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ABSTRACT
Reasoning about space has been a considerable field of study
both in Artificial Intelligence and in spatial information the-
ory. Many applications benefit from the inference of new
knowledge about the spatial relationships between spatial
objects on the basis of already available and explicit spa-
tial relationship knowledge that we call spatial (relationship)
facts. Hence, the task is to derive new spatial facts from
known spatial facts. A considerable amount of work has fo-
cused on reasoning about topological relationships (as a spe-
cial and important subset of spatial relationships) between
simple spatial objects like simple regions. There is a com-
mon consensus in the GIS and spatial database communities
that simple regions are insufficient to model spatial reality
and that complex region objects are needed that allow mul-
tiple components and holes. Models for topological relation-
ships between complex regions have already been developed.
Hence, as the next logical step, the goal of this paper is to
develop a reasoning model for them. Further, no reasoning
model considers changes of the spatial fact basis stored in a
database between consecutive queries. We show that conven-
tional modeling suffers from performance degradation when
the database is frequently changing. Our model does not as-
sume any geometric representation model or data structure
for the regions. The model is also backward compatible, i.e.,
it is also applicable to simple regions.

Categories and Subject Descriptors
H.2.8 [Database Management]: Spatial databases and
GIS; H.2.3 [Database Management]: Query languages
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1. INTRODUCTION
Understanding the topological relationships between ob-

jects in space has become a multidisciplinary research issue
involving AI, CAD/CAM systems, cognitive science, com-
puter vision, image databases, linguistics, robotics, GIS, and
spatial databases. From a spatial database and GIS point
of view, topological relationships are necessary as filter con-
ditions for spatial selections and spatial joins as well as for
spatial data retrieval and analysis. In spatial databases and
GIS, we generally deal with a large number of spatial ob-
jects. Hence, it is not uncommon that we do not have all
possible relationships available between every pair of spatial
objects all the time. This situation can arise either due to
a lack of information or since it is impossible to get all the
relationships. To deal with this problem of a lack of com-
plete knowledge, we need a process through which we can
infer the topological relationship between two spatial objects
where the relationship does not currently exist in the knowl-
edge base. This process is called reasoning. Hence, reason-
ing about topological relationship is a method of inferring
new topological relationships, called spatial facts, between
two spatial objects using the other existing spatial facts in
the knowledge base. For example, given three objects A, B
and C, and given two topological relationships Rx(A,B) and
Ry(B,C), reasoning helps us find out the relationship Rz be-
tween A and C where Rz does not exist in the knowledge
base. This process is called the composition of relationships
and is the most common method of reasoning.
So far, the main focus of the available reasoning models is

to deal with simple regions. But in the real world we often
face the situation where real objects cannot be represented
by simple regions alone. For example, Italy contains the
Vatican as a hole, and the Galapagos islands do not consist
of a single island but rather of a collection of many islands.
These spatial phenomena cannot be represented by simple
regions. The second problem is that the current reasoning
models hardly take the changes of spatial facts into account.
It is natural that often the information is added, deleted or
updated in the databases. Hence, it is important to under-
stand as well as to consider the effect of such changes while
designing a reasoning model.
The main goal of this paper is to develop a reasoning model

for complex regions. The main challenge is to deal with a
large number of possible topological relationships between



two complex regions as well as to deal with a large number of
such regions. Our second goal is to derive a set of inference
rules by which the inference of relationships is performed.
Since the type for simple regions is a subset of the type
for complex regions, it is also our goal that the reasoning
model is able to handle simple regions without requiring any
modification. Finally, we show the effect of the changes of
spatial facts on the reasoning process, and we propose an
algorithm to handle those changes.
We propose a generalized process to infer new relation-

ships between complex regions which is not restricted by the
number of regions as well as changes in the database. The
process has two basic steps. In the first step, we perform
a reasoning process involving three regions and call it local
inference. In the second step, we extend this local inference
to N regions and hence call it global inference.
The remainder of the paper is organized as follows: Sec-

tion 2 discusses related work regarding reasoning models
for simple objects and the topological relationships between
complex objects. Section 3 gives a more detailed view of
the reasoning process. In Sections 4 and 5, we describe the
local and global inference respectively. Section 6 integrates
the two steps and gives an algorithm for the overall rea-
soning process. Section 7 evaluates the performance of the
algorithm. Finally, Section 8 draws some conclusions and
discusses future work.

2. RELATED WORK
In the past, numerous data models have been proposed

with the aim of representing spatial objects in databases and
GIS. Spatial objects embedded in the 2D space can be either
point objects, line objects, or region objects. In this docu-
ment we mainly consider complex region objects. Region
objects are two-dimensional spatial objects with an extent
(i.e., both height and width). Each kind of spatial object
can be categorized as either a simple spatial object [13] or
a complex spatial object [15, 16]. A simple region is topo-
logically equivalent to a closed disc; it does not have holes.
However, a complex region (Figure 1a) may have multiple
components, called faces, and may have multiple holes. One
important aspect is that for the reasoning process the spatial
objects are only needed as symbolic terms; their geometries
are not required. Spatial relationships are subdivided into
directional relationships, topological relationships, and dis-
tance relationships. Our focus is on topological relationships
which characterize the relative position of two spatial objects
(e.g., overlap, meet). An important approach for character-
izing the topological relationships between spatial objects
is known as 9-intersection model [7]. By using this model,
the authors in [16] have identified the topological relation-
ships between any two complex spatial objects irrespective
of their types. Thirty-three relationships have been found
for two complex regions.
Numerous studies have been done on topological relation-

