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The goal of this special issue is to showcase 
cutting- edge security and privacy research 
being conducted by the Brazilian community, 

with topics unique to Brazil. Brazil’s cybersecurity 
capabilities are growing, and a recent joint program 
between the US’s National Science Foundation (NSF) 
and Brazil’s Ministry of Science, Technology, In-
novation and Communication (MCTI) program has 
increased focus on opportunities for international 
collaboration (www.usbrazilsec.org). 

Examples of issues that are unique to Brazil in-
clude: relationships of privacy laws, perceptions, and 
preferences in Brazil versus other countries; case stud-
ies of cybersecurity in Brazilian networks and critical 
infrastructure; legal aspects of cybersecurity in Brazil; 
similarities and differences in cybersecurity innova-
tion characteristics in Brazil versus other countries; 
cyberattacks specific to Brazil (for instance, Boletos); 
and security and privacy problems that are of particu-
lar national importance or unique expertise that is 
specific to Brazil’s culture, education system, location, 
history, and so on.

Considering this focus on unique Brazilian cy-
bersecurity issues, topics for the special issue may 
include, but are not limited to:

 ■ Malware analysis and detection
 ■ Network security

 ■ Hardware security
 ■ Internet of Things
 ■ Privacy and perceptions
 ■ Cryptography
 ■ Usable security and human factors in cyber-

security
 ■ Interdisciplinary security
 ■ Web security

Submission Guidelines
Submissions will be subject to the IEEE Computer 
Society’s peer-review process, and if accepted, to the 
Computer Society editing process. Articles should be 
at most 6,000 words, with a maximum of 15 referenc-
es, and should be understandable to a broad audience 
of people interested in security, privacy and depend-
ability. The writing style should be down-to-earth, 
practical, and original. Authors should not assume 
that the audience will have specialized experience in a 
particular subfield. All accepted articles will be edited 
by a staff editor according to the IEEE Computer So-
ciety style guide. Submit your papers to ScholarOne 
at https://mc.manuscriptcentral.com/cs-ieee.

Questions?
Contact the guest editors:

 ■ Daniela Oliveira, University of Florida, daniela@
ece.ufl.edu

 ■ Jeremy Epstein, National Science Foundation, 
jepstein@nsf.gov

 ■ Anderson Rocha, University of Campinas, 
 anderson.rocha@ic.unicamp.br

Call for Papers
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Security and Privacy Research in Brazil

for IEEE Security & Privacy magazine’s November/December 2018 issue
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FROM THE EDITORS

AI Industrial Complex:  
The Challenge of AI Ethics

M odern societies are increasingly de-
pendent on evolving intelligent IT 

systems. The physical and virtual worlds are 
melding into a cyberworld that is highly dy-
namic and intelligent (that is, context aware, 
self-organized, and adaptive), unbounded 
in scale (that is, vastly growing number of 
devices, users, services, and businesses), un-
structured and decentralized, and without 
fixed perimeters (with fluid borders between 
the inside and outside of systems).

AI plays an important role in this devel-
opment and is currently undergoing a major 
revival. It’s being gradually integrated into nu-
merous application domains, such as social 
networks, the financial sector, autonomous 
systems, and data analytics. AI is of interest 
not only to industry but also to nation-states.

Much has been said and written in the 
recent past about AI’s benefits and hazards. 
While it can certainly benefit our lives in 
many ways, AI also presents a variety of secu-
rity, privacy, and safety challenges. 

The Concerned
In 2015, prominent (AI and other) research-
ers signed and published an open letter 
against autonomous weapons.1 The letter 
advocates a ban on weapons that “select and 
engage targets without human intervention.” 
It’s argued that, although such weapons help 
reduce our own casualties, they also lower 
the threshold of going into battle. The signa-
tories fear that development of such weapons 
would lead to an AI weapons arms race and 
ultimately result in such weapons leaking into 
the black market and, subsequently, into the 
hands of nefarious actors, such as terrorists or 
dictators. Such actors could utilize AI weap-
ons in “assassinations, destabilizing nations, 
subduing populations and selectively killing 
a particular ethnic group.” Development of 
such weapons could also harm the reputation 
of other AI technologies that are beneficial  
to humanity.

A group of concerned AI scientists and en-
gineers including captains of industry, such 
as Elon Musk, CEO of Tesla and SpaceX, 
has asked the United Nations (UN) to regu-
late the use of autonomous weapon systems.2 
They argue that civilians need to be protected 
from the misuse of AI-driven weapons, as they 
could be easily abused by despots or tyrants 
and would represent a dangerous develop-
ment in weapons technology. More recently, 
Musk has spoken out about the dangers of AI, 
as an AI system designed by OpenAI won all 
of its one-on-one games against human teams 
(which included many of the world’s best 
players) in the multiplayer online battle arena 
game DotA 2. Musk stated that emergence 
of AI poses “vastly more risk” than North  
Korea’s nuclear capabilities.3

The most dystopian vision is offered by the 
famed theoretical physicist Stephen Hawk-
ing, who warns that development of AI could 
represent a threat to the very existence of the 
human race.4 He argues that if machines ac-
quire the capability to engineer themselves 
to be far more intelligent, it might lead to an 
“intelligence explosion,” which in turn could 
cause situations where machines would eradi-
cate humans if their goals were not aligned 
with those of humans. He therefore advocates 
an approach wherein we “shift the goal of AI 
from creating pure undirected AI to creating 
beneficial intelligence.”4

These concerns might become reality in 
the future; however, “beneficial intelligence” 
seems like a theoretical wish, difficult to ma-
terialize in the real world. Most of us benefit 
from this technology in one way or another. 
For instance, people use transport systems 
and vehicles every day. But any intelligent 
vehicle controlled by malicious (hacked) AI 
can become a weapon. Today, we’re (sadly) 
becoming accustomed to disgruntled and 
misguided individuals who terrorize inno-
cent people by driving vehicles into crowds. 
In the not-too-distant future, these people 

Ahmad-Reza Sadeghi
Editor in Chief
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might subvert a fleet of autonomous 
vehicles to achieve a much greater 
(and much grimmer) impact with-
out their own physical presence at 
the scene of the crime. Does this 
mean that the automotive industry, 
among others Tesla, isn’t going to 
produce autonomous cars?

The Advocates
Some experts are still skeptical that 
the envisioned dangers of AI would 
materialize in the foreseeable future. 
They argue that we’re still far from 
machines being able to achieve the 
required computational power and 
develop the necessary algorithms 
needed to attain intelligence that 
matches human cognitive capabili-
ties.5 Others experts, such as robot-
ics researcher Rodney Brooks, the 
founding director of MIT’s Com-
puter Science and Artificial Intelli-
gence Lab, think that critics (such 
as Musk) lack insights into, and un-
derstanding of, AI.6

It seems obvious that service 
providers (for instance, Facebook, 
Google, Apple, and Amazon and 
their business units and start-up ac-
quisitions) will continue to invest in 
AI. Some industry stalwarts, such as 
Mark Zuckerberg, find the fear of AI 
to be exaggerated and believe that 
limiting or slowing down the use of 
AI is unjustified due to AI’s benefits 
for humanity.5 (This is of course 
along the business model of many 
service providers wherein users are 
more or less the product because 
they give away their data.)

AI technologies that diagnose 
diseases and that are used in auton-
omous vehicle navigation are exam-
ple areas in which AI is not simply 
beneficial; it can literally save count-
less human lives. To this end, some 
industrial initiatives (for instance, 
by the alliance of Facebook, Google, 
and Microsoft) aim to alleviate con-
cerns and fears about AI.

Famed futurist Ray Kurzweil 
claims that AI can improve humans’ 
positive cognitive capabilities. 

He thinks that the so-called  
singularity—that is, the moment 
when AI exceeds the intellectual  
capacity of humans—is merely a  
decade away. He argues that, 
by 2029, computers will reach 
human-level intelligence and peo-
ple will start using computers to 
enhance their own cognitive capa-
bilities by physically connecting 
parts of their brain to this computer 
support.7

However, the question remains: 
Will our lives, in the near future, be 
ruled and controlled by a friendly 
club of creatures such as Alexa, Siri, 
Cortana, and “Ok Google,” and is 
this the future we want?

AI Ethics
We can observe a trend toward peo-
ple trusting AI to do “magic” unat-
tainable by humans. However, there 
are many open questions to be an-
swered and challenges to be tackled 
technologically, socially, and judi-
cially, such as:

■■ Who will own the copyrights  
for AI algorithms and the data 
they process—Google, Facebook, 
pharmaceutical industries, and  
so on?

■■ Will AI be used for more intelli-
gent ways to discriminate; surveil 
and violate privacy; manipulate 
democratic procedures; carry out 
war crimes through malfunction-
ing autonomous robots; generate 
or launder money for those who 
used to have accounts in tax ha-
vens; or enhance the obfuscation 
of deals in the financial market 
and create even more revenue for 
Wall Street, the City of London, 
and the like?

■■ Will AI be deployed to determine 
a person’s potential for conduct-
ing criminal or terroristic acts?

■■ To what extent can AI be com-
promised or fooled by skilled 
adversaries?

■■ What are the design rules for AI 
when privacy regulations such 

as the European General Data 
Protection Regulation are on the 
verge of being implemented?

■■ Will we need new laws and regula-
tions for AI as we have for privacy 
in some regions of the world?

■■ How will elected officials and ju-
dicial authorities, who aren’t tech-
nical experts, effectively draft and 
interpret laws that control such 
technologies?

In my view, another concern is 
AI’s opaqueness and its invisible im-
pact on our society. When George 
Orwell wrote his fascinating novel 
1984, he had no idea what social 
networks and online service provid-
ers could do with echo chambers 
and data analytics to make our pri-
vate lives completely transparent. 
Indeed, since the beginning of the 
last election campaigns in the US, 
UK, and many other parts of Eu-
rope, experts have been debating 
the possible manipulation of elec-
tion outcomes through deployment 
of sophisticated classification and 
data analytics algorithms. Whether 
companies such as Cambridge Ana-
lytica used their machinery to in-
fer sensitive personal attributes of 
people or predict their behavior to 
eventually manipulate them dur-
ing the election is still not proven. 
However, the power of intelligent 
algorithms and AI seems undeni-
able even by most skeptics. 

Recently, I was invited to take 
part in a panel of “Concerned Sci-
entists” (www.ucsusa.org/nuclear 
-weapons/international-summer 
-symposium-science-and-world 
-affairs). It was an amazing, eye- 
opening event attended by many ac-
complished scientists and activists 
from various disciplines including 
physics, politics, philosophy, and 
sociology—some of whom have 
been fighting for decades to estab-
lish regulations and control mech-
anisms for nuclear disarmament, 
and to build technologies and pro-
cedures to estimate nation-states’ 
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nuclear power potential. We were 
philosophizing about how to deal 
with highly intelligent and power-
ful AI in the cyberworld, a kind of 
Skynet (from the Hollywood movie 
The Terminator). The essence of the 
discussion was that the antinuclear 
and peace movement already has 
tremendous experience and a leg-
acy that can be partially applied to 
the cyberworld, particularly to AI 
and its deployment.

Concerns about AI misuse have 
led to many initiatives on AI eth-
ics. Both the NSF and the EU are 
funding research in this area, IEEE 
has a Global Initiative for Ethical 
Considerations in AI and Autono-
mous Systems (standards.ieee.org 
/develop/indconn/ec/autonomous 
_systems.html), and the ACM is  
hosting a panel on Algorithmic 
Transparency and Accountability  
(www.acm.org/media-center/2017 
/august/usacm-ata-panel-media 
-advisory). Other examples are 
the ethics of computer science re-
search workshop at Princeton (citp 
.princeton.edu/event/ethics-conf) 
and the German Ethics committee’s 
report on automated and connected 
driving.8

Researchers have already been 
looking into issues such as algorith-
mic accountability and verifiability 
to prevent intelligent decision al-
gorithms from discrimination, such 
as misusing personal data; building 
privacy-preserving learning algo-
rithms; and mitigating adversarial 
machine learning. These are actu-
ally simpler examples (although 
still sufficiently complex) compared 
to what future AI can potentially 
achieve 100 years from now.

I believe that scientists, prac-
titioners, and decision makers in 
industry and governments should 
learn from past public debates and 
outcomes on ethics in nuclear re-
search, biology, medicine, and the 
environment. AI will surely impact 
our lives greatly. However, it also 
has a high potential for misuse with 

very grave consequences for the 
world as a whole.

IEEE Security & Privacy maga-
zine is continually looking for in-
teresting, exciting, and challenging 
technology and research topics. 
The general subject of AI ethics is 
of great interest to industry, gov-
ernment, and academia, for both 
advocates and opponents. A par-
ticularly vital aspect in this context 
is that officials, judges, and prob-
ably regulators—who are almost 
certainly not technology experts—
might not be able to construct use-
ful and effective legal frameworks.

O ur magazine will publish 
a special issue on AI Eth-

ics: The Privacy Challenge with 
many interesting interdisciplin-
ary articles by experts. The spe-
cial issue is also connected to a 
workshop on the same topic in col-
laboration with the Future of Pri-
vacy Forum (fpf.org/2017/05/09 
/ai-ethics-privacy-challenge).

I hope our magazine can provide 
our readers more insight into this 
fascinating topic. 
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Silver Bullet Talks with 
Ksenia Dmitrieva-Peguero
Gary McGraw | Synopsis

K senia Dmitrieva-Peguero is a 
principal consultant in Syn-

opsys’ Software Integrity Group. 
She has many years of hands-on 
experience in software and sys-
tems security and is an expert in 
many practices including penetra-
tion testing, static analysis tool de-
sign and execution, customization 
and deployment, and threat mod-
eling. Throughout her career as a 
consultant, Dmitrieva-Peguero has 
established and evolved secure cod-
ing guidance and best practices for 
many different firms and has deliv-
ered numerous software security 

training sessions. She’s passionate 
about cutting-edge web technolo-
gies and probing systems security, 
and she speaks regularly around the 
world on topics such as HTML5, 
CSP, and JavaScript.

You’ve been doing hands-on soft-
ware security in the real world 
for many years. How has the field 
evolved since you started doing con-
sulting seven years ago?
Seven years ago, a lot of people 
didn’t know what we were talk-
ing about when we talked about 
security. We would look for people 
to hire with programming expe-
rience, and we didn’t care about 
security experience. You would 
learn everything on the job. These 
days, there are degrees in secu-
rity, and we expect candidates to 
know security basics and have 
some experience. When you talk 
to clients, they know what soft-
ware security is. They’ve definitely 
heard of penetration testing and 
static analysis. Today, the aware-
ness is much higher.

Do you think we’ve made progress as 
a field in those seven years, beyond 
raising awareness?
There are still problems, but I think 
we’re making progress. The field 
has definitely grown. There’s more 
demand and more understanding of 
the kinds of problems we’re trying 
to solve, of the difference between 
software security and all the other 
things that have to do with IT and 
security in a company. In terms of 
quality, I’m not sure.

Maybe the quality remained 
constant?
There’s more software and there-
fore more bugs, and there are more 
things to be attacked. Now we have 
software in mobile devices and cars 
and everywhere else. So, it might 
look like there are more security 
issues, but it’s probably also society 
being more aware of the issues. It’s 
hard to say if we’ve made any quali-
tative progress.

If you could fix any practice area in 
software security today, which one 
would it be?
Probably threat modeling. Architec-
ture review follows because that’s 
the more complicated one, and 
people have very different descrip-
tions and understanding of what it 
is. Everybody has their own version 
of threat modeling and risk analysis.

It might be because we can build a 
program to go through our code 
and look for bugs, but we can’t build 
a similar system to go through a  
design and look for flaws.
Absolutely. There’s less tool-
ing because the process is much 
more involved. Maybe with the 
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development of artificial intelli-
gence we’ll be better able to develop 
some sort of automation for under-
standing design problems.

Frameworks like Angular, Node, and 
Express have been popping up all 
over the place. In your view, do all 
frameworks have the same security 
posture?
Definitely not. All frameworks have 
the problem of building security 
in and how much each framework 
developer or maintainer wants to 
make security a part of it. Unfor-
tunately, these days that’s not the 
highest priority for the framework 
creators. Very few even bother with 
it. Then developers are left to solve 
all the security problems themselves 
while they’re using the framework. 
Instead of having the features built 
in, they have to reinvent the wheel 
every single time.

On one hand, security should be 
the responsibility of the framework 
creators and maintainers. On the 
other hand, the developers using 
the framework should demand it. 
When they choose a framework, 
they should ask about its security 
posture. I don’t see any questions 
on forums like Stack Overflow say-
ing, “Hey, which framework is more 
secure?” Usually you see a question 
like, “Hey, which framework has 
more visual components, features, 
or is faster?”

So, the developers building the 
frameworks don’t really deal with 
security, and the developers using 
the frameworks can screw every-
thing up from a security perspective.
Right. For validation, developers 
might write their own routine to 
validate email addresses, and that 
will most likely be code copied from 
Stack Overflow or another GitHub 
repository where the quality isn’t 
guaranteed. Depending on the 
developer, the framework, and how 
well the library is integrated with 
the framework, they might be using 

a third-party library, which is often 
a better solution—a little more vali-
dated, updated, and secure. But in 
both cases, they have opportuni-
ties to screw things up because even 
if you use a third-party library or 
a plug-in, it usually requires some 
configuration. We’ve seen these 
examples in Angular where a plug-in 
comes with a pretty good default 
security setting, but it doesn’t sat-
isfy some features that developers 
need. So developers turn off secu-
rity settings; they change them and 
then the plug-in doesn’t do the job 
it’s supposed to do.

You’ve spent time digging into An-
gular and thinking about how to au-
tomate aspects of security analysis. 
What have you learned about Angu-
lar, and what have you done to get 
that into automation?
Angular is interesting. On one hand, 
it’s client-side code. We don’t trust 
anything that runs on the client. A 
lot of things can be bypassed. But 
on the other hand, the way the tem-
plating is done in Angular provides 
good protection from cross-site 
scripting even if malicious data 
is passed through the server-side 
code. In terms of automatically find-
ing security problems, that’s still a 
big question. There isn’t a good tool 
for JavaScript today. It’s possible to 
find some dataflow and cross-site 
scripting issues, but the issues that 
have to do with the configuration 
of the framework or plug-ins are 
harder because they are updated 
so often. We’re always chasing the 
updates that happen every couple 
of months. When a new version of 
Angular comes out, not everything 
changes, but there might be enough 
changes that our automated tools 
don’t find things anymore.

Have you talked to the developers 
building Angular? Are they aware of 
what you’re doing?
We haven’t communicated directly 
with them. But from the Angular 

developer standpoint, when they 
introduce new features, they often 
say, “Hey, this is a breaking build, 
and we don’t really care about the 
older versions. We don’t have the 
requirements or the desire to sup-
port whatever was built before. So, 
we’re just going to go ahead and 
start a new version.”

You have to figure out what they did, 
and then figure out how to adjust 
whatever you built to work again ev-
ery time?
If a developer started using Angu-
lar 1.6 before Angular 2 came out, 
sometimes they’ll just stick with 
the old version because they’d 
have to rewrite their whole appli-
cation due to the breaking changes 
in the framework. Not every com-
pany will do that. If developers are 
still using the older 1.6 version, the 
tools that were built for 1.6 will still 
work. But they won’t work for a  
new application.

Do you think version controlling and 
keeping everything somewhat simi-
lar in terms of its security posture 
are the biggest open problems?
I think one of the problems is 
keeping up with all the versions 
and upgrading to the new features 
and plug-ins. The second problem 
is keeping up with the variety of 
frameworks. Last year, Angular was 
number one, but I think it’s fading 
out and React is stepping in. Now 
we’ll need to build automation tools 
for React. Six months from now, it’ll 
be something else.

Here’s a trick question. What’s more 
important: code review or architec-
ture risk analysis [ARA]?
It depends on the application. If 
it’s a standard web app that has a 
database, a back end, and a front 
end, you might not gain as much 
doing ARA. You could start with a 
code review and get more bang for 
your buck that way. But if it’s soft-
ware in a car that isn’t standard or 
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another very complicated applica-
tion then, yes, we should definitely 
start with ARA.

How do you think code review and 
ARA are related?
If you’re reviewing a complex sys-
tem, you’ll start with an ARA, 
which will help you identify poten-
tial issues. To find out if these issues 
actually exist in the system, you 
would do a code review. You would 
look at something and say, “Hey, this 
system is talking to this third-party 
back end that has its own protocol. 
How about we review the code of 
this third-party back end and this 
protocol and how the communi-
cation happens?” In doing code 
review of this scope, we might find 
some issues.

You’ve experienced and lived in dif-
ferent cultures all over the world. Do 
diverse cultures approach computer 
security differently, or is it the same?
I don’t think there’s much differ-
ence in the countries I’ve lived and 
worked in. I’m from Russia and 
have worked in Europe and the US. 
I didn’t see any differences in how 
people understand or relate to com-
puter security. Maybe in other cul-
tures, it’s different. I think if you look 
at other areas like education or psy-
chology or maybe medicine, there 
might be cultural differences, but if 
you look at technical stuff—math 
and computers—I think it’s pretty 
straightforward in any culture.

You give a lot of talks all over the 
place. What’s your favorite confer-
ence to attend or speak at?
One of my favorites so far has been 
AppSec in Europe. There’s a great 
concentration of web technology 
experts, which is my playground. 
I really enjoy communicating 
and interacting with and listen-
ing to all these amazingly smart 
people. In Europe, I think people 
are very relaxed and friendly and 
less commercialized than in the 

US. The conference is more like 
the exchange of ideas and not the 
exchange of business cards and pro-
motional materials.

As a hardcore technologist and a 
woman, what’s your view of sexism 
in the field? Do you think it’s harder 
to gain respect as a technologist if 
you’re a woman?
Yes, unfortunately, it’s there. It’s 
harder to gain respect for sure, and 
I think it’s especially hard to gain 
respect at the middle level. When 
you’re at a higher level—for example, 
when speaking at a big conference— 
there are requirements to have men 
and women represented equally. 
And a conference might actually 
tend to select talks from women 
more often than from men. At the 
middle level, working with cli-
ents and establishing your position 
and trust as a woman can be very  
challenging.

You have to sort of prove yourself a 
little bit more?
Yes. I’ve been in situations where I 
was working with a male colleague 
and the client would interact with 
him but not with me.

Even though you probably knew 
more than the other guy?
Sometimes, yes.

Oh, come on, always. One last ques-
tion. One of the coolest things you 
do is competitive ballroom dancing. 
When did you start dancing, and did 
you ever think about going pro?
It’s been about 10 years. I’ve never 
thought about going pro because I 
started dancing in Russia. Most peo-
ple in Russia start ballroom dancing 
when they are six or seven years old. 
If you’re starting after high school, 
there’s no way you can become a 
professional—it’s treated only as a 
hobby. In the US, you can become 
a pro, but you have to make your life 
out of it. For me, it’s a hobby that I 
get a lot of enjoyment from.

T he Silver Bullet Podcast with 
Gary McGraw is cosponsored 
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GENOME PRIVACY AND SECURITY
GUEST EDITORS’ INTRODUCTION

Genomic Data Privacy and Security:
Where We Stand and Where We Are Heading

S ince the seminal discoveries of James Watson, Francis Crick, Maurice Wilkins, and Rosalind 
Franklin, it’s taken humankind more than 40 years to develop technology that can generate a 

complete human genome sequence. Over the past 20 years, the price of a whole genome sequen­
cing has plummeted from the tens of millions to a few thousand dollars, and will likely soon reach 
the hundreds.1 This ability to read the DNA of each of us has fueled immense hopes in healthcare 
and, specifically, in personalized medicine initiatives2 that range from targeted cancer therapeu­
tics3 to precision drug dosing.4 Beyond healthcare, DNA sequencing data is now routinely applied 
in forensics,5 law enforcement activities,6 parental testing,7 and ancestry mapping.8

Genomic data has the potential to be highly sensitive, such that privacy and security are 
often considered paramount when collecting, applying, or sharing such records. Yet, while pri­
vacy and security solutions have been developed for various types of data, genomic sequences 
have proven to be particularly challenging to protect for a number of reasons that include but 
aren’t limited to the following:

■■ There are still vast swaths within an individual’s DNA sequence that we don’t have a concrete 
understanding about.9

■■ Genomics is only the first instance of the “-omics” revolution (other instances include pro­
teomics, transcriptomics, and microbiomics).

■■ The information security field is evolving at a fast pace and, sooner or later, will have to address 
challenges such as quantum computing.

■■ Several potential correlation attacks within genomic data and with other data 
(phenotypic, or even that gathered from online social networks) have already 

Jean-Pierre Hubaux | Ecole Polytechnique Fédérale de Lausanne
Stefan Katzenbeisser | Technische Universität Darmstadt
Bradley Malin | Vanderbilt University
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been demonstrated and many more can be  
anticipated.

■■ DNA leaks information beyond the person from 
whom it was collected, as it also involves kinship.

■■ The emergence of the quantified self, with its own rich 
set of body and metabolic measurements, further 
complicates the situation.

An additional complexity stems from the number 
and diversity of the involved stakeholders: healthcare 
organizations, sequencing facilities, insurance compa­
nies, regulators, direct-to-consumer genomic compa­
nies, ancestry-related online social networks, patients, 
and patients’ relatives. Addressing the issue of data pro­
tection in this field requires a multidisciplinary collab­
oration of geneticists, bioinformaticians, information 
security specialists, jurists, ethicists, and patient orga­
nizations. From a computing perspective, critical ques­
tions that need to be addressed include the following:

■■ Where is the data stored?
■■ How is it protected?
■■ How are access rights managed and by whom?
■■ Which computations are permitted? 
■■ Under what conditions can data be shared across 

institutions?

Over the past two decades, researchers have worked 
on the risks induced by this data’s existence and avail­
ability as well as on techniques to mitigate these 
risks. This has led to two Dagstuhl seminars,10,11 a 
community website (genomeprivacy.org), and two  
workshops—the iDash Privacy and Security Work­
shop (www.humangenomeprivacy.org) and the Inter­
national Workshop on Genome Privacy and Security 
(www.humangenomeprivacy.org). In parallel, the 
Global Alliance for Genomics and Health has set up 
a working group on security (genomicsandhealth.org 
/working-groups/security-working-group).

The articles in this special issue address several key 
aspects of the privacy and security of genomic data.

The first article, “Characterizing the Risks and 
Harms of Linking Genomic Information to Individu­
als,” by Sara Renee Savage, provides an overview of 
the risks people face when they contribute their own 
DNA to genomic databases. The article further char­
acterizes potentially harmful consequences that must 
be accounted for when developing services based on 
genetic data.

The second article, “Improving the Security and Effi­
ciency of Private Genomic Computation Using Server 
Aid,” by Marina Blanton and Fattaneh Bayatbabolghani, 
proposes a cryptographic solution to support paternity 
tests and genomic compatibility tests with the help of 

a server. The article emphasizes the resilience against 
malicious behavior, thus preventing an attacker from 
learning unauthorized information.

The third article, “Inference Attacks against Kin 
Genomic Privacy,” by Erman Ayday and Mathias 
Humbert, reviews the various approaches for learning 
genomic information about individuals based on what 
their relatives disclose. The authors trace the evolution 
of these methods from basic forensic science to mod­
ern computational methods. Beyond inference attacks, 
this article introduces several data protection methods 
that could help people mitigate risk when disclosing 
genomic data.

The final article, “Genomic Security (Lest We For­
get)” by Tatiana Bradley, Xuhua Ding, and Gene Tsudik 
explores an issue that has received little attention in the 
scientific community. Although numerous authors have 
considered the privacy aspects of genomic data, solu­
tions that provide security against malicious data modi­
fications are rare. The article surveys the challenges 
involved when securing large and high-dimensional 
data such as genomes.

T hese articles provide crucial insights, mostly 
from a computing perspective. Yet, much more 

research is needed, and considering the magnitude 
and the strategic nature of the challenge, we encour­
age security and privacy researchers to participate in 
this effort. The landscape is likely to continue its rapid 
evolution, fueled, in particular, by sequencing tech­
nology itself. It could well be that, next year, you will 
sequence yourself with your smartphone, as the tech­
nology seems to be almost mature.12 How will you 
protect this data? 
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Genetic data is a valuable resource for learning about disease risks and progression. However, individuals, 
their relatives, and institutions storing genetic data are at risk for harm if DNA reidentification occurs. 
Four classes of harms, along with their risks and outcomes, are discussed.

T he Human Genome Project’s successful comple-
tion in the early 2000s stimulated the expansion 

of genomics research. Technological advances have 
now made it possible to sequence a human genome in 
24 hours for just over $1,000. This, in turn, has made it 
feasible to accumulate and store the genetic information 
of many individuals in large repositories.

Large genomic repositories are extremely valuable 
to researchers. This data, combined with limited demo-
graphics, can be mined for human migration patterns 
and information on genetic variation. With the addi-
tion of simple medical information, researchers can 
discover genes’ contribution to phenotypes, determine 
how an individual might respond to a particular drug, 
and understand how DNA mutations affect protein 
function. Public or easily accessible databases of genetic 
information reduce barriers to discovery by decreasing 
sample collection’s cost and time.

The downside to these public databases is that they 
risk violating individuals’ genomic privacy. DNA is 
unique, barring circumstances such as identical twins 
or tissue transplants. Therefore, special consideration 
must be taken to protect contributors’ privacy, because 
linking genetic information to an individual could have 
negative consequences. With interest increasing in 

projects such as the Precision Medicine Initiative (ghr 
.nlm.nih.gov/primer/precisionmedicine/initiative), it’s 
essential to evaluate the risks involved with contribut-
ing genetic information.

Individuals might experience two types of risk 
when contributing their DNA to a public database: pri-
vacy breaches, and the consequences of these breaches. 
A privacy breach can include individuals’ reidentifica-
tion from their genetic data or associated metadata as 
well as the use of identified genetic data to learn addi-
tional information about individuals.1 The latter type 
of attack includes attribute disclosure attacks, which use 
individuals’ genetic data to learn new sensitive attri-
butes. It also encompasses completion attacks, in which 
genetic data is used to infer information about a bio-
logical relative, or partially identified data is used to 
impute unknown genetic data.1 In the following sec-
tions, I focus on reidentification, which can lead to 
both attribute disclosure and completion attacks.

Genomic Identification and Metadata
Individuals submit their DNA to public research reposi-
tories with the expectation that their genetic informa-
tion will remain anonymous. However, they could 
possibly be reidentified through the actions of data 

Characterizing the Risks and Harms of 
Linking Genomic Information to Individuals
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intruders. Intruders might seek to reidentify genomic 
information in an effort to amass a portfolio of informa-
tion about an individual or to experience monetary gain 
for linking individuals to their DNA. The success of a 
data intruder’s attack depends on the data available.

Multiple databases containing genetic information 
exist, but they differ in the type of information they 
store, their ease of access, and the number of individuals 
they contain. For example, Harvard’s Personal Genome 
Project (www.personalgenomes.org) contains approxi-
mately 5,000 participants but only around 700 whole 
genome sequences. The data is publically available, and 
many of the samples are linked to personal and health 
information. Meanwhile, the National Human Genome 
Research Institute’s The Cancer Genome Atlas (TCGA; 
cancergenome.nih.gov) contains more than 1,000 
breast cancer samples with exome data, in addition to 
samples of numerous other cancer types. Access to this 
data requires a data use agreement and a principal inves-
tigator account in the electronic Research Administra-
tion (eRA) Commons.

Differing database characteristics lead to different 
attack methods. Data intruders can reidentify individu-
als using the metadata (such as ZIP code, gender, and 
age) that accompanies genomic information. If that 
data is unavailable, intruders might try to determine a 
name from the DNA itself. For example, Melissa Gym-
rek and her colleagues showed that genomes can be 
linked to surnames via short tandem repeats on the  
Y chromosome.2

Reidentification entails three steps:

■■ accessing the data,
■■ determining identifying information, and
■■ linking the data with known identifiers.

Intruders will need both time to perform these steps 
and money to access the identifiable linking records. 
Intruders might also face barriers to accessing data in 
the form of data use agreements. The total cost for these 
steps would be spread over the number of individuals an 
intruder identifies.

Case Studies
I present here two examples of the steps intruders would 
have to take to reidentify individuals in two different 
databases. I chose these cases based on predicted ease 
of reidentification, with one being easy and the other 
difficult. This will provide an idea of the challenges data 
intruders face in linking data.

Personal Genome Project. The first example is the Per-
sonal Genome Project, a public resource for sharing 
genomic and health information that doesn’t guarantee 

privacy. Some participants provide structured, iden-
tifying information such as full name and birth date. 
Identifying information can be extracted from other 
profiles whose filenames include full names. Many of 
the remaining profiles contain quasi-identifying infor-
mation such as birth date, ZIP code, and gender.

Latanya Sweeney and her colleagues showed 
that 42  percent of participants can be reidentified—
with 97  percent accuracy—by using a voter registra-
tion database and a public records database to link 
quasi-identifying information to unique full names.3 
The cost of accessing the data is minimal, because a 
hacker can write a web scraper that collects the mostly 
structured data. Three months of access to the voter reg-
istration database Voter Mapping (www.votermapping 
.com) costs $1,500. So, assuming the intruder can tol-
erate the 3 percent error, if 42 percent of the 728 indi-
viduals with whole genome data can be reidentified, 
then the cost per record is just over $5. With the data 
in the Personal Genome Project profile, a large amount 
of information can be learned about an individual for a 
small cost, which could be reduced if the database con-
tained more individuals.

I selected a random individual from the Personal 
Genome Project and performed a five-minute Google 
search to determine the amount and type of informa-
tion an intruder could collect on an individual. My 
name and ZIP code search revealed one individual in 
the appropriate age range. Links to the individual’s 
social media accounts and job website revealed a vast 
array of information, including marital status, number 
of children, likely political affiliation, high school, pre-
ferred charities, and current photographs. The person’s 
full genome was also available.

