
Developments in Spatio-Temporal Query Languages
�

Martin Erwig & Markus Schneider
FernUniversität Hagen, Praktische Informatik IV

58084 Hagen, Germany
[erwig

�
markus.schneider]@fernuni-hagen.de

Abstract

Integrating spatio-temporal data as abstract data types
into already existing data models is a promising approach
to creating spatio-temporal query languages. In this con-
text, an important new class of queries can be identified
which is concerned with developments of spatial objects
over time, that is, queries ask especially for changes in spa-
tial relationships. Based on a definition of the notion of
spatio-temporal predicate we provide a framework which
allows to build more and more complex predicates starting
with a small set of elementary ones. These predicates can be
well used to characterize developments. We show how these
concepts can be realized within the relational data model.
In particular, we demonstrate how SQL can be extended to
enable the querying of developments.

1 Introduction

Motivated by the deep relationships between tempo-
ral and spatial phenomena there has recently been an in-
creased interest in designing spatio-temporal data models
and spatio-temporal databases. A currently still open issue
relates to the nature and definition of spatio-temporal pred-
icates and their integration into spatio-temporal query lan-
guages. A query like “Was flight UA207 forced to cross a
snow storm?” incorporates the feature of temporally chang-
ing spatial relationships and is, as we will show, very dif-
ficult and sometimes even impossible to express by using
purely spatial predicates. It turns out that temporal query
languages are also incapable of answering these queries.

In this paper we first give a definition of the notion of
spatio-temporal predicate. Changes of spatial objects over
time cause changes of their relationships. We show that de-
velopments of spatial relationships over time between spa-
tial objects are a characteristic feature of spatio-temporal

�
This research was partially supported by the CHOROCHRONOS

project, funded by the EU under the Training and Mobility of Researchers
Programme, Contract No. ERB FMRX-CT96-0056.

predicates. Second, we perform an integration of these
predicates into SQL. We show that this integration profits
very much from the abstract data type (ADT) approach for
integrating complex objects into databases.

In Section 1.1 we briefly review currently available
spatio-temporal data models and give reasons for our se-
lection. In Section 1.2 we describe criteria for designing
spatio-temporal query languages, and in Section 1.3 we re-
late spatio-temporal predicates to earlier work on spatial
predicates.

1.1 Spatio-Temporal Data Models

So far, only a few data models for spatio-temporal
data have been proposed. In [25] a spatial data model
has been generalized to become spatio-temporal. Spatio-
temporal objects are defined as so-called spatio-bitemporal
complexes whose spatial features are described by simpli-
cial complexes and whose temporal features are given by
bitemporal elements attached to all components of simpli-
cial complexes. On the other hand, temporal data models
have been generalized to become spatio-temporal and in-
clude variants of Gadia’s temporal model [16] which are
described in [3, 2]. The main drawback of all these ap-
proaches is that they are incapable of modeling continuous
changes of spatial objects over time.

Another approach which takes a more integrated view of
space and time and which will be the basis of this paper
introduces the concept of spatio-temporal data types [12,
13]. The definition of a temporal object in general is based
on the observation that anything that changes over time can
be expressed as a function over time. A temporal version of
an object of type α is then given by a function from time to
α. Spatio-temporal objects like moving points and evolving
regions are regarded as special instances of temporal objects
where α is a spatial data type.

Similar to the approach just mentioned, in [26, 27] based
on the work in [20] behavioral time sequences are intro-
duced. Each element of such a sequence contains a geo-
metric value, a date, and a behavioral function, the latter

1

describing the evolution up to the next element of the se-
quence. Time sequences could be used as representations
for our temporal objects.

An issue that has been intensively discussed in tempo-
ral data modeling is whether a tuple timestamped or an at-
tribute timestamped data model should be preferred. Tuple
timestamped models (for example, [1, 6, 21]) expand the
schema of a relation by one or more explicit temporal at-
tributes that are used for describing the lifespan or validity
period of a whole tuple. Each time an attribute of a tuple
changes its value, the tuple has to be duplicated and mod-
ified. Hence, the information about an object is scattered
over one or more relations. This approach impedes the mod-
eling of continuous changes of spatial objects and the defi-
nition of corresponding operations and predicates; thus they
are inappropriate for our purposes.

Instead of adding additional attributes to the relation
schema, attribute timestamped models (for example, [5, 6,
16, 20]) aim at gathering information about an object into
a single tuple and allow complex attribute values. These
complex values incorporate the temporal dimension and are
frequently modeled as functions from time into a value do-
main. From this perspective, attribute timestamped models
are very similar to and fit very well with the models de-
scribed in [13, 15].

However, the latter models additionally encapsulate
(spatio-) temporal objects as ADT objects that can be in-
tegrated as complex values into databases [22, 23]. The
ADT approach has several advantages. The first very im-
portant benefit is that employing ADTs is more expressive
than relying on attribute timestamped models, let alone tu-
ple timestamped models, since continuous changes can be
modeled [13]. The second benefit is that a definition of
ADT values is valid regardless of a particular DBMS data
model and query language. The reason is that ADT val-
ues are not modeled by concepts of a DBMS data model
and that they therefore do not depend on them. This facil-
itates an easy and elegant conceptual integration of ADT
values into relational, complex object, object-oriented, or
other data models and query languages.