ships as well as topological reasoning. The reasoning process
tries to infer the unknown relationships from a set of explic-
itly known relationships which are defined by a particular
relationship model. Hence, reasoning models depend on the
underlying relationship models. Researchers from different
domains such as AI, mathematics, GIS and databases, have
been contributing to this field of study. The authors of the
papers [18, 12, 3] tackle this problem with algebraic logic

approaches. The authors in [7] define spatial objects on the
basis of topological set theory and propose the 9-intersection
model as a way to characterize them. Based on topological
set theory, the authors also propose reasoning models for
simple regions [3, 6, 5] and simple regions with holes [20]. In
[1] the authors propose a reasoning model taking the concav-
ity of the regions into the account along with their convex
hulls. In most cases, the inferred relationship between spa-
tial objects may not be unique, i.e., the inferred relationship
can be a disjunction of several basic relationships. Based on
this observation, the authors of [9, 10] propose hierarchical
models for topological reasoning.
All of the above mentioned studies mainly focus on lo-

cal inference (i.e., the composition of relationships involving
three objects by means of inference rules). It is well under-
stood that local inference is an essential and basic step of the
reasoning process but without global inference the process is
not complete. The reason behind the larger focus on local
inference is that global inference is a constraint satisfaction
problem (CSP) [4, 11, 19, 2] which is an extensively studied
topic and is independent of the local inference process. The
authors of [12, 17, 14] have studied the issues related to con-
straint satisfaction for spatial objects such as the complexity
and the tractability. So far, the lowest complexity of CSP
algorithms is O(n3) [11, 19, 2]. All of these CSP algorithms
operate on a static knowledge base. That is, given a BSCN,
the algorithm is able to infer relationships between any pair
of complex regions. But over time, the existing facts may
change and the CSP algorithms are not designed to handle
changes. To the best of our knowledge, none of the reasoning
models deals with changes of the spatial facts, and our work
is motivated by this issue.

3. OVERVIEW OF THE REASONING PRO-
CESS

The first step of the reasoning process is the local infer-
ence involving three regions in the form of Rx(A,B) and
Ry(B,C). Here, Rx and Ry are the spatial facts between
the complex regions A and B as well as B and C. The goal
is to find the relationship Rz(A,C). This local inference
is carried out by a process called composition of relation-
ships by means of a set of inference rules. It is important
to note that the composition of relationships does not de-
pend on the spatial features (like the extent) of the regions.
Therefore, the composition of relationships can be denoted
as Rx ⋄Ry ⇒ Rz. Local inference alone is not enough for in-
ferring relationships between two complex regions. Consider
the chain R1(A,B), R2(B,C), R3(C,D), R4(D,E) of topo-
logical relationships among the five regions A, B, C, D, and
E. In this situation, local inference alone is not sufficient to
infer the relationship between A and E because an interme-
diate object is required that is in relationship to both A and
E. In our example, such an intermediate region does not
exist. Thus, global inference comes into play which makes
use of the composition of relationships to infer relationships
between any two regions in the knowledge base.
An important observation is that global inference is or-

thogonal to local inference. That is, global inference can
employ any algorithm to infer relationships globally as long
as the composition of relationships is available. Unsurpris-
ingly, global inference is a constraint satisfaction problem. A
constraint satisfaction problem (CSP) is defined as a triple
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Figure 1: (a) A complex region with its faces and
holes, and (b) its interior, boundary, and exterior.

(X,D,C), where X is a set of variables, D is a domain of val-
ues, and C is a set of constraints. Every constraint is in turn
a pair (t, R), where t is a tuple of variables and R is a rela-
tion. The CSP can be viewed as a directed graph, where the
nodes are the variables and the edges between two variables
are the relations or the constraints. This directed graph is
also called constraint network. In our case, the relations are
all binary topological relationships and the variables are spa-
tial objects (i.e., regions); we call this graph representation
binary spatial constraint network (BSCN ). The class of al-
gorithms for global inferencing by using BSCN is based on
a path consistency procedure. A pair of variables is path
consistent with a third variable if each consistent evaluation
of the pair can be extended to the other variable in such a
way that all binary constraints are satisfied. Formally, the
variables A and C are path consistent with B if there is
a relation R1(A,C) that satisfies the binary constraint be-
tween A and C and if there are two relations R2(A,B) and
R3(B,C) that satisfy the constraint between A and B and
between B and C, respectively. A simple observation tells us
that path consistency can be achieved through composition
of relationships. The algorithm applies the path consistency
procedure to all combinations of nodes in the BSCN until
no new relationships can be inferred. An important point
is that, given a partially observed knowledge base, the path
consistency algorithms derive the complete knowledge, i.e.,
the relationships between every pair of objects. That is,
after running the global inference algorithm the knowledge
base becomes complete and it takes O(1) time to find the
relationship(s) between any pair of complex regions.

4. LOCAL INFERENCE
The local inference process (Figure 2) takes the two topo-

logical relationshipsRx(A,B) andRy(B,C), composes them,
and infers the relationship(s)RZ(A,C). Since a 9-intersection
matrix can uniquely characterize each topological relation-
ship, the input of the local inference consists of the two
9-intersection matrices, and the output is a set of inferred
relationships. In a first step, the corresponding set rela-
tionships (i.e., subset relationships, empty/nonempty inter-
sections) between the interiors of the regions are evaluated
from the 9-intersection matrices. In a second step, the infer-
ence rules are applied to find out the 9-intersection predicate
values between A and C. In a last step, the inferred rela-
tionships are derived from the predicate values.