Sequence Read Archive. On the other end of the spec-
trum is the Sequence Read Archive hosted by the 
National Center for Biotechnology Information (NCBI; 
www.ncbi.nlm.nih.gov/sra). This database contains 
at least 100,000 whole human genome samples, and 
more than 70,000 RNA-sequencing samples. The num-
ber of unique individuals these numbers correspond to 
is unknown. Because this data is publically available, 
I asked whether a data intruder could reidentify indi-
viduals using genomic information when there was no 
other identifying information. Although some research-
ers have shown that DNA itself can be identifiable, such 
reidentification attacks’ feasibility hasn’t been well stud-
ied. In Gymrek and her colleagues’ work, reidentifica-
tion required three to seven hours per individual, with 
only 12 percent of individuals being reidentified.2

Processing the raw data in the Sequence Read 
Archive requires significant time and knowledge of 
bioinformatics tools. Analyzing one sample using a 
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common tool such as TopHat requires approximately 
4.5 hours for downloading the data, aligning to a refer-
ence genome, processing, and variant calling and filter-
ing. The data produced from these steps is simply single 
nucleotide variations from a reference genome. Extract-
ing identifiable phenotypes from these genotypes cur-
rently requires commercial software. One website, 
Promethease (www.promethease.com), will provide 
this information for $10 per sample. The resulting phe-
notypes include information such as probable eye color, 
hair color, and disease risks. Although these character-
istics might help identify an individual if other data is 
available, they can’t be used alone for reidentification.1

Preventing Privacy Loss
Extensive work has explored ways to mitigate privacy 
breaches, including methods to provide legal protec-
tions, add noise to the data, or share summary statis-
tics instead of full genetic data.4 The legal protection 
of data use agreements and significant punishment 
for misusing data could deter data intruders, and sup-
pressing data or adding noise could reduce the risk of 
reidentifying an individual.1 In addition, a recent article 
described a game theory approach to determining the 
best data-sharing policy for preventing attacks.4

These strategies reduce the risk of reidentification 
of genetic data, but the possibility of a privacy breach 
is never completely abolished. The remaining sections 
describe a taxonomy of harms that certain groups might 
experience if reidentification of their genomic data 
occurred. There is also the risk of some of these harms 
when individuals willingly provide their full identifying 
information with their DNA.

Taxonomy of Harms
To generate a set of harms, I performed a preliminary 
literature review. Between 1 January 2015 and 20 April 
2016, PubMed contained 111 articles with the phrase 
“genomic privacy.” I manually reviewed all accessible 
articles for mentions of harms. I then separated the 
identified harms into four groups:

■■ harms to individuals—those that target specific people,
■■ harms to relatives—those experienced by biological 

relatives of the reidentified individual, and
■■ harms to populations—those that are more general 

and affect a large number of individuals, 
■■ harms to institutions—those experienced by entities 

that didn’t have their own genetic privacy breached.

Harms have both a risk and an outcome. The risk is 
a combination of the harm’s magnitude and probabil-
ity. As a starting point, I set as low risk those harms that 
aren’t currently feasible or are only experienced by a few 

individuals. A moderate-risk harm has temporary nega-
tive effects and a medium probability of occurrence. A 
high-risk harm affects more than 50 percent of individu-
als who are reidentified or has long-lasting effects. My 
work extends that of Catherine Heeney and her col-
leagues, who noted that the amount and type of data 
available, along with the context of the data, have a large 
effect on risk.5 Table 1 outlines the types of harms and 
their risks and outcomes.

Harms to Individuals
With reidentification or voluntary disclosure of identi-
fying data, individuals have a high risk of learning their 
disease risks because of the large number of known 
genotype–phenotype interactions. This might cause 
anxiety or other psychological outcomes if the individ-
uals have a high risk for a severe disease, such as breast 
cancer.6 Individuals might also learn family secrets, 
such as misattributed parentage, which happens any-
where between 1 and 20 percent of the time.7 Further-
more, individuals could risk being linked to a crime 
that could send them to jail or require a fee payment. 
Law enforcement has asked 23andMe for information 
on individuals four different times.8 In addition, DNA 
could be recreated and planted at crime scenes or used 
for cloning.9 However, this last harm is unlikely, with 
no known occurrences.

Discrimination is a commonly cited risk in genomic 
privacy research. The Genetic Information Nondis-
crimination Act of 2008 (GINA) prohibits genetic dis-
crimination for jobs and health insurance. However, it 
doesn’t extend to the US military. It also excludes other 
types of insurance, such as life, disability, and long-term 
care. As an anecdote, FastCompany reported one 
healthy woman was denied life insurance because her 
genomic data revealed mutation of a breast cancer gene. 
This case is concerning because the woman might have 
been seriously injured or died by a completely different 
cause, in which case life insurance would have benefited 
her family. In addition, having this mutation doesn’t 
guarantee the development of breast cancer.

Discrimination anecdotes besides denial of insur-
ance coverage have also been reported. In one case, 
Chadam v. Palo Alto Unified School District, a student 
was prevented from attending a school based on his 
DNA, which indicated that he had genetic markers 
associated with cystic fibrosis.10 When the family of a 
student with cystic fibrosis attending the same school 
discovered this, they requested that the child be trans-
ferred. Cystic fibrosis is rare, so by extension, multiple 
children with cystic fibrosis attending the same school 
is also rare. When such situations do occur, the Cystic 
Fibrosis Foundation recommends placing the children 
in different classrooms, or keeping them at least two 



www.computer.org/security� 17

feet apart, to prevent cross-infection of bacteria that can 
cause lung infections. However, in Chadam v. Palo Alto 
Unified School District, the child was transferred to a dif-
ferent school solely based on his genetic data, despite 
not showing any cystic fibrosis symptoms.

In terms of preventing job and health insurance 
discrimination, GINA appears to work well. Only 
333 alleged GINA violations were reported in 2013 
compared to 90,000 reports of other forms of job dis-
crimination.11 Most of these violations were from an 
employer asking for family history, rather than actual 
genetic information.

Harms to Relatives
Biological relatives of a targeted individual can expe-
rience many of the same harms as the reidentified 
individual, but their risk decreases depending on the 
amount of DNA shared with the targeted individual. 
For example, law enforcement searched databases for 
DNA close enough to be a familial match in a car rob-
bery. This produced several matches, one of whom was 
the suspect’s brother.11 In this case, society might prefer 
criminals not to have the right to privacy. Furthermore, 

an individual’s DNA can be used to expose his or her 
biological relatives’ secrets. For example, parents who 
secretly gave up a baby for adoption can be discovered  
years later.

Harms to Populations
Harms to populations are classified as those that 
harm groups of people with the same characteristic. 
Experiencing societal scorn or embarrassment is one 
example. People are often scorned for choices regard-
ing their or their child’s health (such as smoking or 
not breastfeeding), so experiencing shame for choices 
related to genetic information is not outside the realm 
of possibility. For example, if your child’s DNA sug-
gests a high risk for skin cancer, people might criticize 
your choice to live in an area with high sun expo-
sure. However, no reports of this harm have been  
recorded.

Individuals might also lose the chance to make 
money on their own DNA. 23andMe has been reported 
to make money by selling genetic data.13 Notably, DNA 
is worth more in aggregate, so individuals would likely 
be paid a minimal sum for their own data.

Table 1. Characterization of harms caused by violation of genomic privacy.

Category Harm Risk Outcome

Individual Learn disease risk High Psychological

Secrets Medium Psychological
Social

Found for a crime Medium Prison
Monetary

Discrimination Low Monetary
Denied service
Denied insurance

Adverse use of biological data Low Prison
Psychological

Biological relatives Learn disease risk Medium Psychological

Secrets Medium Psychological
Monetary

Found for a crime Medium Prison
Monetary

Population Scorn or embarrassment Low Psychological
Social

Use of samples for profit High Monetary

Institution Damage to reputation High Impact research
Loss of trust
Monetary
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Harms to Institutions
Entities responsible for the data in a hacked database 
might also be at high risk for negative outcomes. For 
example, people might lose trust in institutions, which 
could impact their research, and these institutions could 
be required to pay fines for privacy violations.

Discussion
Whether through reidentification or voluntary con-
tributions, individuals might experience the harms 
outlined in the taxonomy when someone accesses 
the genetic data linked to their name. If a database is 
attacked, the database manager might either notify indi-
viduals personally if their identity is known, or publish a 
public notice. However, individuals might not be aware 
that their data is held in a particular database and thus 
disregard any notices. Individuals might only become 
aware of a violation when they experience harm.

The primary hypothesized outcome of genomic pri-
vacy violations to individuals is psychological. However, 
the actual outcome will vary by individual and situation. 
One person might be unconcerned about discovering 
their disease risks, while another could experience anxi-
ety over those same risks. In general, research suggests 
that people don’t experience psychological distress over 
genomic testing results, even in the case of learning their 
risk of developing Alzheimer’s disease.14 Although dis-
crimination is frequently cited as a possible harm, there 
are few actual reported cases. There have been cases of 
individuals being linked to crimes through their DNA 
in a public database. This is limited to already identified 
genomic data. Some databases, such as 23andMe, con-
tain only single nucleotide polymorphism data, which 
isn’t compatible with the processed genetic data col-
lected from crime scenes. In addition, 23andMe vows 
to protect data unless legally compelled to provide it. 
Therefore, if individuals are comfortable with learning 
their disease risks, accept that they might learn family 
secrets, and don’t commit crimes, then there seems to 
be little real risk involved with contributing DNA for 
scientific research. Note, however, that these risks could 
change over time. Discrimination could become more 
prevalent in the future—a child might not be chosen 
for adoption based on DNA, the care an individual 
receives from a physician might be negatively impacted 
by genetic information, and so on.

The situation is murkier for the biological relatives 
of people who’ve contributed DNA or for people who 
were genotyped without their consent (such as chil-
dren). These individuals could have secrets revealed or 
learn disease risks that they didn’t want to know. Nota-
bly, genetic data often doesn’t fully predict whether 
individuals will develop a disease. For example, a pair of 
monozygotic twins had the same risk for Huntington’s 

disease, but only one twin developed the disease.15 
This suggests that environmental factors play a sig-
nificant role in disease development and progression. 
However, a relative might still experience anxiety over 
possible disease risks. Whereas individuals might have 
consented to be in a study, their biological relatives had 
no say in the publication of their genetic information.

In terms of cost, reidentification is generally more 
successful and cost effective with structured data and a 
large amount of identifying information. For example, 
in the Personal Genome Project, the cost per reidentifi-
cation is quickly reduced with more records because the 
primary cost is a single fee for the database used to link 
quasi-identifying data with an individual’s full name. 
Using this information, intruders can quickly amass a 
portfolio on those individuals, including current health 
information, disease risks, family information, personal 
preferences, and demographics.

Reidentifying individuals from DNA or RNA with-
out additional information is difficult. Data intruders 
must have knowledge of bioinformatics tools to process 
raw data and be willing to accept the computational time 
required for processing. In addition, although pheno-
types and disease risks can be inferred, currently there’s 
no simple way to link genomic data back to an individ-
ual. However, DNA could be used to link an individual 
who participated in multiple studies. For example, one 
database might have a genome connected to demo-
graphic information, and a second database might have 
the same genome linked to psychiatry records. In the 
genomic repository Sequence Read Archive, however, 
the primary purpose of most studies is basic biology, 
which contributes very little useful information about 
a specific person. In this case, the only information that 
can be learned about individuals is the way their retinal 
cells respond to a particular drug.

Data use agreements are one possible way to prohibit 
data intruders from collecting genomic information 
that contains demographics. The TCGA, for example, 
requires two people with eRA Commons accounts to 
sign a data access request that includes a summary of 
the proposed research. This likely discourages intruders 
without significantly impeding legitimate researchers.

Limitations
There are multiple limitations to the work discussed 
here. First, neither the characterization of harms nor 
the characterization of the risk of reidentification were 
systematic reviews. In this project, I performed a pre-
liminary characterization of harms, which could be 
further assessed with an in-depth and systematic liter-
ature review. Next, the cost for reidentification might 
differ for individual hackers. For some, intensive work 
or long computational times might not be a barrier. In 
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addition, more samples could be accumulated in data-
bases over time and better technology could reduce 
computational time. Furthermore, I ignored sequenc-
ing technology errors, which can be a barrier to reiden-
tification. For example, 23andMe has an error rate of 
one in 7,000 nucleotides. These errors could lead to pre-
dictions of incorrect phenotypes, such as an incorrect 
report of high disease risk when the true risk is actually  
low. Finally, many genes are pleiotropic and not well 
understood, so predicted phenotypes might not match 
actual phenotypes.

Future Directions
This project could extend in several directions. In par-
ticular, this work is a precursor to a recently estab-
lished center at Vanderbilt University. The GetPreCiSe 
(Genetic Privacy and Identity in Community Set-
tings) Center aims to understand threats to privacy in 
genomic data, elaborate on efforts to protect privacy, 
and quantify the probability of reidentification and 
harm. A further possible direction is to study pheno-
type prediction from RNA sequencing data. Although 
this study and others have shown feasibility, determin-
ing whether certain samples (treated versus untreated) 
or cell types provide better variant coverage would be 
interesting. In addition, this study focused on harms 
from genomic privacy violations by hackers. The work 
could be extended to examine other harms, such as indi-
viduals in a study not being given access to their data, 
or physicians not sharing genomic data with patients’ 
biological relatives. Finally, barriers to reidentification, 
such as data use agreements, could be evaluated to 
determine their effect on reidentification risk.

I ndividuals, their relatives, and institutions holding 
genetic data are at risk for harms if DNA reidentifica-

tion occurs. Preliminary examination of reidentification 
risk suggests that data intruders can easily reidentify 
individuals if the database holding their genetic infor-
mation also contains metadata. Therefore, institutions 
might want to focus on providing extra protections 
for this information rather than for anonymous DNA. 
However, because we don’t know what the future holds 
and DNA is unique and unchanging, further research 
should examine the probabilities of future harms. 
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In many genomic applications, especially nonmedical applications, computations are carried out in a 
server-mediated setting where the server enables joint genomic computations between users. Thus, it’s 
sensible to utilize the server’s computational capabilities to aid data protection.

T he use of genomic data is rapidly expanding, and 
the need to protect such highly sensitive data from 

potential abuse is indisputable. The cost of sequencing 
one’s genome has dramatically decreased in recent years 
and is continuing to decrease, making such data more 
readily available for numerous applications, including

■■ personalized medicine using genomic tests prior to 
prescribing a treatment to ensure its success,

■■ paternity testing using DNA data,
■■ genomic compatibility testing allowing potential or 

current partners to determine whether their future 
children are likely to inherit genetic conditions, and

■■ determining ancestry and building genealogical trees 
by examining DNA data of many individuals and find-
ing relationships among specific individuals.

Genomic tests are increasingly used for medical pur-
poses to ensure the best treatment. Several services for 
nontreatment-related use of DNA data have flourished 
as well—for instance, 23andMe (www.23andme.com), 

Ancestry.com (www.ancestry.com), and GenePartner.com 
(www.genepartner.com)—allowing for various forms 
of DNA data comparison, be it for building ancestry 
trees, determining genomic compatibility, or other 
purposes.

DNA is highly sensitive and must be protected from 
misuse. It’s more sensitive than other types of an indi-
vidual’s biometry because it allows for unique identifi-
cation and can reveal a plethora of information about 
the individual. For instance, one can determine the 
predisposition of an individual and his or her relatives 
to medical conditions, thus exposing these relatives’ 
information as well. Furthermore, our understand-
ing of genomes is continuously growing, and expo-
sure of DNA data might lead to consequences that we 
can’t even anticipate today. For this reason, the secu-
rity community has recognized the need to protect the 
privacy of DNA data when it’s being used in genomic 
computations.1–4

Although protecting the privacy of genomic data is 
important for all applications, in our opinion, individuals 

Improving the Security and Efficiency  
of Private Genomic Computation  
Using Server Aid
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are less able to influence the way medical procedures are 
conducted than they are services in which they volun-
tarily participate. For example, individuals considering 
using a gene-based matchmaking online service to meet 
a potential partner might initially be reluctant to share 
their DNA data with the service (or the partner) for the 
purpose of genetic compatibility tests. However, if the 
service guarantees that no sensitive information about 
their DNA (other than the intended outcome) will 
be revealed to any party throughout the computation, 
they might revisit the decision to participate. Thus, this 
article focuses on nontreatment-related applications in 
which individuals might choose to participate.

Because user interaction and genomic computa-
tion in such applications are normally facilitated by 
some service provider or third party, such service 
providers are uniquely positioned to aid individuals 
with private computation on their sensitive genomic 
data. Thus, instead of invoking traditional two-party 
privacy-preserving computation mechanisms, partici-
pants can now pursue the server-mediated setting and 
utilize the server to lower their cost of computation. 
Therefore, we can view computation as being carried 
out between two users, Alice and Bob, and a server that 
provides no input into the computation and learns no 
output but whose involvement allows for higher secu-
rity guarantees and lower computational costs.

Genomic Background
A genome represents an individual’s complete hereditary 
information. Information extracted from the genome 
can take different forms. One type is a single nucleo-
tide polymorphism (SNP), which corresponds to a 
well-known variation in a single nucleotide (a nucleotide 
can be viewed as a simple unit represented by a letter A, 
C, G, or T). Normally, each SNP is referenced by a spe-
cific index and its value in an individual is represented 
as a bit, while representations consisting of three values 
(0, 1, and 2) are used as well. The two possible nucle-
otide variations at a given position are called alleles. A 
mutation can occur at a single allele inherited from one 
parent (a minor mutation) or two alleles inherited from 
both parents (a major mutation); the values 0, 1, and 2 
indicate no, minor, and major mutations, respectively. A 
binary SNP representation uses 0 for no mutations and 1 
for either kind of mutation (minor or major).

Another type of data extracted from a genome is 
based on short tandem repeats (STRs), which occur 
when a short region consisting of two or more nucleo-
tides is repeated and the occurrences are adjacent to one 
another. Unrelated individuals are likely to have a differ-
ent number of repeats of a given STR sequence in cer-
tain regions in their DNA; thus, STRs are often used for 
identity testing or testing between close relatives.

In this article, we focus on two specific genomic 
tests: paternity and genetic compatibility.

Paternity Test
This test is normally based on STRs. One’s STR profile 
consists of an ordered sequence of n two-element sets  
S 5 〈{x1,1, x1,2}, {x2,1, x2,2}, …, {xn,1, xn,2}〉, where each 
value corresponds to the number of repeats of a specific 
STR sequence at specific locations in the genome. For 
each STR i, one of xi,1 and xi,2 is inherited from the 
mother and one from the father. Thus, in the paternity 
test with a single parent, there are two STR profiles  
S 5 〈{xi,1, xi,2}〉n

i51 and S9 5 〈{x9i,1, x9i,2}〉n
i51 correspond-

ing to the child and the contested father, respectively. 
To determine whether S9 corresponds to the child’s 
father, the test computes whether, for each i, the set  
{xi,1, xi,2} contains (at least) one element from the 
set {x9i,1, x9i,2}. This means that the intersection of sets  
{xi,1, xi,2} and {x9i,1, x9i,2} must be nonempty for each i.

Genetic Compatibility Test
A genetic compatibility test is used when potential or 
existing partners would like to determine the possibility 
of transmitting to their children a genetic disease with 
Mendelian inheritance. In particular, if a minor muta-
tion is present, it often has no impact on one’s quality 
of life, but with a major, the disease manifests itself in 
severe forms. If both partners silently carry a single 
mutation, they have a noticeable chance of conceiving 
a child carrying the major variety. Thus, a genetic com-
patibility test for a given genetic disease would look for 
the presence of minor mutations in both partners.

Screening for a disease consists of testing whether a 
specific mutation string appears at a specific location in 
the DNA. Future tests for more complex diseases might 
look for the presence of multiple mutations, but for the 
purpose of this article, we assume that the test’s output 
is a bit (that is, the individual is tested as a disease car-
rier or not). If both partners test positive, then the out-
come of the genetic compatibility test will be treated as 
positive; otherwise, it’s negative.

Security Guarantees
The solutions we describe here achieve several security 
properties.

Protection of Private Data
From a security viewpoint, it’s typically expected that 
no information of any kind about private data is avail-
able to the participants during privacy-preserving com-
putation. That is, users Alice and Bob input their private 
genomic data into the computation and learn the com-
puted outcome but can’t infer any additional informa-
tion about one another’s private data. Adding the server 
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to the computation must not compromise any security 
guarantees, which means that the server learns no infor-
mation of any kind about Alice’s or Bob’s data.

Adversarial Model
Security literature typically distinguishes between two 
standard ways of modeling the behavior of secure com-
putation participants: they can be either semihonest 
(passive or honest but curious) or malicious (active). A 
semihonest participant correctly follows the protocol 
specification but attempts to learn additional informa-
tion by analyzing the messages received during the exe-
cution, whereas a malicious participant can arbitrarily 
deviate from the protocol specification in an attempt to 
learn unauthorized information.

The server can typically be expected not to deviate 
from its prescribed behavior, as it would lose its reputa-
tion and, consequently, revenue if any attempts at cheat-
ing become known. A dishonest insider observing the 
server’s networks and stored data should be unable to 
recover any sensitive information about users, and the 
company usually detects and mitigates attempts to tam-
per with the software running on the server. Thus, we 
assume that the server is semihonest. If the server can’t 
be trusted to follow the computation, a stronger secu-
rity model that tolerates a malicious or covert server 
(one that misbehaves but doesn’t want to be detected) 
needs to be applied. However, this is beyond our arti-
cle’s scope.

We similarly assume that the server won’t collude 
with users (putting its reputation at risk) or let users 
affect its operation. On the other hand, users Alice and 
Bob might not know each other well (for instance, if 
they met through a matchmaking website), so it’s rea-
sonable for them to be cautious. Therefore, they might 
want to engage in a protocol that ensures correctness 
and privacy even when the other user is malicious.

We note that alternative adversarial models for 
server-aided two-party computation have been treated 
in the literature (such as in “Whitewash: Outsourcing 
Garbled Circuit Generation for Mobile Devices”5 and 
others) and can be pursued if different or stronger guar-
antees are desired.

Input Certification
Another important consideration from a security stand-
point is enforcing correct (that is, truthful) inputs to be 
entered into the computation. This requirement is out-
side the traditional security model for secure multiparty 
computation (even in the presence of fully malicious 
actors) and normally isn’t addressed, but it becomes 
important in the context of genomic computation. This 
is because, for certain types of genomic tests, it’s very 
easy for one participant to modify his or her inputs 

to learn sensitive information about the other party’s 
genetic conditions. For example, consider genetic com-
patibility tests. If the partners can each separately eval-
uate their DNA for a specific disease’s fingerprint, the 
joint computation can consist of a simple AND of the 
bits provided by both parties (for one or more diseases). 
Now if a malicious participant sets his or her input bits 
for all tested diseases to 1 and the outcome is positive, 
the participant learns that the other party is a carrier for 
a specific medical condition (or at least one condition 
from the set of specific conditions, depending on how 
the computation is set up). We thus want to prevent 
malicious participants from modifying their inputs to 
genomic computation. We preserve integrity of inputs 
by requiring them to be certified by certification author-
ities, such as medical facilities, without disclosing the 
private values that were certified.

Fairness
Fairness is another desired security property of a solu-
tion that realizes privacy-preserving computation; it 
guarantees that if one participant prematurely quits the 
computation, he or she can’t learn more information 
about the data used in the computation (for instance, 
by recovering partial or complete output) than the 
other protocol participants. Because of the nature of the 
data used in genomic computations, achieving fairness 
should be an essential part of privacy-preserving solu-
tions for this domain.

Secure Server-Aided Computation
Having spelled out the security guarantees that we’d like 
to see in a secure solution, we’re now ready to proceed 
with building such a solution. The first construction we 
present addresses all security guarantees except enforc-
ing input correctness via input certification. This feature 
is added in a later construction.

Initial Secure Solution
Recall that the goal was to employ a server that facilitates 
communication between users Alice and Bob to improve 
the efficiency and security of privacy-preserving com-
putation. There are several well-researched secure com-
putation techniques that have seen drastic performance 
improvements during recent years. One of them is 
garbled circuit evaluation, which can be used to securely 
evaluate any desired function by two parties Alice and 
Bob on their private inputs. In the past few years, sev-
eral publications modified garbled circuit evaluation 
techniques to work in the two-party server-aided set-
ting that we pursue, or more generally in a three-party 
setting, with the goal of maintaining its efficiency while 
offering stronger security guarantees.6–8 This is the 
approach our solutions use here.
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There are alternative approaches to secure two-party 
or server-aided two-party computation, the most pop-
ular of which are techniques based on homomorphic 
encryption. Different variants of homomorphic encryp-
tion are known based on their ability to perform trans-
formations on encrypted data without interaction; the 
most widely used schemes are public-key crypto sys-
tems. Because of the fundamental differences in how 
underlying techniques for secure multiparty computa-
tion work, the cost of elementary operations (such as 
for Boolean and integer arithmetic) significantly differ 
among frameworks. For the computations we consider 
in this article, garbled circuit–based techniques offer a 
performance advantage, and thus we don’t address solu-
tions based on homomorphic encryption here.

Before we proceed, we provide a high-level descrip-
tion of how garbled circuit evaluation works. The use of 
garbled circuits lets two parties, Alice and Bob, securely 
evaluate any function f of their choice. Given an arbi-
trary function f(xA, xB) that takes private inputs xA and 
xB from Alice and Bob, respectively, the parties first rep-
resent the function as a Boolean circuit. One party, say 
Alice, acts as a circuit generator and creates a garbled 
representation of the circuit. She does so by associating 
each binary wire with two random labels 0, 1 (that is, 
one label corresponds to 0 and the other to 1) and creat-
ing binary gates in such a way that, given two labels for 
its input wires, one can recover a label associated with 
the output wire. Figure 1 provides a simple example of a 
garbled circuit with AND and OR gates.

The other party, Bob, acts as a circuit evaluator and 
evaluates the circuit in its garbled representation, gate 
by gate, without knowing the meaning of the labels 
that he handles during the evaluation. Before evalua-
tion can start, Bob needs to obtain the random labels 
corresponding to both Alice’s and his inputs. Because 
Alice knows the labels and their meaning, she can just 
send the labels corresponding to her input bits to Bob. 

The labels corresponding to Bob’s private input are 
communicated to Bob using a cryptographic primitive 
known as a 1-out-of-2 oblivious transfer. It allows him to 
obtain one out of two wire labels corresponding to each 
of his input bits from Alice without revealing anything 
to Alice. After evaluating the circuit on private inputs, 
the output labels can be mapped to their meaning and 
revealed to either or both parties.

The fastest version of garbled circuit evaluation is 
secure in the presence of a semihonest garbler and a 
malicious evaluator (assuming the oblivious transfer is 
resilient to malicious receivers). However, when either 
participant can be malicious, more complex techniques 
need to be involved. These techniques typically result 
in two orders of magnitude slowdown compared to the 
version secure in the presence of semihonest partici-
pants. Thus, the goal is to build on the fast solution and 
maintain efficiency by using another participant (the 
server).

The solution we present is general and works for any 
type of computation. Figure 2 depicts the interaction 
between Alice, Bob, and the server for securely evaluat-
ing a function f of their choice on Alice’s and Bob’s pri-
vate inputs.

Recall that the server is semihonest and follows the 
computation, whereas Alice and Bob can deviate from 
the prescribed computation in the attempt to learn 
unauthorized information. This means that if we charge 
the server with the task of creating a garbled circuit for f, 
we know that it will be formed correctly and the under-
lying security guarantees will be preserved. As part of 
circuit garbling, Alice also learns the garbled label pairs 
0

i, 
1
i for each wire i corresponding to her input bits, but 

not for other circuit wires. Once the circuit is created, 
the server communicates it to Bob (step 1).

Bob will evaluate the circuit, but before evaluation 
can begin, he needs to obtain one label for each wire 
corresponding to his and Alice’s input bits. To obtain 
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the labels corresponding to his input bits, he engages in 
oblivious transfer with the server as in the original gar-
bled circuit approach (step 2). Alice, on the other hand, 
knows the label pairs corresponding to her input bits 
and can select and send to Bob (step 3) the appropri-
ate label corresponding to her input (that is, she sends 
0

i if her ith input bit is 0, and 1
i otherwise). Note that 

if Alice misbehaves and doesn’t send correct labels, the 
computation won’t be able to proceed and neither party 
will learn the output. Similarly, if Bob doesn’t follow the 
prescribed computation, the execution is aborted and 
neither party learns any information.

Once circuit evaluation is complete, Bob has (ran-
dom) labels associated with the output bits but doesn’t 
know what they mean. We can’t simply have the server 
send the label pairs for the output wires to Bob, as this 
will allow Bob to interpret the output for himself but 
deny output to Alice (or provide her with incorrect out-
put). Thus, Bob is instructed to first send the computed 
labels to Alice (step 4). Alice uses the server’s help to 
verify that she has valid output labels—that is, labels 
that the server created (step 5). This is done by having 
the server send hashes of the labels in a random order 
for each output wire to Alice. Alice consequently hashes 
the labels she received from Bob and checks whether all 
of them appear on the server’s list. This will allow Alice 
to verify that she indeed has a valid label for each output 
wire without learning the meaning of that label.

Once verification is complete, Alice and Bob obtain 
the label pairs from the server in the original order 
(step  6), which allows both of them to interpret the 

output bits and learn the result of the computation. 
Note that fairness is achieved in that either both parties 
learn the correct output or neither party obtains any 
information.

Adding Input Certification
We next consider an enhanced security setting in which 
Alice’s and Bob’s inputs are validated before computa-
tion. Recall that this is done to eliminate the possibil-
ity of a malicious user manipulating his or her input to 
learn the other user’s sensitive genomic information. 
As mentioned earlier, it was previously not known how 
this feature could be realized in regular secure two-party 
computation, but the use of the server allows us to sup-
port this new security property.

In this version of the computation, we assume that 
Alice’s and Bob’s inputs are certified by one or more cer-
tification authorities and Alice and Bob possess digital 
signatures on their inputs issued by these authorities. In 
the context of genomic tests, the signatures will come 
from medical facilities that assemble their genomic data 
or perform the relevant genomic tests.

For the purposes of this solution, it’s necessary that 
the signatures that Alice and Bob obtain from certifica-
tion authorities have certain special properties. In par-
ticular, because they will need to prove some statements 
about their input without revealing the input itself, the 
underlying signature scheme must support proving 
statements about a signed message without revealing 
the message. Such signature schemes are known as sig-
nature schemes with protocols. The use of such signatures 
typically involves first proving that one has a signa-
ture on a message, the value of which stays protected, 
followed by proving additional statements about the 
message. In the solution we describe, Alice and Bob 
will need to prove statements that consist of equality, 
disjunction (OR), and conjunction (AND). Research-
ers had long ago discovered how to realize such proofs 
without revealing any additional information about 
the value used in the proof statements; these are called 
zero-knowledge proofs of knowledge because no informa-
tion about the relevant values is revealed beyond the 
statement of the proof itself.

The structure of the solution that uses certified 
inputs remains the same as in the first construction. 
Only the steps in which Alice and Bob enter their inputs 
into the computation need to be modified (steps 2 and 
3 of the original protocol). For simplicity, let’s assume 
that all of Alice’s and Bob’s inputs are to be verified.

We start with Bob’s verification mechanism. Bob 
engages in the oblivious transfer in the role of the 
receiver with the server for each bit of his input. After 
proving that he possesses a signature from a certification 
authority, Bob proves that the signed bit was 0 and the 
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Figure 2. Initial construction for server-aided secure two-party computation. 
Users Alice and Bob engage in joint secure computation on their private data 
with the help of a server.
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key he formed for the purposes of the oblivious transfer 
corresponds to 0, or that the signed bit was 1 and the 
key he’s using in the oblivious transfer corresponds to 
1. Note that in addition to using equality to 0 and 1, this 
proof also includes two conjunctions and one disjunc-
tion. This statement can also be generalized to the cases 
in which a single signature on a multibit message is used 
to provide several input bits into the computation.

Alice’s proof to the server after circuit generation has 
a similar logic. For each bit of her input, she shows that 
either the signed bit was 0 and her input label will be 
0

i, or the signed bit was 1 and her input label will be 1
i. 

Information about the label 0
i or 1

i is encoded using a 
cryptographic commitment that ensures that the server 
doesn’t learn anything about that value and, at the same 
time, prevents Alice from changing the value when she 
consequently interacts with Bob in step 3. (Commit-
ment is a cryptographic construction that protects the 
secrecy of the committed value but prevents the sender 
from later opening the commitment to a value different 
from the one used to form the commitment.) If verifica-
tion is successful for each bit of Alice’s input, the server 
forwards to Bob the label commitments it received from 
Alice. Now when Alice sends her input labels to Bob in 
step 3, she also shows that the labels correspond to the 
opening of the commitments she supplied to the server 
earlier. This constitutes the proof that the input Alice 
provides into the protocol was indeed signed by a cer-
tification authority.

Secure Genomic Computations
We’re now ready to proceed with showing how Alice 
and Bob can use the solution described in the previous 
section to realize secure server-aided genomic compu-
tation. For both paternity and compatibility tests, we 
assume that Alice and Bob have information extracted 
from their respective genomes, which they privately 
store and input into the computation.

Paternity Test
In paternity tests, participants often don’t trust each 
other and might be inclined to tamper with the com-
putation to influence the result. However, it’s difficult 
to learn the other party’s genetic information by modi-
fying one’s input into the function. In particular, recall 
that the output of a paternity test is a single bit, which 
indicates whether the exact match was found. If a mali-
cious participant engages in the computation with the 
same victim multiple times and modifies the input in 
an attempt to discover the victim’s genomic data, the 
single-bit output doesn’t help the attacker learn how 
his or her inputs are to be modified to be closer to the 
victim’s input. Thus, we establish that the first security 
setting—with malicious users and a semihonest server, 

but without input certification—is suitable for running 
paternity tests.