1.2 Query Languages

Our intention is not to devise a new spatio-temporal
query language from scratch but to appropriately extend the
widespread database query language SQL. The main focus
is on integrating developments.

We profit from the fact that the underlying data model
rests on the ADT approach which necessitates only conser-
vative extensions to SQL which are: (i) a set of basic spatio-
temporal predicates, and (ii) an extension mechanism for
new, more complex spatio-temporal predicates. We call this
extended query language STQL (Spatio-Temporal Query

Language). All added functionality is captured by ADT ob-
jects and operations. The benefit of this approach is the
preservation of well known SQL concepts, the high-level
treatment of spatio-temporal objects, and the easy incorpo-
ration of spatio-temporal predicates. Users can ask either
standard SQL queries on standard data or use STQL fea-
tures to inquire about situations involving spatio-temporal
data.

The query facility of SQL is provided by the well known�����������
- 	�
��� - ��� �
 � clause. The integration of predicates

like “ � ” or “ ��� ” for standard data types such as integers
or strings is well understood. In particular, there are only
a few of them which allows one to include them as built-
in predicates. When considering more complex and more
structured data such as points, lines, or regions, one can
try to systematically derive all reasonable predicates. The
so-called 9-intersection model [9, 10] provides such canon-
ical collections of predicates for each combination of spatial
data types. For example, for two regions the eight predicates
disjoint, meet, overlap, coveredBy, covers, inside, contains,
and equal have been identified. A spatial query language
based on these predicates and called Spatial SQL has been
proposed in [7].

1.3 Spatio-Temporal Predicates

From an application point of view, we have found
that expressing and querying temporal changes or develop-
ments of spatial objects is an important feature of a spatio-
temporal query language. For this purpose spatio-temporal
predicates are needed which model these developments and
which can be used in the query part of STQL. A spatio-
temporal predicate makes statements about the validity of
the behavior of two spatio-temporal objects for some period
of time.

In [14] we have given a definition of spatio-temporal
predicates as a function taking two spatio-temporal objects
as arguments and appropriately aggregating boolean values
along the time axis by temporal quantifiers into a single
boolean value. The problem is tackled on the basis of the 9-
intersection model and on the basis of the work in [8] which
considers possible topological transitions (that is, changes)
of topological relationships.

Between a moving point and an evolving region we have
identified a canonical collection of 28 spatio-temporal pred-
icates, and between two evolving regions we have obtained
not less than 2198 predicates [14]. The large numbers prac-
tically impede a naming of all these predicates and their rea-
sonable employment from a user perspective. A first solu-
tion to this problem could be to furnish the user with a small,
fixed, application-specific set of predicates. But possibly
this is too restricted. An alternative could be to pursue a
strategy like in [4]. There, an extension of the 9-intersection

2

model by additionally taking the dimension of the intersec-
tions into account leads to 52 possible relationships for all
combinations of point, line, and region objects. The large
number of predicates is reduced by grouping all topologi-
cal cases into five overloaded topological predicates and by
providing two boundary operators. These five predicates are
mutually exclusive and capture all possible topological re-
lationships. In our case, the number of predicates is much
larger. Moreover, new predicates can be constructed from
already existing ones. Hence, we advocate an extensible
approach and provide a simple framework for composing
spatio-temporal predicates. The integration into SQL be-
comes possible by an appropriate macro mechanism. This
is similar to the way in which composite events are speci-
fied in [19]. The main difference is that events occur always
at some instant in time whereas we also deal with predicates
over whole time periods.

Section 2 presents a proposal for STQL. It describes
the underlying data model and illustrates the embedding of
spatio-temporal data types and operations into this language
by query examples. Section 3 introduces spatio-temporal
predicates and underpins the importance of developments
for specifying changes of spatial relationships. Section 4
shows how developments are queried in STQL on the ba-
sis of spatio-temporal predicates. Section 5 sketches how
queries containing spatio-temporal predicates could be eval-
uated. Section 6 draws some conclusions.

2 Extending SQL to STQL

In this section we introduce the first part of the design
of a spatio-temporal query language called STQL. We first
sketch the underlying data model before we show the em-
bedding of spatio-temporal data types and operations into
STQL by query examples.

2.1 The Data Model

For illustration purposes, we confine ourselves here to
the well known relational model and to SQL as its most
popular query language. A relation scheme R is written as
R � A1 : D1 ��������� An : Dn � where the Ai are the attributes and
the Di are their respective value domains. For a relation
r : R � A1 : D1 ��������� An : Dn � holds r � D1 � D2 � ����� � Dn. The
domains can be standard types like integers, reals, booleans,
or strings but also more complex types encapsulated into
ADTs and including a comprehensive set of operations and
predicates. Examples are spatial data types like points,
lines, and regions [18] or graphs [11].