4.1 Set Relationships between The Interiors
Point set topology characterizes each spatial object by
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Figure 2: Steps of Local Inference.

three mutually exclusive point sets in the topological space
R2. These sets are the interior (Ao), the boundary (∂A),
and the exterior (A−) for any spatial object A (Figure 1b).
The 9-intersection model uses nine predicates to check the
nine intersections of these point sets provided by two spa-
tial objects A and B for non-emptiness. Each topological
relationship between any two spatial objects is character-
ized by a unique combination of nine Boolean values. The
9-intersection predicates are arranged in a 9-intersection ma-
trix shown in Figure 3a. For example, the spatial meeting
configuration in Figure 3b is represented by the 9-intersection
matrix in Figure 3c.
On the other hand, the interior, boundary, and exterior

of a spatial object are uniquely defined and disjoint from
each other [16]. Therefore, it is sufficient to specify any of
these three sets to uniquely characterize a region object. In
this document we consider the interior of a complex region
to uniquely characterize it. Hence, for each topological rela-
tionship, there is a set relation between the interiors of the
two complex regions. That is, either the interior of A is a
subset of or a superset of or equal to or disjoint to or overlaps
the interior of B. In [7] the authors show a way to find out
the set relationship between any two components of a region
object from the 9-intersection matrix by using the topolog-
ical properties of the spatial regions. We employ the same
technique to find out the set relation between the interiors
of the two participating regions of a topological relationship.

4.2 Inference Rules
From set theory, two non-empty sets X and Y must have

one of the following five relations: (i) X is a proper subset
of Y , (ii) X is equal to Y , (iii) Y is a proper subset of X,
(iv) X and Y have some common and some different ele-
ments, and (v) X and Y do not have any common element.
The fourth relation, we call it overlap, denotes that two sets
have common elements but none of them is the proper sub-
set of the other. We extend these five relations to eight by
adding special cases to the relations (i), (iii), and (v) using
the spatial properties. Consider X and Y as the interiors of
two regions A and B respectively. Then relation (i) states
that A is completely inside B. There can be two special
cases of this scenario: (a) A is inside B and their boundaries
touch, and (b) A is inside B and their boundaries do not
touch. Similarly, these two special cases also hold for the
relations (iii) and (iv).
Let the symbol ⊂ denote the proper subset relation. The

symbol ⋄ is to denote the predicate for overlap, e.g., A◦ ⋄
B◦ ⇔ (A◦ ∩ B◦ ̸= ∅ ∧ A◦ − B◦ ̸= ∅ ∧ B◦ − A◦ ̸=
∅). The predicate for a non-empty intersection, e.g., A◦ ∩
B◦ ̸= ∅, is denoted by A◦B◦, and the predicate for an empty
intersection, e.g., A◦∩B◦ = ∅, is denoted by ¬A◦B◦. Hence,
the eight relations between the interiors of two region objects
are the following:



Ao ∩Bo ̸= ∅ Ao ∩ ∂B ̸= ∅ Ao ∩B− ̸= ∅
∂A ∩Bo ̸= ∅ ∂A ∩ ∂B ̸= ∅ ∂A ∩B− ̸= ∅
A− ∩Bo ̸= ∅ A− ∩ ∂B ̸= ∅ A− ∩B− ̸= ∅

 0 0 1
0 1 1
1 1 1



(a) (b) (c)

Figure 3: (a) 9-Intersection Matrix, (b) complex regions A and B meet, (c) Rmeet(A,B).

1. A◦ ⊂ B◦ ∧ ¬∂A∂B
2. A◦ ⊂ B◦ ∧ ∂A∂B
3. A◦ = B◦

4. A◦ ⋄B◦

5. ¬A◦B◦ ∧ ∂A∂B
6. ¬A◦B◦ ∧ ¬∂A∂B
7. B◦ ⊂ A◦ ∧ ∂A∂B
8. B◦ ⊂ A◦ ∧ ¬∂A∂B

The relations 1 and 2 are two special cases of the origi-
nal relation (i). Similarly, the relations 5 and 6 as well as
the relations 7 and 8 are special cases of the original rela-
tions (iii) and (v). Unsurprisingly, these five basic and eight
extended relations correspond to the RCC-5 and RCC-8 ap-
proaches [13, 14]. Most importantly, these eight relations
hold for any type of region objects (i.e., simple, complex)
because a simple region is nothing but a single component,
complex region without any hole. On the other hand, since
we consider the interior as a whole, which means the interior
of a complex region is the union of the interiors of its all
faces, it does not matter how many holes and components
are contained in a complex region. Since these eight relations
completely characterize the relations between the interiors of
two complex regions, any relationship between two complex
regions A and B must include exactly one of these relations.
Therefore, if we have Rx(A,B) and Ry(B,C) then by the
transitivity property, the interiors of A and C must belong
to exactly one of the 8 · 8 = 64 configurations of these rela-
tions. That is, for each relation between A and B, there are
eight possible relations between B and C which gives us 64
configurations.
For each of these 64 configurations, we determine the 9-

intersection predicate values between A and C. As an ex-
ample, for the configuration A◦ ⊂ B◦ ∧ ¬∂A∂B and B◦ ⊂
C◦ ∧ ¬∂B∂C, by applying simple set theory, we get A◦ ⊂
B◦ ∧ B◦ ⊂ C◦ ⇒ A◦ ⊂ C◦ ⇒ A◦ ∩ C◦ ̸= ∅. This
means for the configuration of A and B and of B and C
that the interior-interior intersection between A and C is
always true. Similarly, for the same configuration we can
prove that the interior-exterior intersection between A and
C is always false. We know that the three components (i.e.,
interior, exterior and boundary) of a region object are mutu-
ally exclusive (i.e., C◦ ∩ C− = ∅). Hence, A◦ ⊂ B◦ ∧ B◦ ⊂
C◦ ⇒ A◦ ⊂ C◦ ∧ (C◦ ∩ C− = ∅) ⇒ A◦ ∩ C− = ∅. On the
other hand, for the configuration A◦⋄B◦∧B◦⋄C◦, we cannot
say certainly whether A◦ ∩C◦ is empty or nonempty, which
means the outcome of A◦∩C◦ is unknown. We can prove this
statement by the two scenarios described in Figure 4 where
for this same configuration we get different interior-interior
intersection values between A and C.
Based on the above observations, for each configuration

we can determine the values true, false, or unknown of all
9-intersection predicates between A and C. We do not need
to determine the exterior-exterior intersection because it
is always true. Hence, we define the remaining eight 9-
intersection predicates by three sets of rules that specify for
which configuration the predicate is supposed to yield cer-
tainly true, certainly false, and unknown. By applying some