This test would normally be run between an individ-
ual and a contested father of that individual according 
to the corresponding computation we described earlier. 
We implement the computation using a Boolean circuit 
as follows: to compute whether a set intersection of 
{xi,1, xi,2} and {x9i,1, x9i,2} for any given i is not empty, we 
could XOR the vectors 〈xi,1, xi,2, xi,1, xi,2〉 and 〈x9i,1, x9i,1, 
x9i,2, x9i,2〉 and compare each of the four elements in the 
resulting vector to 0. Note that because with garbled cir-
cuits, XOR gates can be evaluated much faster and with 
no communication overhead,9 it’s desirable to minimize 
the number of non-XOR gates in a circuit design. The 
(in)equality to 0 testing is performed using k − 1 OR 
gates, where k is the bit length of all xi,js and x9i,js. Then, 
if the result is 1 for any of the four elements, it means 
that the corresponding values differ.

We next compute the AND of the results of the four 
inequality tests. If the result is 1, it means that all four 
elements are not equal; that is, the intersection is empty. 
Finally, we OR the resulting bits across all is and output 
the complement of the computed bit. If the result of the 
OR is 1, it means that at least one set intersection was 
empty and the test failed; thus, the output is 0. Figure 3a 
depicts this computation.

Genetic Compatibility Test
A genetic compatibility test consists of two users, Alice 
and Bob, evaluating the possibility of their children 
inheriting at least one recessive genetic disease. We 
assume that they agree on a list of genetic diseases to be 
included in the computation (this list can be standard, 
for example, suggested by the server or recommended 
by a medical association). Note that testing for a specific 
genetic disease is only meaningful if both parties want 
to be tested for it; thus, we assume that Alice and Bob 
can reconcile the differences in their lists.

To maximize privacy, we would like the computa-
tion to be as conservative as possible. Thus, given a list 
of genetic diseases D, we design the function to be eval-
uated to first run a compatibility test for each disease 
and, if at least one test is positive, output 1; otherwise, 
output 0. That is, the function can be interpreted as pro-
ducing 1 if Alice and Bob’s children have a chance of 
inheriting the major variety for at least one of the tested 
diseases, and 0 otherwise. Evaluating this function can 
be viewed as the first step in Alice and Bob’s interaction. 
If the output was 1, they might jointly decide to run 
more specific computation to determine the responsi-
ble disease(s).

So, for each di ε D, Alice and Bob will need to locally 
determine whether they are carriers of di before the joint 
computation begins. Thus, their input into the joint 
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computation consists of |D| bits each, and the result is 1 
if there’s at least one di ε D such that Alice’s and Bob’s ith 
input bits are both 1. This computation can be realized 
as a simple circuit consisting of |D| AND and |D|−1 OR 
gates. The ith AND gate computes the AND of the ith 
input bit of Alice and Bob, and the OR gates are applied 
to the results to determine whether at least one of the 
bits was set. Figure 3b depicts this computation.

Notice that it’s easy for malicious Alice or Bob to 
learn sensitive information about the other party by 
using certain inputs. That is, if a malicious user sets all 
his or her input bits to 1, he or she will be able to learn 
whether the other party is a carrier of at least one dis-
ease in D. This poses substantial privacy concerns, par-
ticularly for matchmaking services that routinely run 
genetic compatibility tests between many individuals. 
Thus, we require that Alice and Bob certify the results of 
testing for each genetic disease on the list and enter cer-
tified inputs into the computation. (Note that a medi-
cal facility that performs sequencing can also certify the 
test results; alternatively, the medical facility performing 
test certification can require that the genome on which 
the test is based is certified by the facility performing 
sequencing.) The stronger security setting with certified 
inputs is the most appropriate for this computation.

A signature that certifies the outcome of testing for 
a particular disease must come with the name of the 
corresponding disease. Then while the (certified) test 
results that Alice and Bob enter into the computation 
remain private, the name of the disease included in each 
signature is revealed to the server. This will allow the 
server to ensure that Alice and Bob enter information 
about the same diseases in the computation and can’t 
deviate from the prescribed behavior in an attempt to 
cheat. Even when the users don’t want to reveal the 

names of the diseases on their list to the server, it’s still 
possible for the server to enforce compliance with cor-
rect computation by means of shared commitments and 
additional zero-knowledge proofs.

Note that although the circuit used in compatibil-
ity computation is rather simple, the overall solution 
is more involved owing to the use of input certification 
not present in paternity testing. Also, by having each 
party independently certify the results of disease testing 
ahead of time, we reduce the cost of joint computation, 
and the results of disease testing (including certifica-
tion) can be reused an unlimited number of times.

Other Types of Computation
Because the constructions we describe in this article are 
general, they can be used for genomic and nongenomic 
applications, including medical purposes. Furthermore, 
when it’s crucial to guarantee input integrity, using the 
second construction with certified inputs would be 
beneficial. For instance, when personalized medicine 
computation relies on a third-party service provider, 
our security model might apply. Utilizing certified 
inputs will guarantee input correctness, which is espe-
cially important here because using incorrect data puts 
patients’ health at risk.

Performance Evaluation
Here, we demonstrate the presented techniques’ per-
formance for privacy-preserving paternity and compat-
ibility computation. The implementation—available at 
github.com/fattaneh88/PETS—was done in C/C11 
with Miracl library (www.certivox.com/miracl) for 
large number arithmetic and JustGarble library (cseweb 
.ucsd.edu/groups/justgarble) for garbled circuit imple-
mentation. Each party (Alice, Bob, and the server) ran 

Figure 3. Realization of circuits for (a) paternity and (b) genetic compatibility tests. The computation is represented as 
Boolean circuits and consequently garbled and evaluated in the garbled form.
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on a 3.2-GHz machine using a single core. Note that this 
is a modest setup because the server is expected to be 
more powerful in practice and using multiple cores can 
significantly reduce computation time.

Paternity Test
Implementation of the paternity test corresponds 
to its earlier description without input certification. 
The inputs for both Alice and Bob consisted of 13 
two-element sets, in which each element was nine 
bits long. In practice, the US CODIS system uses 13 
pairs, whereas the European SGM Plus identification 
method utilizes 10; thus, we chose 13 for the experi-
ments. Furthermore, because no element in any set 
exceeds 500,10 its length is set to nine bits. The result-
ing circuit had 935 gates, out of which 468 were cheap 
XOR gates. Table 1 gives the experiment’s results. Note 
that we list computation time and communication size 
separately because the speed of communication chan-
nels can greatly vary.

As Table 1 indicates, this protocol is well-suited for 
settings in which one user is very resource constrained. 
Also, compared to traditional two-party garbled circuits 
computation in the presence of malicious participants, 
this solution reduces both computation and com-
munication for the participating users by at least two 
orders of magnitude (even if it might appear that Bob 
has a heavier load than the server).6 This is primarily 
because many circuits need to be garbled and evaluated 
in the two-party setting with malicious participants to 
ensure that a correct circuit is used for function evalu-
ation. This solution also favorably compares to alter-
native server-aided two-party constructions including 
Whitewash.5

Genetic Compatibility Test
Recall that the genetic compatibility test is run in the 
setting where Alice’s and Bob’s inputs must be certi-
fied. We chose the variant of the solution that reveals 

the list of diseases D to the server (that is, a standard 
list is used). In this experiment, we set the number of 
tested diseases |D| 5 10 and thus Alice and Bob pro-
vided 10 input bits into the circuit accompanied by 10 
signatures (any desired value of |D| will work, with per-
formance linear in |D|). The circuit consisted of only 19 
gates. Table 1 shows this test’s performance. Input certi-
fication contributes most of the solution’s overhead (98 
to 100 percent, depending on the party), but it’s still on 
the order of one to three seconds for all parties. More 
than 95 percent of Alice’s and Bob’s work can be pre-
computed and performed ahead of time.

If input certification needs to be used with another 
functionality (for instance, genetic compatibility with a 
different number of diseases, paternity test, and so on), 
its performance in our secure execution framework can 
be estimated based on the input size in bits and perfor-
mance of the compatibility tests in Table 1 (for 10 input 
bits). Because such protocols’ overall runtime is heavily 
dominated by the time to obliviously verify signatures, 
varying the circuit size doesn’t significantly impact the 
overall time.

T he need to protect genomic data in a variety of 
applications is undeniable today, and serves as 

a strong motivation for applying secure computation 
techniques to genomic computations. In this article, 
we describe an efficient and secure construction for 
server-aided two-party computation where both users 
can act maliciously, which is consequently enhanced 
with input certification to guarantee input integrity. 
Input certification in the context of general secure 
two-party computation is new, and such research 
results are only starting to appear. Additional informa-
tion about the techniques presented in this article can 
be found in “Efficient Server-Aided Secure Two-Party 
Function Evaluation with Applications to Genomic 
Computation.”6 

Table 1. Performance of secure paternity and compatibility tests.

Party

Paternity test Compatibility test

Computation (ms)

Communication (Kbytes)

Computation (ms)

Communication (Kbytes)

Sent Received Sent Received

Alice 0 3.7 0.06 1,853 34.4 0.06

Bob 717 31.7 56.9 1,542 36.4 3.0

Server 457 53.3 31.7 2,859 2.9 70.6
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GENOME PRIVACY AND SECURITY

Inference Attacks against Kin  
Genomic Privacy

Erman Ayday | Bilkent University
Mathias Humbert | Swiss Data Science Center

Genomic data poses serious interdependent risks: your data might also leak information about your 
family members’ data. Methods attackers use to infer genomic information, as well as recent proposals 
for enhancing genomic privacy, are discussed.

I ndividuals desiring to control their personal data face 
significant interdependent privacy risks—risks that 

involve the leakage of one’s personal data due to data 
shared by other individuals. With recent advances in 
whole genome sequencing, genomic data in particular 
poses serious interdependent privacy risks.

Genomic data has many unique characteristics: it is 
highly valuable, is an individual’s distinctive fingerprint, 
rarely changes throughout an individual’s lifetime, is nonre-
vocable, and includes sensitive information about an indi-
vidual (such as disease status or physical characteristics).1,2 
But, the main reason genomic data poses interdependent 
privacy risks is that it’s correlated within family members. 
Thus, one person’s genome-related data (for instance, 
raw genome, variant call format file, genomic test results, 
or aggregate statistics) might leak information about the 
genome-related data of his or her family members.

This issue goes all the way back to the DNA dragnets 
that first raised serious concerns among privacy advo-
cates. Here, we present recent developments on the 
information security front, including

■■ how attackers can infer an individual’s genomic 
data from the partial genomes of his or her family 

members, background knowledge about genomics 
(simple statistics, high-order correlations, and so on), 
and the individual’s phenotypic information;

■■ how attackers can determine an individual’s member-
ship in a particular genomic dataset (for example, a 
beacon) from only the results of basic queries to that 
dataset and partial genomic knowledge about the 
individual’s family members;

■■ how attackers can deanonymize the deidentified 
genomes in a public dataset by using the kinship infor-
mation; and

■■ how attackers can efficiently infer kinship from public 
anonymous genomic databases.

Background
Before discussing these developments in further detail, 
we introduce the important genomic elements relevant 
to this article.

Genomic Elements
The vast majority (approximately 99.5 percent) of 
DNA is similar among human beings. Of the remaining 
0.5 percent, the most common variant in the human 
genome is called a single nucleotide polymorphism 
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(SNP). An SNP is a variation of a nucleotide at a 
specific position in the genome that affects at least 
1 percent of individuals in a given population (typi-
cally referred to as a common SNP). As of November 
2016, the Single Nucleotide Polymorphism database 
(dbSNP; www.ncbi.nlm.nih.gov/projects/SNP) lists 
approximately 154 million common SNPs in human 
beings. An SNP, like any other base pair, has two 
nucleotides. Each nucleotide can take either the major 
or minor allele. The major allele is the most commonly 
observed nucleotide in a given population, whereas 
the minor is the rare nucleotide. If we represent the 
major allele as B and the minor allele as b, an SNP can 
take values in {BB; Bb; bb}, where B and b take val-
ues in the alphabet {A; T; G; C}. SNP values are also 
known as an individual’s genotype.

SNPs are especially sensitive from a privacy perspec-
tive because many of these polymorphic positions are 
associated with severe diseases. For example, carrying 
particular values at two SNPs (rs7412 and rs429358) 
on the Apolipoprotein E (ApoE) gene indicates an 
increased risk for Alzheimer’s disease.

Due to genetic inheritance laws, family members 
share more SNPs than unrelated individuals. Thus, 
SNPs can be used to infer kinship between two individu-
als. Moreover, kinship information can infer hidden (or 
unknown) SNP values of relatives. Also commonly used 
for kinship inference are short tandem repeats (STRs). 
STRs consist of two to 13 nucleotides repeated numer-
ous times in a row on the DNA strand. For instance, 
GATAGATAGATA is an STR of period four repeat-
ing three times. STRs have a higher mutation rate than 
other areas of DNA, leading to high genetic diversity.

Reproduction
Mendel’s first law of inheritance—the law of segrega-
tion—states that alleles are passed independently from 
parents to child for different meioses (children). More-
over, at each SNP position, the child inherits one allele 
from the mother and one from the father. Each allele 
from the parents is randomly selected from their two 
alleles with probability 0.50. Hence, if the mother has 
an SNP value of BB and the father has an SNP value of 
Bb, the child will inherit an SNP equal to BB or Bb, both 
with probability 0.50. If both parents carry an SNP equal 
to Bb, then the child’s SNP will take a value of BB or 
bb with probability 0.25, and value Bb with probability 
0.50. Finally, given both parents’ genomes, the child’s 
genome is independent of all other ancestors’ genomes.

One exception to Mendel’s law is the Y chromosome. 
The Y chromosome is inherited (almost) intact along a 
family’s male line. Thus, a father’s Y chromosome is the 
same as his son’s Y chromosome. Due to this property, 
multiple genealogy companies offer services to reunite 

distant patrilineal relatives by genotyping a few dozen 
highly polymorphic STRs across the Y chromosome 
(called Y-STRs).

Another exception to the law of segregation is mito-
chondrial DNA (mtDNA), which is the DNA located 
in mitochondria of cells. mtDNA is inherited only from 
the mother, and hence enables researchers to trace a 
family’s maternal lineage.

Inference Attacks on Kin  
Genomic Privacy
In this section, we discuss the main threats against kin 
genomic privacy.

DNA Dragnets
The privacy risks posed by genomic data’s collection 
and use in forensics have been widely discussed in the 
context of DNA dragnets. DNA dragnets involve col-
lecting tissue or saliva samples from people in a cer-
tain region to hunt criminals. The collected biological 
samples are then used to construct DNA databases. 
Although collecting such data from suspected criminals 
or from those who’ve given their informed consent is 
acceptable, there are still serious privacy implications.

A main concern about DNA dragnets is the condi-
tions under which law enforcement is legally allowed to 
collect individuals’ biological samples. Under the US 
Fourth Amendment, law enforcement must have a rea-
sonable suspicion that a person is involved in a crime 
before requiring a search or seizure. However, the rules 
for DNA collection are still uncertain. For instance, in 
Melbourne, Florida, riding a bike at night without two 
functioning lights could lead to a DNA swab.3

Another concern is the duration such samples are 
kept in DNA databases and whether law enforcement 
can use the samples for other investigations. In 2015, 
Maryland’s Supreme Court ruled that law enforcement 
could use DNA voluntarily provided to police investi-
gating one crime to solve another.3

Also of concern is using research databases that 
collect biological samples in criminal investigations—
without informing the donors about such use.4 Such 
forensic investigations have occurred in Australia, New 
Zealand, Norway, the UK, and Sweden for criminal 
identification, disaster victim identification, and pater-
nity identification. A prominent example was the use of 
Sweden biobank blood samples to investigate the 2003 
murder of a Swedish foreign minister.

One last serious privacy concern about DNA drag-
nets relates to kinship: law enforcement might use an 
individual’s DNA from a DNA database to accuse a 
family member whose biological sample was never 
collected. Some US states already allow such famil-
ial searching of DNA databases. However, there are 
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concerns over whether the right to privacy is violated 
in the process.

DNA technology used by genealogists to iden-
tify unknown relatives and DNA dragnets used by law 
enforcement have been successfully combined to track 
down criminals. For example, police spent nearly 20 
years (starting in the 1970s) chasing the BTK (“bind, 
torture, and kill”) serial killer.5 Use of DNA in foren-
sics and familial DNA connections finally helped them 
identify the killer. Although the police already had the 
suspect’s DNA samples from the crime scenes and 
strong evidence that BTK was a man named Dennis 
Rader, they didn’t have the reasonable doubt neces-
sary to get a DNA swab from Rader. Police learned that 
Rader’s daughter had recently been to the hospital for 
a pap smear. Thus, via a judge’s order (but without the 
daughter’s knowledge), the police received a sample of 
the daughter’s DNA from the hospital, determined the 
familial match between that sample and the crime scene 
DNA samples, and eventually caught Dennis Rader.

On one hand, familial search in forensics DNA data-
bases is a powerful tool for the police. Experts state that 
this technique increases the number of suspects identi-
fied through DNA by 40 percent.3 On the other hand, 
privacy advocates question the legitimacy of obtaining 
information with this technique because it turns family 
members into genetic informants without their knowl-
edge or consent.

Quantifying Kin Genomic Privacy
In previous work, we provided a quantification frame-
work for assessing the effect on kin genomic privacy of 
family members revealing their genomes.6 To precisely 
quantify privacy, we mimicked an adversary who has 
access to some genome(s) in a given family and wants 
to infer the genomes of other family members. To do 
so, the adversary relies on the intergenome correlations 
(data between relatives); the observed genomic and 
phenotypic data; and, potentially, intragenome corre-
lations (so-called linkage disequilibrium), typically if a 
genome is only partially observed. Our efficient infer-
ence algorithms were based on belief propagation and 
graphical models. Belief propagation let us reduce the 
complexity of computing marginal distributions of ran-
dom variables from time exponential to linear in the 
number of considered variables.

Once the belief propagation algorithm output the 
posterior marginal probabilities given the observed 
genome(s) and phenotype(s), we quantified the change 
in genomic privacy with respect to the prior probabil-
ity distribution given by general population statistics. 
To do so, we relied on the expected estimation error 
and success rate (which requires us to know the ground 
truth, or actual SNP value) and on entropy-based 

metrics, which measure the adversary’s uncertainty and 
don’t require the ground truth.

We evaluated the proposed inference attacks and 
showed their efficiency and accuracy by using real 
genomic data from CEPH/Utah Pedigree 1463.7 Spe-
cifically, we selected 11 family members: the four 
grandparents (GP1 to GP4), the two parents (P5 and 
P6), and the five children (C7 to C11; see Figure 1). 
We focus here on the results of all common SNPs avail-
able on chromosome 1 (approximately 80,000). Table 1 
shows the evolution of the expected estimation error 
and the success rate (the probability of inferring the 
correct SNP value) given the observation of zero to 
three different relatives. The three main rows represent 
the targeted individual (whose genomic data is hidden), 
and the columns represent the observed genomic data 
used to infer the hidden, targeted data. Looking at the 
P5 row, we see that we can decrease the average error 
by 50 percent by observing only P5’s two parents, and 
by even more if we also observe one of his children. 
Note that the proportion of SNPs inferred with suc-
cess greater than 0.90 increases from 20 to 57 percent 
by observing P5’s parents. This proportion increases to 
87 percent when seven of his relatives are observed (not 
shown in table). This clearly demonstrates that genomic 
privacy can be dramatically damaged by others’ sharing 
behavior.

Effect of High-Order Correlations  
in the Genome
To analyze the use of high-order correlations in the 
genome to improve existing work on inference attacks 
on genomic privacy, we also considered the phenotype–
genotype relationships (such as physical traits or dis-
ease information).8 We used the complex correlations 
in the genome by applying Markov and recombination 
models between the haplotypes—nucleotides on a sin-
gle chromosome that are so closely linked that they’re 

GP1 GP2

P5

GP3 GP4

P6

C7 C8 C9 C10 C11

Figure 1. The CEPH/Utah Pedigree 1463 family tree 
consisting of 11 family members, which includes four 
grandparents (GP1 to GP4), two parents (P5 and P6), and 
five children (C7 to C11).8



32	 IEEE Security & Privacy� September/October 2017

GENOME PRIVACY AND SECURITY

usually inherited as a unit. Then, similar to existing 
work,6 we proposed an efficient graph-based, iterative 
message–passing algorithm to consider all the afore-
mentioned background information for the inference. 
Overall, our results show that an attacker’s inference 
power significantly improves by using complex correla-
tions and phenotype information along with informa-
tion about family bonds.

For evaluation, we focused on 100 neighboring SNPs 
on the CEPH/Utah Pedigree 1463’s DNA sequence 
on the 22nd chromosome. Using data from the 1000 
Genomes Project (www.internationalgenome.org) 
and HapMap (www.ncbi.nlm.nih.gov/genome/probe 
/doc/ProjHapmap.shtml), we modeled the genome’s 
higher-order correlations (Markov and recombination 
models).

Among the 100 SNPs, we randomly hid 50 of the 
father’s SNPs and tried to infer them by gradually 
increasing the attacker’s background information. We 
also assumed that the attacker knew three of each fam-
ily member’s phenotypes associated with the consid-
ered SNPs. We began revealing 50 random SNPs (out of 
100) of other family members, starting from the most 
distant to the father in terms of number of family tree 

hops. To quantify genomic privacy, we used two met-
rics: estimation error and entropy.

Figure 2 shows our results for the attacker’s error 
(we achieved similar results for the entropy-based  
metric). The case of k 5 1 (Markov chain with order 1 
with no phenotype information) represents our previ-
ous work.6 Our results show that high-order correlations 
and phenotype information contributed significantly to 
the attacker’s inference power. For the Markov chain 
model, the attacker’s inference didn’t improve much for 
orders of Markov chain (k) greater than 3. The recom-
bination model increased the attacker’s inference power 
more than the Markov chain model.

Suppose we’re working on a dataset consisting of 
a trio (father, mother, and child) and trying to infer 
a particular SNP of the father given the mother’s and 
child’s SNPs. Following Mendel’s law, if the child is 
homozygous (carrying two identical nucleotides) in 
that SNP position, we can easily infer the nucleotide 
in one strand of the father. However, if both the child 
and the mother are heterozygous (carrying two differ-
ent nucleotides) in that SNP position, we can’t get any 
information about the nucleotide passed on from the 
father to the child.6

Table 1. Absolute and relative levels of genomic privacy of the grandparent (GP1), parent (P5),  
and child (C7) whose genome is hidden (H), given the observation () of zero to three relatives.

H/O Error*  P5 P5, GP2 C7, GP2 C7, C8, GP2

GP1 Absolute average error 0.446 0.322 0.309 0.404 0.385

Relative average error (%) 100 72 69 91 86

Single nucleotide polymorphisms 
(SNPs) with success rate .0.90 (%)

20 28 29 23 23

 GP1, GP2 C7, C8 C7, P6 GP1, GP2, C7

P5 Absolute average error 0.480 0.242 0.286 0.312 0.203

Relative average error (%) 100 50 60 65 42

SNPs with success rate .0.90 (%) 20 57 38 29 57

 P5 P5, C8 P5, P6 P5, P6, C8

C7 Absolute average error 0.489 0.344 0.301 0.182 0.182

Relative average error (%) 100 70 62 37 37

SNPs with success rate .0.90 (%) 20 28 40 64 64

*We use the absolute error to measure the genomic privacy of GP1, P5, and C7 for each individual, the error relative to the initial error 
(without observing any data) as a percentage, and the proportion of SNPs with a success rate over 0.90. The success rate is the probability 
of inferring the correct SNP value.
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We can ameliorate this limitation by using haplotype 
information. Haplotypes are identical by descent (IBD) 
if they’re identical and inherited from a common ances-
tor. There are several ways to detect IBD.9,10 Previously, 
we used Beagle11 for this and showed IBD’s contribu-
tion to the inference attack.12 Beagle allows SNPs to be 
in linkage disequilibrium (LD) by modeling haplotype 
frequencies.

By employing this haplotype information, we intro-
duced a new inference attack to find one of the parent’s 
SNPs by using the genomes of the other parent and the 
children. We used the regions that are inherited together 
and worked from the idea that if the child’s SNPs in 
a haplotype block aren’t coming from the mother’s 
genome, then they’re coming from the father’s. Then, 
we deduced that the child’s other haplotype is inherited 
from the father. We evaluated our approach on CEPH/
Utah Pedigree 1463 dataset, and showed that accurate 
inference about the father’s SNPs could be accom-
plished using less data (that is, less genomic data from 
fewer family members) than previously.6

Membership Inference in  
Genomic Databases
In 2008, Nils Homer and his colleagues identified an 
attack against genomic privacy that determined a tar-
geted individual’s membership in a genomic database 
based on summary statistics about this database.13 By 
comparing a significant portion of the targeted indi-
vidual’s SNPs with the released statistics, the adversary 
could infer with high precision whether the individual 
was a member of the database.

The following year, Sriram Sankararaman and 
his colleagues proposed another statistical infer-
ence method, one based on likelihood ratio, to derive 
a theoretical bound on the attack’s true-positive at a 
given false-positive rate.14 They showed that it’s pos-
sible to detect relatives of the target whose SNPs are 
available to the adversary. Notably, they found that 
detecting a target’s first-order relative (sibling, child, 
or parent) requires approximately four times as many 
SNPs as detecting the target with the same bound on 
false-positive and false-negative rates. Moreover, they 
empirically demonstrated that if the adversary has 
access to approximately 33,000 independent common 
SNPs, the true-positive rate decreases from 0.95 (for 
detecting the original individual) to 0.22 for detecting a 
first-order relative, and 0.03 for a second-order relative, 
at a false-positive rate of 10–3.

More recently, Suyash Shringarpure and Carlos  
Bustamante developed an attack against genomic data- 
sharing beacons.15 Beacons are webservers that answer 
allele presence queries such as “Do you have a genome 
that has a specific nucleotide (A) at a specific genomic 

position (position 11,272 on chromosome 1)?” with 
either “yes” or “no.” By relying on a likelihood-ratio test, 
the authors showed that the responses to such queries 
could be used to reidentify individuals in a beacon.

Moreover, Shringarpure and Bustamante showed 
that relatives are also prone to such a reidentification 
attack. Similar to Sankararaman and his colleagues, the 
authors used a single parameter to model the degree of 
relatedness (the probability that two individuals share 
an allele at a single SNP: 1.00 for identical twins, 0.50 
for parent–offspring and sibling pairs, 0.25 for first cous-
ins, and so on) and derive the updated likelihood-ratio 
test as a function of this parameter. Using simulated 
data, they showed that in a beacon with 1,000 individu-
als, target reidentification was possible—at a more than 
0.95 true-positive rate and 0.05 false-positive rate—
with only 5,000 queries; first-order relative reidenti-
fication required approximately 40,000 queries. The 
true-positive rate dropped to 0.50 for second-order rel-
atives, and approximately 0.23 for third-order relatives, 
with 40,000 queries.

Deanonymizing Publicly Available  
Genomic Datasets
As discussed, the Y chromosome is (almost) preserved 
along the male line of a given family. Thus, for commu-
nities in which last name is also preserved along the 
male line, the Y chromosome and last names are corre-
lated. Such correlation can be accessed through public 
genealogy databases.
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Figure 2. Decrease in father’s genomic privacy by attacker’s incorrectness.  
We revealed partial genomes of other family members for different high-order 
correlation models in the genome. MC is Markov chain model (with different 
orders).
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Melissa Gymrek and her colleagues recently showed 
that individuals’ last names could be recovered by 
querying recreational genealogy databases with their 
Y-STRs.16 Furthermore, the combination of last name 
with other auxiliary information such as age and state 
(which can be easily obtained from public resources) 
could be used to triangulate the target’s identity. Even-
tually, such triangulation would lead an attacker to link 
the anonymized genomic data stored on a public reposi-
tory to the donor’s real identity.

The authors used the public genealogy databases 
Ysearch (www.ysearch.org) and SMGF (www.smgf 
.org), both of which are free and have built-in search 
engines. When users input their (or someone else’s) 
Y-STR profile, the database returns the last name of the 
corresponding donor. Gymrek and her colleagues also 
assumed that anonymized genomic data (from which 
they obtained the target’s Y-STR profile) is available 
with the target’s birth year and state of residency. Note 
that the US’s Health Insurance Portability and Account-
ability Act of 1996 (HIPAA) doesn’t protect these two 
pseudoidentifiers.

Finally, the authors determined the target’s real 
identity by entering the target’s last name, birth year, 
and state of residency into online public record search 
engines. They showed that this combination yielded a 
median result set (the set containing potential donors of 
a given anonymized genome) of 12. They also reported 
five successful surname inferences—in which the anon-
ymized genome’s donor could be uniquely identified—
from Illumina datasets of three large families that were 
part of the 1000 Genomes Project, which eventually 
exposed nearly 50 research participants’ identities.

Countermeasures
Here, we briefly discuss some potential countermea-
sures against these privacy risks.

Cryptography-Based Solutions
Keeping genomic data in encrypted form, instead 
of making it publicly available, and providing query 
results only to specific individuals (such as patients, 
medical centers, or researchers) might mitigate some 
of the aforementioned attacks. Cryptography-based 
techniques can protect both kin and personal genomic 
privacy. To this end, researchers have proposed crypto-
graphic solutions for different query types.

There’s been a significant amount of work on privacy- 
preserving pattern matching and the comparison of 
genomic sequences. Juan Ramon Troncoso-Pastoriza 
and his colleagues proposed an algorithm for private 
string searching on the DNA sequence by using a finite 
state machine.17 Their work was revisited by Marina 
Blanton and Mehrdad Aliasgari, who developed an 

efficient method for sequence comparison using gar-
bled circuits.18 Furthermore, Muhammad Naveed and 
his colleagues proposed a scheme based on functional 
encryption for privacy-preserving similarity tests on 
genomic data.19 Recently, Xiao Shaun Wang and his  
colleagues proposed an efficient privacy-preserving 
protocol to find genetically similar patients in a distrib-
uted environment.20

Other works have focused on private clinical genom-
ics. Emiliano De Cristofaro and his colleagues pro-
posed a secure protocol between two parties that tests 
genomic sequences without leaking private information 
about the genomic sequence or the test’s nature.21 Pierre 
Baldi and his colleagues used private-set intersection to 
present an effective algorithm for privacy-preserving 
clinical tests and direct-to-consumer methods on DNA 
sequences.22 Rui Wang and his colleagues proposed 
computing on genomic data by distributing the task 
between a data provider and consumer through pro-
gram specialization.23 Erman Ayday and his colleagues 
designed a scheme that protects the privacy of users’ 
genomic data while enabling medical units to access the 
data to conduct medical tests or develop personalized 
medicine methods.24 Finally, Zhicong Huang and his 
colleagues developed an information-theoretical tech-
nique to securely store genomic data.25

One last line of investigation has explored the use of 
cryptography-based techniques such as homomorphic 
encryption, secure hardware, and secure multiparty 
computation.26,27

Differential Privacy–Based Solutions
Cryptography-based techniques help individuals query 
genomic databases in a privacy-preserving way. How-
ever, such solutions don’t prevent an attacker from mak-
ing inferences from the results of such queries. As for 
cryptographic mechanisms, the techniques for mitigat-
ing membership inference were developed to protect 
personal genomic privacy in general. However, differ-
ential privacy, a well-known technique for answering 
statistical queries in a privacy-preserving manner,28 can 
be easily adapted to preserve kin genomic privacy at a 
lower cost for utility because membership inference is 
more successful for individuals whose genomic data  
is known than for their kin.

To prevent such attacks, differential privacy has been 
used to compose privacy-preserving query mecha-
nisms for genome-wide association study (GWAS) 
settings.29,30 Caroline Uhler and her colleagues pro-
posed methods for releasing differentially private 
minor allele frequencies (MAFs), chi-square statistics, 
p-values, top-k most relevant SNPs to a specific pheno-
type, and specific correlations between particular SNP 
pairs.29 These methods are notable because traditional 
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differential privacy techniques would be unsuitable: the 
number of correlations studied in GWAS is much larger 
than the number of people in the study. However, dif-
ferential privacy is typically based on a mechanism that 
invokes Laplacian noise and, thus, requires a very large 
number of research participants to guarantee acceptable 
privacy and utility levels.

Aaron Johnson and Vitaly Shmatikov explained that 
computing the number of relevant SNPs and the pairs 
of correlated SNPs is the goal of a typical GWAS.30 
They provided a distance score mechanism to add noise 
to the output. All relevant queries required by a typical 
GWAS are supported, including the number of SNPs 
associated with a disease and the most significant SNPs’ 
locations. Empirical analysis suggests that the new dis-
tance score–based, differentially private queries pro-
duced better, though still far from acceptable, utility for 
a typical GWAS. Differential privacy might also be a 
solution for the beacon attack, with a tradeoff in utility.

Optimization-Based Solutions
Differential privacy techniques perturb the data before 
releasing it, and cryptographic techniques are gener-
ally too inefficient for research settings. To avoid these 
issues, some individuals might decide to publicly share 
their data in clear (without encryption), for example, 
to help medical research progress. In a previous work, 
we proposed an optimization-based mechanism for 
reaching a suitable tradeoff between shared SNPs’ 
usefulness and family members’ genomic privacy.31 
Optimization-based solutions could potentially mitigate 
all the attacks we’ve discussed. The optimization-based 
solution we discuss subsequently is particularly tailored 
to inference attacks.

Consider individuals who want to share their 
genome, yet are concerned about the subsequent pri-
vacy risks for themselves and their family. We designed 
a system that maximizes disclosure utility without 
exceeding a certain level of privacy loss within a family, 
considering kin genomic privacy, the family members’ 
personal privacy preferences, the SNPs’ privacy sensi-
tivities, the correlations between SNPs, and the SNPs’ 
research utility. Our solution automatically evaluates the 
privacy risks for all family members and decides which 
SNPs to disclose. It relies on the quantification frame-
work discussed earlier and combinatorial optimization.

First, we defined a linear optimization problem that 
aims to maximize the utility of disclosed SNPs. Util-
ity increases linearly with the number of shared SNPs, 
while satisfying all family members’ genomic and health 
privacy constraints. This problem is very similar to the 
optimization literature’s multidimensional knapsack 
problem; we relied on the branch-and-bound algorithm 
to find the optimal SNP subset to be disclosed. Second, 

we applied a fine-tuning algorithm to account for the 
impact of intragenome correlations (linkage disequilib-
rium) on privacy. Our results indicated that, given the 
current data model, we can protect an entire family’s 
genomic privacy while still making available an appro-
priate subset of genomic data. The approach’s main dis-
advantage is that the considered optimization problem 
is nondeterministic polynomial time–complete and 
doesn’t admit any fully polynomial-time approximation 
scheme. Therefore, we can’t consider a significant num-
ber of SNPs using this problem.

