic descriptions of nuances of topological relation-
ships as appropriate interpretations of the applicability degrees into a spatial
query language. Notice that the linguistic descriptions given in the following
are arbitrary and exchangeable, since it is beyond the scope of this paper to
discuss linguistic reasons how to associate a meaning to a given applicability
degree. In particular, we think that the users themselves should be respon-
sible for specifying a list of appropriate linguistic terms and for associating
an applicability degree with each of them. This gives them greatest flexibility
for querying. For example, depending on the applicability degree yielded by
the predicate insidev , the user could distinguish between not inside, a little
bit inside, somewhat inside, slightly inside, quite inside, mostly inside, nearly
completely inside, and completely inside. These user-defined, vague linguistic
terms can then be incorporated into spatial queries together with the topo-
logical predicates they modify. We call these terms vague quantifiers, because
their semantics lies between the universal quantifier for all and the existential
quantifier there exists.
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Fig. 4. Membership functions for vague quantifiers.

We know that a vague topological predicate pv is defined as pv : region×
region → [0, 1]. The idea is now to represent each vague quantifier γ ∈ Γ =
{not, a little bit, somewhat, slightly, quite, mostly, nearly completely, com-
pletely, . . . } by an appropriate membership function µγ : [0, 1] → [0, 1]. Let
A,B ∈ region, and let γ pv be a quantified vague predicate (like somewhat
inside with γ = somewhat and pv = insidev ). Then we can define:

γ pv(A,B) = true :⇔ (µγ ◦ pv)(A,B) = 1

That is, only for those values of pv(A, B) for which µγ yields 1, the predicate
γ pv is true. A membership function that fulfils this quite strict condition is, for
instance, the partition of [0, 1] into n ≤ |Γ | disjoint or adjacent intervals com-
pletely covering [0, 1] and the assignment of each interval to a vague quantifier.
If an interval [a, b] is assigned to a vague quantifier γ, the intended meaning
is that µγ(pv(A,B)) = 1, if a ≤ pv(A,B) ≤ b, and 0 otherwise. For example,
the user could select the intervals [0.0, 0.02] for not, [0.02, 0.05] for a little bit,
[0.05, 0.2] for somewhat, [0.2, 0.5] for slightly, [0.5, 0.8] for quite, [0.8, 0.95] for
mostly, [0.95, 0.98] for nearly completely, and [0.98, 1.00] for completely.

Alternative membership functions are shown in Figure 4. While we can
always find a fitting vague quantifier for the partition due to the complete
coverage of the interval [0, 1], this is not necessarily the case here. Each vague
quantifier is associated with a vague number having a trapezoidal-shaped or
triangular-shaped membership function. The transition between two consecu-
tive vague quantifiers is smooth and here modeled by linear functions. Within
a vague transition area, µγ yields a value less than 1 which makes the pred-
icate γ pv false. Examples in Figure 4 can be found at 0.2, 0.5, or 0.8. Each
vague number associated with a vague quantifier can be represented as a
quadruple (a, b, c, d) where the membership function starts at (a, 0), linearly
increases up to (b, 1), remains constant up to (c, 1), and linearly decreases
up to (d, 0). Figure 4 assigns (0.0, 0.0, 0.0, 0.02) to not, (0.01, 0.02, 0.03, 0.08)
to a little bit, (0.03, 0.08, 0.15, 0.25) to somewhat, (0.15, 0.25, 0.45, 0.55)
to slightly, (0.45, 0.55, 0.75, 0.85) to quite, (0.75, 0.85, 0.92, 0.96) to mostly,
(0.92, 0.96, 0.97, 0.99) to nearly completely, and (0.97, 1.0, 1.0, 1.0) to com-
pletely.
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So far, the predicate γ pf is only true if µγ yields 1. We can relax this
strict condition by defining:

γ pf (A,B) = true :⇔ (µγ ◦ pf )(A,B) > 0

In a spatial database system this gives us the chance also to take the transi-
tion zones into account and to let them make the predicate γ pv true. When
evaluating a spatial selection or join in a spatial database system on the ba-
sis of a vague topological predicate, we can even set up a weighted ranking
of database objects satisfying the predicate γ pv at all and being ordered by
descending membership value 1 ≥ µγ(x) > 0 for some value x ∈ [0, 1].

A special, optional vague quantifier, denoted by at all, represents the ex-
istential quantifier and checks whether a predicate pv can be fulfilled to any
extent. An example query is: “Do regions A and B (at all) overlap?” With
this quantifier we can determine whether µγ(x) > 0 for some value x ∈ [0, 1].

5 Querying

In this section we briefly demonstrate with a few example queries how spa-
tial data types and quantified vague topological predicates can be integrated
into an SQL-like spatial query language. It is not our objective to give a full
description of a specific language. We assume a relational data model where
tables may contain regions as attribute values in the same way as integers or
strings.

What we need first are mechanisms to declare and to activate user-
defined vague quantifiers. These mechanisms should allow the user to specify
trapezoidal-shaped and triangular-shaped membership functions as well as
partitions. In general, this means to define a (possibly overlapping) classifi-
cation, which for our example in Section 4 could be expressed by the user in
the following way:

create classification fq
(not (0.00, 0.00, 0.00, 0.02),
a little bit (0.01, 0.02, 0.03, 0.08),
somewhat (0.03, 0.08, 0.15, 0.25),
slightly (0.15, 0.25, 0.45, 0.55),
quite (0.45, 0.55, 0.75, 0.85),
mostly (0.75, 0.85, 0.92, 0.96),
nearly completely (0.92, 0.96, 0.97, 0.99),
completely (0.97, 1.0, 1.0, 1.0))

Such a classification could then be activated by

set classification fq

We assume that we have a relation pollution, which stores among other things
the geometry of polluted zones as regions, and a relation areas, which keeps
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information about the use of land areas and which stores their spatial extent
as regions. A query could be to find out all inhabited areas where people are
rather endangered by pollution. This can be formulated in an SQL-like style
as (we here use infix notation for the predicates):

select areas.name
from pollution, areas
where area.use = inhabited and

pollution.region quite overlaps
areas.region

This query and the following two ones represent vague spatial joins.
Another query asks for those inhabited areas lying almost entirely in pol-

luted areas:

select areas.name
from pollution, areas
where areas.use = inhabited and

areas.region nearly completely inside
pollution.region

Assume that we are given living spaces of different animal species in a relation
animals and that their indeterminate extent is represented as a vague region.
Then we can search for pairs of species which share a common living space to
some degree:

select A.name, B.name
from animals A, animals B
where A.region at all overlaps B.region

As a last example, we can ask for animals that usually live on land and seldom
enter the water or for species that never leave their land area (the built-in
aggregation function sum is applied to a set of vague regions and aggregates
this set by repeated application of vague geometric union):

select name
from animals
where (select sum(region) from areas)

nearly completely covers or
completely covers region

6 Conclusions

In this paper we have presented a simple but expressive and effective concept
showing how metric details can be leveraged to make important semantic dis-
tinctions of topological relationships on simple regions. The resulting vague
topological predicates are often more adequate for expressing a spatial situa-
tion than their coarse, strict counterparts, because they are multi-faceted and
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much nearer to human thinking and questioning. Consequently, they allow a
much more natural formulation of spatial queries than we can find in current
spatial query languages.

We are currently working on a prototype implementation for demonstrat-
ing the concepts presented in this paper and validating their relevance to
practice.

In the future we plan to extend the concept of metric refinement to complex
regions. We will also investigate metric refinements between two complex line
objects and between a complex line object and a complex region object.
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