(a) (b)

Figure 4: The interiors of A and C: (a) intersects,
(b) does not intersect.

simple propositional logic reduction techniques and set the-
ory notations (e.g., by combining ⊂ and = to ⊆), we obtain
the sets of inference rules for all 9-intersection predicates
indexed by P1 to P9 in Figure 5.
The proofs of these rules are performed by simple set

theory and by proofs by counter-example and drawing as
shown in Figure 4. The proofs of the rules are not given in
this document due to space constraints. However, the com-
pleteness of this set of rules follows from the formulation of
the rules. Two regions must have exactly one of the eight
interior-interior set relations for any topological relationship,
and after the composition A and C must satisfy one of the
64 configurations. Since the inference rules take each con-
figuration into account, these rules never miss any scenario
for which it cannot determine the 9-intersection predicates.
Thus, the inference rules are complete by formulation.

4.3 Relationship Identifying Process
We evaluate the 9-intersection predicates (called evaluated

predicates) of the topological relationship to be inferred by
applying the inference rules defined in the previous subsec-
tion. These evaluated predicates have slightly different char-
acteristics than the usual 9-intersection predicates because
evaluated predicates may have the value unknown whereas
usual 9-intersection predicates always have determinate val-
ues (i.e., either true or false). This is not surprising since
the inferred relationship can be unique (i.e., a single basic
relationship) or a disjunction of basic relationships. If the in-
ferred relationship is unique, then all the evaluated predicate
values are determinate. On the other hand, if the inferred
relationship is a disjunction of basic relationships, then at
least one of the evaluated predicates must have the value
unknown. In fact, the evaluated predicates have determi-
nate values only for those predicates that agree for all the
relationships in that disjunction. Since we may have an in-
determinate value, we need one more step to identify the
relationship(s) from the evaluated predicates.
A simple brute force approach to finding out the inferred

relationship is to compare the evaluated matrix against each
of the 33 relationship matrices, predicate by predicate. The
problem is that it takes too many comparisons. Since the



P1 : A◦C◦ =

true A◦ = B◦ ∧ B◦ = C◦ ∨
A◦B◦ ∧ B◦ ⊂ C◦ ∨
B◦C◦ ∧ B◦ ⊂ A◦ ∨
¬A◦B◦ ∧ ∂A∂B ∧ B◦ ⊂ C◦ ∧ ¬∂B∂C ∨
¬B◦C◦ ∧ ∂B∂C ∧ B◦ ⊂ A◦ ∧ ¬∂A∂B

false A◦ ⊆ B◦ ∧ ¬B◦C◦ ∨
¬A◦B◦ ∧ C◦ ⊆ B◦

unknown otherwise

P2 : A◦∂C =

true (C◦ ⊂ B◦ ∨ C◦ ⋄ B◦) ∧ B◦ ⊆ A◦ ∨
C◦ = B◦ ∧ B◦ ⊂ A◦ ∧ ¬∂B∂A

false C◦ ⊆ B◦ ∧ ¬B◦A◦ ∨
(¬C◦B◦ ∨ B◦ ⊆ C◦) ∧ A◦ ⊆ B◦

unknown otherwise

P3 : A◦C− =

true C◦ ⊆ B◦ ∧ ¬(A◦ ⊆ B◦) ∨
(C◦ ⊂ B◦ ∨ B◦ ⋄ C◦) ∧ A◦ = B◦ ∨
B◦ ⋄ C◦ ∧ (B◦ ⊂ A◦ ∨ A◦ ⊂ B◦) ∨
¬B◦C◦ ∧ A◦B◦ ∨
¬B◦C◦ ∧ ¬∂B∂C ∧ ¬A◦B◦ ∧ ∂A∂B ∨
C◦ ⊂ B◦ ∧ ¬∂B∂C ∧ A◦ ⊂ B◦ ∧ ∂A∂B ∨
B◦ ⊂ C◦ ∧ ∂B∂C ∧ B◦ ⊂ A◦ ∧ ¬∂A∂B