Future Research Directions
Individuals are increasingly using direct-to-consumer 
services such as 23andMe, AncestryDNA, and Family-
TreeDNA to obtain their genomic information. Some 
share this information on public genome-sharing web-
sites such as openSNP.org, mainly to contribute to 
genomic research. Although most share their genomic 
data on such platforms in an anonymized way, others 
either directly reveal their real identities or share suf-
ficient information to cause deanonymization.16,32 By 
analyzing the genomic data of such websites’ users, 
attackers might be able to infer family bonds; if at least 
one family member is identifiable or deanonymized, 
attackers might be able to reconstruct the actual family 
tree along with their genomic data.

Although this poses a serious privacy risk for con-
tributors to anonymized genomic datasets, these datas-
ets are crucial to genomic research. To find the balance 
between privacy and utility, an optimization-based 
solution, similar to the one we discussed, could be used. 
By selectively hiding dataset participants’ SNPs, such an 
optimization-based technique would also hide familial 
relationships between the donated genomes and maxi-
mize the utility of the data shared by the donors.

Other types of biomedical data are becoming 
increasingly available, such as epigenomic or transcrip-
tomic data. In particular, DNA methylation, one of the 
most important epigenomic elements, was recently 
shown to be reidentifiable through genotype infer-
ence,33 because parts of the DNA methylation are influ-
enced by the genome. These correlations between DNA 
methylation and the genome imply the existence of 
interdependent privacy risks for relatives’ DNA meth-
ylation data. Therefore, it’s crucial to precisely quantify 
these interdependent risks and analyze whether they 
appear beyond the parts of the DNA methylation that 
are correlated with the genome.

T he kinship-related privacy implications of genomic 
data will only continue to grow as genomics gain 

importance and more people get their DNA sequenced. 
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Thus, it’s crucial that we consider and implement appro-
priate protective mechanisms when using individuals’ 
genomic data in various applications. 
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Genomic privacy has attracted much attention from the research community, because its risks are unique 
and breaches can lead to terrifying leakage of sensitive information. The less-explored topic of genomic 
security must address threats of digitized genomes being altered, which can have dire consequences in 
medical or legal settings.

A s full genome sequencing becomes increasingly 
practical and affordable, it’s not hard to imagine a 

(near) future where large numbers of people store and 
maintain their digitized genomes. Ubiquitous access to 
one’s digitized genome opens the door to a wide range of 
applications, ranging from serious (for instance, disease 
screening or paternity testing) to social (for instance, 
ancestry tracing or compatibility/dating). At the same 
time, a genome represents a veritable gold mine of 
extremely personal and sensitive information about its 
owner as well as that person’s ancestors, descendants, 
and siblings. Furthermore, as the ultimate static biomet-
ric, a leaked genome can’t be revoked or modified, thus 
exacerbating privacy concerns. Consequently, genomic 
privacy is a very timely and important subject, which 
has, in recent years, understandably attracted much 
attention from the research community. (See “Whole 
Genome Sequencing: Revolutionary Medicine or Pri-
vacy Nightmare?” for an overview of genomic privacy 
challenges.1)

With the spotlight on the privacy front, where 
moderate progress has been made, comparatively less 

attention has been devoted to genomic security. This 
is surprising because security is at least as important 
as privacy. In the context of personalized medicine, a 
modified genome can lead to wrong drugs or treatments 
being prescribed or administered. In terms of paternity 
or common ancestry testing, a modified genome can 
yield incorrect test results, which can translate into 
equally incorrect legal decisions.

Some recent work on genomic security (for instance, 
G.K. Ragesh and K. Baskaran’s “Cryptographically 
Enforced Data Access Control in Personal Health 
Record Systems”2) focused on access control for health 
records, which—though important—doesn’t prevent 
the possibility of an insider modifying genomic data. 
In particular, Ragesh and Baskaran sought to prevent, 
rather than detect, unauthorized modifications.2

One possible reason for genomic security not hav-
ing received much attention thus far is that it’s per-
ceived not to pose any new challenges. In this article, we 
show that this conventional wisdom might be unjusti-
fied. After taking a closer look at genomic security, we 
identify some new challenges that can’t be resolved by 

Genomic Security (Lest We Forget)
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naively applying current techniques. These challenges 
stem from several factors, including the size and longev-
ity of the human genome, an unconventional applica-
tion model, bandwidth and computation complexities, 
and the need to balance security with privacy.

Genomic Security
We envisage a generic application scenario with the fol-
lowing key features:

■■ An individual—Alice—obtains her digitized genome 
from an authorized sequencing lab (SL).

■■ Alice stores the result on her personal device, for 
instance, a laptop or smartphone.

■■ Later on, Alice wants (or is mandated) to conduct 
a genetic test, the purpose of which might be legal, 
medical, or social.

■■ The test requires Alice to provide some specific 
genomic data—typically, a small portion of the entire 
genomic sequence—to the application server (tester) 
that actually performs the test.

This scenario triggers various security issues for all 
stakeholders. One important issue is certification and 
periodic recertification of sequencing labs, because Alice 
clearly needs to trust the SL to correctly sequence and 
digitize her genome. This process would likely be done 
by a trusted government agency, for instance, the US  
Food and Drug Administration (FDA).

Another issue is certification of application-specific 
servers, which could be trickier due to a wide range 
of medical, legal, and social applications, each with its 
own access requirements to specific genomic excerpts. 
This would let Alice decide which parts of her genome 
should be revealed to a particular application. For 
example, a social app might be restricted to accessing 
segments that determine certain physical characteris-
tics, such as height and hair or eye color, whereas a legal 
DNA profiling app that uses the short tandem repeat 
(STR) method might be restricted to accessing Com-
bined DNA Index System (CODIS)-stipulated 13 core 
loci. This diversity calls for a well-defined policy or 
authorization syntax such that an application server can 
be certified to permit access to only a set of fixed and 
specific genomic locations or ranges thereof.

A related issue is proving rightful ownership; for 
example, if the test is conducted remotely (that is, 
over the Internet), how does Alice convince the tester 
that she supplied her own genomic data? This clearly 
requires a certification scheme that involves all three 
entities—the individual, the lab, and the tester.

Despite the obvious importance of all of the above, 
we focus in this article on more basic issues: the authen-
ticity and integrity of Alice’s genomic data in the context 

of diverse applications. At first glance, this seems eas-
ily addressable via textbook security techniques, such 
as hash functions and digital signatures. However, as 
we discuss, the problem is a bit more challenging than  
it appears.

Genome Representation
In general, the human genome is a sequence of  
3.2 3 109 base pairs—two letters chosen from the tiny 
four-letter alphabet: {adenine (A), cytosine (C), gua-
nine (G), and thymine (T)}. The simplest way to repre-
sent it digitally is to use an array of three-bit blocks, each 
representing the first letter of a base pair at the corre-
sponding absolute position. (An additional bit might be 
needed to account for sequencing errors, for example, 
a symbol “X” where a base letter was unreadable). The 
second letter doesn’t need binary representation as it 
can be deduced from the first one using the base-pairing 
rule (www.biology-pages.info/B/BasePairing.html).

However, because human genomes have a high 
degree of similarity, an individual’s genome is often rep-
resented as a set of differences with respect to a fixed 
reference genome. In practice, only approximately  
3 3 106 base pairs are needed for most genetic applica-
tions. Hence, although a full and complete representa-
tion of a single genome might take up to 200 Gbytes, a 
compact version based on a reference representation, for 
instance, using the 1,000 Genomes Project variant call 
format (www.internationalgenome.org/wiki/Analysis 
/vcf4.0), occupies only about 120 Mbytes. For simplic-
ity’s sake, we assume the genome reference representa-
tion is a list of 3 3 106 tuples of the form: (x, Lx), where 
Lx is the base pair at position x. In practice, Lx might 
contain more complex genomic data regarding position 
x. Nonetheless, the value of Lx doesn’t impact the secu-
rity issues discussed later.

Stakeholders and Trust Model
Again, the stakeholders in the aforementioned scenario 
include the individual—Alice, the SL, and the appli-
cation server—tester. For now, we assume that the SL 
operates mostly offline, whereas Alice and the tester 
interact over the Internet or another similarly insecure 
communication channel. Given proper and timely cer-
tification by a higher authority (for instance, the FDA), 
we assume that everyone trusts the SL. However, the 
tester doesn’t trust Alice regarding the authenticity and 
integrity of her genomic data. At the same time, Alice 
doesn’t trust the tester with any of her genomic infor-
mation beyond that which the latter is authorized to 
access for the particular test.

In the future, the SL’s role might be replaced by a per-
sonal sequencing device. Such devices, though certainly 
not affordable today, are already available from vendors 
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such as Illumina. In the extreme, we can imagine a 
world in which individuals own and operate their own 
sequencing devices, perhaps as part of or as an attach-
ment to a smartphone. Naturally, it would be crucial 
for such a device to be equivalent to an SL in terms of 
both functionality and trust. In particular, it would have 
to be certified by a trusted authority and would need to 
incorporate secure hardware coupled with some degree 
of tamper resistance as well as a means of secure logging 
and auditing.

Requirements
The first requirement is an efficient means for Alice to 
convince the tester of her genomic data’s integrity and 
authenticity.

The second requirement is privacy of Alice’s genome: 
because a typical genomic test uses only a small portion 
of the entire genome, the rest must be kept secret from 
the tester. Ideally, information revealed by Alice mustn’t 
allow the tester to learn anything else about Alice’s 
genome. However, this is unrealistic from the outset 
because a genome isn’t random; information that cor-
responds to certain loci might allow the tester to infer 
(with absolute certainty, or at least with nonnegligible 
advantage over a random guess) contents of other loci. 
Although privacy is a key goal, the inference problem is 
beyond the scope of this article.

The third requirement is performance: minimal stor-
age, communication, and computation overheads in-
curred by all stakeholders. This is of highest importance 
for Alice who might be using a resource-constrained 
personal device. Of course, following current trends, 
Alice could outsource storage and computation of her 
genomic data to a cloud service provider (CSP), which 
has vastly greater resources than her device. There’s still 
an incentive to minimize all costs, due to the CSP’s very 
large scale of both storage and computing. Outsourcing 
neither changes the trust model above nor invalidates 
the requirements. The other two stakeholders—the SL 
and the tester—are expected to be commercial entities 
with ample computing, storage, and communication fa-
cilities. (An exception would be peer-to-peer social ge-
nomic applications, in which a tester might be another 
personal device.) Nonetheless, it’s always desirable to 
reduce their overheads.

Challenge
A prominent challenge stems from the conflict between 
security and privacy requirements. On one hand, Alice’s 
privacy implies that she should control her genomic 
information revealed to the tester. On the other hand, 
the tester demands authenticity and integrity, which 
means that Alice must be unable to modify (or delete 
parts of) her digitized genome.

This issue is exacerbated by the compact reference 
representation. Consider a simple example. Suppose 
that the tester requests a sequence of X base letters, 
starting at position Y. We assume that Alice’s genome 
has just one difference in this range: an A at position Y9 
(for Y9 – Y , X). The next difference is a C at position 
Ynxt  Y 1 x, while the previous difference is a G at 
position Yprv , Y. An honest Alice would send the tes-
ter a single tuple: (Y9, A). She would also attain maxi-
mal privacy by revealing nothing beyond the minimum 
required by the tester.

Alternatively, a malicious Alice could cheat and 
send an empty string, thus claiming that her genome 
and the reference have no differences in the range  
[Y,Y 1 X]. If we assume that each difference is some-
how individually authenticatable (for example, signed 
by the SL at sequencing time), Alice can’t create base 
letter differences where none exist. However, she can 
easily omit actual differences from the requested range. 
In the database security literature, this is sometimes 
called the range query completeness problem, where 
a more generic term “records” is used instead of “dif-
ferences.” It also has a trivial solution: adjacent differ-
ences must be securely (cryptographically) bound, 
that is, authenticating a difference at position Y9 must 
allow the tester to securely determine that previous 
and next differences occur at positions Yprv and Ynxt, 
respectively.

This method is readily applicable in our context; for 
example, for each difference at position Y9 involving a 
base letter LY9, SL could sign a tuple: (Y9, LY9, Yprv, Ynxt) 
where Yprv and Ynxt are as defined before, with two spe-
cial symbols (for instance, –inf and 1inf) indicating 
the start and end. For each difference in the requested 
range, Alice would send the tester one such signed 
tuple, and any cheating on her part would be trivially 
detectable. If Alice really had no differences in the entire 
[Y,Y 1 X] range, there would necessarily exist either 
(or both) the closest previous or next closest difference, 
represented as a distinct signed tuple. It’s easy to see 
that if Alice provides an SL-signed tuple correspond-
ing to either position, the tester can verify it and thereby 
determine that Alice’s genome has no differences in the  
[Y,Y 1 X] range.

Although secure, this approach sacrifices some of 
Alice’s genomic privacy. Note that, in the above exam-
ple, the tester learns (potentially a lot) more than it’s 
entitled to learn. Specifically, regardless of the number 
of differences in the [Y,Y 1 X] range, the tester learns 
the positions of two other differences: Yprv and Ynxt. 
There seems to be no easy solution to this.

As this discussion illustrates, reconciling privacy and 
security isn’t obvious, at least if reference representa-
tion is used. In the rest of this article, we discuss ways to 
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simultaneously attain integrity, authenticity, and com-
pleteness for the tester as well as privacy for Alice.

Naive Approaches
We start with some very naive approaches to authentic-
ity and integrity. Though not quite practical, they pro-
vide insights into ensuing design challenges and lead us 
to a somewhat practical baseline technique.

No Privacy
In the no privacy (NoP) approach, after sequencing, the 
SL signs the compact genome representation and refer-
ences its owner’s identity (Alice) and/or the owner’s 
public-key certificate. Thereafter, Alice can easily prove 
authenticity and integrity to the tester by transferring 
the whole signed genome and authenticating herself 
in the process. This incurs for Alice the lowest possible 
costs for storage (just the cleartext genome) and com-
putation (almost none). In return, Alice has no privacy 
whatsoever, while communication overhead is maxi-
mal. The tester’s costs are similar to Alice’s, albeit storage 
is needed only temporarily, up to signature verification.

Finer-Grained Privacy
In the finer-grained privacy (FGP) approach, the SL 
partitions Alice’s genome sequence into segments and 
separately signs each, using some unique identifier to 
tie all the segments together as well as to bind them to 
Alice. This way, Alice sends the tester the smallest set 
of signed segments that contain necessary/requested 
positions and base letters. One possibility is to pick 
uniform-size segments, which makes for easier process-
ing and storage. Alternatively, genomic specialists can 
determine segments of variable lengths according to 
the application needs; for example, standard test types 
might call for specific fixed ranges. We don’t pursue this 
further as it’s orthogonal to our study. This approach 
offers weak privacy for Alice because it leaks extra (not 
strictly required) information to the tester. The actual 
amount of leakage depends on the segmentation algo-
rithm and the specific tester application.

Baseline: Extreme FGP
Taking FGP to the extreme, we can obtain an optimal 
mix of security and privacy at the expense of storage. 
In this case, called extreme FGP (eFGP), the SL uses 
the full genome representation, instead of the com-
pact (reference-based) version—that is, it individually 
signs every single base letter along with its position. 
As a result, Alice attains optimal privacy because only 
data corresponding to requested (and, presumably, duly 
authorized) positions is revealed. For its part, the tester 
can individually authenticate each position/base-letter 
pair and verify ownership.

eFGP’s tradeoff is in performance: all parties 
incur much higher costs than NoP. SL has to com-
pute 3.2  3  109 signatures. With RSA, the minimum 
near-term safe key/modulus size is 2,048 bits (antici-
pated to be secure until 2030), while elliptic curve cryp-
tography (ECC) needs 224 bits for roughly the same 
security. (Both 2,048-bit RSA and 224-bit ECC are 
believed to offer 112 bits of security.) We can discount 
the SL’s computation complexity because, as a commer-
cial entity, it has ample resources and can always find 
a way to pass the extra costs onto its customers. Alice 
doesn’t need to verify individual base-letter signatures; 
at delivery time, the SL can supersign the whole genome 
separately, and Alice can verify just that one signature.

Of more concern is storage, that is, space complex-
ity: even if we ignore storage for position metadata, sig-
natures themselves result in data expansion of two to 
three orders of magnitude, depending on the signature 
type. This translates into hundreds of gigabytes (ECC) 
or nearly a terabyte (RSA) per genome. For Alice, stor-
ing this much data on a personal device, and commu-
nicating it, is likely to be prohibitive in the near future. 
On the other hand, assuming that a typical test involves 
only 0.1 percent of the genome (which approximates 
the typical difference between any two humans), Alice’s 
communication with the tester would be commensu-
rately less intensive, that is, 1,000 times less.

For the tester, eFGP requires as many signature 
verifications as the number of base letters requested 
from Alice. This is where the choice of the signature 
scheme matters most. For instance, it’s well known that, 
with small public exponents, RSA is generally 10 to 30 
times faster than elliptic curve (EC) digital signature 
algorithm (DSA) for verification. The next question is 
whether the extra bandwidth consumed by RSA signa-
tures is outweighed by faster verification. The answer 
depends on several variables, such as network speed and 
requested plaintext size.

Consider the following example. On a commodity 
2015 MacBook Pro, OpenSSL reports signature veri-
fication speeds of 15,702/s and 1,540/s for RSA and 
ECC, respectively. We assume a 1-Gbps network and 
equally capable interfaces for Alice and the tester. Also, 
the tester can pipeline signature verification, that is, 
verify each base-letter signature immediately on receipt. 
We set k 5 3.2 3 106, which corresponds to 0.1 per-
cent of the genome, and RSA and ECC sizes of 2,048 
and 224 bits, respectively. Then, RSA transfer delay 
is estimated as (2,048 3 3.2 3 106)/109 ≈ 6.5 s, and 
DSA as (224 3 3.2 3 106)/109 ≈ 0.7 s. These delays are 
clearly dwarfed by signature verification times: 3.2 3  
106/15,702 ≈ 203.8 s for RSA and 3.2 3 106/1,540 ≈ 
2,078 s for ECC. If we pick a much smaller k 5 1,000, 
signature verifications would be 0.064 s for RSA and 
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0.65 s for ECC, while transfer delays remain relatively 
insignificant: 0.002 s for RSA and 0.0002 s for ECC.

Consequently, at least for the time being, RSA has 
a clear performance advantage. It’s easy to see that the 
gap would grow significantly larger with bigger key 
sizes, for example, 3,072 and 256 bits. Although other 
tester CPUs could yield very different results, it seems 
unlikely (though not impossible) that ECC would out-
perform RSA, unless congestion or other factors dras-
tically reduce network speed. Today, very low network 
speeds can be encountered if Alice and the tester com-
municate over a 2G or 3G cellular network; however, 
gigabit cellular is already available and will probably 
become pervasive in a few years.

Note that although virtually all modern signature 
algorithms use the well-known hash-and-sign tech-
nique, our earlier discussion ignores the cost of hash-
ing, because it’s assumed to be negligible compared to 
that of signature verification. In addition, all signatures 
in eFGP are computed on distinct plaintexts, because 
each “message” includes a base letter, its position, and 
a reference to Alice’s identity (and/or her public-key 
certificate).

An auxiliary issue is storage (disk) read speed on 
Alice’s device. Although disk read speeds of modern 
smartphones don’t yet match top network speeds, 
commodity laptops easily reach gigabits/second disk 
read speeds, for example, MacBook Pro in 2015. We 
can safely assume that smartphones will catch up in a 
few years. Note that storage write speed on the tester’s 
side is less important because of presumably abundant 
resources.

In summary, eFGP offers a useful baseline: it 
achieves the best balance between security for the 
tester and privacy for Alice. Its main drawback is 
performance.

Performance Optimizations
Here we consider some means of improving the base-
line eFGP’s performance.

Batch Verification
One natural way to speed up the tester’s computation is 
by using batch signature verification. This way, Alice still 
sends the same data to the tester, which accumulates all 
plaintext hashes and all signatures and verifies the entire 
collection at the cost of one signature verification. (In 
other words, an accumulated hash is verified against an 
accumulated signature.) The best-known example is the 
batch version of full-domain hash (FDH)-RSA,3,4 an 
RSA variant that requires an FDH—a cryptographic 
hash function that yields digests of the same bit size as 
the RSA modulus. However, batch FDH-RSA requires 
computing separate accumulators of message hashes 

and signatures, which costs 2k modular multiplications, 
where k is the number of signatures.

Because plain RSA signatures can be used safely 
with a fixed small public exponent of 3, each signature 
verification (without batching) entails two modular 
multiplications, resulting in the same 2k total. There-
fore, there appears to be no performance gain for the 
tester in using batch FDH-RSA. In fact, the latter might 
be more expensive because FDH can be slower than a 
plain hash function.

Though batch techniques aren’t unique to RSA, most 
others either require different public–private exponents 
per message or are applicable to batching signatures by 
multiple signers.

Condensed and Aggregated Signatures
Another potential optimization is condensed signa-
tures,5 which is very similar to batch verification, except 
that it’s Alice who accumulates all signatures (by the 
same signer) into a single condensed signature and 
sends it, along with all plaintexts, to the tester. The lat-
ter accumulates all plaintext hashes and verifies one 
signature. Condensed signatures appear to be a perfect 
match for RSA because of its comparatively large signa-
ture size. Similar to batch, an FDH-RSA variant must be 
used here. Assuming a small public exponent, the tester 
computes only k (rather than 2k in batch RSA) modular 
multiplications, although Alice is now forced to com-
pute the other k to produce the condensed signature.

There are also more general techniques, such as 
aggregated signatures, exemplified by the BGLS (Boneh, 
Gentry, Lynn, and Shacham) signature scheme.6 BGLS 
and its follow-ons allow k signatures produced by k 
signers over k distinct messages to be aggregated into 
one signature. By verifying this signature against all k 
messages, each message’s authenticity and integrity are 
ascertained. (As mentioned earlier, all base-letter mes-
sages are unique.) Also, BGLS doesn’t require signers 
to be distinct; in fact, it’s more efficient when all aggre-
gated signatures are by the same signer. Aggregation 
performed by Alice requires k EC multiplications. As 
with condensed RSA, bandwidth overhead is minimal. 
The tester’s verification requires k EC multiplications 
and one signature verification (pairing).

On one hand, k modular or EC multiplications 
performed by Alice is a costly endeavor, because her 
personal device might be computationally weak. On 
the other hand, Alice can precompute a condensed or 
aggregated signature. Furthermore, bandwidth sav-
ings can be substantial, for example, close to 6 s for k 5  
3.2 3 106 in our example above. It thus remains unclear 
whether there’s a performance incentive as far as using 
condensed signatures, unless bandwidth complexity 
must be minimized or precomputation by Alice is free.
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Merkle Hash Tree
A popular tool in computer security, a Merkle hash tree 
(MHT) is a data structure for efficient authentication 
of any member or subset of a large set. It’s a (typically, 
binary) tree where leaves are hashes of individual set 
members, and each interior node is the hash of its two 
children. Assuming a suitable cryptographic hash func-
tion, the tree root is the collective indirect hash of all 
leaves. The root node’s signature thus authenticates the 
entire tree. In an MHT with n leaves, given an O(log n)-
size co-path, any set element (leaf) can be authenticated  
as being part of the tree by hashing upward toward the 
root and verifying the root signature. Constructing an 
MHT takes O(2n) hashes and one signature. It’s nec-
essary to store only the leaves and the (signed) root 
because all interior nodes can be reconstructed with 
O(n) hashes. One notable application for MHTs is effi-
cient certificate revocation checking.

We can easily adopt the MHT construct to the prob-
lem at hand, as follows. The SL constructs Alice’s MHT 
with the ordered sequence of base letters serving as 
the leaves, then signs the root. Alice reveals a genomic 
segment—a sequence of contiguous base letters—to 
the tester. To do so, Alice provides the segment and a 
co-path consisting of all sibling nodes on the path(s) 
from the root to the common ancestor(s) of the seg-
ment. The tester reconstructs the Merkle tree’s root and 
verifies the SL’s signature. Co-path length is bounded by 
the MHT height of approximately 32 ≈ log2 3.2 3 109. 
Thus, Alice sends the tester up to 32 hashes (8 Kbits 
total at 256 bits/hash) and a root signature in addition 
to the requested base-letter segment.

For a k-long segment, this method involves negli-
gible bandwidth overhead and only requires the tes-
ter to perform a single signature verification as well as  
2k 1 32 – log k hashes.

One issue is Alice’s storage: the entire tree takes 
more than 200 Gbytes with a 256-bit hash function. 
A well-known way to cut the storage cost by half is for 
Alice to reconstruct the tree at runtime. Then, Alice’s 
storage would be the same as in NoP. However, the 
downside is the need to compute 3.2 3 109 hashes on 
demand, which is impractical.

Another issue is Alice’s privacy: Alice reveals only 
what’s absolutely necessary—that is, the requested 
segment base letters. Unfortunately, the co-path gives 
away additional information. Consider the example in 
Figure 1: leaves 2 through 6 correspond to the base- 
letter segment CGATA. The accompanying co-path 
would include nodes 1 and 12, but not base letters in 
positions 1, 7, and 8. However, knowledge of node 1 
allows the tester to learn G, and node 12 can be used 
to learn T and G in positions 7 and 8, respectively. This 
is due to the low entropy of individual base letters; 

there are only four possibilities for 1, and 16 possibili-
ties for 7 and 8, which makes exhaustive searching easy. 
Of course, a co-path node’s height exponentially influ-
ences the complexity of an exhaustive search. Given 
an interior node at height z, 4(2z  1)/2 trials are neces-
sary, on average, to learn its descendant leaf base letters. 
Therefore, an exhaustive search is practical up to about  
z 5 5, implying that up to 32 extra base letters might be 
learned by the tester.

Salted Merkle Tree
The natural next step is to prevent privacy leakage in 
MHT. This can be achieved using a salted Merkle hash 
tree (sMHT). For each base letter Li at position i, the 
SL generates a pseudorandom salt si. The correspond-
ing leaf LFi is computed as Fsi

(Li, i), where F() is a keyed 
pseudorandom function indexed on si, for instance, 
HMAC. An alternative is LFi 5 H(si, Li, i) where H() is 
a cryptographic hash function.

The rest of the tree is constructed as before. All salts 
are given to Alice by the SL as part of the initial digitized 
genome transfer. Salt bit size should be sufficient to rule 
out brute-force attacks, that is, at least 128. Then, Alice 
sends the tester all requested base letters along with 
their salts. This is in addition to the signed root and the 
co-path.

sMHT offers the same privacy for Alice, as well as 
the same integrity and authenticity guarantees for the 
tester, as eFGP. However, sending salts consumes addi-
tional bandwidth, comparable to eFGP without con-
densed or aggregated signatures. Unlike signatures, salts 
can’t be compressed or accumulated. Salts also impose 
much higher storage overhead for Alice. There is a trivial 
way to avoid it if the SL generates all salts using a keyed 
pseudorandom function with a key Ka, for instance,  

Figure 1. Merkle hash tree (MHT) leakage example. Knowledge of node 1 
directly reveals leaf G, and knowledge of node 12 lets the tester know the  
leaves T and G for position 7 and 8, respectively.
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si 5 FKa (i), and shares Ka with Alice as part of the 
initial transfer. Then, Alice can easily recompute, on 
demand, all salts corresponding to the leaves in the 
revealed base-letter segment.

Another issue with both MHT and sMHT is the 
number of contiguous segments revealed to the tester. 
Our discussion above assumed only one such segment 
of variable size. It’s quite possible that some genetic 
tests require many segments from disparate places 
in the genome. In that case, bandwidth and compu-
tational complexity of eFGP (with or without con-
densed/aggregated signatures) is unaffected, whereas  
tree-based techniques would require multiple par-
tial (up to the height of the least common ancestor 
of all segment-formed subtrees) co-paths, one for  
each segment.

Redactable Signatures
An alternative approach for balancing authenticity and 
integrity for the tester with privacy for Alice is to replace 
standard signatures (for instance, RSA or EC-DSA) 
with specialized methods. One attractive concept is 
redactable signatures (RS), introduced more-or-less 
concurrently by both Robert Johnson and his col-
leagues and Ron Steinfeld and his colleagues.7,8 An RS 
scheme allows authorized “cryptographic redactions” of 
a signed message. In other words, given a redactable sig-
nature with a signed message, an authorized party can 
redact the message and obtain a new valid signature, 
without knowledge of the signer’s signing key. In the 
context of RS, we can view a base-letter segment as a 
“redaction” of the full genome, in which all other data 
is crossed out. SL computes a redactable signature over 
Alice’s genome. This signature is then redacted to suit 
the specific segment to be sent to the tester.

Because RS is a very general concept, both eFGP and 
sMHT can be viewed as redactable signature schemes; 
indeed, very similar approaches are described by John-
son and his colleagues.7 (We note that they also suggest 
salted MHTs.7 However, because they’re computed in 
a special way, salts for revealed base letters don’t need 
to be transmitted, as they can be recomputed by the 
tester.) Several RS variations have been proposed, for 
example, hiding sizes of redacted areas9 and RS over 
nonstring data.10 However, these features appear irrel-
evant to the context of genomic security.

Signature Aggregation and Chaining
The final approach we discuss is digital signature aggre-
gation and chaining (DSAC).11,12 It’s a very simple 
technique, similar to the one sketched out earlier for 
secure range queries. It provides authenticity, integrity, 
and completeness. The basic idea is to construct signa-
tures over a sequence of elements such that it becomes 

easy to demonstrate authenticity, integrity, and com-
pleteness of a reply to any range query. Given a genomic 
sequence {L1, …, LN}, the SL computes a signature 
chain in two steps, for 0 , i # N :

■■ R0 5 s0, Ri 5 [Li, i, si, H(Ri1, si1)] and
■■ si 5 Fsig(Ri),

where Fsig is any suitable hash-and-sign signature func-
tion, {s0, …, sN} are N 1 1 pseudorandom salts (same 
as in sMHT), and H() is a hash function. Without get-
ting into further details, it’s easy to see that to authenti-
cate and verify integrity and completeness of a reply to a 
range query [i, j], it suffices to produce H(Ri–1, si1) as 
well as {Li, …, Lj},{si, …, sj} and sj.

From the bandwidth perspective, this is a particu-
larly appealing technique due to its minimal overhead. 
However, DSAC’s most attractive aspect is the verifica-
tion cost: (j – i) hashes with salts and one signature vali-
dation of sj. The downside of DSAC is its storage cost, 
which is as large as eFGP.

Limitations of Current Techniques
We gave an overview of several fairly simple approaches 
to genomic security. All offer roughly equivalent secu-
rity (authenticity and integrity) for the tester. As far as 
Alice’s privacy, eFGP, sMHT, and DSAC offer the best 
privacy by revealing only the required information. As 
far as performance, eFGP with condensed/aggregated 
signatures has the lowest possible bandwidth overhead, 
although computation overhead amounts to O(k) mul-
tiplications for Alice and the tester. sMHT has very 
low computation overhead dominated by O(2k 1 32) 
hashes and a signature verification, while its bandwidth 
overhead is slightly higher, unless many disparate (non-
contiguous) segments are involved. Finally, DSAC also 
offers very low bandwidth overhead coupled with the 
only k hashes and one signature verification.

To compare performance, Table 1 estimates several 
overhead factors, including the number of signatures 
the SL computes, the number of signatures the tester 
verifies, the number of bits Alice stores and transmits, 
and the number of cryptographic operations Alice 
performs.

As Table 1 shows, although all schemes except 
NoP offer optimal security and privacy, none incurs 
overheads close to the lower bounds. For example, in 
the case of sMHT, Alice stores approximately 214,000 
times and transfers approximately 28 times more data; 
this is in addition to the 32-fold computation cost.

Improving Efficiency
Further work is needed to reduce computation over-
head. One obvious step is to avoid the full genome 
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representation, which takes a heavy storage toll. Ideally, 
the SL would sign a reference representation of Alice’s 
genome and grant Alice the ability to redact arbitrary 
portions of this representation, which are outside the 
range requested by the tester, as well as efficiently prove 
that nonredacted portions (all properly signed by the 
SL) are complete—that is, Alice hasn’t omitted any-
thing from the requested range.

We sketch out one possible approach that satis-
fies these requirements and offers an optimal tradeoff 
among security, privacy, and efficiency. The main idea 
is for the SL to sign all pairs of adjacent mutations, 
similar to the trivial method we described earlier. How-
ever, actual positions and contents of mutations aren’t 
revealed; instead, the SL signs cryptographic commit-
ments to both contents and positions of adjacent muta-
tions. Each signed tuple contains two commitments. A 
reference representation with k mutations would need 
k  1  1 signed tuples. Note that two dummy sentinel 
mutations are needed to demarcate the beginning and 
end of the genome. When the tester requests all muta-
tions in a specific range, Alice supplies one or more 
tuples. If the positions of both mutations in a tuple are 
within range, Alice decommits their locations and con-
tents. (The tester can easily verify correctness.) If the 
lower-indexed mutation is within range and the higher 
one isn’t, Alice decommits only the former. She then 
proves (in zero knowledge) that the other mutation’s 

committed value (position) is greater than the upper 
range limit. A similar process is followed if a signed 
tuple’s higher-indexed mutation is in the range while the 
lower one isn’t. In the case in which the requested range 
contains no mutations, Alice releases a single signed 
tuple, wherein the lower-indexed mutation is below 
the lower range limit, and the higher-indexed mutation 
is above the upper range limit. She then provides two 
zero-knowledge proofs, each showing that committed 
positions are outside the requested range. Proving that a 
committed (and secret) integer is within a specific range 
is both possible and quite efficient, using techniques 
such as those offered by Fabrice Boudot.13

Due to length restrictions for the present article, we 
don’t elaborate on this approach.