Similarly, we model spatio-temporal data as abstract data
types which can be employed as attribute types in a relation.
The relation itself has only a container function to store at-
tribute data in tuples. The design of the model for spatio-

temporal data is as follows: for compatibility with smoothly
changing spatio-temporal objects we choose a continuous
model of time, that is, time 	 IR. The temporal version of
a value of type α that changes over time can be modeled
as a temporal function of type τ � α � 	 time
 α. We have
used temporal functions as the basis of an algebraic data
model for spatio-temporal data types [12] where α is as-
signed a spatial data type like point or region. For example,
a point that changes its location over time is an element of
type τ � point � and is called a moving point. Similarly, an
element of type τ � region � is a region that can move and/or
grow/shrink. It is called an evolving region. Currently, we
do not consider a temporal version of lines, mainly because
there seem to be not many applications of moving lines. A
reason might be that lines are themselves abstractions or
projections of movements and thus not the primary entities
whose movements should be considered [13]. In any case,
however, it is principally possible to integrate moving lines
in much the same way as moving points if needed. In addi-
tion, we also have changing numbers and booleans, which
are essential when defining operations on temporal objects.
For instance, we could be interested in computing the (time-
dependent) distance of an airplane and a storm. This could
be achieved by an operation:

Distance : τ � point � � τ � region �
 τ � real �
In principle, we can take almost any non-temporal operation
and “lift” it so that it works on temporal objects returning
also a temporal object as a result. More precisely, for each
function f : α1 � ����� � αn
 β its corresponding lifted ver-
sion is defined by [17]:

�
f : τ � α1 � � ����� � τ � αn �
 τ � β �

with
�

f � S1 ��������� Sn � : 	 � t � f � S1 � t ����������� Sn � t ������� t � time �
For example, we have Distance 	 �

distance. Note that this
definition implies lifting also for constant objects of a non-
temporal type α, that is

�
: α
 τ � α �

with
�
c : 	 � t � c ��� t � time �

Temporal lifting is, of course, also applicable to spatial
predicates. Consider the spatial predicate

inside : point � region
 bool

The lifted version of this predicate has the type

�
inside : Point � Region
 Bool

3

with the meaning that it yields true for each time at which
the point is inside the region, undefined whenever the point
or the region is undefined, and false in all other cases.

To make notations more comprehensible we generally
denote non-temporal types, entities, functions, and pred-
icates by lower case letters while their temporal counter-
parts start with capital letters. For example, the spatial
operation distance takes objects of type point and region
and computes a number of type real, whereas its lifted ver-
sion Distance 	 �

distance maps elements of type Region 	
τ � region � and Point 	 τ � point � to Real 	 τ � real � (temporal
reals).

2.2 Querying with STQL

In the sequel, we introduce some operations and illus-
trate their embedding into STQL by posing some queries.
As a scenario, we consider flights and weather conditions
and use the two example relations����������	�
��������
�	����������
���� 	����! � ����	�"# ��$%	������&�('��������)
�	��������*� ��+ 	�����	��
 �%��� � �,"
The attribute

���
identifies a flight, and
��-� 	�� records the

route of a flight over time. The attribute
'.�����

classifies dif-
ferent weather events like hurricanes, high pressure areas,
or snowfall, and

��+ 	�����	
yields the evolving extent of each

weather event.
Now we can ask queries like “Where was United Airlines

flight 207 at time 8:00?”.
� ���������
���� 	��/��0��21�1�" 	�
�� ����������	.

��� �
 � ���436587�9�:�1�;�5

This query shows the functional character of a spatio-
temporal object by determining the value of the object at a
certain time through a simple function application. A more
general version of this query asks for the locations where
the plane was between 7:00 am and 9:00 am.

� ��������� 	���$�<���=�	 � ��>&�
���� 	��?�);��!1�1&@�@BA&�21%1�"�"
	�
��� ����������	�

��� �
 � ���436587�9�:�1�;�5
The “

@�@
” notation specifies a range of time values, that is,

a time interval. If a spatio-temporal object is applied to a
time interval (or a collection of disjoint time intervals sepa-
rated by commas), this expression yields a spatio-temporal
object restricted to that time interval (function restriction).
The

	���$�<���=�	 � ��> operation computes the spatial projection
of a spatio-temporal object onto the Euclidean plane. For
a moving point it yields an object of type line. Note that
isolated stationary points that can, in general, also occur are
ignored. For an evolving region the trajectory operation re-
turns a 2D region which results from projecting the union
of the region values at all times onto the Euclidean plane.

The next query asks for values of the domain of a spatio-
temporal object, that is, its lifespan: “When was a plane
over the Eiffel Tower?”

����������� � ��C ��D���	��%�.
���=�	�� � ���

��-� 	��*�FE � ��������� � � # �%�."�"

	�
�� ����������	.

The

D���	��%�.
���=�	�� � � operator is lifted and computes the
time-dependent intersection of two moving points. The
result is again a moving point comprising all those (time,
point)-pairs where the two original moving points met. We
assume that

� ��������� � � # ��� describes a point containing the
coordinates of the Eiffel Tower. In STQL the lifting oper-
ator is denoted by

E
. It is here applied to a point as a non-

temporal object and yields a stationary point over time, that
is, actually this moving point does not move. Afterwards,
the

� ��C operator collects the times when this intersection
is defined. In this way inverse temporal functions can be
computed.

The following query inquires about the largest snow ar-
eas at all times.