false B◦ ⊆ A◦ ∧ C◦ ⊆ B◦

unknown otherwise

P4 : ∂AC◦ =

true (A◦ ⊂ B◦ ∨ A◦ ⋄ B◦) ∧ B◦ ⊆ C◦ ∨
A◦ = B◦ ∧ B◦ ⊂ C◦ ∧ ¬∂B∂C

false A◦ ⊆ B◦ ∧ ¬B◦C◦ ∨
(¬A◦B◦ ∨ B◦ ⊆ A◦) ∧ C◦ ⊆ B◦

unknown otherwise

P5 : ∂A∂C =

true A◦ = B◦ ∧ B◦ = C◦ ∨
A◦ = B◦ ∧ (B◦ ⊂ C◦ ∨ C◦ ⊂ B◦ ∨ ¬B◦C◦) ∧ ∂B∂C ∨
B◦ = C◦ ∧ (B◦ ⊂ A◦ ∨ A◦ ⊂ B◦ ∨ ¬A◦B◦) ∧ ∂A∂B

false A◦ ⊂ B◦ ∧ ¬∂A∂B ∧ (B◦ ⊆ C◦ ∨ ¬B◦C◦) ∨
A◦ ⊂ B◦ ∧ ∂A∂B ∧ (B◦ ⊆ C◦ ∨ ¬B◦C◦) ∧ ¬∂B∂C ∨
C◦ ⊂ B◦ ∧ ¬∂B∂C ∧ (B◦ ⊆ A◦ ∨ ¬A◦B◦) ∨
C◦ ⊂ B◦ ∧ ∂B∂C ∧ (B◦ ⊆ A◦ ∨ ¬A◦B◦) ∧ ¬∂A∂B ∨

unknown otherwise

P6 : ∂AC− =

true C◦ ⊆ B◦ ∧ ¬(A◦ ⊆ B◦) ∨
(A◦ ⊂ B◦ ∨ A◦ ⋄ B◦ ∨ (¬A◦B◦ ∧ ¬∂A∂B))

∧B◦ = C◦ ∨
¬B◦C◦ ∧ A◦ ⊂ B◦ ∨
¬B◦C◦ ∧ ¬∂B∂C ∧ (¬A◦B◦ ∨ B◦ ⊂ A◦)

∧∂A∂B ∨
C◦ ⊂ B◦ ∧ ¬∂B∂C ∧ A◦ ⊂ B◦ ∧ ∂A∂B ∨
B◦ ⊂ C◦ ∧ ∂B∂C ∧ B◦ ⊂ A◦ ∧ ¬∂A∂B

false B◦ ⊆ A◦ ∧ C◦ ⊆ B◦

unknown otherwise

P7 : A−C◦ =

true A◦ ⊆ B◦ ∧ ¬(C◦ ⊆ B◦) ∨
(A◦ ⊂ B◦ ∨ A◦ ⋄ B◦) ∧ B◦ = C◦ ∨
A◦ ⋄ B◦ ∧ (B◦ ⊂ C◦ ∨ C◦ ⊂ B◦) ∨
¬A◦B◦ ∧ B◦C◦ ∨
¬A◦B◦ ∧ ¬∂A∂B ∧ ¬B◦C◦ ∧ ∂B∂C ∨
A◦ ⊂ B◦ ∧ ¬∂A∂B ∧ C◦ ⊂ B◦ ∧ ∂B∂C ∨
B◦ ⊂ A◦ ∧ ∂A∂B ∧ B◦ ⊂ C◦ ∧ ¬∂B∂C

false B◦ ⊆ A◦ ∧ C◦ ⊆ B◦

unknown otherwise

P8 : A−∂C =

true A◦ ⊆ B◦ ∧ ¬(C◦ ⊆ B◦) ∨
(A◦ ⊂ B◦ ∨ A◦ ⋄ B◦ ∨ (¬A◦B◦ ∧ ¬∂A∂B))

∧B◦ = C◦ ∨
¬A◦B◦ ∧ C◦ ⊂ B◦ ∨
¬A◦B◦ ∧ ¬∂A∂B ∧ (¬B◦C◦ ∨ B◦ ⊂ C◦)

∧∂B∂C ∨
A◦ ⊂ B◦ ∧ ¬∂A∂B ∧ C◦ ⊂ B◦ ∧ ∂B∂C ∨
B◦ ⊂ A◦ ∧ ∂A∂B ∧ B◦ ⊂ C◦ ∧ ¬∂B∂C

false B◦ ⊆ A◦ ∧ C◦ ⊆ B◦

unknown otherwise

P9: A− C− = true

Figure 5: Inference rules for the predicates of the 9-intersection matrix.
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Figure 6: Decision tree of the relationship space for complex regions.



algorithm IdentifyRelationship
(1) input: Decision tree T := (V,E)
(2) Intersection matrix IM
(3) output: Inferred relationship R
(4) begin
(5) Step 1: Start with the root ∈ T
(6) Step 2: At each node check the value of the evaluated predicate.
(7) Step 2a: If the predicate value is 0, then follow the left subtree.
(8) Step 2b: If the value is 1, then follow the right subtree.
(9) Step 2c: If the value is unknown, then follow both subtrees.

(10) Step 3: Repeat Step 2 until the leaf nodes are reached in all branches.
(11) Step 4: If a single leaf is found, then return the corresponding relationship
(12) else return the disjunction of all corresponding relationships.

end IdentifyRelationship

Figure 7: The algorithm IdentifyRelationship.

exterior-exterior intersection is always true, we have to com-
pare eight of these evaluated predicates for each matching
which means 33 · 8 = 264 comparisons are required in the
worst case.
To reduce the number of comparisons we build a decision

tree of these 33 relationships. Table 1 shows all 33 possible
relationship matrices [16]. We recursively divide the rela-
tionship space based on a predicate value at each level of
the tree until we reach a single relationship. For example,
18 relationships (matrices 1 to 18 in Table 1) have false as
their interior-boundary intersection value. Thus, we divide
the relationship space so that the relationships 1 to 18 are
on one side and the relationships 19 to 33 are on the other
side. Next if we look into the relationships 19 to 33, we
find that the relationships 19 to 26 represented by the ma-
trices 19 to 26 have the value false for the boundary-interior
predicate and that the other relationships have the predicate
value true. Therefore, we again divide the relationship space
where relationship 19 to 26 is on one side and relationships
27 to 33 are on the other side. We continue this process
until there is only one relationship in a leaf node. At each
level, we divide the relationship space into half as close as
possible to attain minimum average path length from the
root to the leaf nodes. Since, there are 33 relationships a
balanced binary tree should have the height ⌈log2 33⌉ = 6.
Our decision tree also has the height six. Though, this tree
is not unique but this tree has the minimum average path
length. The complete decision tree is shown in Figure 6.
Each inner node has two entries. The entry inside a node
describes the current relationship space that is considered,
and the entry above the node denotes the predicate that has
to be considered to further divide the current relationship
space.
With the help of this tree, we design a recursive algorithm