Anonymity
In the context of some genetic (for instance, parentage) 
tests, Alice might want to hide her identity from the tes-
ter. For pseudonymity, it suffices for the SL to tie Alice’s 
genome to a random pseudonym or a pseudonymous 
public-key certificate. Alice can then communicate with 
the tester over some anonymous channel, such as Tor. 
Stronger privacy (that is, anonymity) requires that any 
two genetic tests must be unlinkable. Clearly, none of 
the methods described above is unlinkable. However, 
there is some hope for redactable signatures, which 
can be made unlinkable, as shown in “Composable 

Table 1. Performance comparison of a realistic sample set of variable values: N 5 3.2  109; Nr 5 3.2  106; k 5 1,000;  
ss 5 2,048; sh 5 256; and ss 5 128.*

Approach

Sequencing 
lab (no. of 
signatures 
computed)

Tester 
(no. of 
signatures 
verified)

Alice’s workload

Storage (bits) Communication (bits)
Computation (no. 
of hash operations)

No privacy 1 1 3Nr 1 ss 3Nr 1 ss
–

Extreme finer-grained 
privacy (eFGP)

N k 3N 1 ssN 3k 1 ssk –

eFPG 1 aggregation N 1 3N 1 ssN 3k 1 ss O(k)

Merkle hash tree (MHT) 1 1 3N 1 2shN 1 ss 3k 1 sh log N 1 ss
O(log N)

Salted MHT 1 1 3N 1 2shN 1 ssN 1 ss 3k 1 ssk 1 sh log N 1 ss
O(log N)

Digital signature 
aggregation and chaining

N 1 3N 1 ssN 1 ssN 3k 1 ssk 1 ss
–

Lower bound 1 1 3Nr 1 ss 3k 1 ss –

*N is number of base pairs in full genome representation; Nr is number of base pairs in reference representation; k is number of base pairs requested by the tester; 

ss is signature bit size; ss is bit size of salt; and sh is bit size of hash function digest.
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and Modular Anonymous Credentials: Definitions and 
Practical Constructions.”14

W e argue that genomic security has been under-
appreciated in favor of privacy. We believe 

security is vital to adoption of emerging and future 
personal genomic applications. The interesting mix of 
integrity, authenticity, and privacy requirements for 
multiple parties translates into a research challenge. 
We explored several fairly intuitive approaches, none 
of which satisfies all ideal security and performance 
requirements. Clearly, much remains to be done. 
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IMPLEMENTING CYBERSECURITY

With business data breaches on the rise, NIST introduced the 2014 Cybersecurity Framework (CSF)  
to help companies reduce the cybersecurity risks threatening their critical infrastructures. CSF’s key  
elements are described, with recommendations for organizations at various levels of adoption.

T he likelihood of business data breaches is rising, 
with 60 percent of all organizations suffering 

more than one security incident in 2015.1 To address 
this threat, 48 percent of organizations increased invest-
ments in security technologies, and 73 percent devel-
oped a data breach response plan. Furthermore, on 12 
February 2013, former US President Barack Obama 
issued Executive Order 13636 to improve the cyberse-
curity of industries with critical infrastructures.2

After working collaboratively with stakeholders 
from many US economy sectors, on 12 February 2014, 
NIST issued its Cybersecurity Framework (CSF; www 
.nist.gov/cyberframework) in an attempt to answer the 
question, What factors and areas must an organization 
consider if it wants to effectively reduce the cybersecu-
rity risks that threaten its critical infrastructures?

Gartner estimates that by 2020, more than 50 per-
cent of organizations will be using the NIST frame-
work, up from the estimated 30 percent that adopted it 
in 2015.3 One of CSF’s advantages is that it encourages 
a shift in cybersecurity management from a compliance 
to a risk management orientation.4 However, as I dis-
cuss in this article, two adoption roadblocks must be 
removed. First, the differences between these compli-
ance- and risk-oriented approaches must be clarified. 
And second, additional methods to guide the initial 

implementation and progressive expansion of CSF will 
be needed.

What Is Compliance-Oriented 
Cybersecurity?
The beginnings of the compliance-oriented approach 
can be traced to the enactment of rules requiring orga-
nizations to deploy minimum safeguards. For example, 
government regulations, such as the Health Insurance 
Portability and Accountability Act (HIPAA), and indus-
try specifications, such as the Payment Card Industry 
Digital Security Standard (PCI-DSS), describe secu-
rity controls that had to be implemented in specific 
industries. Once such laws are enacted and their stan-
dards accepted, firms ignoring the requirements face 
a noncompliance risk. Specifically, if an organization 
doesn’t implement the safeguards described in a stan-
dard or regulation, it exposes itself to economic and legal 
risks. Regrettably, rather than being viewed as security 
improvement ventures, such laws are sometimes per-
ceived as “the cost of doing business.” Organizations 
might hire a vendor to help implement safeguards and 
achieve compliance with the least possible cost and 
effort. Thus, this approach is sometimes called the 
“check-the-box” approach to security. Typically, the 
compliance-oriented approach is effective for scenarios 
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in which a specific problem, one with known causes or 
threats, must be resolved with a new remedy or solution.

Unfortunately, the cybersecurity threats and chal-
lenges that organizations face are too diverse to be 
compiled into a single list. For example, healthcare 
industry organizations are so varied that the HIPAA 
and HIPAA–HITECH (Health Information Tech-
nology for Economic and Clinical Health) rules offer 
multiple guidelines, rather than prescriptions, for the 
implementation of administrative, technical, and physi-
cal safeguards.5 Hence, different organizations can 
deploy different controls and practices to satisfy the 
HIPAA compliance requirement of having “reasonable 
and appropriate safeguards.”5 This creates a reality in 
which the meaning of HIPAA compliance might vary—
either slightly or widely—from one healthcare organi-
zation to another.

One way to circumvent the weaknesses of overly 
broad safeguards is to create laws that target particular 
processes and technologies. This is what the PCI-DSS 
attempts to do by focusing on making payment process-
ing and its systems more secure. Although this narrow 
focus makes the standard more prescriptive, a study of 
PCI-DSS adopters showed that organizations found 
it difficult to maintain PCI-DSS compliance from one 
year to the next.6 Less than one-third (28.6 percent) of 
certified companies were in full compliance less than a 
year after their first successful compliance certification. 
The study also found that many PCI-DSS implementa-
tions manifested a narrow overreliance on prevention 
and a lack of attention to attack detection, damage miti-
gation, and residual risk identification. In other words, 
the compliance-oriented approach didn’t offer adequate 
cybersecurity protection. The study recommended that 
PCI-DSS certification be seen as the baseline or indus-
trywide minimum acceptable cybersecurity standard.6

What Is Risk-Oriented Cybersecurity?
The risk-based approach frames cybersecurity threats 
and vulnerabilities as risks rather than as events. Risk is 
defined as the estimation of the likelihood that a specific 
threat source will exploit a particular vulnerability and 
produce a negative impact on (or harm) an organization.7 
The severity of a specific impact is determined by the 
degree of harm that it could inflict on an organization’s 
mission if or when specific IT assets are rendered inop-
erative. The magnitude of the potentially harmful impact 
could also be used to assign a “business value” score or 
a “criticality” score to IT assets and resources.7 Informa-
tion security risks are defined as the potentially adverse 
impacts on an organization’s operations—including its 
mission, services, image, and reputation—that could 
arise from the loss of confidentiality, integrity, or avail-
ability of information and information systems.8

These two approaches to cybersecurity differ in the 
scope of deployed controls and the purposes pursued. 
For example, organizations that adopt a compliance- 
oriented approach focus on certifying their internal  
processes’ security using a certification/compliance 
framework, whereas firms that adopt a risk-oriented 
approach focus on ensuring that both their internal and 
external processes are secure enough to withstand emerg-
ing external threats. Furthermore, compliance-oriented 
adopters are likely to deploy the minimum number of 
controls required to achieve formal compliance or cer-
tification, while risk-oriented adopters are more likely 
to deploy baseline controls as well as controls that are 
required to help the firm reduce emerging security risks.

Exploring the NIST Cybersecurity 
Framework’s Core
The NIST CSF consists of three elements: the core, the 
profile, and the implementation tiers. The core consists 
of five functions. Each function has several categories, 
with each category divided into specific technical and 
management activities (outcomes). The five functions 
are defined as follows:9

■■ The identify function defines the actions related to 
the understanding of policies, governance structures, 
asset categorization, cybersecurity risks, and priorities 
relevant for managing cybersecurity risks to systems, 
assets, data, and capabilities. Categories include asset 
management, business environment, governance, risk 
assessment, and risk management strategy.

■■ The protect function covers activities related to the 
development and implementation of safeguards to 
protect critical infrastructure services and to train staff 
and employees. Categories include access control, 
awareness and training, data security, information 
protection processes and procedures, maintenance, 
and protective technology.

■■ The detect function involves activities related to 
the development and deployment of appropriate 
searching, monitoring, and detection activities to 
identify cybersecurity events. Categories include 
anomalies and events, security continuous monitor-
ing, and detection processes.

■■ The respond function includes activities related to 
the development and implementation of appropri-
ate plans and processes to take action regarding a 
detected cybersecurity event. Categories include 
response planning, communications, analysis, mitiga-
tion, and improvements.

■■ The recover function describes activities related to 
the development and implementation of appropri-
ate plans and processes to recover from cybersecu-
rity events and to restore services and capabilities 
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impacted by such events. Categories include recovery 
planning, improvements, and communications.

These CSF functions reflect how NIST defines 
risk-based management. The framework recognizes 
four components of risk management: framing, assess-
ment, response, and monitoring.8 The identify func-
tion addresses risk framing and assessment. The protect 
function focuses on managing risk through mitigation, 
training, and risk prevention mechanisms. The detect 
and response functions combine to enable monitor-
ing and proactive responses, respectively. The recover 
function focuses on postattack actions to recover from 
cybersecurity incidents and restore an organization’s 
capabilities and services.

Hence, one of CSF’s central advantages is that it 
covers a broad range of areas and outcomes. However, 
some researchers argue that it falls short in a few areas. 
For example, some contend that CSF excludes data pri-
vacy outcomes and statutory and regulatory issues, and 
is too complicated for management and board mem-
bers to understand.4 Nevertheless, I argue that com-
panies could resolve some of these criticisms on their 
own. Organizations could add new functions and out-
comes, for example, data privacy outcomes, to the CSF 
according to their goals and priorities. Similarly, they 
could ignore functions and outcomes irrelevant to their 
contexts.

However, one area that CSF doesn’t cover strongly is 
risk transfer. I think that risk transfer is a central dimen-
sion of risk management that should be included in  
the CSF.

Cyberrisk Transfer:  
Advantages and Limitations
Cybersecurity insurance is a product that’s designed 
to mitigate losses caused by cyberincidents such as 
data breaches, network damage, and cyberextortion. 
Hence, organizations could use this service as a mecha-
nism to transfer portions of their risks to an insurance 
company. Cybersecurity policy coverage falls into two 
categories: first-party loss insurance, which covers direct 
losses to a company arising from events such as business 
interruption and destruction of data and property, and 
third-party loss insurance, which covers losses that a com-
pany causes to its customers and others.10 The literature 
indicates that insurance companies offer third-party 
policies more often than first-party policies.11

Two potential advantages are often cited regarding 
the transfer of information security risks. The Depart-
ment of Commerce’s Internet Policy Task Force argued 
that cybersecurity insurance vendors could potentially 
increase cybersecurity program adoption by promoting 
the widespread implementation of preventive measures 

throughout the market and encouraging the adoption of 
best practices by linking them to insurance premiums.10 
Moreover, I argue that organizations will have more 
money to invest in security safeguards and controls if 
they don’t have to maintain—all by themselves—a 
large budget reserve to cover the potential costs of infor-
mation security breaches. Cybersecurity insurance lets 
firms decide the portion of financial risk they want the 
insurance company to cover and the portion they want 
to bear on their own.

However, a few roadblocks hinder the realization 
of risk transfer’s benefits. First, there’s a lack of actuar-
ial data, which causes insurance companies too charge 
(too) high premiums for first-party policies.

Second, insurance firms fear that so-called “cyber-
hurricanes” could overwhelm them. A cyberhurricane 
is a major computer-related cyberincident that results 
in a large number of claims. For example, imagine a  
Trojan horse virus spreading from Europe to Asia, 
imposing massive financial losses on numerous com-
panies covered by the same insurer. This insurer could 
become bankrupt as a result of the massive losses 
caused by this single incident. Cyberhurricanes are 
problematic because there’s not only a lack of data about 
such events—making it difficult for insurers to analyze 
and plan for them12—but there’s also a lack of common 
cybersecurity standards across industries and limited 
knowledge about the effects of different cyberattacks.10

A third roadblock is that it’s difficult to clarify and 
quantify covered cyber-related losses and to assign lia-
bility for those losses to actors.11

Nevertheless, because companies are increasingly 
buying cyberinsurance to cover third-party losses, I argue 
that, in the future, more firms will realize how cyberinsur-
ance positively affects the recovery function. The process 
of qualifying for cyberinsurance requires organizations to 
specify which of its assets are to be covered by insurance 
and define the scope of threat exposure to these assests. 
Realization of the scope of exposed assets should moti-
vate IT leaders to create more effective recovery plans. In 
addition, for assets covered by insurance policies, insur-
ance companies will likely offer lower premiums to com-
panies with recovery plans that meet certain standards. 
Hence, firms that purchase cyberinsurance policies will 
be motivated to develop better recovery plans.

Therefore, I recommend that, within the recov-
ery function, CSF include a recovery planning category 
with the following cyberrisk transfer outcomes, or 
subcategories:

■■ RC.RP-1—the recovery plan is executed during or 
after event,

■■ RC.RP-2—risk transferability analysis or audit is 
executed,
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■■ RC.RP-3—the cyberrisk insurance policy is evalu-
ated and acquired, and

■■ RC.RP-4—the cyberrisk insurance coverage is 
reviewed and updated.

Recognizing and Managing 
Implementation Risks
A challenging aspect of the NIST CSF is the manage-
ment of implementation risks. Here, I discuss three 
such risks and propose guidelines for managing them.

Reducing Implementation Risks
To have an effective cybersecurity program, organiza-
tions must overcome three implementation risks:

■■ implementation creep—trying to implement a cyberse-
curity program across too many departments at once;

■■ frameworks creep—trying to combine too many 
frameworks into one universal framework; and

■■ controls creep—trying to deploy too many controls  
at once.

Each of these risks is likely to result in a longer imple-
mentation process, delayed positive results, loss of 
morale, and higher investments of money and effort. 
There’s no single best, universal way of managing these 
risks. However, some general guidelines can be pro-
posed based on extant work.

For example, Intel’s pilot NIST implementation 
focused on two departments.13 In addition, Ted Gary 
recommended that firms prioritize business services 
based on risk assessment and then implement the most 
important controls for the highest-risk services.14 The 
Center for Internet Security Critical Security Controls 
(CSC) has already ranked and categorized 20 controls 
based on their criticality.15 It posits that the first five 
controls can reduce the risk of cyberattack by approxi-
mately 85 percent. Gary recommended that new NIST 
adopters implement the first five CSC controls. Hence, 
I propose the following thesis:

The less experienced an organization is, the more 
likely it is to be successful with a cybersecurity imple-
mentation if it

■■ selects three or so departments for the initial 
implementation,

■■ deploys one or two of the frameworks (rather than 
several), and

■■ focuses on initially implementing the most critical 
controls.

Because cybersecurity is a long-term venture, there’s 
little to be gained from a rushed implementation 
process.

Understanding Risk Assessment’s Role
Once the management team chooses the departments 
to focus on, it would then authorize risk assessments 
for these departments. The analysis would include the 
documentation of the known threats, breaches, and vul-
nerabilities. It would cover both the internal and exter-
nal environments. The assessment would include an 
estimation of the likelihood of a cybersecurity event for 
specific information, processes, and technologies. There 
would also be an estimation of the potential impact of 
such cyberincidents on the organization. In addition, 
assessment of the regulatory environment would reveal 
security requirements that are imposed by laws and 
industry standards. After completing the risk assess-
ments, the organization would have the information 
necessary to determine and describe its cybersecurity 
state of affairs, which is typically documented by imple-
mentation tiers.

Implementation Tiers
Because the implementation of a cybersecurity pro-
gram is a journey rather than a one-time project, it’s crit-
ical for organizations to have a way to document their 
current and future states. Progress could be monitored 
with a scoring scheme that makes it possible to compare 
where an organization is now to where it desires to be 
in future. There are two kinds of implementation tiers 
in the literature.

In the first, qualitative descriptors are used to differ-
entiate the sophistication levels of cybersecurity imple-
mentations. One example is the implementation tiers 
proposed by NIST.9 NIST defines the stages of growth 
as four tiers, framing each stage as a progression of 
improvements that occur in terms of risk management, 
integrated risk management, and external participa-
tion. Table 1 (columns 1 and 2) describes the first two 
tiers. At the tier 1 stage, an adopter has undeveloped 
or insufficiently developed policies, practices, and risk 
management approaches. At the tier 4 stage, an adopter 
will manifest the most developed policies and practices. 
NIST’s implementation tiers are not maturity levels. 
Hence, they don’t have a scoring scheme.

In the second type, NIST’s implementation tiers 
are customized by adding new categories and scoring 
schemes. Intel’s custom tiers focus on a broader range 
of elements, such as people, technology, and processes, 
and use a scoring scheme ranging from 1 to 4 (highest 
maturity level). So, Intel’s approach (Table 1, columns 3 
and 4) is more detailed than NIST’s.

How do organizations choose between the two 
approaches? The implementation tiers’ content offers a 
hint. For example, if the central issue for a firm is moni-
toring the evolution of the risk management practices 
and culture, then NIST’s implementation tiers would be 
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preferable. However, if an adopter is interested in creat-
ing a road map that covers the development of resources 
such as people, processes, technologies, and ecosys-
tems, Intel’s maturity-oriented framework13 would be 
more appropriate.

Even though Intel’s tiers focus on vital resource areas 
and use a scoring scheme, it’s still not easily connected 
to the NIST CSF categories. Hence, it can’t be used to 
monitor a cybersecurity project’s progress.

Capability Level–Based  
Implementation Tiers
Table 2 shows the structure of capability level–based 
implementation tiers (CIT). The columns of the frame-
work are the NIST CSF functions, while the rows show 

four capability levels, whose names were adopted from 
the NIST framework.9 The descriptions under each grid 
were developed using NIST’s implementation tiers9 
and Carnegie Mellon University’s maturity model16 as 
references.

As Table 2 shows, each grid focuses on a functional 
area and depicts practices and assets indicative of each 
capability level. The capability levels are cumulative. For 
example, capability level 3 includes the level 2 require-
ments plus additional capabilities. The CIT scoring 
scheme is based on the concepts of capability and 
maturity levels. I modified and adapted the capability- 
and maturity-level definitions from Carnegie Mellon 
University’s Software Engineering Institute.16 Capabil-
ity level is defined as the scope of deployment of risk 

Table 1. A comparison of two implementation tier approaches.

NIST’s implementation tiers Intel’s maturity level–oriented tiers

Tier 1 (partial) Tier 2 (risk informed) Tier 1 (partial) Tier 2 (risk informed)

Risk-management process People

– � Cybersecurity risk practices 
are informal

– � Cybersecurity priorities 
aren’t informed by the 
organization’s risk objectives

– � Cybersecurity risk practices 
are approved

– � Cybersecurity priorities 
are informed by the 
organization’s risk objectives

– � Lack of cybersecurity training
– � Lack of awareness of security 

risks

– � Employees have security 
training

– � Employees have awareness of 
risks and security resources

Integrated risk management Process

– � Limited risk awareness at 
organization level

– � Practices are informal
– � Irregular implementation of 

security risk management

– � Awareness of security risk 
at the organization level but 
not organizationwide

– � Risk-informed, 
management-approved 
processes are defined and 
implemented

– � Informal risk management 
process

– � Lack of prioritization 
of threats into business 
decisions

– � Cyberactivities are risk 
informed

– � Management processes are 
risk informed

– � Cyberrisk information is 
shared 

– � Staff has adequate resources 
to perform cybersecurity 
duties

External participation Technology

– � Lack of processes to 
coordinate and collaborate 
with other entities

– � Firm knows its role but 
has no formal processes to 
coordinate and collaborate 
with other entities

– � Lack of tools
– � Poor tool management
– � Inadequate tool deployment
– � Technology lags behind 

current threats

– � Appropriate tools are 
deployed

– � Tools are maintained
– � Tools cover risk areas
– � Technology keeps pace with 

threats

Ecosystem

– � Lack of understanding of its 
role

– � No collaboration with 
external actors

– � Firm understands its role
– � Firm collaborates with 

external actors on an ad hoc 
basis
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Table 2. Capability level–based implementation tiers.

Level

Function

Identify Protect Detect Respond Recover

L1: partial 
(1–25 
points)

The relevant 
outcomes are 
pursued by untrained 
staff, inadequate 
policies, using no/
few tools, ad hoc 
processes, inadequate 
technology, and 
no information 
references.

The relevant outcomes 
are limited by poor 
awareness and 
training, inadequate 
policies, few access 
controls, inadequate 
data security tools, 
ad hoc policies, and 
inadequate protective 
technologies.

The relevant 
outcomes are limited 
by poor detection of 
events, inadequate 
monitoring, ad 
hoc processes, and 
inability to recognize 
penetrations and 
invasions.

The relevant outcomes 
are limited by slow 
response to detected 
events due to poor 
response planning, 
lack of analysis, slow 
mitigation, and poor 
communications.

The relevant 
outcomes are 
limited by lack of 
recovery planning, 
poor recovery 
process practices 
and readiness, and 
lack of effective 
communications.

L2: risk 
informed 
(26–50 
points)

The relevant 
outcomes are 
pursued by trained 
staff, using adequate 
policies, tools, and 
processes. The 
outcomes conform 
to expectations 
and are monitored, 
controlled, and 
reported.

The relevant outcomes 
are pursued by 
informed employees 
and trained staff, 
adequate policies, 
adequate access 
controls, adequate 
data security tools, 
adequate policies, and 
adequate protective 
technologies.

The relevant outcomes 
are pursued by 
informed employees 
and trained staff, 
adequate policies, 
event detection and 
monitoring tools, 
formal processes, and 
adequate ability to 
recognize penetrations 
and invasions.

The relevant 
outcomes are pursued 
by informed and 
trained employees 
who deploy adequate 
response planning, 
adequate analysis, 
mitigation capabilities, 
and communications.

The relevant 
outcomes are 
pursued by 
informed and 
trained employees 
who possess 
adequate recovery 
planning and 
readiness. Adequate 
communications 
and improvements 
are used.

L3: 
repeatable 
(51–75 
points)

The relevant 
outcomes and 
practices are 
operated at capability 
level 2, but the 
policies and practices 
are now risk informed 
and updated to adapt 
to changing threats. 
The outcomes fall 
within acceptable risk 
tolerance.

The relevant outcomes 
and practices 
are operated at 
capability level 2, 
and risk-informed 
management is 
used to select, 
deploy, evaluate, 
and review fitness 
of controls, policies, 
access controls, data 
security tools, and 
technologies.

The relevant 
outcomes and 
practices are operated 
at capability level 2, 
and risk-informed 
management is 
used to determine 
appropriateness 
of detection and 
monitoring tools and 
formal processes.

The relevant 
outcomes and 
practices are operated 
at capability level 2, 
and risk-informed 
management is 
used to determine 
appropriate response 
plans, analysis, 
mitigations, and 
communications.

The relevant 
outcomes and 
practices are 
operated at 
capability level 2, 
and risk-informed 
management is 
used to determine 
appropriate 
recovery plans, 
improvements, and 
communications.

L4: 
adaptive 
(76–100 
points)

The relevant 
outcomes and 
practices are operated 
at capability level 3 
and the outcomes 
are regularly 
monitored, assessed, 
and reported 
organizationwide. The 
practices and policies 
are institutionalized 
and regularly assessed 
and improved.

The relevant outcomes 
and practices 
are operated at 
capability level 3, and 
protection controls 
are monitored, 
assessed, and reported 
organizationwide. 
The policies are 
institutionalized. The 
policies and controls 
are regularly assessed 
and improved.

The relevant 
outcomes and 
practices are operated 
at capability level 3, 
and the effectiveness 
of detection and 
monitoring tools 
is monitored, 
assessed, improved, 
and reported 
organizationwide. The 
practices and policies 
are institutionalized.

The relevant 
outcomes and 
practices are operated 
at capability level 3, 
and the effectiveness 
of response plans, 
analysis, mitigations, 
and communications 
is monitored, 
assessed, improved, 
and communicated. 
The practices are 
institutionalized.

The relevant 
outcomes 
and practices 
are operated 
at capability 
level 3, and the 
effectiveness 
of recovery 
plans, analysis, 
mitigations, and 
communications is 
monitored, assessed, 
improved, and 
communicated.
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management practices, training, appropriate resources, 
policies, and procedures in pursuing the goals of a func-
tional area of the NIST framework.

The first column shows each capability level’s range 
of scores, adopted from Stephen Coraggio and his col-
leagues’ work.17 To make the scores meaningful, they 
must be linked to something objective. Jason Christo-
pher and his colleagues proposed that scores be based 
on the level of completion of the controls in a func-
tional area, with four progress milestones.18 I extended 
these to the following five classes: fully implemented  
(76–100), largely implemented (51–75), somewhat 
implemented (26–50), partially implemented (1–25), 
and not implemented (0).

Maturity level is defined as the achievement of a 
threshold capability level for a specific number of cat-
egories associated with a functional area of the NIST 
CSF. An organization should map capability scores to 
maturity levels in a manner that serves its business mis-
sion. For example, a mapping rule similar to the follow-
ing could be adopted: maturity level 1 means that 70 
percent or more of categories are assigned a capability 
level 1 rating, maturity level 2 means that 70 percent or 
more of the categories are assigned a capability level 2 
rating, and so on.

Linking capability to maturity levels has two advan-
tages. First, the scheme reinforces that capability 

acquisition is the path to improved maturity levels. Sec-
ond, it proposes that maturity levels will improve more 
if organizations become competent in a broad range of 
categories within a function, rather than just a few areas.

Developing Capability  
Level–Based Profiles
The NIST CSF proposed the use of profiles—road maps 
to guide the implementation of cybersecurity projects 
over time.9 The “current profile” indicates an organiza-
tion’s current cybersecurity outcomes, while the “tar-
get profile” depicts future outcomes. Table 3 shows an 
example of capability level–based profiles.

In this sample profile, the detect function is assigned 
maturity level 1, even though the mean capability score 
is 26.67. In contrast, although the mean capability score 
for the respond function is 26, this function is assigned 
maturity level 2. This is because four of the categories 
(that is, 80 percent) in the respond function exceed the 
threshold capability level score of 25. Only 33 percent of 
the detect function’s categories have 25 points or higher. 
Table 3 also shows the capability gap, which is the dif-
ference between current and future capability levels, as 
well as the weight, or priority given to each capability,17 
where 0 5 unimportant, 1 5 valuable, 2 5 important, 
3 5 both urgent and important (critical). The product 
of gap and weight yields a score that lets management 

Table 3. Example of an organization’s current and target profiles based on capability levels.

Function Category

Current Target

Capability 
gap (G)

Weight 
(W)

Priority  
(W * G)

Capability 
profile Maturity 

Capability 
profile Maturity 

Detect Anomalies and events 20 Level 1 55 Level 3 35 3 105

Security continuous monitoring 20 65 15 2 30

Detection processes 10 50 40 3 120

Respond Response planning 28 Level 2 35 Level 2 7 3 21

Communication 25 35 10 2 20

Analysis 30 55 25 2 50

Mitigation 35 60 25 2 50

Improvements 12 20 8 1 8

Recover Recovery planning 25 Level 1 35 Level 2 10 3 30

Improvements 20 30 10 2 20

Communication 10 28 10 1 18
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assign resources, beginning with the highest weighted 
gap score.

N IST’s CSF is changing the way cybersecurity 
is implemented across various US industries. I 

hope that the recommendations and examples provided 
here will enhance the implementation and future adop-
tion of and changes to this valuable framework. 
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SECURITY ADVICE

Users often don’t follow expert advice for staying secure online, but the reasons for users’ noncompliance 
are only partly understood. More than 200 security experts were asked for the top three pieces of advice 
they would give non-tech-savvy users. The results suggest that, although individual experts give thoughtful, 
reasonable answers, the expert community as a whole lacks consensus.

W ith almost daily news of high-profile cyber-
security incidents, users naturally wonder 

what they can do to protect themselves against attacks. 
Indeed, as cybersecurity professionals, we’re often 
asked by concerned friends and family for advice on 
what to do to stay safe online. But, somewhat to our 
own surprise, we’re dumbfounded about what to say in 
these situations. On one hand, we could say hundreds 
of things about online security; after all, the security 
field is so complex, it takes years to learn. On the other 
hand, those asking us for advice just want a few easy-to-
remember things they can start applying right away. 
Getting from the hundreds of things down to a handful 
of the most important is surprisingly challenging.

We set out to find the most important security 
advice on offer from experts today. Our goal was to 
find advice for a general audience that could be used, 
for example, in a public awareness campaign or on an 
informational website. To inform such general cyber-
security communications, the security field should 
have a consistent, prioritized set of advice that can be 
shared with those users looking for the most important 
things to start doing right away. The entire set might 
be long, but as long as the most important things are 
consistently communicated to users at large, users will 

have a better chance of understanding and remember-
ing them.

Our approach has its limitations. There are many 
different computing contexts, and good advice can 
be highly context dependent. Advice that works for 
one user might be irrelevant or impossible to follow 
for another. In some cases, users need assistance to 
respond to some specific situation, and providing such 
assistance is important—but it’s not our goal. Although 
there’s a need for contextualized advice and assistance, 
this work targets a different need: the most important 
advice to share with a general audience.

We Asked the Experts
Our work is guided by two primary research questions: 
What advice do security experts consider most impor-
tant? And is there expert consensus and consistency on 
what advice is considered most important? To identify 
the prevailing advice of the security community, we 
surveyed 231 security experts and asked them to name 
the top three pieces of advice they’d give to a non-tech-
savvy user to protect their security online.

Our results provide a broad sample of expert opinion 
about the highest-priority advice to share with users and 
reveal a lack of expert consensus. Moreover, on examining 

152 Simple Steps to Stay Safe Online:
Security Advice for Non-Tech-Savvy Users

Robert W. Reeder, Iulia Ion, and Sunny Consolvo | Google
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the advice we collected more closely, we found several 
areas with confusing advice variants (for instance, not 
clicking on links in email from unknown sources versus 
not clicking links in email at all). Although almost all of 
the thoughtful advice we received makes sense in isola-
tion, the security expert community isn’t in agreement on 
how to prioritize the set of advice as a whole or on how to 
resolve confusing variants in the set. It’s understandable 
if users are confused about what to do; even experts, as a 
field, don’t seem to agree.

Although the question of what advice to give seems 
fundamental to online security, we identify some clear 
problems with the existing set of expert advice. We 
acknowledge that arriving at consensus about the right 
set of advice is quite difficult, and we don’t solve that 
problem in this article. Instead, we contribute

■■ data on existing expert opinion on what security 
advice to give to nonexpert users,

■■ an analysis of the consensus and consistency of the 
overall set of advice we found, and

■■ identification of the problem that the set of the most 
important security advice isn’t widely agreed on.

Background and Related Work
Although we’re not aware of past research that has eval-
uated the state of security advice as a whole, there has 
been extensive research on advice in specific areas and 
users’ struggles to follow it. We give a brief overview of 
sources of security advice and research on users’ com-
pliance with it.

A great deal of security advice is available to those 
looking for it. Many service providers, enterprises, uni-
versities, and other organizations offer advice in the 
form of tips and training on how to stay safe online. One 
of the most comprehensive and authoritative sources of 
advice intended for nontechnical users is provided by 
US-CERT (www.us-cert.gov/ncas/tips), which by our 
count spans 57 pages and offers 534 individual pieces of 
advice. Recommendations range from common advice 
like “keep your antivirus software current” to less com-
mon advice like “consider challenging service providers 
that only use passwords to adopt more secure methods.” 
With such a large set of advice, it might be unclear to 
many users where to get started, to whom the advice 
applies, and why following the advice will help.

Past research on security advice and users’ secu-
rity behaviors suggests that there’s an opportunity for 
advice to change behavior for the better but also a need 
to limit, prioritize, and better communicate the advice.

Opportunity to Change Behavior
If users weren’t willing or able to take any security mea-
sures, formulating good advice would be a moot issue. 

However, past work has found that users do have some, 
albeit limited, willingness and ability to follow good 
security practices. We surveyed security experts and 
nonexperts about their security practices and found 
that nonexperts clearly do follow security practices, but 
often not the same ones experts do.1 These findings sug-
gest a need to better communicate expert practices and 
advice to nonexperts. Rick Wash examined users’ reac-
tions to 12 common pieces of security advice and found 
that users would follow some diligently while ignoring 
others, depending on their mental models of security.2 
In a previous study, we found that users—at least those 
who’ve experienced an account hijacking—generally 
accept some responsibility for protecting their online 
accounts and acknowledge their role in security behav-
iors like selecting and protecting passwords.3

Need to Limit, Prioritize, and Communicate
Cormac Herley argues that users often reject security 
advice because the cost of following all commonly given 
security advice is much greater than the cost of the rel-
atively few low-frequency attacks that succeed.4 He 
argues in another work that, for security advice, “more 
is not the answer” but acknowledges that some advice is 
probably needed.5

How advice is communicated is a critical part of get-
ting users to follow it. Emilee Rader and her colleagues 
show that people learn lessons about security via stories 
they hear, that these lessons can change behavior, and 
that stories might thus be an effective way to communi-
cate advice to users.6

Methodology
We conducted an online survey of security experts  
about the security advice they would share with non-tech-
savvy users. We used Google Forms (www.google.com 
/forms/about) to write and host the survey, which ran 
from February through June 2014. We recruited security 
experts via the Google Online Security Blog7—a public 
blog that is published by Google and widely read by secu-
rity experts and enthusiasts—and by promoting the sur-
vey through our social media accounts. Participation in the 
survey was voluntary, and we didn’t provide compensa-
tion. We considered a “security expert” to be anyone who 
reported having at least five years of experience working 
in or studying computer security. Our results are based on 
responses from 231 such expert respondents.