����������� 9�����$/� C $ + � ��+ 	�����	�"�"
	�
�� # ��$%	����%�
��� �
 � '������G3H5�
�� � # 5

The query demonstrates an example of a spatio-temporal
aggregation operation C $ + which is an extension of the well
known aggregation operator in SQL of the same name. It is
here applied to a collection of evolving regions contained
in a relation column and computes a new evolving region.
Internally, this operator is based on a binary function maxst

applied to two evolving regions R1 and R2 and yielding a
new evolving region in the following way:

maxst � R1 � R2 � : 	 � t � r � � t � time I
r 	 maxgeo � R1 � t ��� R2 � t ��� �

This definition uses a function maxgeo which is applied to
two regions r1 and r2 and which returns the larger of both
regions:

maxgeo � r1 � r2 � 	
J

r1 if area � r1 �/K area � r2 �
r2 otherwise

Altogether this means that for n evolving regions
R1 ������� � Rn we first compute the evolving region R 	
maxst � R1 ��������� maxst � Rn L 1 � Rn � ����� � . Afterwards, we apply
the lifted operator

E�$%����$
to R which computes the area of

R at all times. As the final result we obtain a temporal real.
Alternatively, we can answer the query by

����������� C $ + �(9�����$/� ��+ 	�����	�"�"
	�
�� # ��$%	����%�
��� �
 � '������G3H5�
�� � # 5

4

Here, first the
E�$%����$

operator is applied to each snow area
and returns a temporal real. Then the C $ + operator takes the
collection of temporal reals and produces a new temporal
real by selecting the largest of all real values occurring in
the temporal reals at each time.

In the Introduction we have emphasized that tuple times-
tamped models are too inflexible for our purposes and that
we prefer attribute timestamped approaches. But even the
latter approaches are restricted in the sense that they are
incapable of modeling temporal developments of continu-
ously evolving spatial objects. For example, consider the
query “Determine the time when flight UA207 flew into a
hurricane”. Using a temporal query language like TempSQL
[16] using attribute timestamps, we are not able to obtain a
result, since first it cannot express and query any continuous
developments but only stepwise changes and second there
is no interpolation mechanism telling when an event hap-
pened within a time interval. But by employing our ADT
approach, we can formulate the query as follows:

� ��������� C ������� ��C �D���	��%��
���=�	�� � ���
��-� 	��*� ��+ 	�����	�"�"�"
	�
��� ����������	�
?� # ��$�	����%�

��� �
 � ���436587�9�:�1�;�5F9����'.�����G3H58� � �����%=�$�����5
The lifted

D���	��%�.
���=�	�� � � operation is here applied to a
moving point and an evolving region. It yields that part
of
���� 	�� lying inside

��+ 	�����	
. The C ��� operator here com-

putes the minimum of all time values when the intersection
is defined.

If we formulate this query a little bit more generally like
“Determine the times when airplanes flew into hurricanes”,
a lot of plane-hurricane combinations might produce unde-
sired null values because the flight and the hurricane just
considered did not intersect at all. (Note that this is also
possible in the more restricted first query.) In this case,
the use of a spatio-temporal predicate in the ��� �
 � clause
could be very helpful and avoid these null values in the re-
sult relation. Such a predicate could investigate in advance
whether a flight and a hurricane came into contact or not so
that combinations not fulfilling this predicate are not taken
into account any longer; their intersection is not computed.
In the next section we will see how these predicates can be
defined.

A second query showing the necessity of spatio-temporal
predicates, in particular, for temporal developments, asks:
“Determine the flights entering a hurricane”. The problem
here is that for each plane/hurricane combination we have
to check the validity of different spatial predicates during a
series of events and periods in a given temporal order. This
means, we have to examine whether there has been a con-
stellation when the plane and the hurricane were disjoint
for a while, when afterwards they met at one point in time,

and when finally the plane was inside the hurricane for a
while. The development of entering a hurricane is only true
if each of the three subqueries can be answered in the affir-
mative and if they have been temporally occurred one after
the other. The series is like a specification that has to be
matched at least once by each plane/hurricane combination.

����������� ���
	�
�� ����������	.
� # ��$%	����%�
��� �
 � '������G3H5 � � ������=-$�����5 9����� � 	&�
���� 	��/� C ������� ��C �
��-� 	���"%"�" ����
������

��+ 	�����	&� C ������� ��C �
���� 	���"�"�"%" 9����

��-� 	��/� C $ + ��� ��C �
���� 	���"�"�" ����
������
��+ 	�����	&� C $ + ��� ��C �
���� 	���"�"�"

Obviously, this query is very complicated. It works as fol-
lows: after the computation of the departure time of the
flight (C ������� ��C �
���� 	���"�"), the
���� 	�� object is applied to
this value and yields a point. The

��+ 	�����	
object is applied

to the same time value and yields a region. Using the spatial
predicate

����
������
, we check whether the point lies inside

the region. If this is not true, we know that at the depar-
ture time of the flight the plane was outside of the hurri-
cane. Similarly, we compute the arrival time of the flight
(C $ + �(� ��C �
���� 	���"�") and apply both
���� 	�� and

��+ 	�����	
to

this time value. Again, we check whether the point lies in-
side the region, and if this is true, we know that
���� 	�� must
have entered the

��+ 	�����	
object. This, in particular, implies

that they met at the border of the hurricane. A limitation
of this query is that we cannot determine whether plane and
hurricane met only for one moment (straight entering) or
whether the plane ran along the border for a while and then
entered the hurricane (delayed entering). We will see how to
express queries like these much more concisely in Section
4.