IdentifyRelationship (Figure 7) for identifying the inferred
relationship. The input of the algorithm is the decision tree
T and the 9-intersection matrix (IM) which is the evaluated
matrix. The output is the inferred relationship (R). At each
node, starting from the root, the value of the predicate as-
signed to that node is retrieved from the evaluated matrix
and checked. Depending on the value, we follow either the
left, right, or both subtrees. This process recursively follows
down to the tree until a leaf node is reached. If all the evalu-
ated predicates have determinate values (i.e., true or false),
only one leaf node is reached. Otherwise, if any predicate

has an indeterminate value (i.e., unknown), more than one
leaf node is found. In this case, the inferred relationship is
the disjunction of all the corresponding relationships repre-
sented by those leaf nodes. The maximum height of this
decision tree is 6. This means if all the evaluated predicates
have determinate values, in the worst case it would take 6
comparisons instead of 264 comparisons, which is a 97% im-
provement. Since evaluated predicates can have indetermi-
nate values, we may end up searching through the whole tree
in the worst case. The required number of comparisons to
search through the whole tree is equal to the number of the
inner nodes. The decision tree that we show in Figure 6 has
32 inner nodes. Consequently, 32 instead of 264 comparisons
are sufficient which is an improvement of 88%.

5. GLOBAL INFERENCE
As we have already discussed in Section 3, a well accepted

way of carrying out global inference is by means of path
consistency algorithms. The first problem of this approach
is the high complexity. Since such an algorithm generates
a complete knowledge base, it is required to run only once
at the beginning. One could argue that the higher runtime
can be counted as pre-processing time and that it is a one
time overhead. This argument holds when the database is
static or changes rarely. If the database changes frequently,
the runtime of the algorithm becomes a big overhead. For
example, if a new object is added to the database then the
algorithm should run again with this new information. The
same argument holds if there is a change in any relationship
because that change may cause other relationships to adjust.
This means the algorithm should run to propagate those
updates. In case of the deletion of an object, only the object
and the emanating relationships from it have to be deleted.
Therefore, the O(n3) overhead is incurred almost every time
when there is a change, and this becomes worse when the
database is large (i.e., n is large).
The second problem arises in the case of answering com-

plex queries. For example, assuming there are two regions A
and C describing areas affected by two different earthquakes.
We want to know if there is any part of state S which was hit
by both earthquakes. The answer can be obtained by look-
ing at the topological relationship between the intersection
of A and S as well as the intersection of C and S. Let the
intersections be denoted by I1 and I2 respectively. Our goal
is to find the relationship between these two regions. For



Matrix 10 0 1
0 0 1
1 1 1


Matrix 20 0 1
0 1 0
1 1 1


Matrix 30 0 1
0 1 1
1 0 1


Matrix 40 0 1
0 1 1
1 1 1


Matrix 51 0 0
0 1 0
0 0 1


Matrix 61 0 0
0 1 0
1 1 1


Matrix 71 0 0
1 0 0
1 1 1


Matrix 81 0 0
1 1 0
1 0 1


Matrix 91 0 0
1 1 0
1 1 1


Matrix 101 0 1
0 1 0
1 1 1


Matrix 111 0 1
0 1 1
0 0 1


Matrix 121 0 1
0 1 1
1 0 1


Matrix 131 0 1
0 1 1
1 1 1


Matrix 141 0 1
1 0 1
1 1 1


Matrix 151 0 1
1 1 0
1 0 1


Matrix 161 0 1
1 1 0
1 1 1


Matrix 171 0 1
1 1 1
1 0 1


Matrix 181 0 1
1 1 1
1 1 1


Matrix 191 1 1
0 0 1
0 0 1


Matrix 201 1 1
0 0 1
1 1 1


Matrix 211 1 1
0 1 0
0 0 1


Matrix 221 1 1
0 1 0
1 0 1


Matrix 231 1 1
0 1 0
1 1 1


Matrix 241 1 1
0 1 1
0 0 1


Matrix 251 1 1
0 1 1
1 0 1


Matrix 261 1 1
0 1 1
1 1 1


Matrix 271 1 1
1 0 0
1 1 1


Matrix 281 1 1
1 0 1
1 0 1


Matrix 291 1 1
1 0 1
1 1 1


Matrix 301 1 1
1 1 0
1 0 1


Matrix 311 1 1
1 1 0
1 1 1


Matrix 321 1 1
1 1 1
1 0 1


Matrix 331 1 1
1 1 1
1 1 1



Table 1: 33 possible topological relationships between two complex regions.