Survey Content
The survey started with the following single, open-ended 
question:

What are the top three pieces of advice you would give to a 
non-tech-savvy user to protect their security online?
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The survey also asked demographic questions, 
quality-assurance questions, and a series of other ques-
tions, which are reported in our work comparing expert 
and nonexpert security practices.1

We chose to elicit qualitative, freeform responses to 
our top-three-advice question, rather than the quantita-
tive responses that multiple choice or Likert-scale ques-
tions would provide. Qualitative data can be difficult to 
analyze and introduces risks of subjective interpretation 
by experimenters, but it maximized our chances of get-
ting experts’ unvarnished opinions.

We received 245 responses to our survey from 
experts meeting our criteria of five years or more of 
security experience. Of these, we eliminated 14 from 
analysis for incorrectly answering two or more of our 
four quality-assurance questions.

Security Expert Demographics
Security professionals often have demanding jobs and 
are highly paid, so we expected a small sample, perhaps 
a few dozen, to be willing to complete our survey for 
free. Ultimately, many security experts responded, giv-
ing us a sample size and diversity that exceeded our 
expectations.

Respondents reported diverse geographies, work-
places, and job titles. While 47 percent of respon-
dents were from the US, others were from 25 countries 
around the world, including, in order of frequency, the 
UK, Germany, Australia, Japan, India, Israel, and South 
Africa. In a check-all-that-apply question, 69 percent 
reported working in industry, 15 percent in academia, 
13 percent self-employed, 11 percent in government, 
and 7 percent in corporate research labs. Respondents 
reported a vast range of job titles in information security 
including chief executive officer, chief information secu-
rity officer, consultant, graduate student, IT specialist, 
network administrator, security researcher, software 
engineer, and whitehat hacker.

Of the 231 respondents in our sample of experts,  
4 percent were female. Ages ranged from 18 to over 65, 
with 2 percent in the 18–24 range, 30 percent in the 
25–34 year-old range, 32 percent in the 35–44 range, 
18 percent in the 45–54 range, 9 percent in the 55–64 
range, 3 percent over 65, and 5 percent not providing 
their age.

Coding Procedure
We analyzed freeform responses to the top-three-advice 
question using a general inductive approach.8 Two of 
the authors served as raters. The two raters, working 
independently, read a subset of the responses and pro-
posed codes for common responses. They then met to 
discuss the codes and agreed on an initial codebook. 
Having formed an initial set of codes, the raters split 

up the data and began coding responses independently. 
They coordinated to add new codes to the codebook as 
needed. To assess interrater reliability, both raters inde-
pendently coded the same subset of our data (10 per-
cent of our sample) using the final codebook and 
achieved a Cohen’s k of 0.77, which is generally consid-
ered substantial agreement.8

Ethics
Only voluntarily provided survey data was collected and 
analyzed for this work. Our organization doesn’t have 
an institutional review board (IRB), so the study wasn’t 
subject to IRB review; however, multiple researchers 
who have received human subjects training reviewed 
the survey instrument prior to the experiment. Respon-
dents weren’t required or asked to identify themselves. 
Raw survey data access was restricted to investigators 
on the research team.

Limitations
Although the sample’s size and diversity give us some 
confidence that it’s representative of a large portion of 
the security expert community, our recruiting meth-
ods could introduce sample bias, as virtually all recruit-
ing methods can. Because we recruited via the Google 
Online Security Blog, it’s likely respondents are regular 
readers of the blog, so they might feel some loyalty to 
Google. For most security advice, this loyalty probably 
makes no difference, but some bias might be present in 
advice, such as the recommendation to use Chrome. We 
note, however, that some respondents recommended 
products made by other organizations as well.

Results
Having coded all survey responses, we deemed each code 
to represent a piece of advice. We assigned 837 codes to 
our 231 experts’ responses (some responses were coded 
as providing more than three pieces of advice). Of these 
837 pieces of advice, 152 were unique. Having found 
152 unique pieces of advice, we then counted the fre-
quency of each piece of advice received—that is, how 
many unique experts mentioned each piece of advice. 
Our frequency count of 68 for “use unique passwords,” 
for example, means 68 unique experts mentioned that 
piece of advice. These frequency counts form the basis 
of our results. Because we collected such a wide variety 
of advice, we assigned pieces of advice to categories to 
make the advice easier to understand and present. We 
then counted the number of unique experts giving at 
least one piece of advice in each category.

Table 1 shows the 45 pieces of advice (of the 152 
total pieces of advice) that were mentioned by four 
or more experts, grouped by category. Table 2 pro-
vides examples of quotes that were coded as some of 
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Table 1. The 45 pieces of advice that at least four respondents mentioned.

Advice Count Representative quotes

Account security 128
Use unique passwords 68 Different passwords everywhere.

Do not reuse passwords on multiple sites.

Use strong passwords 58 Choose a strong password.
Complex password for every site.

Use multifactor authentication 36 Enable multifactor authentication features, if available.

Use a password manager 33 Forget your password—use a password manager to remember it for you.

Use a passphrase 7 Use a passphrase.
Use long-form plain language passwords.

Write passwords down 5 Write them down in a notebook and keep it safe.

Other account security 24 Routinely change passwords.
Don’t leave a shared computer logged in as you.

Updates 97
Keep systems and software up to date 90 Always be updating (OS and applications).

Patch, patch, patch.

Use automatic updates 19 Activate autoupdate.

Other updates 0

Browsing habits 76
Use HTTPS 24 Use HTTPS if available.

Watch for and understand why HTTPS is important.

Be careful/think before you click 19 Think before you click.
Be careful what you click on.

Check URL for expected site 11 Always look at the URL bar to confirm that it’s the right site.

Check the hyperlink before you click 8 Examine a link before you click it.
Compare links via mouse hover with printed link.

Sensitive info only over HTTPS 6 Check for HTTPS every time you provide personal/sensitive data.

Check for lock icon 5 Look for the lock.

Pay attention to security warnings 5 Don’t click through security warnings.
Don’t ignore security warnings—they are there for a reason.

Check for HTTPS in the URL 4 Check for a green HTTPS to the left of the domain name.

Visit only reputable websites 4 Don’t enter sites whose reputation isn’t clearly (and positively) assessed in a public 
database.

Other browsing habits 19 Take the time to read before clicking.
Check SSL certificates.

Email habits 59
Don’t open unexpected attachments 19 If you didn’t ask for the attachment, don’t open it.

Don’t click links in emails at all 11 Never click on a link in an email.

Don’t click links in email from unknown sender 9 Don’t click on links or images in an email from an unknown source.

Be suspicious of email in general 7 Don’t trust email.
Be skeptical about email.

Be alert for phishing emails 5 Beware spam and phishing emails.
Don’t fall for phishing attempts.

Beware emails requesting private data 5 No legitimate financial institution will ask for your personal or financial information 
through email.

Be suspicious even of email from known sender 4 Don’t blindly trust every message even if it came from someone you know and trust.

Be suspicious of links in email 4 Be careful following links, especially in email.

Other email habits 19 If a message you receive seems strange, pick up the phone and verify it.

Mindfulness 42
Be suspicious in general 16 Be skeptical.

Always be suspicious; don’t trust everybody.

Too good to be true probably is 15 If it seems too good to be true, it likely is.
Be aware of “too-good-to-be-true” offers.
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Table 1. The 45 pieces of advice that at least four respondents mentioned.

Advice Count Representative quotes
Apply real-world judgment online 4 Common sense.

Think “would I do this out in the real world?”

Other mindfulness 19 Stay alert, because you are in charge.
Assume you don’t understand the risks.

Antivirus 41
Use antivirus software 35 Use antivirus/antimalware software.

Keep antivirus software up to date 16 Keep antimalware current.
Keep antivirus updated.

Other antivirus 3 Leverage two antivirus engines.

Privacy 30
Limit personal information sharing 14 Never give out personal information.

Share less.
Don’t give out your email.

Be careful what you share 13 Be wary of information you post on social media.

Other privacy 5 Remain anonymous as much as feasible and practicable.
Always browse in private mode.

Browser software 29
Use Chrome 13 Use Chrome to browse the web.

Use an ad blocker 5 Use a modern browser with an Adblock and Web Reputation add-on.

Don’t use Java 4 Disable Java browser plug-ins or uninstall Java.

Other browser software 17 Run NoScript browser add-on.
Disable third-party cookies.

Device security 24
Don’t run as admin 12 Limit privileges. Don’t log in as an admin unless necessary.

Do sensitive tasks on dedicated devices 4 Use separate devices for casual browsing … and sensitive ones.

Do sensitive tasks on trusted devices 4 Do online banking/purchases only on a trusted computer.

Lock devices 4 Put passwords/PINs on all your devices.
Lock your phone.

Other device security 0

Software security 22
Use only software from trusted sources 20 Execute only software coming from reputable websites.

Other software security 2 Only install software you absolutely need.

Network security 15
Don’t trust open networks 4 Don’t use free/open Wi-Fi.

Don’t trust open networks or three-party networks; this can be unsafe.

Other network security 11 Use a VPN service.
Keep your firewall turned on.
Use a hardware firewall at home.

Backups 10
Back up your data 10 Back up your data; nothing beats a good backup.

Always back up your data.

Other backups 0

Education 11
Learn about security 4 Educate yourself on common security problems.

Seek expert help when needed 4 Get help if you are uncertain—quickly.
If in doubt, ask.

Other education 3 Be aware of why your computer asks you for permission or passwords.

OS and platform 9
Use an uncommon OS 4 Using a less-common OS makes you less likely to be attacked.

Other OS and platform 5 If you know how to deal with virtual machines, use them.
If possible, use Linux.

Other 34
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Table 2. Examples of less common advice provided by respondents.

Always browse in private mode, and delete cache after each browsing session.

Always double-check the source of an email (the sender).

Disable root certificates for entities that you would be alarmed to see certifying your bank’s login page.

Don’t write down passwords.

Don’t add absolute strangers to your social media accounts.

Don’t click on ads.

Don’t look for porn.

If you notice anything suspicious, report it appropriately.

If you travel, use the Tor browser from your encrypted hard drive.

Install Microsoft EMET (Enhanced Mitigation Experience Toolkit) and turn the systemwide settings up to maximum.

Let Gmail render your mail attachments instead of opening them locally.

Make sure to set up account recovery options for your Google account.

Never install or upgrade software from a popup screen.

Unless you really know what you’re doing, you’re better off with documents in the cloud.

the 107 pieces of advice mentioned by three or fewer 
experts.

Our 837 codes assigned to 231 responses gives an 
average of 3.26 (with a standard deviation of 1.24) 
codes assigned per response. Even though the top-three-
advice question asked for three pieces of advice, some 
responses received either more than or fewer than three 
codes, either because respondents deliberately pro-
vided a number other than three pieces of advice, or 
because the advice a respondent provided as one piece 
received more than one code (for example, we assigned 
“make sure your computer and its antivirus software are 
kept up to date” codes for “keep systems and software 
up to date” and “keep antivirus software up to date”).

In cases in which related advice was given at different 
granularity levels, for example, “be suspicious in gen-
eral” versus “be suspicious of links in email,” we strove 
to create codes that stayed true to the literal responses 
from respondents. In these cases, we assigned different 
codes to both the more generic and the more specific 
pieces of advice. We elaborate on this issue further in 
the discussion on generic versus specific advice.

Advice Collected, by Category
We grouped the pieces of advice into 15 categories. 
In order of the number of unique experts mention-
ing at least one piece of advice in the category, these 

categories were account security, updates, browsing 
habits, email habits, mindfulness, antivirus, privacy, 
browser security, device security, software security, 
network security, backups, education, OS and plat-
form, and other.

Pieces of advice mentioned by three or fewer experts 
fall into either category-specific “other” advice, or the 
general “other” category for advice that matched none 
of the 14 established categories. Category counts shown 
in Table 1 are unique experts mentioning at least one 
piece of advice in the category.

Most-Mentioned Advice
As Table 1 shows, the top three pieces of advice the secu-
rity expert community would give to a non-tech-savvy 
user are “keep systems and software up to date,” “use 
unique passwords,” and “use strong passwords.” How-
ever, we caution against prioritizing the entire set of 
advice strictly by rank-ordering the advice by the count 
of experts who mentioned it. The problem with this 
approach is that we didn’t ask experts to compare one 
piece of advice against another; we simply asked each 
individual for his or her own version of the top three. 
In any case, Table 3 shows the 10 (11 actually, because 
there is a three-way tie for ninth) most-mentioned 
pieces of advice, with number of respondents mention-
ing them.
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Discussion
Our results give a sense of the security expert commu-
nity’s overall thoughts on the most important advice 
today. Much of the advice we collected is familiar, and 
almost all of it seems reasonable in isolation. It appears 
that expert respondents to our survey gave thoughtful 
and sensible responses. But our finding that there are 
152 pieces of advice spread across 15 categories suggests 
a wide breadth of security advice that experts consider 
important to follow. Just considering these numbers, 
it’s perhaps unsurprising that users don’t follow all the 
advice on offer—there’s a lot of it, it spans diverse areas, 
and it’s not clear where to start. Users are probably not 
receiving a consistent message on what’s most impor-
tant and exactly what to do in each area.

We start our discussion by establishing criteria for 
what makes good general advice. We then report a 
series of observations about the advice we collected, 
discuss challenges with creating good advice, and sug-
gest ways in which the set of advice as a whole might 
be improved.

Criteria for Good General Advice
We guide our discussion of the advice we found and the 
potential for improving it by first establishing four crite-
ria that good general advice should meet. These criteria 
are drawn from work in public awareness communica-
tions, which highlights the need for advice that users 
believe will work (our effective criterion), that users can 
actually do (our actionable criterion), and that is under-
standable (our consistent and concise criteria).9

Effective. Good advice, if followed by a user, should 
actually improve the user’s security situation and lead to 
better security outcomes. Almost all the advice we col-
lected in this study (see Tables 1 and 2) seems effective 
against some security threat. Doing almost any of the 
actions advised by security experts (for instance, using 
strong passwords) should help improve users’ online 
security.

Actionable. Good advice should be easy for a user to 
remember and apply when needed, and it shouldn’t 
overly interfere with a user’s primary goals. Advice 
that requires excessive skill (for instance, running 
a virtual machine), requires expert knowledge (for 
instance, requiring a user to judge something as “sus-
picious”), or excessively restricts user activity (for 
instance, “simply stay offline”) might not be reason-
ably actionable for a user seeking general advice. 
Although most of the advice we collected is action-
able (for instance, “use multifactor authentication”), 
some advice is less actionable (for instance, “be suspi-
cious in general”).

Consistent. Good advice should be both internally  
consistent—in that it shouldn’t cause confusion with or 
subsume other advice in the whole set of advice—and 
presented consistently—in that it should be phrased 
similarly each time a user hears it and should change as 
little as possible over time (as long as it remains effec-
tive). Consistency helps make advice easier for users 
to understand, remember, and follow. Looked at as a 
whole, the body of advice we collected wasn’t consis-
tent. The same advice was phrased differently by dif-
ferent participants, and a few pieces of advice were 
contradictory (for instance, “write passwords down” 
and “don’t write down passwords”).

Concise. The set of advice as a whole should be as small 
as possible. Less advice is easier for users to remember 
than more advice, and less advice to follow means it’s 
easier to follow all of it. The ultimate goal of our work 
is to create more concise advice. Given that we found 
152 pieces of advice in this study, future work is needed 
to distill the 152 pieces of advice and communicate to 
users the most important ones.

Observations about Advice We Collected
We point out several observations about the advice 
we collected. These observations arose as we con-
sidered how the advice as a set could better meet  
our criteria.

Table 3. �Ten most mentioned pieces of advice, coded.

Advice
No. of respondents  

who mentioned

Keep systems and software up to date 90

Use unique passwords 68

Use strong passwords 58

Use multifactor authentication 36

Use antivirus software 35

Use a password manager 33

Use HTTPS 24

Use only software from trusted sources 20

Use automatic updates 19

Be careful/think before you click 19

Don’t open unexpected attachments 19
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Consensus within categories. Overall, we found a lack of 
consensus regarding the top three pieces of advice. But 
looking at our results by category, we find both pockets 
of consensus and pockets of divergence. Advice in the 
updates category was consistent that all software and 
systems should be kept up to date. The other common 
piece of advice in this category—to enable automatic 
updates—is clearly in service of the first. Antivirus, 
privacy, software security, and backups were catego-
ries with similar levels of general consensus. However, 
categories like account security, browsing habits, email 
habits, mindfulness, and browser software contain 
numerous pieces of advice, many of them potentially 
confusing variants or hard-to-discern options. For 
example, account security contains advice to “use a 
password manager,” “use a passphrase,” and “write pass-
words down.” These pieces of advice are all options for 
solving the same problem: helping a user set strong and 
unique passwords but still manage to recall them when 
needed. Each method has its pros and cons, as security 
experts know. But how is a security nonexpert to choose 
among these techniques? The nonexpert confronted 
with all three pieces of advice is likely to be confused.

There’s a lot of important advice. We set out with a goal 
to find just a handful of the most important advice that 
could be communicated to users whenever we have a 
few moments of their attention. Given our finding of a 
diverse range of advice, all of which is considered impor-
tant by at least some experts, it might be the case that 
the security space is simply too complex for a small set 
of consistent advice to adequately protect the general 
user population. Perhaps advice communication efforts 
should focus not on communicating the same advice 
consistently to everyone, but on identifying particular 
audiences and customizing advice for each audience.

From “set and forget” to near-constant vigilance. Advice 
varies in the frequency with which it needs to be 
applied. Some is “set and forget”—it needs to be done 
once (or rarely) and can then be ignored—some is 
needed on occasion, and some requires near-constant 
vigilance. In the set-and-forget category are pieces 
of advice like “use antivirus software” and “use auto-
matic updates.” Good antivirus software or automatic 
updates should require little user interaction after 
they’re initially set up. Advice needed on occasion 
includes advice related to choosing passwords and 
advice like “do sensitive tasks on dedicated devices” 
and “back up your data.” Much advice requires ongo-
ing vigilance, like most of the browsing habits, email 
habits, mindfulness, privacy, and education advice. 
Negative advice, like “don’t run as admin” or “don’t 
trust open networks,” falls somewhere in between; it 

should be noted once, then applied whenever an appli-
cable situation comes up (like considering whether to 
use the Wi-Fi at a coffee shop).

In general, vigilance might require cognitive atten-
tion, so it can be difficult for users. Any advice that 
requires ongoing vigilance or frequent application 
should be given to users only if it has high efficacy.

Generic versus specific. Variants of advice in the same 
area often differed in their level of specificity. Some 
advice was quite generic, like “use HTTPS,” whereas 
other advice was more specific, such as to “send sen-
sitive info only over HTTPS.” Or, to compare respon-
dents’ quotes,

Always browse with HTTPS if you can

represents a generic form of advice, whereas

Always look out for the HTTPS and padlock logo when 
entering credit card details

represents a very specific version of similar advice.
There are arguments in favor of both generic and 

specific advice. Generic advice applies in more situ-
ations and to more users, whereas specific advice is 
usually more clearly actionable. Non-tech-savvy users 
instructed to follow the generic advice, “always browse 
with HTTPS” would have to learn what HTTPS is and 
how to determine whether they’re browsing with it. 
However, users instructed to follow the more specific 
“look for the padlock when entering credit card details” 
would already have a way to determine whether HTTPS 
is in use, but might fail to apply that knowledge when 
entering sensitive data other than credit card details.

Generic advice can help keep the overall set of advice 
concise, because it doesn’t require enumerating every 
situation in which the advice should apply and every 
detail of how to apply the advice. However, generic 
advice might require skills and judgment that non-tech-
savvy users haven’t developed well, such as the advice to 
“use only software from trusted sources,” which requires 
careful judgment about how to determine the source of 
the software and which should be trusted.

Given the merits of both generic and specific advice, 
balancing them is important. Sometimes, it might be 
possible to combine them by offering the generic advice 
followed by specific instructions on how to implement 
it, for instance, “Always browse with HTTPS if you can; 
to check for an HTTPS connection, look for the padlock 
logo in the browser’s address bar.”

Realistic for users to follow. Some advice we collected 
is likely not actionable because users can’t follow it, 
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either because it’s too restrictive or because it requires 
too much technical knowledge or skill. Advice like 
“don’t click links in email at all” is probably too restric-
tive; for many users, advice like “do sensitive tasks on 
dedicated devices” is probably too restrictive if they 
can’t afford multiple devices. Advice like “don’t run 
as admin” and “use an uncommon operating system” 
probably requires more technical knowledge than 
many users have.

Phrasing advice. Even advice to which we assigned the 
same codes could vary significantly in how experts 
phrased it. Examples of representative quotes from 
Table 1 show variants in respondents’ phrasing of 
advice. Here are two quotes from respondents that were 
both assigned the code Too good to be true probably is:

If it is too good to be true, looks like a scam, smells like a 
scam, or wants your personal details, IT IS A SCAM.

and

A Nigerian Prince would never ask you to launder money 
for them, nor would the FBI director, etc.

The former quote is more direct and explicit in advis-
ing users to trust their instincts and judgment about 
online offers. The latter contains narrative examples and 
suggests a lesson without explicitly stating it. It’s hard 
to say which would more likely connect with users, but 
these examples illustrate the variety of potential ways to 
phrase the same advice.

Challenges in Creating Good Advice
Our results suggest several challenges in creating good 
advice. As improvements to the overall state of advice 
are attempted, it’s worth bearing these challenges  
in mind.

The right advice might change over time with the 
attack landscape, new technology, and experience. As 
new attacks arise, new pieces of advice might need to be 
communicated to users to address them. To make the 
challenge even harder, attackers might adapt as good 
advice is adopted. For example, the widespread adop-
tion of antivirus software has presumably made rogue 
antivirus attacks viable for attackers.10

Advice that was once thought good might go out of 
style with experience or other changes. For example, 
Anne Adams and M. Angela Sasse’s 1999 work talks 
about the difficulty users had with the advice to change 
passwords frequently,11 which was common advice at 
the time, but seems to have fallen out of favor (only 
three of our experts mentioned “change passwords 
frequently”).

Changing advice is a risk to consistency of the 
advice set. Some change in the set of security advice 
over time is undoubtedly necessary—and even desir-
able when it leads to a smaller set of advice or adapts 
to new threats—but all things being equal, advice that 
stays constant over time is more likely to be followed 
than advice that’s likely to change.

Even advice that’s otherwise good—effective and 
consistently delivered—can face poor adoption if users 
don’t believe the advice is effective or if they encounter 
significant drawbacks as a result of following the advice. 
For example, Kami Vaniea and her colleagues discuss 
some of the reasons users often reject the advice to 
install updates, such as the bundling of undesired new 
features with security updates and the potential for an 
update to break a working system.12

It simply might not be realistic to have a small, 
consistent set of security advice for general use. How-
ever, prioritizing the set to make it easier for users to 
apply the most important pieces first seems especially 
important.

Improving the Existing Set of Advice
Improving the state of security advice from today’s 
rather scattered state to a more effective, actionable, 
consistent, and concise set of advice is no small task. 
Our exercise here—surveying the current state of top 
advice according to experts—is only a start; it merely 
reveals the extensive effort needed to produce a good 
set of advice.

Advice should also be informed by actual data about 
attacks, compromises, and breaches. For example, if 
data on account compromises suggests that password 
brute-forcing attacks are most prevalent, we should 
emphasize using password managers. However, this 
data is difficult to obtain; often, the causes of security 
issues like account compromise or database breaches 
are unknown. In other cases, there’s reluctance to 
release such data publicly.

Once the existing set of advice has been pared down 
to a more concise and internally consistent set, it should 
be given to users and evaluated in longitudinal stud-
ies in which users are observed as they try to apply the 
advice over time and in multiple relevant situations. 
Such studies can inform questions about what advice is 
memorable, easy enough for users to follow, not overly 
restrictive, and actually likely to produce better security 
outcomes.

W e hope our findings will help focus research on 
the right set of advice to communicate to users 

and on what advice is most important and what can be 
deprioritized. In addition, we seek to alert the usability 
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and security communities to some of the difficulties 
users might have following the advice on offer today. 
We hope usability and security experts will focus on 
each piece of advice on our list and consider it carefully 
for inclusion in the set of advice as a whole, according 
to our four criteria. Through data-informed debate, the 
communities can pare the set down, prioritize it, stan-
dardize the way it is phrased, and package it for more 
effective dissemination to non-tech-savvy users. 

References
1.	 I. Ion et al., “‘… No One Can Hack My Mind’: Com-

paring Expert and Non-expert Security Practices,” Proc. 
Symp. Usable Privacy and Security (SOUPS 15), 2015,  
pp. 327–346.

2.	 R. Wash, “Folk Models of Home Computer Security,” 
Proc. Symp. Usable Privacy and Security (SOUPS 10), 
2010, pp. 1–16.

3.	 R. Shay et al., “My Religious Aunt Asked Why I Was Try-
ing to Sell Her Viagra: Experiences with Account Hijack-
ing,” Proc. SIGCHI Conf. Human Factors in Computing 
Systems (CHI 14), 2014, pp. 2657–2666.

4.	 C. Herley, “So Long, and No Thanks for the Externalities: 
The Rational Rejection of Security Advice by Users,” Proc. 
New Security Paradigms Workshop (NSPW 09), 2009,  
pp. 133–144.

5.	 C. Herley, “More Is Not the Answer,” IEEE Security & Pri-
vacy, vol. 12, no. 1, 2014, pp. 14–19.

6.	 E. Rader, R. Wash, and B. Brooks, “Stories as Informal 
Lessons about Security,” Proc. Symp. Usable Privacy and 
Security (SOUPS 12), 2012, article 6.

7.	 R.W. Reeder, “If You Could Tell a User Three Things to 
Do to Stay Safe Online, What Would They Be?,” Google 
Online Security Blog, 26 Mar. 2014; googleonlinesecurity 
.blogspot.com/2014/03/if-you-could-tell-user-three 
-things-to.html.

8.	 J.R. Landis and G.G. Koch, “The Measurement of 
Observer Agreement for Categorical Data,” Biometrics, 
vol. 33, no. 1, 1977, pp. 159–174.

9.	 R.E. Rice and C.K. Atkin, Public Communication Cam-
paigns, Sage, 2012.

10.	 B. Stone-Gross et al., “The Underground Economy of 
Fake Antivirus Software,” Economics of Information Secu-
rity and Privacy III, 2013, Springer, pp. 55–78.

11.	 A. Adams and M.A. Sasse, “Users Are Not the Enemy,” 
Comm. ACM, vol. 42, no. 12, 1999, pp. 40–46.

12.	 K.E. Vaniea, E. Rader, and R. Wash, “Betrayed by 
Updates: How Negative Experiences Affect Future 
Security,” Proc. SIGCHI Conf. Human Factors in Com-
puting Systems (CHI 14), 2014, pp. 2671–2674.

Robert W. Reeder is a senior user experience researcher 
at Google in New York. As a member of Google’s 
Security & Privacy User Experience team, he con-
ducts research at the intersection of human–computer 
interaction, security, and privacy. Reeder received a 
PhD in computer science from Carnegie Mellon Uni-
versity. Contact him at rreeder@google.com.

Iulia Ion is a software engineer at Google working on strong 
authentication and cloud security. She received a PhD in 
computer science with a thesis on usable security from 
ETH Zurich. Contact her at iuliaion@google.com.

Sunny Consolvo leads Google’s Security & Privacy 
User Experience team, which focuses on usable pri-
vacy and security. Consolvo received a PhD in infor-
mation science from the University of Washington. 
She’s a member of the IEEE Pervasive Computing and 
Proceedings of the ACM on Interactive, Mobile, Wear-
able, and Ubiquitous Technologies (IMWUT) edito-
rial boards. Contact her at sconsolvo@google.com.

IEEE-CS

CHARLES BABBAGE 
AWARD 

CALL FOR AWARD NOMINATIONS
Deadline 1 October 2017

ABOUT THE IEEE-CS CHARLES BABBAGE 
AWARD
Established in memory of Charles Babbage in 
recognition of significant contributions in the field 
of parallel computation. The candidate would have 
made an outstanding, innovative contribution or 
contributions to parallel computation. It is hoped, but 
not required, that the winner will have also contributed 
to the parallel computation community through 
teaching, mentoring, or community service.

AWARD & PRESENTATION
A certificate and a $1,000 honorarium presented to a 
single recipient. The 
winner will be invited 
to present a paper 
and/or presentation 
at the annual IEEE-
CS International 
Parallel and 
Distributed Processing 
Symposium  
(IPDPS 2017).

NOMINATION SITE
awards.computer.org 

AWARDS HOMEPAGE
www.computer.org/awards

CONTACT US
awards@computer.org



1540-7993/17/$33.00 © 2017 IEEE	 Copublished by the IEEE Computer and Reliability Societies	 September/October 2017� 65

MODELING CYBERATTACKS

Mission impact assessments (MIAs) seek to assist the integration of business or military operations with 
cyberdefense, bridging the cognitive gap between operational decision makers and cyberdefenders. 
There has been increased interest in approaches to MIA that involve the construction and simulation of 
models of the mission, systems, and attack scenarios to understand an attack’s impact.

A business mission’s success depends on the com-
munications and information systems (CISs) 

that support the mission. Cyberattacks on CISs can 
degrade or disrupt the performance and completion 
of the associated mission capability. There’s a need for 
technology and procedures to characterize a cyberat-
tack’s impact on the mission; the term mission impact 
assessment (MIA) refers to this characterization.

A key objective of MIA is to assist the integration of 
business or military operations with cyberdefense, par-
ticularly in bridging the cognitive gap between opera-
tional decision makers and cyberdefenders.1 In other 
words, MIA supports the ability to determine how an 
attack on the CIS infrastructure translates into conse-
quences expressed in business and operational terms 
and thereby helps decision makers translate operational 
priorities into cyberdefense priorities. Given a cyber-
threat and an attack with certain characteristics, cyber 
MIA should identify the space of impact scenarios: the 
CIS assets that would be disrupted, the chain of depen-
dencies through which the CIS disruptions would 
propagate to business functions, and the resulting deg-
radation in quantity and quality of the outputs of the 
affected business process.

MIA can be considered as a subfield in the much 
broader and far more mature field of risk management, 
particularly in its subprocess called risk identification.2 
This subprocess involves identifying business processes, 
functions, and supporting assets; threats, including stra-
tegically thinking and adaptive threats; vulnerabilities 
that could be exploited by threats; security controls or 
measures; and—especially relevant to MIA—technical  
and business consequences or impacts. In complex, 
multiorganizational cyber or cyber-physical systems, 
such impacts can be multifaceted, distributed in time and 
space, propagated through poorly understood depen-
dencies, difficult to visualize and anticipate, and even 
counterintuitive. Effective computational approaches 
to automating or supporting MIA are lacking; this has 
encouraged the cybersecurity community to pay increas-
ing attention to cyber MIA as a distinct problem.

Although attracting a distinct and growing body of 
research,3 cyber MIA remains a nascent field. For exam-
ple, Alexander Motzek and Ralf Möller characterize mis-
sion modeling and MIA as an emerging field of research, 
provide a review of the relevant literature, and argue 
that many current approaches to MIA typically employ 
score-based algorithms leading to spurious results.4

Assessing Mission Impact of Cyberattacks:
Toward a Model-Driven Paradigm

Alexander Kott | US Army Research Laboratory
Jackson Ludwig | The MITRE Corporation
Mona Lange | University of Lübeck
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The MIA research community has had a growing 
interest in a simulation model–driven paradigm. This 
requires the creation and validation of mechanisms of 
modeling the organization whose mission is subject to 
assessment, the mission (or missions) itself, and the 
cyber-vulnerable systems that support the mission. 
These models are then used to simulate or otherwise 
portray cyberattacks to understand their impacts.

In this article, we illustrate this trend with two spe-
cific examples and discuss related efforts. The two 
examples cover a broad range of business domains and 
research communities: one relates to the domain of 
civilian electric power distribution, the other to a mili-
tary planning enterprise; one is the work of EU research-
ers, the other of the US. We point out the potential value 
of such approaches as well as the fact that sufficient evi-
dence of value and feasibility is still lacking.

An Example of a Model: Impact of 
Cyberattacks on Power Grids
On an operational level, an electrical grid is a network of 
power providers and consumers connected by transmis-
sion and distribution lines with the mission of delivering 
electricity from suppliers to consumers. For monitoring 
and control purposes, they’re connected to CISs. As 
recently as the 1990s, many power grid networks were 
isolated, stand-alone systems, and the day-to-day func-
tioning of an electrical power grid mainly depended 
on the correct functioning of physical devices such as 
transmission and distribution lines, generators, and 
transformers. However, modern power grids and CIS 
infrastructures are closely coupled. Previously iso-
lated power grids are increasingly integrated with CISs 
at power utilities, including public infrastructures, to 
increase business efficiency and effectiveness and to 
reduce operational costs. This has led to modern power 
grids becoming large networks consisting of thousands 
of network devices and applications. An application’s 
operability, performance, or reliability might depend on 
multiple network services spanning multiple network 
devices and subnetworks of an infrastructure.

Both the US Department of Homeland Security 
(DHS) and the US Department of Energy reported an 
increase in the frequency and sophistication of cyber-
attacks on electricity systems between 2010 and 2015.5 
A growing number of host and network intrusion 
detection systems and firewalls are deployed in elec-
tricity systems, leading to a high number of detected 
low-level events. Managing these low-level events and 
assessing their potential operational impact is criti-
cally important.6 A deeper understanding of poten-
tial impacts resulting from a successful cyberattack is 
required, especially for the development of trustwor-
thy smart grids.