3 Spatio-Temporal Predicates and Develop-
ments

We have seen that with the ADT approach spatial, tem-
poral, and even some spatio-temporal conditions can be ex-
pressed completely within “classical” SQL; no change to
the syntax is needed. In this section we investigate the struc-
ture of spatio-temporal predicates in more detail, in partic-
ular, we will consider how to construct compound spatio-
temporal predicates from basic ones. This will eventually
lead to a modular and transparent mechanism for extending
STQL by providing new spatio-temporal predicates through
a small macro facility.

3.1 Spatio-Temporal Predicates

A spatio-temporal predicate is essentially a function that
aggregates the values of a spatial predicate as it evolves

5

over time. In other words, a spatio-temporal predicate
can be thought of as a lifted spatial predicate yielding
a temporal boolean, which is aggregated by determining
whether that temporal boolean was sometimes or always
true. Thus, a spatio-temporal predicate is a function of type
τ � α � � τ � β �
 IB for α � β �

point � region � .
Consider again the definition of

�
inside from Sec-

tion 2.1. We can define two spatio-temporal predi-
cates sometimes-inside and always-inside that yield true if�

inside yields true at some time, respectively, at all times.
Whereas the definition for sometimes-inside is certainly

reasonable, the definition for always-inside is questionable,
since it yields false whenever the point or the region is un-
defined. This is not what we would expect. For example,
when the moving point has a shorter lifetime than the evolv-
ing region but is always inside the region, we would expect
always-inside to yield true. Actually, we can distinguish
different kinds of “forall” quantifications that result from
different time intervals over which aggregation can be de-
fined to range. In the case of inside the expected behavior
is obtained if the aggregation ranges over the lifetime of the
first argument, the moving point. This is not true for all
spatial predicates. Actually, it depends on the nature and
use of each individual predicate. For example, two spatio-
temporal objects are considered as being equal only if they
are equal on both objects’ lifetimes, that is, the objects must
have the same lifespans and must be always equal during
these.

In order to be able to concisely build spatio-temporal
predicates, we use the following general syntax: Qop � F
where Q is either � or � , op is a function mapping two sets
into a new set,1 and F is a formula built by logical connec-
tives (� , I , �����) and spatial and spatio-temporal predicates
as constants. Such an expression then denotes the spatio-
temporal predicate:

λ � S1 � S2 ��� Q t � op � dom � S1 ��� dom � S2 ��� ��� � F � �
where � � F � � denotes the value of the formula, which is ob-
tained by interpreting logical connectives as usual and com-
puting for a spatial predicate p the value p � S1 � t � � S2 � t ���
and for a spatio-temporal predicate P the value P � S1 � S2 � .
This means that, for example, � π1 � inside denotes the spatio-
temporal predicate

λ � S1 � S2 ��� � t � dom � S1 � � inside � S1 � t � � S2 � t ���
In general, λ � x1 � x2 ������� � � e denotes a function that takes ar-
guments x1 � x2 ������� and returns a value determined by the
expression e. So the above expression denotes a function
that takes two arguments S1 and S2 and yields the boolean
value denoted by the � -expression.

1For example, � or π1 that yield the intersection or the first set, respec-
tively. If op is omitted, we define t to range over time.

With this notation we can give the definitions for the
spatio-temporal versions of the eight basic spatial predicates
(for two regions).

Definition 1
Disjoint : 	��	� � disjoint
Meet : 	��
� � meet
Overlap : 	�� � � overlap
Equal : 	��	� � equal
Covers : 	�� π2 � covers
Contains : 	�� π2 � contains
CoveredBy : 	�� π1 � coveredBy
Inside : 	�� π1 � inside

For a moving point and a moving region we have just the
three basic predicates Disjoint, Meet, and Inside, which are
defined as above.

The chosen aggregations are motivated and discussed in
detail in [14].

3.2 Developments: Specifications of Spatial
Changes

In order to define compound spatio-temporal predicates,
which capture the change of spatial situations, we need
a way of restricting the temporal scope of basic spatio-
temporal predicates. This becomes possible by predicate
refinements (note that S � I denotes the partial function that
yields S � t � for all t � I and is undefined otherwise):

Definition 2 Let I be a (half-) open or closed interval. Then
PI : 	 λ � S1 � S2 ��� P � S1 � I � S2 � I � .
When we now consider how spatial situations can change
over time, we observe that certain relationships can be ob-
served only for a period of time and not for only a single
time point (given that the participating objects do exist for
a period of time) while other relationships can hold at in-
stants as well as on time intervals. Predicates that can hold
at time points and intervals are: equal, meet, covers, cov-
eredBy; these are called instant predicates. Predicates that
can only hold on intervals are: disjoint, overlap, inside, con-
tains; these are called period predicates.