this purpose, we need to add these two regions as two nodes
in the BSCN and run the path-consistency algorithm. The
algorithm gives us not only the relationship between I1 and
I2 but also the relationships between I1 and all the other
nodes as well as the relationships between I2 and all the
other nodes. But we do not need these extra relationships.
Hence, the whole procedure becomes quite inefficient. More-
over, I1 and I2 are temporary regions only and are thrown
out of the BSCN after the query execution. When those
temporary regions are thrown out, the BSCN must revert to
its previous state. This means we need to save the previous
state of the BSCN when any such complex query is posed.
Based on these observations, we can argue that complete
knowledge may not be desirable in some cases and that path
consistency algorithms are not designed to handle database
changes. Hence, our goal is to develop a different runtime
strategy to carry out global inference.
Three scenarios can arise when a query is made to find

out the topological relationship between two regions: (i) the
relationship is already known which means no reasoning is
required, (ii) no relationship is available and there are no
intermediate nodes through which we can infer the relation-
ship, and (iii) no relationship is available but there are some
intermediate nodes through which we can infer the relation-
ship. In terms of a graph, these three scenarios are equivalent
of having (i) a direct edge between the two nodes, (ii) no path
between the two nodes, and (iii) at least one path between
the nodes respectively. The first scenario is straightforward
so that we have only to be concerned about the other two
scenarios. It is very important to identify whether it is pos-
sible to infer knowledge between two given regions. The rea-
soning procedure is a costly process. If we could anticipate
that the inference of new knowledge between two complex
regions is impossible before starting the procedure, it would

A

B C

D

E

R1

R2

R4

R R3

Rx

Ry

Figure 8: A chain of relationships.

save us time and resources. But surprisingly the solution is
straightforward. Since the BSCN is a graph, a simple path
finding algorithm that assumes one of the two regions as the
source and the other one as the destination can answer this
question. A necessary condition for reasoning is that there
is a path between the nodes representing the two regions.
Therefore, the first step is to run a path finding algorithm.

A path between two target nodes through a set of interme-
diate nodes corresponds to the chaining example that we
described before in the Introduction. Figure 8 describes
the scenario where A and E are the target nodes and B,
C, and D are the intermediate nodes. The known rela-
tionships are R1(A,B), R2(B,C), R3(C,D), and R4(D,E),
and our goal is to infer R(A,E). We can solve this long
chain of relationships by simplifying it into a series of com-
positions of relationships involving three nodes. Referring
to Figure 8, we first compose R1(A,B) and R2(B,C) to
get Rx(A,C). Then we compose Rx(A,C) and R3(C,D)
to obtain Ry(A,D). Finally, by composing Ry(A,D) and
R4(D,E), we get R(A,E). In the AI domain, this process is



A

Figure 9: Multiple chains of relationships.

known as forward chaining.
Intuitively, shortest path algorithms are a good choice for

a path finding algorithm because they can give us the path
with the minimum number of intermediate nodes; this might
ensure a lower processing time. However, let us consider a
configuration with two chains (paths). First, we assume that
A overlaps B and B overlaps C. Second, we assume that
A disjoint D, D contains E, and E contains C (Figure 9).
From the first chain the inferred relationship between A and
C is the universal relationship, i.e., the disjunction of all
possible relationships. But from the second chain the in-
ferred relationship between A and C is disjoint. Though
both results are correct, the second, longer chain gives us
the more specific and thus better answer. A similar example
can be shown where the shorter path gives us a more spe-
cific and thus better answer. In fact, this shows that there
is no relation between the length of the path and the more
specific answer. This means that by considering one path,
we may not obtain the most specific answer. Hence, we have
to consider all possible paths, and the intersections of all
inferred relationships obtained through these paths should
give us the most specific relationship. The problem is that
in the worst case the number of all simple paths between
two nodes in a graph is n! when the graph is complete. In-
terestingly, this worst case scenario is actually good for the
reasoning process because we don’t need any inference when
the knowledge base is complete. If the graph is sparse then
the number of paths between any nodes may be much lower
depending on the configuration of the graph. Based on this
observation, an alternative heuristic solution is to consider k
paths instead of all simple paths. If k is large then it is pos-
sible that this heuristic may give us the most specific result.
We choose a k-shortest path algorithm which is a generaliza-
tion of the shortest path problem and determines k paths,
instead of one, in an increasing order of length. The length,
in our case, is measured as the number of hops from source to
destination which means the edges of the BSCN are of equal
weight which means we treat all the relationships equally.
The worst case complexity for the k-shortest simple path al-
gorithm is O(m + n logn + k) [8] where n is the number of
nodes and m is the number of edges. If we choose k = cn
where c is a positive integer then the complexity becomes
O(n logn) for n logn >= m.

6. AN ALGORITHM FOR REASONING BE-
TWEEN COMPLEX REGIONS

So far, we have described the two basic steps of the reason-
ing process. In this section, we integrate these steps which
give us a generalized conceptual model for reasoning as well
as a complete picture of our work. The algorithm is also
the starting point of the implementation of this conceptual

model. We employ the k-shortest simple path algorithm and
assume that k is equal to the number of nodes in the BSCN.
The inputs of the algorithm ReasoningBetweenComplexRe-
gions (Figure 10) are the BSCN G, a matrix M , which stores
the existing relationships, and the two complex regions α
and β for which we infer the relationship. The matrix M
is indexed by (i, j) which means the topological relationship
between the complex objects i and j is stored in the matrix
entry Mi,j . The output of the algorithm is the inferred rela-
tionship. There is a simple check (line 7) to find out whether
the relationship already exists or not. If the relationship al-
ready exists, we simply return this relationship and no rea-
soning is required. The reasoning procedure has two loops.
The outer loop (lines 9 to 20) executes a k-shortest path algo-
rithm. Each time when we get a new path (i.e., pα,β), the in-
ner loop (lines 13 to 17) is executed. This inner loop executes
the forward chaining process. In this loop, the composition
of relationships is performed in three steps. First, the set
relations between the interiors of the regions under consid-
eration are being evaluated (line 14). Then, the evaluation
of the 9-intersection predicates by means of the inference
rules is performed (line 15), and finally the inferred relation-
ship is obtained by passing those evaluated predicates to the
relationship identifying process (line 16). In order to find
out the most specific result, we take the intersection of all
inferred relationships which are obtained through different
paths (line 18). The complexity of the inner loop depends
on the length of the chain because applying the inference
rules and the relationship identifying process requires a con-
stant amount of time. In a graph the maximum path length
between any nodes can be |V |−1. Hence, the time complex-
ity of the inner loop is O(n). Since the complexity of the
outer loop is O(n logn), this gives us the total complexity
of O(n2 logn). This complexity is lower than the complex-
ity O(n3) of the original BSCN path-consistency algorithm.
Though the reduction of the complexity is not dramatic, the
main advantage is that we only need to run this algorithm
when a query is fired. Therefore, this approach can save a
lot of overhead for large dynamic databases. It also solves
the complex query problem because it only computes the re-
lationship of the target objects without modifying any other
relationships in the database.