This was one of the goals of the Panoptesec project 
(2013 to 2016) funded by the European Commission’s 
Seventh Framework Program for Research (FP7). The 
resulting Panoptesec prototype demonstrated a contin-
uous monitoring and response capability to detect, pre-
vent, manage, and react to cyberincidents in real time. 
For the purposes of this article, given a suspected attack, 
Panoptesec evaluates its operational impact, that is, per-
forms MIA, among other capabilities.7

Panoptesec is one of several recent, related proj-
ects such as the Critical Infrastructure Security Analy-
sis (Crisalis) project (www.crisalis-project.eu), funded 
from 2012 to 2015. Crisalis focused on three themes: 
securing systems, detecting intrusions, and postmortem 
analysis of successful intrusions. The bulk of its results 
relates to intrusion detection in Supervisory Control 
and Data Acquisition (SCADA) and industrial control 
systems (ICSs), as opposed to MIA. Although Crisalis  
research didn’t extend into characterizing explicit 
impacts on business functions and processes, it did 
touch on interests of MIA where it explored approaches 
to detecting attacks against ICS devices by observing 
changes in the industrial process variables.8

Also funded by the FP7, for years 2014 to 2016, 
the Hybrid Risk Management for Utility Networks 
(HyRiM; hyrim.net) project aimed to identify and 
evaluate “hybrid risk metrics” for assessing and catego-
rizing security risks in interconnected networks: the 
utility network physical infrastructure, consisting of, for 
instance, gas, water pipes or power lines, and the utility’s 
control network including SCADA networks and busi-
ness and information systems. The project provides risk 
assessment tools based on a sound and well-understood 
mathematical foundation. The bulk of the HyRiM 
research has concentrated on formal mathematical, 
including game-theoretic, risk models.

Perhaps the most direct ancestor of Panoptesec 
was the Vital Infrastructure, Networks, Information 
and Control Systems Management project (cordis 
.europa.eu/project/rcn/88625_en.html) financed by 
the EU from 2008 to 2011. Its key objective was to 
investigate SCADA system vulnerabilities and the cost 
of cyberattacks on society, focusing on systems for 
transmission and distribution of electric power. It used 
a model-based approach to investigate SCADA system 
vulnerability. Models were defined for the SCADA sys-
tem, the electrical process, and the society that depends 
on the electricity supply. The models were linked to 
assess the propagation of consequences from a cyberat-
tack all the way to the impact—expressed as monetary 
loss—for the society. The results laid a foundation for 
further exploration in the Panoptesec project.

As a case study, the Panoptesec consortium set up 
a testbed—an authentic replication of an Italian water 
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and energy distribution company’s corporate enterprise 
systems and SCADA system. This allows for testing 
Panoptesec in an operational environment as well as for 
experimenting with cyberattackers who can penetrate 
computer systems, tamper with the accuracy of infor-
mation, and shut down network services.

Figure 1 illustrates how an enterprise network and 
an operational network are linked in power grids. An 
enterprise network consisting of a primary control cen-
ter is linked to an operational network consisting of 
two substations and an advanced metering infrastruc-
ture, represented by a smart home with a smart meter, 
heater, and a thermostat. The linkage of enterprise and 
operational networks is due to sensor measurements 
and control commands from power system operators 
in control rooms in an enterprise network being relayed 
over communication networks from or to a power grid’s 
operational network. Clearly, there are multiple, com-
plex dependencies among business functions and tasks, 
devices and applications, and network services.

An important finding of this project was the rec-
ognition that manual modeling of dependencies is 
prohibitively expensive in complex enterprises where 
responsibilities and knowledge are scattered across mul-
tiple departments or even third parties. Thus, a key out-
put of the project was the development of an automated 
approach to learning network dependencies based on 
network traffic, and then deducing higher-level infor-
mation about a network’s mission based on network 
services and applications (see Figure 2).

Automated model development relies in part on net-
work services dependency discovery, for which several 
approaches are known.9 Discovery of indirect depen-
dencies among services is particularly challenging. In 
the Panoptesec project, communication patterns were 
analyzed and used to derive indirect dependencies 
based on “similar” temporal patterns of communica-
tions between two given pairs of services. Normalized 
cross-correlation was used heuristically to quantify the 
degree of similarity.7 This heuristic technique has been 
shown experimentally to outperform several alternative 
approaches in terms of recall and precision of the dis-
covered indirect dependencies.9,10

Dependencies identified via the automated method 
are used in part to construct a mission model, for 
instance, the one shown in Figure 2. Based on the 
mission model, the applications that are potentially 
impacted by an attack can be detected. Assuming the 
operational network is sufficiently modeled in the infra-
structure model, MIA includes estimating the poten-
tial loss of electric power and whether it could lead to a 
blackout or brownout in the monitored infrastructure.

By comparing automatically derived mission models 
to results based on human input, automatically derived 

mission models were found to provide a more detailed 
understanding of workflows in the network and dis-
covered a surprisingly high number of hidden network 
dependencies that weren’t identified by human opera-
tors. Unsurprisingly, network administrators found 
these automatically discovered, previously unknown 
network dependencies of great interest.

For example, consider an automatically gener-
ated diagram of significant relations between a subset 
of services in the Panoptesec testbed (see Figure 3). 
When Panoptesec researchers asked them, the opera-
tors explained that human–machine interfaces (HMIs) 

Figure 1. An enterprise network and an operational network linked in a power 
grid. Even the simplest schematics highlights the diversity and complexity 
of a modern electric grid’s cyber and physical elements. There are multiple 
dependencies among business functions and tasks, devices and applications, 
and network services. HMI is human–machine interface, HV is high voltage,  
MV is medium voltage, and RTU is remote terminal unit.
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(denoted by msoz) are used to communicate with the 
medium-voltage substations (denoted by TTY) through 
the communication servers (denoted by mferp and 
muel). Note that these and other names of various sys-
tem components in Figure 3 are preserved here as found 
in the actual system.

However, automated analysis revealed a peculiar 
fact that was unknown to the operators: all HMIs (for 
example, msoz22, msoz17, and msoz19) were config-
ured to contact muel1 first, and then contact muel2 if 

muel1 was unavailable. At the same time, muel1 was 
configured to be muel2’s backup. Therefore, muel1 
normally rejects requests from HMIs, because muel1 
can check and determine that muel2 is available. Then, 
after the rejection by muel1, the HMIs send requests 
to muel2.

In effect, automated analysis discovered that 
there was an unexpected, unnecessary—and poten-
tially exploitable—heavy volume of communica-
tions between HMIs and muel1, even though all 

Figure 2. A high-level view of automatically derived mission models. Elongated rectangles represent subnetworks, smaller rectangles represent 
network devices, and a human silhouette marks client network devices. IED is intelligent electronic device.
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communication between HMIs and mferp2 eventu-
ally occurred through muel2. After automated analysis 
discovered this fact, network operators adjusted the 
configurations accordingly. As a part of our research 
project, we developed a prototype tool for mining net-
work traffic to derive a mission model and are releasing 
it under an open source license.7

To be sure, not everyone agrees that an automati-
cally derived network traffic model is adequate for con-
structing a comprehensive mission model for MIA. For 
example, a group of researchers specifically evaluated 
several tools for automated dependency discovery and 
found them inadequate for the task; they proceeded to 
build the models manually, relying on the input of sub-
ject matter experts (SMEs). Furthermore, it should be 
noted that the Panoptesec models have never been fully 
validated, and the business value of the modeling and 

simulation using such models has yet to be rigorously 
confirmed.

Another Example of a Model: Impact  
of Cyberattacks on a Military Air  
Operations Center
In 2015, the US Department of Defense funded a team 
of research organizations to develop a prototype to 
explore the feasibility of modeling and simulating con-
currently the operational and cyberdomains, and trans-
late the impact of cyberevents into quantifiable impacts 
on an operational mission’s execution. The outcome of 
this research effort was a prototype called Analyzing 
Mission Impacts of Cyber Actions (AMICA).

Understanding mission impact due to cyberat-
tacks requires bringing together layers of information 
from numerous sources. At the lower layers, network 
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Figure 3. Human–machine interfaces (denoted by msoz) communicate with medium-voltage substations (denoted by 
TTY) through the communication servers (denoted by mferp and muel). Dependencies between services were identified 
automatically, revealing unknown dependencies due to misconfigurations.
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topology, firewall policies, intrusion detection systems, 
system configurations, vulnerabilities, and so on, all play 
a part. Similarly, network devices and applications also 
need to be mapped to mission requirements. Because 
missions are highly dynamic, key network devices and 
applications likewise become dynamic. To address this, 
time-dependent models of mission flow and cyberac-
tions (attack and defense) are necessary. AMICA sup-
ports exploration and experimentation of the mission 
impacts of cyberattacks through a flexible, extensible, 
modular, multilayer modeling system for quantitative 
assessment of operational impacts of cyberattacks on 
mission performance.11

As a case study, AMICA was used to examine poten-
tial cyber impacts on an Air and Space Operations Cen-
ter (AOC). At the risk of oversimplification, an AOC 
is responsible for developing the daily mission priori-
ties and flight schedules for all the aircraft involved in a 
military campaign.12 To conduct its mission, an AOC 
requires a large team of people working around the 
clock performing a planning and decision-making pro-
cess, with a deep reliance on CISs.

AMICA consists of four main components: a mis-
sion process model, a cyberadversary process model, a 
cyberdefender process model, and a CIS infrastructure 
model (see Figure 4). The mission, cyberadversary, and 
cyberdefender are modeled in terms of their respective 
business (operational) processes using the Business 

Process Model and Notation standard (www.bpmn 
.org). The CIS infrastructure is modeled through the 
use of both directed and topological graphs. Behavioral 
and temporal aspects of the AOC processes (workload, 
workflow, timing constraints, required resources, deci-
sions, and so on) are implemented through executable 
process models and stochastic discrete event simula-
tion. Structural and functional aspects related to the 
AOC infrastructure (environmental constraints, mis-
sion and system dependencies, vulnerabilities, and so 
on) are maintained through databases of graph models. 
Each component of AMICA is decoupled from the rest 
to provide modularity and independence, and interacts 
via shared interfaces with the CIS infrastructure model. 
This allows inputs at both the operational and cyber lay-
ers to influence the CIS layer’s behavior and produce a 
combined effect on mission performance.

AMICA models the progress of each aircraft flight 
through the AOC’s planning process, dependent on 
the state of the cyberinfrastructure. Cyberattacks 
themselves are modeled as stochastic steps within 
the attacker’s workflow (modeled using the cyber kill 
chain13) and follow a pattern of gaining access to the 
network, lateral movement, and exploitation of the 
target device. Gaining access is done via spearphish-
ing, where end-user nodes have a probability of falling 
victim to this attack. Lateral movement through the 
network is based on scanning the network for vulner-
able devices that the adversary can exploit. Once the 
target device has been reached, the attacker creates a 
confidentiality, integrity, or availability impact on that 
system. Availability attacks slow down or stop execu-
tion of impacted mission activities. Confidentiality 
and integrity attacks don’t slow execution but might 
cause AOC personnel to perform rework (if they’re 
aware of the attack) or allow corrupted data to appear 
on flight plans. The attack’s duration depends on how 
quickly the defender detects the presence of an attack, 
performs forensics, finds all the machines that have 
been compromised, and completes the remediation 
process. The consequences of these cyberattacks are 
reported in terms of mission-level metrics. In the case 
of the AOC, the number of mission plans developed 
and the number of flights flown are typical metrics  
of interest.

Using simulation to explore cyberattacks’ effects, 
over time, on a specific AOC mission scenario revealed 
results that ranged from no impact at all (because of 
low workload intensity and redundant systems), to mis-
sion plans being delayed by days (because personnel 
needed to revalidate data after discovering a breach), 
to unknowingly having an entire day’s worth of flights 
modified by an adversary (because an attack took place 
after the last consistency checks were made).

New
cyberattacks

New
missions

Completed
missions

Mission process

Infrastructure model

Cyberattack and defense process

Figure 4. The Analyzing Mission Impacts of Cyber Actions (AMICA) model 
includes a mission process model, a cyberadversary process model, a 
cyberdefender process model, and a communications and information system 
infrastructure model.
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Randomly timed attacks against critical nodes in the 
CIS infrastructure, while disruptive, weren’t devastating 
to the mission. On the other hand, attacks against key 
process steps conducted by attacking the same portion 
of CIS at the right moment during the process caused 
severe mission impacts. Thus, cyberdefenders need to 
assume that an advanced cyberadversary will likely tar-
get process vulnerabilities using cybervulnerabilities as 
a vector.

Several findings of this modeling effort were surpris-
ing and wouldn’t have been possible to obtain without 
a comprehensive, systemwide modeling approach. In 
one example, two simulated attacks were run against 
systems supporting an important planning process, and 
the duration of each was varied (from hours to weeks) 
to determine the maximum tolerable attack duration. In 
one attack, system performance degraded by 50 percent 
(see Figure 5). This showed no impact because the users 
were able to keep pace with their workload even when 
using slow systems. In the second attack, the external 
network connection was disrupted, cutting off access 
to team members located at remote locations. In this 
case, the local users were nearly able to keep up with the 
workload, and only for outages exceeding three weeks 
did the reduction in completed flight plans reach a sig-
nificant level (defined as a 10 percent or greater reduc-
tion). Because outages of such a duration are unlikely, 
this combination of process, workforce, and systems 
can be viewed as tolerant of attacks.

In another example, attacks resulting in data modi-
fication were targeted at varying times against systems 
supporting a critical flight-planning process. Static 
dependency analysis would correctly show that attacks 
against these systems could severely impact operations. 
However, simulation results showed that only attacks 
that took place after the last consistency checks were 
made (approximately halfway into the day) impacted 
the mission, providing a discrete window of vulner-
ability for defenders to focus on each day. The impact 
of attacks—expressed as a fraction of plans with unde-
tected malicious modifications—ranged from the mini-
mum of 3 percent to 100 percent on the agility and 
proficiency of the attacker modeled.

Such comprehensive modeling doesn’t come cheaply. 
The effort involved in applying these approaches with 
current techniques to a new mission area requires 
months of effort by SMEs. Once modeled, scenarios 
and simulation runs can be done quickly, but a rigorous 
analysis of the data might take a few weeks. Attack trees, 
dependency graphs, and vulnerability scan data can 
each provide partial solutions identifying where or how 
a cyberattack might take place. But none can quantify 
or place bounds on the mission impact because those 
approaches don’t include time. Governments and large 

enterprises facing substantial cyberthreats might ben-
efit from the additional detail that simulation can pro-
vide; however, this isn’t an approach that is well-suited 
to casual users given the present state of technology.

The current prototype took three person-years to 
develop and contains only the features and datasets 
needed to support demonstration of the approach. A 
production-quality system would require further sig-
nificant enhancements to data import, execution speed, 
scenario design, and user interfaces to make the soft-
ware suitable for nondevelopers. The majority of the 
recurring effort in applying this approach is in collect-
ing the necessary data about systems and processes, and 
the pertinent dependencies.

As another example of a recent experience, develop-
ing cyberdependency graphs for a large military orga-
nization with users, missions, systems, and networks 
spanning multiple locations took a team of developers 
more than seven person-years to complete, with further 
ongoing effort required to maintain the dependency 
graphs as changes are made to the infrastructure over 
time. A manual, SME-based mapping approach had to 
be used because an AMICA-related development team 
found that automated tools were insufficiently reliable 
in finding true dependency relationships—contrary to 
Panoptesec’s experience. The automated tools showed 
poor recall and precision—that is, too many missed 
dependencies and too many false dependencies.

MIA Problem Formulation
Having considered two illustrative examples, we now 
discuss major remaining challenges.

To begin, appropriate formulation of a problem is 
the key to its successful solution. What constitutes a suc-
cessful solution depends in turn on the solution’s users. 
For example, decision makers need decision support 
at an appropriately abstracted level; they’re much less 
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interested in technical details. For these reasons, future 
MIA techniques might specifically focus on supporting 
the cybersecurity decision-making process, particularly 
on tools that teach, train, and support decision makers.

Determining the correct users, however, depends 
on knowing where MIA belongs in the broader 
scheme of things. One way is to consider MIA as a part 
of the big control loop that strives to keep the con-
trolled “plant”—the mission—within the prescribed 
space of secure states.14 This controller’s output is a 
set of corrective actions designed to keep the plant in 
the secure state.

In this formulation, MIA is the component of the 
control system that measures how much the plant has 
deviated or will deviate from the desired state. Once 
we say “how much,” a formal quantification of a utility 
function is needed. Some current approaches to MIA 
are based on heuristic scoring. To oversimplify, the 
assessor sums up the “impact points” and declares that 
the total impact on the mission is, let’s say, 73 points. 
Similarly, saying that “the mission impact is 70 per-
cent failure” is very difficult to interpret. For example, 
even with 70 percent of the mission failing (whatever 
that means), the operator might still be able to reach a  
key goal.

One way to express quantitative MIA output would 
be to measure mission impact as a reduction in tangible 
system attributes, such as the network bandwidth, delay, 
or power use. Yet another approach would be to quan-
tify the distance from the achievable states to desired 
states, for instance, via the cost of the corrective actions 
that would bring the plant to the desired, secure state. 
All this suggests that a formal language—a formal math-
ematics of mission security—would be highly desirable 
to give MIA a solid quantitative foundation.

Appropriate formulation of the MIA problem also 
requires choosing the right level of abstraction. When 
formulated and solved at a very abstract level, the 
solution might not give adequate insights into what 
actions—often very specific and detailed—must be 
considered. On the other hand, when formulated at a 
very detailed level, the problem demands a very intricate 
model that is far too expensive to construct. Arguably, a 
shift must occur from the enterprise-scale problem to a 
more meaningful tactical scale. One argument for more 
detailed formulations is that seemingly small attacks on 
mission activities can have large effects, as confirmed by 
simulation studies.11

In addition to the control-theoretic style of MIA 
problem formulation, we shouldn’t overlook the 
game-theoretic (or game-playing simulation) per-
spective. A related and appropriate style of problem 
formulation could be robust control with adversar-
ial inputs. Because full information isn’t normally 

available, the problem should be formulated as a par-
tial information game.

Model Content
The fundamental components of a model required for 
MIA include the organization models, its business pro-
cesses (often decomposed into functions and tasks), 
the missions executed through the business processes, 
and the CISs that support the missions. Relations, 
influences, and dependencies—quantitatively char-
acterized—among these entities and their subentities 
need to be modeled. Even the physical environment of 
a mission might need to be modeled as well as the sen-
sors and actuators that sense and affect the environ-
ment, because they also can be subjects of cyber- or 
deception attacks.

Because the MIA problem is fundamentally adver-
sarial in nature, we need a comprehensive model for 
adversary characterization and behavior understanding 
and prediction; the model should also include environ-
ment, attacks, and target properties, including modeling 
of these three elements and the relations and interac-
tions among them.

In addition to describing the problem’s structure, 
models must capture its dynamics. There are several 
very different meanings of dynamics in MIA models. 
First, the structure itself changes rapidly. For example, 
the servers supporting a mission might be taken down 
for maintenance and then brought up online again, or 
reassigned to another mission. The model would need 
to be updated continually to reflect such changes. Sec-
ond, when a cyberattack impacts a mission, the defend-
ers and operators of the mission and supporting systems 
often show remarkable ability to work around the estab-
lished process, that is, to redesign the business pro-
cess rapidly and radically. Third, even in a very static 
business structure, actions are dynamic—they start, 
proceed, and stop in time. This dynamic must also be 
captured in a model. Fourth, the model’s characteristics 
of components and relations might change depending 
on the context. For example, systems’ criticality changes 
during different missions sharing the same systems.

Models of Adversary
Mission impact must be considered in the context of 
what impact the adversary desires. If we know or can 
estimate the adversary’s intents, motivations, and anti
cipations, the adversary’s impact or intended impact 
on our missions would be easier to assess. For exam-
ple, in the AMICA system, the attacker model (agility 
and skills level) was shown to strongly influence the 
mission impact. It should be noted that here we con-
sider the adversary rather abstractly; in particular, we 
don’t assume that the adversary can be modeled as an 
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individual human or a collection of individual humans. 
We discuss this perspective a bit later.

A model for adversary characterization, behavior 
understanding, and prediction should be sufficiently 
comprehensive. In particular, the model should include 
properties of the environment in which the cybercon-
flict occurs, the properties of the attacks and targets 
available to the adversary, and relations and interactions 
among all such elements—all this in addition to the 
adversary’s properties. Naturally, the adversary’s prop-
erties and characteristics are often unknown or uncer-
tain. Modeling tools should allow representing such 
uncertainties.

A powerful determinant of adversaries’ behavior is 
their expectations of our response. Thus, it’s important 
to understand the role of deterrence—the measures we 
can take to prevent hostile actions by an adversary—in 
a cyberconflict. An adversary model should help answer 
questions like: What do the adversaries want to do? 
And what they expect us to do?

Models of Other Entities
When the adversary is an individual human, or a group 
of individuals that we find appropriate to model indi-
vidually, we should consider techniques of cognitive 
modeling of individual human minds. Such models can 
help predict how cyberattackers formulate their goals 
and thereby tell us about the intended or actual mission 
impact of the adversaries’ actions. Cognitive model-
ing tools like ACT-R (Adaptive Control of Thought—
Rational) are beginning to be used for modeling 
cyberattackers’ behaviors.15 However, this research area 
is rather immature.

Defender models shouldn’t be overlooked either. To 
assess the likely mission impact, we need to know how 
a human cyberdefender reacts to cyberattacks. Errors 
committed by defenders determine the extent of mis-
sion impact. A defender might fail to recognize a threat 
and to take appropriate actions (or take the wrong action 
based on imperfect information), thereby enabling a 
greater impact on the mission. A defender might fall 
victim to an attacker’s deception16 or fail to undertake 
a suitable workaround when a mission is impacted. A 
defender might also misinterpret the impact when it 
occurs. All this is highly relevant to the MIA problem.

Whether we model an attacker or a defender, the 
model needs to be rich enough to reflect “irratio-
nal” aspects of human cognition, such as cognitive 
biases. These aspects are particularly important in the 
high-pressure, high-tempo, nonintuitive world of cyber-
operations. The impact of dynamic learning must be 
considered to account for rapid evolution of knowledge 
in cyberconflicts. Game-theoretic approaches should 
be included to account for the highly adversarial nature 

of cyberoperations. Because both the attacker and the 
defender often operate with very limited awareness of 
one another’s actions, situational awareness of both 
should be modeled. The importance of situational 
awareness in achieving impact on the opponent’s mis-
sion can’t be overlooked.

However, in many cases, both the defender and 
the attacker are best modeled not as individual human 
cognitive actors, but rather as organizations. Organiza-
tional modeling is studied by a community of research-
ers in the political science field that is distinct from the 
community of cognitive modelers. It would be worth 
exploring how that community might help solving the 
MIA problem.

Model Construction
The current practice of constructing models for MIA 
is almost entirely manual in nature. As such, model 
construction is very time consuming, expensive, and 
difficult to document, inspect, and validate. Maintain-
ing such models—also manual—is likewise expensive. 
Quantitative characterization of dependencies between, 
for example, business functions and supporting tech-
nical assets, is largely a matter of asking the presumed 
SMEs for a number, such as a conditional probability. 
However, this can be expensive, and the verity of num-
bers is doubtful.

Still, manual construction of models for MIA prob-
lems appears feasible, even if expensive. For example, 
both Panoptesec and AMICA are comprehensive MIA 
modeling and simulation systems with a relatively fully 
implemented business model. To a degree, both rely on 
manually crafted models (AMICA more so).

Some tools allow essentially manual yet computer- 
aided construction of business models. Widely avail-
able business process management tools fall into this 
category. Ideally, however, we would like to see the bulk 
of MIA models constructed automatically, perhaps 
by observing a business process and its cyberdefense 
operations, and automatically learning or inferring  
a model.

B usiness effectiveness of cyberdefense depends to 
a large degree on the business’s ability to assess—

systematically and quantitatively—the impact of cyber-
attacks on the mission. This MIA problem won’t be 
solved by an ad hoc muddle of compliance checklists, 
forensic investigations, and expert opinions. As in most 
mature technical and management fields, the problem 
will require comprehensive models.

To be sure, the challenges of building such a model 
are formidable. They range from formulating a model 
around the right decision-making needs and at the right 
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level of detail, finding effective means of representing 
complex adversarial and human cognition aspects of the 
domain, and developing cost-effective approaches to 
constructing and validating the model. Although expe-
rience with recent research projects suggests feasibility 
and potential utility of developing such models, deci-
sive evidence of their benefits awaits further research 
and practical deployments. 
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S urvivors of intimate partner 
abuse (IPA) are people who’ve 

experienced emotional abuse, threats 
of physical or sexual violence, or ac-
tual physical or sexual violence from 
an intimate partner—typically a cur-
rent or former spouse, spouse during 
the process of separating, or dating 
partner. Approximately one in four 
women and one in 10 men in the 
US have experienced negative im-
pacts from sexual violence, physical 
violence, or stalking by an intimate 
partner;1 approximately one in three 
women worldwide have experienced 

physical or sexual violence by an inti-
mate partner.2 Because IPA affects so 
many people globally, the survivors 
and abusers vary in gender, culture, 
wealth, education, tech literacy, and 
other attributes.

Survivors of IPA would greatly 
benefit from a technology commu-
nity that understands and continues 
to address their unique challenges. 
To help technology creators better 
support survivors of IPA, we share 
findings from a study aimed at un-
derstanding this population’s digi-
tal privacy and security experiences 

and practices.3 Our study builds on 
prior research outlining different 
phases of IPA (for example, Lenore 
Walker’s three phases of abuse4 and 
Shirley Patton’s five phases of leav-
ing5). We also draw on research fo-
cused on improving the usability of 
general online privacy and security 
technologies (for example, Lorrie  
Cranor and Simson Garfinkel’s 
work6). We believe that understand-
ing the experiences of survivors of 
IPA can improve digital privacy and 
security for the general population.

Formative Study
Our study sought to answer the fol-
lowing research questions:

■■ How do survivors of IPA experi-
ence digital privacy and security?

■■ What are survivors’ motivations, 
practices, and challenges when 
protecting their privacy and secu-
rity online and on their devices?

To this end, we conducted one- 
hour semistructured interviews 
with 15 survivors of IPA (14 female, 
one male). All participants were of 
low socioeconomic status, receiv-
ing services from two US nonprofit 
agencies. We worked with agency 
staff to co-create a study plan. 
Agency staff recruited participants 
who were at least 18 years of age 
and had a digital privacy or security 



concern, such as experiencing an ac-
count breach. For more information 
about our study’s methodology, 
please see “Stories from Survivors: 
Privacy and Security Practices 
When Coping with Intimate Part-
ner Abuse.”3

Ethical Considerations
This research entailed important 
ethical considerations. Through-
out the process, we referred to pre-
existing literature and consulted 
with more than a dozen experts 
in domains including survivors of 
IPA, human subjects research, le-
gal, ethics, security, privacy, and 
anonymization.

Participant well-being shaped 
our study design. Our agency col-
laborators recruited using our cri-
teria so that participants wouldn’t 
need to communicate with us until 
they decided to participate. We con-
ducted interviews at the agencies 
to help participants feel more com-
fortable. Our interviews focused on 
technology-related abuse, not gen-
eral stories of abuse unrelated to 
technology. We also made aftercare 
arrangements to communicate with 
the agencies if anything problematic 
came up during interviews.

We anonymized the data we re-
port following the guidance of mul-
tiple privacy experts and agency 
collaborators. Also, our findings 
focus on informing the technol-
ogy community. We assessed prior 
literature and confirmed that our 
findings organized known abuser at-
tacks and survivor practices7,8 into 
a framework with corresponding 
recommendations for technology 
designers. We describe additional 
ethical considerations in “Stories 
from Survivors: Privacy and Secu-
rity Practices When Coping with 
Intimate Partner Abuse.”3

Three IPA Phases Affecting 
Technology Use
We observed three phases of IPA—
physical control, escape, and life 

apart (see Figure 1)—that affected 
how survivors used technology, fo-
cusing on their digital privacy and 
security practices. This framework 
gives technology creators a lens 
through which to consider how sur-
vivors of IPA might experience or 
leverage new and existing technolo-
gies. Note that this framework de-
scribes how survivors’ experiences 
and use of technology are likely to 
change across the different phases.

Physical Control

He’s really controlling, and he 
doesn’t want me to even have any-
thing online. … Like, he wants me 
to be alone and have nobody. So 
I could just call him whenever I 
need him, just so he’s the only one.  
—Participant (P) 12

Participants first faced the physical 
control phase, during which their 
abuser had regular physical access 
to them and their devices. Abus-
ers used this physical proximity to 
control and monitor participants’ 
devices and accounts. Although 
some participants found ways to 
use technology rather than avoid it 
completely, all described challenges 
maintaining autonomy and privacy 

while using technology because 
of their abusive relationships. For 
multiple participants, the abuser’s 
physical control of their technology 
contributed to social isolation, de-
vice loss or damage, financial hard-
ship, and psychological distress.

Survivor experiences. During the 
physical control phase, abusers vi-
olated participants’ digital privacy 
and security by

■■ physically controlling and moni-
toring their devices and accounts,

■■ destroying their devices, and
■■ installing spyware on their devices.

Abusers also hijacked partici-
pants’ accounts and harassed them 
online during the physical control 
phase. Such hijacking also occurred 
during the other two phases.

P3 explained how her abuser 
monitored her digital activity by 
forcing her to give him physical ac-
cess to her phone. She said: “When 
we were together, he would always 
have my phone. Whoever would text 
me, he had to see who it was first. Or 
who was calling me, he had to check 
to make sure it wasn’t another guy.”

P4’s abuser had destroyed several 
of her phones. She told us “he would 

Figure 1. Three phases of intimate partner abuse that affected survivors’ technology use, focusing on 
privacy and security practices.

1. Physical control

Coping with abuser who
physically controls and 
monitors their technology use

Trying to leave abuser

Survivor uses privacy and
security practices to

hide digital
escape plans 
and activities

under physical
control

sever digital
ties with

abuser apart
from physical

control

Acute risk

Ongoing risk

Survivor uses privacy and
security practices to hide
technology use but, due to
life circumstances, has
limited online privacy from
the abuser

Building and maintaining
a new life apart from
abuser, online and o�ine

Survivor seeks to hide
contact info and location
long term, in part by using
privacy and security
practices

Abuser has physical access
to survivor and their devices

Abuser no longer has physical
access to survivor or their devices

2. Escape 3. Life apart
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just, like, stomp on it.” This isolated 
her from her social relations. In her 
words, “people have my old num-
bers … there was no way for me to 
get a hold of other people.” P4 had to 
deal with being phoneless for some 
time due to the difficulty of purchas-
ing a new phone in her situation.

P2 observed unusual behavior 
on her phone and, with help from 
an expert at a store, found spyware. 
She explained that the expert told 
her that “somebody put something 
in the phone … [so that they] can 
see … where you call, who you talk 
to, all the logs ….”

Participants experienced threats 
online in all three phases. For ex-
ample, P4 described: “He would 
just talk about me with my name, 
my family’s name … all this in-
formation, he would just put it on 
[the social network]. … Because he 
was basically being a bully, as well, 
through [the] Internet, saying he 
was gonna kill me, kill my mom, kill 
my dad, kill my [sibling].”

Account hijacking was another 
abuser attack that participants ex-
perienced in all three phases. For 
example, P7’s abuser hijacked her 
email account and impersonated 
her. He also deleted emails about 
potential jobs for her. She told us: 
“He read personal emails and re-
sponded to personal emails in my 
voice. And he deleted job informa-
tion.” She found it to be “rather per-
sonal and damaging.”

Survivor practices. To cope with 
their abusers’ physical control of 
their devices and accounts, partici-
pants reported

■■ limiting or avoiding use of devices 
and accounts their abusers could 
access,

■■ using alternate devices and ac-
counts their abusers didn’t know 
about, and

■■ deleting material from their de-
vices and accounts (such as mes-
sages and browsing histories).

For example, after P2 found spy-
ware on her phone and laptop, she 
said: “I simply stopped using the 
laptop at home. And the phone. 
That’s why I went to the library to 
use the computer.”

Escape

I was trying to figure out a way to 
get out. And so I was moving stuff 
out of our house a little at a time 
while he was at work. … I got that 
little prepaid phone and then I 
called from there. … I was just in 
the middle of the street. —P11

During the escape phase, partici-
pants’ main goal was to leave and 
sever ties with their abuser. The es-
cape phase overlapped with the 
other two phases, so it inherited  
the same abuser attacks and sur-
vivor practices as those phases. 
However, it added new privacy and 
security challenges due to the survi-
vors’ life circumstances. The National 
Domestic Violence Hotline estimates 
that it takes an average of seven es-
cape attempts to succeed.9 Research 
shows that abusers escalate their at-
tempts to regain control over survi-
vors during this time, resulting in an 
increased likelihood of violence and 
even death.7 Thus, in Figure 1, we 
mark escape as being an acute risk 
and depict the phases as a cycle.

Survivor practices: escape during 
physical control. During the physical 
control portion of the escape phase, 
participants focused on hiding their 
digital escape activities, for exam-
ple, learning how to escape, setting 
up social support, and finding new 
housing and jobs. They used the 
same practices described for the 
physical control phase, but possibly 
more often because, as noted, abus-
ers might escalate their efforts.

As an example of escape during 
physical control, P8 told us how 
she used an alternate account on 
her work computer: “I was trying to 

look for elsewhere to live and trying 
to find resources out there and try-
ing to apply to, you know, just hous-
ing and things like that. And I didn’t 
want it to go to where he would find 
it. So … I’d go into [my separate 
email account] at work only, I didn’t 
want [that account] on my phone or 
anything.”

As another example of es-
cape during physical control, P2 
explained how she deleted her 
browsing history from her home 
computer to hide some of her 
search activities from her abuser 
and her child: “[I delete my brows-
ing history because] my [child] 
sometimes [uses] the computer; I 
don’t want [my child] to know that 
I am like searching how to get a re-
straining order, … how to kick my 
husband out of the house. How to 
help my [child] cope with separate 
parents, how to help your [child] in 
school with those kind of issues. … 
But I don’t want [my child] to see 
what I am searching; [my child] will 
start asking questions and I am not 
ready.”

Survivor practices: escape during life 
apart. During the life apart portion 
of escape, participants needed to 
sever digital ties with their abusers. 
To do so, participants

■■ deactivated or abandoned ac-
counts known to the abuser;

■■ destroyed, discarded, or wiped 
devices; and

■■ strengthened authentication.