It is interesting to note that (in satisfiable developments)
instant and period predicates always occur in alternating
patterns, for example, there cannot be two spatio-temporal
objects that satisfy Inside immediately followed by Dis-
joint. In contrast, Inside first followed by Meet and then
followed by Disjoint can be satisfied.

Now we can define three operations for elementary com-
binations of spatio-temporal and spatial predicates: p � P
(from) defines a spatio-temporal predicate that at some time
t0 checks p and then enforces P for all t K t0; P p (un-
til) is defined dually, that is, P must hold until p is true at

6

some time t0. Finally, P p � Q (then) is true if there is
some time t0 when p is true so that P holds before t0 and
Q holds after t0. In the following definition we abbreviate
open intervals � t � ∞ � and � ∞ � t � by simply writing K t and � t,
respectively. (Note that variable t ranges over time.)

Definition 3 (Temporal Composition)
p � P : 	 � � p I P � � t

P p : 	 � � p I P � � t

P p � Q : 	 � � p I P � � t � S1 � S2 � I Q � � t � S1 � S2 �
It is easy to see that then is a combination of from and until
and that temporal composition is associative:

P p � Q ��� P p I p � Q
P p � � Q q � R � ��� � P p � Q � q � R

In order to be able to denote developments concisely we use
some syntactic sugar in writing down cascades of composi-
tions. Recall that p (P) ranges over arbitrary spatial (spatio-
temporal) predicates. In the table below we let I range over
instant predicates, and i is assumed to be the correspond-
ing spatial predicate from which the spatio-temporal I was
derived (for example, if I 	 Meet, then i 	 meet).

Abbreviation Expands to

p � P p � P
P � p P p
P � p � Q P p � Q
I � P I i � P
P � I P i � I

Now we can define developments of spatio-temporal objects
by simply sequencing basic spatio-temporal predicates. For
example, we can define predicates for capturing the scenario
of a point entering or crossing a region:

Enters : 	 Disjoint � meet � Inside
Crosses : 	 Disjoint � meet � Inside � meet � Disjoint

However, sequential temporal composition is just one pos-
sibility to build new spatio-temporal predicates. Another
important concept is to denote alternative developments:

Definition 4 (Temporal Alternative)
P �Q : 	 λ � S1 � S2 ��� P � S1 � S2 � � Q � S1 � S2 �

(Note that we could also have used the shorter specification:
P �Q : 	 � � P � Q. However, this might be irritating, since the
quantification is not relevant because only spatio-temporal
predicates occur in the formula.) As an example, consider
a moving point on a border of a region. The situations that
can arise when the point leaves the border are captured by
the alternative: Disjoint � Inside.

When we are interested only in an initial or a final part
of a development, it is helpful to have a kind of “wildcard”

spatio-temporal predicate that can be used to express “don’t
care” parts of developments. Therefore, we define the fol-
lowing predicate:

True : 	 λ � S1 � S2 ��� true

(We require True to be an instant predicate; the correspond-
ing spatial predicate is λ � s1 � s2 ��� true.) Note that True is a
unit element with respect to � and a zero element for � :

True � P 	 P 	 P � True
True �P 	 True 	 P � True

An example for the use of True follows in the next section.
Finally, we define the “backward” (or “reverse”) combi-

nator (P �):

Definition 5

P � : 	
	
 � R ��� Q � if P 	 Q � R

Q � �R � if P 	 Q �R
P otherwise

From the definition it can be seen that the backward combi-
nator enjoys the following law:

� P � � � 	 P

4 Querying Developments in STQL

We extend SQL by (i) the set of eight basic spatio-
temporal predicates and (ii) by a facility to compose new
predicates.

Let us first reconsider the example query of finding out
all planes that ran into a hurricane. With a predicate combi-
nator ��� that has the semantics of temporal composition �
we can formulate the query as:

����������� ��� 	�
��� ����������	�
?� # ��$�	����%�
��� �
 � '������G3H5 � � ������=-$�����5 9����

��-� 	�� ����
�< � ����	 ����C ���%	 ��� D���
������ ��+ 	�����	
Since some compound predicates we will be needed more
frequently and since some of them have quite longish spec-
ifications, we introduce a kind of macro definition facility
to introduce new predicates. The syntax is given below. As
basic predicate (p-basic) we allow all the elementary spatio-
temporal predicates defined in Section 3.1. The notation of
predicate operators is taken as much as possible from the
combinators defined in the preceding section.

p-def
 � � 	 D � � p-name
9 �

p-expr
p-expr
 p-basic

� p-name
� p-expr ��� p-expr
� p-expr p-expr
� �����&�

p-expr
"

7

We use the convention that binds stronger than ��� and that
combinators ��� and bind stronger than predicate applica-
tion. (Therefore, we could, for example, omit the brackets
around the spatio-temporal predicate in the above example
query.)