7. SIMULATION AND RESULTS
The performance of the heuristic depends on the percent

of time the heuristic is able to find the most specific relation-
ship between two regions. Since we consider k paths, instead
of all paths, between two nodes representing the two regions,
it is possible that we might miss the path which could give
us the most specific relationship. Let us assume that the
number of paths in a BSCN between any two nodes is E. If
k ≥ E, then we can surely say (i.e., with probability p = 1)
that the heuristic gives us the most specific result. On the
other hand, if k < E then the probability of obtaining the
most specific relationship is p = k/E since all the edges have
equal weights. We generate a random graph which represents
the BSCN. The number of edges of each node is power law
distributed between 1 and n, where n is the number of nodes
in the graph. The reason is that the edges represent the in-
formation available about the nodes. In practice, we have
a lot of information for a few regions, a reasonable amount
of information for many regions, and less information about



algorithm ReasoningBetweenComplexRegions
(1) input: BSCN G := (V,E)
(2) Matrix M keeping the topological relationship between two complex regions
(3) α, β ∈ V representing complex regions
(4) output: The inferred relationship R(α, β) between nodes (complex regions) α and β
(5) begin
(6) if Mα,β ̸= null then
(7) return Mα,β

(8) k := 0
(9) repeat

(10) pα,β := find the next best path from α to β in G
(11) // pα,β is a list of nodes from G that starts with α, ends with β and
(12) // includes the intermediate nodes
(13) for each i in intermediate nodes from pα,β

(14) Si:=Evaluate the set relations between the interiors from the 9IM of Mα,i,Mi,i+1

(15) IM :=Evaluate 9-intersection predicates by means of inference rules(Si)
(16) Rt(α, i+ 1) := IdentifyRelationship(IM )
(17) endfor
(18) R(α, β) := R(α, β) ∩Rt(α, β)
(19) k := k + 1
(20) until there are no paths from α to β or k = |V |
(21) return R(α, β)

end ReasoningBetweenComplexRegions

Figure 10: The algorithm ReasoningBetweenComplexRegions.

the rest of the regions. This phenomenon is captured by
the power law distribution. We run the simulation for dif-
ferent sizes of databases and observe the performance of the
heuristic by varying k. At each run, the performance is mea-
sured by averaging the p for all possible pairs of nodes. The
number k of considered paths is a constant multiple of the
number of nodes, i.e., k = cn to keep the complexity of the
k-shortest path bounded to O(n logn). Figure 11 shows that
the performance of the heuristic decreases with the increase
of the database size, which is expected. Figure 11 also shows
that for a fixed database size, the performance increases if
we consider more paths, i.e., if we increase c. For small
databases such as 10 ≤ n ≤ 50, the heuristic is able to find
the most specific result more than 90% of time which is con-
sidered to be good performance by a heuristic. The heuristic
performs reasonably well (i.e., above 80%) in case of medium
sized databases with 50 ≤ n ≤ 300. As the number of nodes
grows beyond 300 nodes, the heuristics does not perform well
when c ≤ 10. But we see that significant performance gain
can be obtained by considering more paths (e.g., c = 20).
Though, increasing c does not hurt the overall complexity as
long as n >> c but it slows the algorithm by the factor of
c2 log c2/c1 log c1 where c2 > c1. Based on this observation,
the value of c can be set by the user based on the size of the
database and the requirement of precision.

8. CONCLUSIONS AND FUTURE WORK
From an application point of view, more complex geomet-

ric structures than the simple spatial objects are required
to represent real world spatial phenomena. It is often the
case that if the database is large and complex, the com-
plete knowledge regarding the participating objects is un-
available. The first contribution of this paper is the design
of a complete set of inference rules through which we can
infer topological relationship between complex regions. The
inference rules are formulated in such a way that they can

Figure 11: Performance of the heuristic for different
database sizes.

also be applied to simple regions. Our second contribution is
to define an overall conceptual framework for the reasoning
process from a database point of view which can handle the
typical database issues like updating, adding, and deleting
information.
A main topic for future work is to implement the frame-

work in spatial databases. We plan to apply some algorith-
mic (e.g., dynamic programming) and Artificial Intelligence
(e.g., forward chaining, decision tree) techniques to imple-
ment this conceptual reasoning framework. An important
topic for future work is to explore other heuristics for global
inference such as using different weights for the edges. In
this document we consider equal weights for all relationships.
But an observation, in case of simple regions, shows that
composing any relationship with the overlap relationship al-
ways results in a disjunction of relationships. Hence, it is less
probable that the most specific result can be found if a chain



contains an overlap relationship. We can give higher weight
to the edges representing overlap so that a chain containing
overlap is considered later by the k-shortest path algorithm.
Another important topic for future work is extending the
reasoning model to all combinations of complex objects such
as line-line and line-region.
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