Now we can define a predicate
� ��	��%�.

as follows:

� � 	 D � � � ��	��%�.
 9 � ���%
�< � ����	 ����C ���%	 ��� D��.
������
Hence, we can formulate the query asking for planes enter-
ing a hurricane simply as:

� ����������� 	�
��� ����������	�
?� # ��$�	����%�
��� �
 � '.�����G3H58� � �����%=�$�����5 9����

���� 	�� � ��	��%�.
 ��+ 	�����	
As further examples consider the definition of the predicates� � �
�
���
 and

��>���$�
�

:

� � 	 D � � � ��$ ����
 9 � �����&� � ��	��%�.
�"
� � 	 D � � � � �
�
���
 9 � � ��	��%�.
 ��� � ��$�����

� � 	 D � � ��>���$�
�
 9 � ���%
�< � ����	 ��� ���%	 ��� ���%
�< � ����	

Note that the predicate
� � �
�
-��
 is equal to the def-

inition given in Section 3.2 because
��� �*� � ��	����.
�"

=
D���
������ ����C ���%	 ��� ���%
-< � ����	 and

D���
������ ��� D���
������ =D���
������
. General laws expressing relationships like these

are given in [14].
We can use development predicates also within ��
�� 7� ���
clauses, for example, we might be interested in the num-

ber of planes that were, respectively, were not entering snow
storms or fog areas:

����������� � � 7 � � � � " 	�
�� ����������	.
?� # ��$%	������
��� �
 � '������ 365�
�� � #
�	 � � C 5 �
'������ 365�� � � 5

��
�� 7� ��	�
���� 	�� � ��	��%��
 ��+ 	�����	
To demonstrate the use of developments on two evolving re-
gions we assume we have two relations storing informations
about forests and fires:� � ����
�	 �B��$ C ����
�	���������� 9�����$��
 �%��� � ��"������� ���%��$ C ���)
�	���������� ��+ 	�����	 �
 �%��� � ��"
Now we could be interested, for example, in all forests that
were completely destroyed by a particular fire. The fact
that a forest is destroyed means that it is, at least from some
time on, completely inside of (or equal to) the fire region,
that is, after the fire is over, the forest does not exist any-
more. But before that many different relationships between
the fire and the forest are possible, for example, the fire ig-
nition can happen within the forest, at its border or outside.
Since we do not want to care about all these possibilities,
we can use the predicate True as a wildcard preceding the
final condition, which we denote in STQL by
 .

����������� ��$ C � 	�
�� � � ����
�	�� �.�����
��� �
 � 9�����$
���� D��.
������ �	� � $�� ��+ 	�����	

This means that for a certain period of time we do not care
at all about the relationship between the forest and the fire,
which is expressed by
 that constantly yields true; we only
require the existence of a time point after which

D���
������
or�	� � $�� holds.

Finally, as an example for querying spatio-temporal de-
velopments of two moving points, suppose we have a rela-
tion recording migration of birds.

�,������
H�
 # $�� C �)
�	���������� �� ��� C ����	��! � ����	�"
We might be interested in swarms that fly together, then take
different routes for some time and finally meet again. This
can be expressed as an STQL query:

� � 	 D � �
 � C ���%	.
9 �
���� ���%	 ��� ����
-< � ����	 ���� ����	 ����

����������� 9 @�
 # $%� C �� @)
 # $�� C
	�
�� �,������
H�(9�"���,������
6���,"
��� �
 � 9 @ �� ��� C ����	
 � C ���%	.
�� @ �� ��� C ����	

5 Query Evaluation

We shortly sketch how the evaluation of queries using
complex spatio-temporal predicates can work. First, pred-
icates are transformed into development normal form, that
is, alternatives occurring as subparts nested within develop-
ments are moved to the outer level. This is possible, since �
distributes over � , that is, we know:

P � Q �R 	 � P � Q � � � P � R �
P �Q � R 	 � P � R � � � Q � R �

Thus, we can restrict ourselves to developments that do not
contain alternatives.

Next we assume that evolving regions are represented as
3D volumes, and moving points are represented as 3D lines
where we assume the z-axis represents time (for details, see
[15]).

Now a development can be checked as follows. Con-
sider, for example, the case for an evolving region and a
moving point: we first compute the geometric intersection
of both representations so that we obtain as a result a se-
quence of z-intervals together with the information about
the corresponding parts of the volume/line (each of which
might be undefined), of their intersection, and of their topo-
logical relationship, which can be one of “line inside vol-
ume”, “line runs along volume border”, or “line outside vol-
ume”. The crucial point is that for each change in the topo-
logical relationship, a new interval is reported. For topolog-
ical relationships that hold only for one single z-coordinate

8

(here, intersection points) no (degenerated) interval has to
be reported, since it can be derived from the other intervals.
The intersection procedure for two volumes is analogous.

Finally, what is left is to match the computed se-
quence against the development specification (which actu-
ally amounts to substring matching).

We are currently investigating several 3D intersection al-
gorithms which we will describe in a subsequent paper.

6 Conclusions

Based on an ADT approach to the integration of spatio-
temporal data types into data models we have shown how
queries on spatio-temporal objects can be formulated within
standard SQL. Observing that querying developments of
spatial objects is of particular interest we have demonstrated
how to define basic and compound spatio-temporal pred-
icates as specifications for developments. Using complex
developments within queries has been enabled by a modest
extension to the DDL part of SQL.

References

[1] G. Ariav. An Overview of TQuel. ACM Trans. on Database
Systems, 11(4):499–527, 1986.

[2] M. H. Böhlen, C. S. Jensen, and B. Skjellaug. Spatio-
Temporal Database Support for Legacy Applications. In
ACM Symp. on Applied Computing, pages 226–234, 1998.

[3] T. S. Cheng and S. K. Gadia. A Pattern Matching Language
for Spatio-Temporal Databases. In ACM Conf. on Informa-
tion and Knowledge Management, pages 288–295, 1994.

[4] E. Clementini, P. Felice, and P. Oosterom. A Small Set
of Formal Topological Relationships Suitable for End-User
Interaction. In 3rd Int. Symp. on Advances in Spatial
Databases, LNCS 692, pages 277–295, 1993.

[5] J. Clifford and A. Croker. The Historical Relational Data
Model (HRDM) Revisited. In [24], pages 6–27, 1993.

[6] J. Clifford, A. Croker, and A. Tuzhilin. On the Completeness
of Query Languages for Grouped and Ungrouped Historical
Data Models. In [24], pages 496–533, 1993.

[7] M. J. Egenhofer. Spatial SQL: A Query and Presentation
Language. IEEE Transactions on Knowledge and Data En-
gineering, 6(1):86–95, 1994.

[8] M. J. Egenhofer and K. K. Al-Taha. Reasoning about Grad-
ual Changes of Topological Relationships. In Int. Conf.
GIS – From Space to Territory: Theories and Methods of
Spatio-Temporal Reasoning in Geographic Space, LNCS
639, pages 196–219, 1992.

[9] M. J. Egenhofer and R. D. Franzosa. Point-Set Topological
Spatial Relations. Int. Journal of Geographical Information
Systems, 5(2):161–174, 1991.

[10] M. J. Egenhofer and J. Herring. A Mathematical Framework
for the Definition of Topological Relationships. In 4th Int.
Symp. on Spatial Data Handling, pages 803–813, 1990.

[11] M. Erwig and R. H. Güting. Explicit Graphs in a Functional
Model for Spatial Databases. IEEE Transactions on Knowl-
edge and Data Engineering, 5(6):787–804, 1994.

[12] M. Erwig, R. H. Güting, M. Schneider, and M. Vazirgian-
nis. Abstract and Discrete Modeling of Spatio-Temporal
Data Types. In 6th ACM Symp. on Geographic Information
Systems, pages 131–136, 1998.

[13] M. Erwig, R. H. Güting, M. Schneider, and M. Vazirgiannis.
Spatio-Temporal Data Types: An Approach to Modeling and
Querying Moving Objects in Databases. GeoInformatica,
3(3), 1999. To appear.

[14] M. Erwig and M. Schneider. Spatio-Temporal Predicates.
Technical Report, FernUniversität Hagen, 1999.

[15] M. Erwig, M. Schneider, and R. H. Güting. Temporal Ob-
jects for Spatio-Temporal Data Models and a Comparison
of Their Representations. In Int. Workshop on Advances in
Database Technologies, LNCS 1552, pages 454–465, 1998.

[16] S. K. Gadia and S. S. Nair. Temporal Databases: A Prelude
to Parametric Data. In [24], pages 28–66, 1993.

[17] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jenssen, N. A.
Lorentzos, M. Schneider, and M. Vazirgiannis. A Founda-
tion for Representing and Querying Moving Objects. Tech-
nical Report 238, FernUniversität Hagen, 1998.

[18] R. H. Güting and M. Schneider. Realm-Based Spatial Data
Types: The ROSE Algebra. VLDB Journal, 4(2):100–143,
1995.

[19] I. Motakis and C. Zaniolo. Composite Temporal Events
in Active Databases: A Formal Semantics. In J. Clif-
ford and A. Tuzhilin, editors, Recent Advances in Temporal
Databases, pages 332–351. Springer Verlag, 1995.

[20] A. Segev and A. Shoshani. Logical Modeling of Temporal
Data. In [24], pages 248–270, 1993.

[21] R. Snodgrass. A Temporally Oriented Data Model. In [24],
pages 141–182, 1993.

[22] M. Stonebraker, B. Rubenstein, and A. Guttman. Applica-
tion of Abstract Data Types and Abstract Indices to CAD
Data Bases. In ACM/IEEE Conf. on Engineering Design
Applications, pages 107–113, 1983.

[23] M. Stonebraker, B. Rubenstein, and A. Guttman. Inclusion
of New Types in Relational Database Systems. In Int. Con-
ference on Data Engineering, pages 262–269, 1986.

[24] A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev,
and R. Snodgrass. Temporal Databases: Theory, Design,
and Implementation. The Benjamin/Cummings Publishing
Company, 1993.

[25] M. Worboys. A Unified Model for Spatial and Temporal
Information. The Computer Journal, 37(1):25–34, 1994.

[26] T. S. Yeh and B. Cambray. Time as a Geometric Dimension
for Modeling the Evolution of Entities: A 3D Approach. In
Int. Conf. on Integrating GIS and Environmental Modeling,
1993.

[27] T. S. Yeh and B. Cambray. Modeling Highly Variable
Spatio-Temporal Data. In 6th AustraliAsian Database Conf.,
pages 221–230, 1995.

9