After leaving, P3 deactivated her 
social media account in an effort 
to hide her new location. She sus-
pected her abuser had located her 
through the account during a pre-
vious escape attempt, saying “he’d 
find so many ways to find out where 
I was.” The decision to deactivate an 
account often involved balancing 
digital privacy and security with ac-
cess to social support, both of which 
were important during escape and 
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life apart. After deactivating her 
social media account, P3 risked re-
activating it to contact her mother: 
“My mom didn’t have a phone back 
then. So I had to … use the [social 
media account] to talk to her. So it 
was scary.”

P6, whose abuser had installed 
spyware on her phone, didn’t trust 
that a reset would completely fix 
the problem. So after leaving her 
abuser, she destroyed her phone, 
saying: “Bye-bye phone. SIM card 
through the shredder. … The phone 
unit, painstakingly ran over by a car 
a couple of times. I mean, it’s in 
pieces.”

Several participants decided 
to keep their online accounts, but 
reported strengthening how they 
authenticated. P11 recalled: “[A 
software product] let me know 
when someone’s trying to hack 
into my account. Then I used 
the [two-factor authentication] 
method, and I changed the pass-
word. So that is so cool for me. It’s 
a couple times. I think the last time 
was my ex. You know he thought he 
could just check my email and see 
what I’m doing.”

Life Apart

I had given up my home, left my 
job, relocated to another county 
and not this one that we’re sitting 
in. My [children] had to go through 
this. … I had spent a lot of money, 
lost a lot of money, and had gone 
through a lot of tech devices. —P6

During the life apart phase, par-
ticipants described having to start 
over—often with a new home, job, 
schools for their children, devices, 
and accounts—while also dealing 
with the immediate and long-term 
risk of their abuser finding informa-
tion about them. After severing digi-
tal ties as part of escape, participants 
had lifelong privacy work to do, en-
suring that they, their children, and 
other people took great care when 

sharing their personal information 
online.

Survivor practices. Participants ex-
erted special care to protect their 
location (anywhere they or their 
family go) and contact information 
(new email addresses, phone num-
bers, online identities, and so on). 
They did this to prevent abusers 
from harassing them or reestablish-
ing physical control. To protect their 
personal information, participants

■■ limited or avoided sharing infor-
mation online,

■■ monitored and restricted their 
children’s online activities,

■■ strengthened the privacy and  
security settings for their online 
accounts, and

■■ severed ties with social relations 
they had in common with their 
abuser.

Several participants reported 
limiting or avoiding sharing infor-
mation online. But this limited job 
opportunities for some, as described 
by P15, who was self-employed but 
could no longer advertise her ser-
vices and thus had to change ca-
reers: “I have my [small business], 
but when I was actively working, so 
you have your email on [the adver-
tisement]. And then you have your 
phone number. You [include] when 
you’re going to [be there]. … They 
know right where to find you, and 
sometimes, you’re there by yourself. 
You’re just a sitting duck.”

An important challenge in stay-
ing hidden was that the abuser could 
use other people—such as the par-
ticipant’s children, family, friends, 
and colleagues—to find the partici-
pant. This concern greatly compli-
cated participants’ online privacy 
and security work, because it re-
quired them to enlist the coopera-
tion of other people who might not 
fully understand or appreciate their 
situation. For example, P11 told us 
that she doesn’t allow her teenager 

to post on social media. She said, “I 
just don’t want [my teenager] post-
ing something out there that could 
be threatening to [him/her] or to 
our entire family, [he/she] doesn’t 
even realize it. Like if [he/she] 
puts … where you go to school. … 
That means [my abuser] could be 
sitting outside waiting in the car-
pool lane, or in the morning when 
they get to school, there he is.”

Some participants decided to 
sever ties with social relations they 
shared with their abuser. For ex-
ample, P5 said: “I’ve gotten rid of 
a lot of friends. … They’re mutual 
friends [with the abuser]. … People 
can flip-flop, play one side, or [talk] 
to me and then go give him informa-
tion. I just don’t trust anybody.”

What’s Working and 
What Can the Tech 
Community Do Next?
Our study highlights ways in which 
technology is already working well 
for survivors across the three IPA 
phases that affect technology use. 
It also highlights opportunities for 
technology creators seeking to sup-
port survivors of IPA.

Using Controls to Delete 
or Hide Online Activities 
in High-Stress Situations
Deleting or hiding online activities 
such as messages and browsing was 
an important strategy for survivors 
in all phases, especially physical con-
trol. Fortunately, there are already 
ways survivors can do this; for ex-
ample, many technologies allow us-
ers to have more than one account 
or device, access multiple accounts 
on a device, and delete content.

However, as noted, participants 
in our study reported occasionally 
making mistakes when deleting or 
clearing information, perhaps due 
to the high levels of stress and risk 
they were facing. Future work could 
make further improvements by 
studying such tools’ usability dur-
ing high-stress, high-risk situations.
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Educating Survivors 
about Security Features
Account hijacking was an issue our 
participants dealt with in all phases. 
For those who knew how to use 
them, security features and controls 
like two-factor authentication and 
unusual activity alerts were very 
empowering, particularly in the life 
apart phase. However, confidence 
using these features, especially in 
high-risk situations, was an issue. 
Future work could focus on provid-
ing instructional materials for sur-
vivors and their service providers 
about how to use privacy and secu-
rity features and controls.

Managing Digital 
Evidence of Abuse
It might come as a surprise, but 
there was an upside to some of the 
harassing messages that participants 
received from their abusers—these 
messages were sometimes provided 
as evidence to law enforcement (for 
example, to help obtain restraining 
orders). Prior work has also shown 
that digital channels can provide 
an outlet for an abusers’ desire to 
exert control, which might reduce 
their motivation to exert control in  
other ways.7

However, survivors tend to expe-
rience emotional trauma as a result 
of such harassment. Future work 
could explore solutions that capture 
digital evidence and provide abus-
ers with an outlet while minimizing 
survivors’ emotional trauma.

Maintaining Online 
Social Lives
Some participants chose to avoid 
technology to limit the informa-
tion an abuser could find about 
them online; however, this also so-
cially isolated them at a time when 
they needed support and access to 
resources such as housing and jobs. 
Several practices commonly used 
by our participants—avoiding 
technology, deactivating accounts, 
and destroying devices—added to 

their social isolation. Future work 
could educate survivors about ex-
isting technologies and explore 
new technological solutions to help 
them maintain social ties with-
out leaking important personal  
information.

Providing Options 
and Ambiguity
Survivors must deal with highly 
motivated attackers who have in-
timate knowledge of their lives. In 
the physical control phase, attack-
ers also have physical access to the 
survivors’ devices and accounts. 
There is no one-size-fits-all solution 
to this type of threat. To cope, sur-
vivors benefit from having multiple 
privacy and security options to deal 
with their highly individual situa-
tions. In addition to the features we 
discussed, survivors benefit from 
the ability to maintain ambiguity in 
their technology-mediated interac-
tions with others.10 One way to do 
this is to give them the space to tell 
stories about those interactions. For 
example, survivors could explain 
that they missed a call from their 
abuser by claiming that they didn’t 
hear the call (for example, by saying 
that their phone ringer was off or 
they left their phone behind). An-
other way to give survivors space is 
to provide granular controls such as 
the ability to delete specific content, 
ignore messages, or temporarily 
turn features off; such controls can 
also help users manage this type of 
ambiguity.

W e shared results from a for-
mative study on the digital 

privacy and security experiences 
and practices of survivors of IPA. 
Our aim is to help technology cre-
ators consider how new and exist-
ing technologies and features can 
be designed to help survivors of IPA 
as well as identify opportunities to 
continue to improve support for 
this user population. 
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Figure 1 illustrates Alice and 
Bob communicating electroni-
cally. They both use a device (such 
as a computer system or a smart-
phone) that consists of multiple 
layers of hardware and software. 
More specifically, the device con-
sists of hardware modules that run 
an OS, which hosts application 
software. For Alice to send a mes-
sage to Bob, there must be mes-
saging software available on either 
side of the communication channel. 
Alice interacts with this software 
on the sending device (the user 
interaction marked in black). The 
message is transport-encoded and 
sent over some networking facil-
ity empowered by some hardware 
and OS functionality (the network 
interaction marked in gray). The 
same is true on the recipient side: 
Bob isn’t personally receiving mes-
sages. Instead, he’s interacting with 
the messaging software installed 
on the receiving device and oper-
ated on some hardware and OS. The  
picture is highly fractal—it gets 
more involved as you zoom in on 
the details.

Keeping Figure 1 in mind, let’s 
revisit the sentence “Alice sends a 
message to Bob.” Note how it over-
simplifies the situation. Instead of 
sending a message to Bob, Alice 
prepares the message using applica-
tion software. She clicks a button to 
alert the software that the message 
is ready to be sent. This click is all 
Alice does; from that moment on, 
the message is transmitted by the 
appropriate software and hardware 
components of the sending device. 
Alice can hardly control these 

Disillusioning Alice and Bob
Rolf Oppliger | eSECURITY Technologies

I n their seminal paper,1 Ron-
ald Rivest, Adi Shamir, and Len 

Adleman not only introduced the 
RSA public-key cryptosystem 
but also cast “Alice” and “Bob” as 
replacements for the A and B sym-
bols used to refer to the participants 
of a cryptographic protocol. Since 
then, cryptographers and security 
professionals have cast additional 
characters to refer to protocol par-
ticipants, such as Carl or Dave, or 
adversaries, such as Eve or Mallory. 
Originally viewed as a side prod-
uct of the RSA paper, the notion of 
Alice and Bob prevailed and is now 
the de facto terminological stan-
dard and notation for arguing about 
cryptographic protocols—be it in 
informal descriptions or semifor-
mal specifications.

In this column, I challenge this 
notation and argue against its fur-
ther use. I think it’s more appro-
priate to use symbols such as A 
and B rather than human names 
like Alice, Bob, and the rest of the 
gang, because human names tend  
to oversimplify—and therefore 
obfuscate—the situation. When we 
say, “Alice sends a message to Bob,” 
we suggest that Alice and Bob

■■ are human,
■■ personally interact, and
■■ fully control the messages they 

send and receive.

In reality, however, the situation is 
more involved, and none of the above 
suggestions is true: neither Alice nor 
Bob is human, they don’t personally 
interact, and they don’t fully control 
the messages they exchange.



operations, and she must trust that 
all components play by the rules 
and behave as specified. Obviously, 
many things can go wrong, and 
many components can misbehave 
and cheat in various ways. Having 
Alice (and Bob) follow the protocol 
is necessary, but not sufficient, to 
deliver the message from sender to 
recipient. Many other components 
are involved that must also follow 
the protocol rules.

Alice and Bob have been cast 
to explain cryptographic proto-
cols. Using such a protocol, Alice 
doesn’t typically send a message in 
the clear. Instead, she authenticates 
and/or encrypts it. But it’s very 
likely not Alice who does the cryp-
tographic computation but rather 
some hardware or software module 
that operates on her behalf (it can 
be a hardware security module such 
as a smartcard, or a cryptographic 
library that runs in software). The 
same is true for the cryptographic 
keys that control the cryptographic 
computation. Very likely, it’s not 
Alice who provides these keys but 
a software module that either stores 
the keys or generates them on the fly 
by using an automated key exchange 
and management protocol. The bot-
tom line is that cryptographic com-
putations are never done by human 
users but by supporting modules 
implemented in hardware or soft-
ware and specialized for these tasks 
(note that these modules aren’t even 
illustrated in Figure 1).

The same line of argumentation 
that applies to a message’s sender 
(Alice) and receiver (Bob) also 
applies to the adversary: it’s almost 
never human users who eavesdrop 
and try to manipulate messages but 
rather highly specialized attack soft-
ware. If adversaries try to mount a 
pass-the-hash attack, for example, 
the attack software extracts users’ 
credentials from the local cache. 
If they try to mount a BEAST-like 
attack against the SSL/TLS proto-
cols, the attack software is delivered 

as active content (for example, mali-
cious JavaScript code) to launch 
a man-in-the-middle attack and 
choose ciphertexts that are sent 
to the server. Here, we’re talking 
about thousands or even millions 
of ciphertexts that need to be com-
piled in a specific way and sent to 
the server in a reasonable amount 
of time. Adversaries must use highly 
specialized software to automate 
such an attack.

So, “Alice sends a message to 
Bob” sounds friendly but is illusive. 
Above all, it misses the point when 
it comes to a technical discussion, 
as is always the case in applied cryp-
tography. Most of the components 
that must be in place and cooperate 
are inherently nonhuman. In fact, 
human users’ roles in such protocols 
should be as small as possible—the 
more things users can do, the more 
likely something is to go wrong. 
Therefore, a rule of thumb in crypto-
graphic protocol and system design 
is to make the user interface as  
small and intuitive as possible. This 
contradicts the role human names 
play in such protocols’ description 
and specification.

The realm of remote Internet 
voting further clarifies my point. 
By clicking a button, Alice might 
think she’s casting a vote for a par-
ticular candidate—but this isn’t 
always true. If the software man-
aging the voting process on the 
client side is flawed or somehow 
compromised, anything is pos-
sible and there’s no real way for 
Alice to determine whether her 
vote was cast-as-intended and 
counted-as-cast. Many voting sys-
tems work that way and don’t pro-
vide any guarantee. But there are 
cryptographic techniques that can 
empower Alice to verify her vote 
end to end (E2E). Technologies 
that provide E2E verifiability are 
going to be important in the future 
to mitigate the threats and respec-
tive risks in remote Internet voting.

S o although it might seem a lit-
tle pedantic (and most people 

working in the field likely appreci-
ate the difference between a nota-
tion and reality), I still think it’s 
more appropriate to use symbols 
like A and B instead of human 

Hardware

Operating system

Application software

Sending device

Hardware

Operating system

Application software

Receiving device

Alice Bob

Network interaction

User interaction

Figure 1. Alice and Bob communicate electronically, using devices with multiple layers of hardware 
and software.
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names like Alice and Bob. If you 
agree, then consider joining me in 
getting rid of the cast of characters 
and using symbols to describe and 
specify cryptographic protocols. A 
symbol is better suited to be asso-
ciated with a multiple-component 
technical device than is a human 
name. Using such symbols might 
help bring discussions back into 
the realm of technology, where 
they really belong. 
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FinTechSec: Addressing the Security 
Challenges of Digital Financial Services
Patrick Traynor, Kevin Butler, and Jasmine Bowers | University of Florida
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Y ou probably don’t think about 
traditional banking very often. 

Many of us would be hard-pressed 
to say why we picked one financial 
institution over another—it could be 
one that partners with an alma mater, 
one used by friends and neighbors, 
or simply the one closest to home. 
Most important, most of us also have 
options and could easily take our 
business (and our money) down the 
street to another institution should 
we fail to receive the terms, service, 
and security we feel necessary to 
grow and protect our assets.

Now that we have you thinking 
about traditional banking, it’s easy to 
begin enumerating the many things 
it enables: our employers electroni-
cally deposit our paychecks (and 
they become immediately available), 
we make payments using credit and 
debit cards (reducing the need to 
physically carry and protect cash), 
and we even have an array of protec-
tions against fraud. This infrastruc-
ture extends far beyond national 
borders and is now so pervasive in 
the developed world that travelers 
think nothing of withdrawing money 
at foreign ATMs. In short, traditional 
banking makes payments (and most 
of the challenges around it) largely 
frictionless to the consumer.

It would be easy to assume that 
everyone has access to traditional 
banking given its seeming ubiquity. 
Unfortunately, that assumption is 
simply wrong.

Billions around the world lack 
access to even the most basic 

banking services for many reasons. 
Many simply lack physical access. 
Even more lack the ability to main-
tain the relatively high minimum 
balances required by traditional 
financial institutions. The practical 
impacts are significant. In the US 
alone, only 68 percent of homes 
were “fully banked” in 2015, mean-
ing that the remaining 32 percent 
required the use of so-called “alter-
native financial services” including 
check cashing and payday loans.1 
Worldwide, some two billion peo-
ple remain unbanked.

The lack of basic banking ser-
vices makes tasks most of us take for 
granted, such as saving, electronic 
payment, and short-term loans, 

essentially out of reach for huge 
portions of the population. Tech-
nology might provide a real path to 
so-called financial inclusion; how-
ever, as our research shows, secu-
rity and privacy remain significant 
impediments to future progress in 
this space.

Our goal in this article is to dis-
cuss our experience in securing 
mobile money, a digital financial 
system that uses mobile phones to 
transfer currency without the need 
for a bank. Our efforts began in 
2011 and have resulted in extensive 
collaboration with organizations 
including the US Department of 
State, the International Telecommu-
nications Union (ITU), the GSM 



Association (GSMA), the World 
Bank, and many individual pro-
viders and vendors. These trans-
formative systems have already 
demonstrated the power to raise 
populations out of poverty, and 
we believe that they will soon be 
deeply intertwined with the tradi-
tional global financial infrastruc-
ture. This means that we have a 
chance to get security and privacy 
correct now instead of looking back 
with regret when the above systems 
are made manifest.

What Is Mobile Money?
In the mid-2000s, the Kenyan cel-
lular provider Safaricom noticed an 
interesting trend. For some time, 
customers in its network could send 
minutes to their friends and fami-
lies, and often did so to ensure that 
those with access to funds could 
talk to those without. However, a 
few enterprising customers began 
sending minutes in exchange for 
goods and services. This was no 
small innovation—at the time, the 
vast majority of Kenyans didn’t 
have a bank account, and electronic 
payment was beyond most citizens’ 
reach. In contrast, nearly eight out 
of 10 citizens had mobile phones. 
Seeing this tremendously unfilled 
need for electronic payment being 
approximated with “top up” min-
utes, Safaricom launched M-Pesa 
in 2007 and allowed subscribers to 
send actual money to one another 
via SMS.

M-Pesa was an overnight suc-
cess. Urban residents who would 
often travel long distances to physi-
cally transport money to their rural 
family members (often at the literal 
risk of highway robbery) could sim-
ply transfer those funds at the press 
of a few buttons. Moreover, M-Pesa 
overcame the problem of physical 
access by making virtually every 
vendor the equivalent of an ATM—
capable of both depositing funds 
to and withdrawing funds from the 
network. Finally, M-Pesa charged 

extremely low transaction rates, fur-
ther enticing those unable to use 
traditional banking services to join.

M-Pesa now claims more than 
two-thirds of the Kenyan popu-
lation as its customers. More-
over, this model has been copied 
and attempted widely across the 
globe (especially in the developing 
world). In 2016, there were more 
than half a billion mobile money 
accounts around the world, and the 
industry processed an estimated 
US$22 billion.2 These numbers 
continue to increase by staggering 
amounts each year.

What we’ve described here 
might sound somewhat familiar. 
After all, the past few years have seen 
the rise of peer-to-peer payment 
systems such as Apple Pay, Google 
Wallet, Samsung Pay, Venmo, and 
a handful of others. However, none 
of these are mobile money because 
they’re all backed by the traditional 
banking infrastructure. That means 
that unless you acquire a credit or 
debit card, you really can’t use these 
systems. Think of mobile money 
instead in the following way: rather 
than Bank of America or HSBC, 
AT&T or Orange now becomes 
your “bank,” and you deposit money 
or checks at your local gas station, 
corner market, or grocery store.

Mobile money is also not the same 
thing as cryptocurrency (for exam-
ple, Bitcoin and Ethereum). Speak-
ing very broadly, these two systems 
solve decidedly different problems. 
Whereas cryptocurrencies strive to 
create alternative money outside of 
centralized control, mobile money 
systems operate using traditional 
nation-state-backed fiat currency. 
While some researchers and start-ups 
have attempted to deploy crypto-
currencies in the context of mobile 
money, they haven’t met much suc-
cess. Moreover, mobile money is 
being used by a far greater number 
of people: M-Pesa alone reported 6 
billion transactions in 2016,3 com-
pared to Bitcoin’s 184 million over 

its entire lifetime (blockchain.info 
/charts/n-transactions-total). Given 
this number of transactions, we 
believe that those who care about 
cryptocurrencies should also under-
stand mobile money.

What Is the State 
of Security?
Most first-generation mobile money 
systems were built on widely de-
ployed 2G GSM cellular networks. 
These services relied on either SMS 
or Unstructured Supplementary 
Service Data (USSD) channels for 
communication. These channels are 
ideal from the perspective of rapid 
deployment in that they’re nearly 
omnipresent. However, they’re 
problematic from the perspective 
of security. First, 2G networks gen-
erally rely on cipher suites that are 
known to be weak. Specifically, the 
A5/1 and A5/2 algorithms protect-
ing the wireless portion of GSM 
networks can both be cracked with 
relatively little effort by an adver-
sary. Although A5/1, the stronger 
of the two ciphers, was believed to 
provide significantly improved pro-
tection, software-defined radio sys-
tems capable of cracking this cipher 
in real time are now available in 
backpack-sized setups. That means 
these first-generation services are 
vulnerable. To make matters worse, 
many providers instead rely on the 
A5/0 (that is, no encryption) stan-
dard, removing the already low bar-
rier to attack.

Second, even if providers were 
to universally upgrade their over- 
the-air cipher suite to A5/3 (a stron-
ger cipher also known as KASUMI, 
with known theoretical weaknesses 
but no practical attacks at this time), 
encryption protecting data in the 
SMS and USSD channels ends at 
the base station. That means that 
in the core network (and poten-
tially over wireless backhauls used 
to connect remote towers to that 
core network), an attacker can eas-
ily observe and modify transactions  
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without detection. Moreover, because 
authentication in GSM networks is 
unidirectional (that is, device to net-
work, but not network to device), 
an adversary could easily deploy a 
so-called “rogue base station” in a 
busy area and force all connections to 
pass unencrypted through it.

The most discussed solution in 
this space has been the SIM Appli-
cation Toolkit (also known as SIM 
Toolkit). SIM Toolkit lets provid-
ers develop applications directly 
on SIM cards, thereby overcom-
ing the need to build applications 
for a massive set of feature phone 
platforms. Many have proposed add-
ing application-layer encryption to 
mobile money via SIM Toolkit, but 
these efforts have largely failed in 
practice. Providers privately express 
frustration in ensuring the correct 
operation of such a solution. More-
over, there’s great difficulty in replac-
ing the massively deployed number of 
SIM cards, and over-the-air updates 
haven’t proven to be a successful path 
for upgrade.

Network and device upgrades 
represent a second, more viable 
path to security. The use of 3G 
and 4G cellular standards (with 
better encryption options) and 
smartphones offer the potential for 
strong protections from both core 
network and end-to-end perspec-
tives. The first suggestion, while 
slowly happening, is unlikely to be 
universal in the near future. The 
return on investment for ripping 
out the massively deployed infra-
structure and replacing it with an 
expensive new network is low. 
That’s not to say that more 3G and 
4G infrastructures aren’t being 
deployed; rather, the pace at which 
they’re being rolled out is slow in 
the developing world. More criti-
cally, these networks don’t provide 
end-to-end cryptographic protec-
tion of user data flows, meaning 
that a total replacement of all 2G 
networks alone wouldn’t solve the 
security problems discussed earlier.

Much of our research has 
focused on mobile money applica-
tions for smartphones because they 
represent the most practical and 
rapid path to security. Smartphones 
come equipped with libraries con-
taining an array of strong encryp-
tion algorithms, making it possible 
for developers to quickly and cor-
rectly provide end-to-end security 
for their applications. In 2015, we 
undertook a major effort to measure 
how well such mechanisms were 
being used.4 What we found was 
disheartening. Using a combination 
of automated and manual analysis, 
we discovered widespread misuse of 
encryption through the creation of 
insecure protocols, failure to prop-
erly authenticate users and mobile 
money entities, and poor SSL/TLS 
configuration on back-end servers 
(among many other issues). Our 
comprehensive teardown of seven 
applications revealed that we could 
steal money from six of them with 
ease. Moreover, the terms of ser-
vice in all these applications made 
customers responsible for all fraud, 
even though we demonstrated that 
funds could be stolen without any 
negligence (for instance, giving out 
their PIN) on the consumers’ part.

These weaknesses were cov-
ered in news outlets including the 
Wall Street Journal, and we worked 
diligently behind the scenes to pro-
vide each of the at-risk companies 
with detailed vulnerability reports. 
We also worked with the GSMA 
and the ITU to spread word of 
the problems as well as how they 
could be addressed at low cost (for 
instance, correct configuration or 
code updates). However, when 
we remeasured the applications a 
year later, we saw not only that the 
majority of vulnerabilities hadn’t 
been fixed (in spite of promises to 
the contrary) but also that develop-
ment of new features and interfaces 
had proceeded significantly.5

Much remains to be done by 
the research community. We need 

to make it harder to design appli-
cations that use insecure commu-
nications. Although Android took 
significant steps forward in this 
space, the amount of insecure code 
and security bypasses discovered in 
the recovered code means that we 
aren’t there yet. Mechanisms that 
prevent the submission of applica-
tions that fail to properly use TLS 
would be great, but creating tools to 
do this will require extremely care-
ful design. Moreover, because of the 
lack of an obvious push to replace 
feature phones and 2G networks, 
easy-to-deploy protocols and solu-
tions are critical. Too many aca-
demics view GSM networks and 
feature phones as “solved” prob-
lems, but the reality is that like any 
massively deployed infrastructure 
(think COBOL in banking or the 
magnetic stripe on credit cards), 
they will never fully be removed 
from service, especially in the devel-
oping world.

What Is the State 
of Privacy?
Mobile money creates new pri-
vacy challenges. Whereas tradi-
tional banks are limited to seeing 
exchanges between their custom-
ers and vendors, the peer-to-peer 
nature of mobile money systems 
means that providers can observe 
additional social interactions. For 
instance, a group of people eat-
ing a meal together might send 
money to one another. Whereas 
traditional payment systems would 
have allowed a bank to see that all 
such attendees were at a restaurant 
at the same time, mobile money 
transaction data could be used to 
definitively link these attendees. 
Smartphone platforms also offer 
mobile money applications access 
to a wealth of additional informa-
tion, including GPS location.

We don’t believe that collect-
ing such data is inherently prob-
lematic. In fact, it’s being used as a 
means of bootstrapping emerging 
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credit offerings. In settings in which 
traditional metrics for determin-
ing credit-worthiness aren’t avail-
able (for example, citizens might 
not file tax returns or have an offi-
cial address, a mortgage, or an offi-
cial history of payments), such 
data is beginning to act as a sub-
stitute. M-Shwari, which offers 
interest-bearing savings and loans 
to M-Pesa customers in Kenya, uses 
M-Pesa usage history to develop 
credit scores. Such loans have 
proven critical to merchants, who 
can eliminate the cash flow issues 
that traditionally made fully stock-
ing their shelves a challenge.

We believe that consumers should 
be made aware of how their data is 
being collected and used and, there-
fore, be able to make informed 
decisions when selecting a mobile 
money or digital credit service. 
As such, our most recent research 
efforts have focused on a compre-
hensive study of privacy policies 
for mobile money applications.6 
We collected privacy policies for all 
54 mobile Android-based money 
applications listed by the GSMA 
and compared these policies to those 
of the top 50 US financial institu-
tions as listed by the Federal Deposit 
Insurance Corporation (FDIC; an 
independent government body in 
the US responsible for providing reg-
ulation for the nation’s banks, insur-
ance for deposits, and consumer 
protection). Although many in the 
privacy community have opined 
about what financial privacies should 
look like ideally, in our evaluation, 
we relied instead on GSMA and 
FDIC recommendations. This was 
important because it let us measure 
compliance with their communities’ 
published standards.

The results of this were similarly 
discouraging. Of the 54 studied 
mobile money applications, only 30 
(54 percent) had privacy policies at 
all. A full third of those that had poli-
cies weren’t written in either of the 
two most common languages spoken 

in the country, meaning that many in 
the targeted customer demographics 
would simply be unable to read such 
terms. Finally, in the cases in which 
privacy policies were available, many 
were too short to contain meaning-
ful content (for instance, EcoCash 
and TigoPesa’s policies were 68 and 
268 words long, respectively), or 
they lacked any mention of critical 
issues (for instance, fewer than half 
of those with policies had definitions 
of terms, mentions of accountability 
and enforcement, or data retention 
policies). Finally, mobile money pri-
vacy policies also tended to be more 
difficult to read according to sev-
eral grade-level readability tests (for 
example, the Gunning-Fogg index). 
Given lower literacy rates in many 
of the populations served by mobile 
money applications, these results 
were troubling.

These results were in stark com-
parison to the traditional financial 
institutions, which were directly 
regulated by the FDIC. Mobile 
money systems, however, generally 
don’t fall under the same regula-
tory bodies as financial institutions. 
Adding regulations isn’t a simple 
solution. Many mobile money appli-
cations offer low transaction costs 
because their compliance costs are 
low. Moreover, these systems exist 
across a wide array of countries, 
each with cultures that hold differ-
ent values to individual data privacy. 
Accordingly, creating a single set of 
strong privacy standards that meet 
universal approval is unlikely to be 
successful. We instead recommend 
that the industry push for stronger 
enforcement of the ideals put forth 
by the GSMA. Methods and tools 
for ensuring such compliance, how-
ever, remain a research challenge.

The rate at which mobile money 
systems are bringing tradition-
ally unbanked populations into 
the global financial infrastructure 
is unprecedented and absolutely 
requires new ways of reasoning about 
and enforcing consumer protection.

W e’re firm believers in the 
transformative power of 

mobile money systems. We also 
believe that they will connect the 
finances of the developed and devel-
oping worlds in the most meaningful 
way yet in human history. Accord-
ingly, the price for getting security 
and privacy wrong is extremely high.

Meaningfully addressing these 
challenges will require the efforts of 
our large community. We’re trying 
to expand our engagement through 
an upcoming NSF-sponsored work-
shop entitled “Addressing the Techni-
cal Security Challenges of Emerging 
Digital Financial Services.” Here, we 
hope to engage some of the top aca-
demic and industrial minds in the 
details of the challenges we’ve listed 
here. Other issues are also critical 
to address, including how to estab-
lish programming interfaces that let 
developers securely perform critical 
financial functions in mobile appli-
cations; how to ensure the security 
of legacy 2G infrastructure; and 
how to address the usability gap 
when populations with limited lit-
eracy and exposure to finance, who 
represent some of the populations 
most vulnerable to fraud, are using 
mobile money. Successfully address-
ing these problems will require a 
unique and sustained effort among 
academia, industry, and nongovern-
mental organizations. 
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Data to Support 
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Technologies
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L arge-scale IP address–sharing  
technologies (often collec-

tively referred to as Carrier-Grade 
Network Address Translation 
[CG-NAT]1) are a helpful tool for 
extending the life of IPv4 by allow-
ing multiple endpoints to share a 
small number of IPv4 addresses. 
Several such technologies have 
been discussed and deployed.2–5 
A related category of technologies, 
known as Address Plus Port, or  
A1P,6 is also used for large-scale IP 
address sharing, achieved in these 
cases by using some of the port 
number bits for addressing pur-
poses. Multiple examples of this 
category of technologies are also 
available.7–9

All of these technologies in-
volve extending the space of avail-
able IPv4 addresses by mapping 

communication from multiple end-
points to a single address, or a small 
number of shared addresses, using 
port numbers. The details of how 
this is achieved in each technology 
vary, but the principle is the same in 
all cases.

From the perspective of an Inter-
net server, endpoint traffic that has 
passed through an IP address–sharing  
infrastructure appears to originate 
from the IP of the address-sharing 
appliance. Today, common practice 
is for servers to log the connection 
time and source IP address of in-
coming connections. However, the 
IP address of the address-sharing ap-
pliance isn’t sufficient to identify the 
true source of the traffic because po-
tentially hundreds or thousands of in-
dividual endpoints were using that IP 
address at the same time. If a criminal 

investigation requires identification 
of the source of a specific connection, 
the source port and exact connection 
time will also be required. Without 
this additional information, it’s highly 
unlikely that law enforcement au-
thorities will be able to perform their 
investigations.

Operators of large-scale IP  
address–sharing infrastructures, 
typically Internet service providers, 
are usually required by law to main-
tain records of which endpoint used 
a particular IP address and port at a 
particular time. The period of time 
for which these records must be re-
tained is defined by national legisla-
tion. However, IP address sharing 
hampers the ability to trace network 
use and abuse, and this challenge is 
likely to become more severe and 
widespread with the increased use 
of large-scale address sharing.10 
More recently, Europol highlighted 
the issue of large-scale IP address 
sharing as a threat to Internet gov-
ernance, reporting that the problem 
of crime attribution related to the 
use of CG-NAT technologies was 
regularly encountered by 90 per-
cent of respondents to a survey on 
the topic.11

Previous work has already 
suggested that, as best practice, 
Internet-facing servers should log 
source IP address, source port, and 
exact connection time.12 However, 
no detailed consideration has been 
given to possible approaches to and 
implications of this proposed log-
ging practice.

In this article, I describe how to 
bring about Internet-facing servers’ 
routine logging of the information 
needed to reestablish the ability to 
trace network abuse.



Centralized 
Connection Logging
RFC6269 (Issues with IP Address 
Sharing) describes two ways to 
record adequate information to 
identify the parties of a particular 
connection:9

■■ IP address–sharing infrastructure 
operators log mappings between 
their subscribers and external 
IP address–port combinations. 
Internet-facing server operators 
log the IP address and source port 
of incoming connections. This is 
referred to as source port logging.

■■ Instead of relying on server op-
erators to log the source port of 
incoming connections, operators 
of IP address–sharing infrastruc-
tures additionally log all destina-
tion IP addresses for outgoing 
connections. This is referred to 
as connection logging. Server op-
erators continue to log only the 
IP address of incoming connec-
tions, which is the common cur-
rent practice.

RFC6269 presents two chal-
lenges to the routine use of connec-
tion logging.

The first issue is that the large 
volume of data makes central-
ized connection logging infeasible. 
Whether destination IP addresses 
are recorded or not, the volume of 
logs generated by a large-scale IP 
address–sharing infrastructure will 
be substantial. Some approaches 
have been proposed to address this 
hurdle and make central connection 
logging more feasible, such as de-
terministic allocation of ports10,13 
or allocation of port ranges.6,14 
RFC7422 includes some represen-
tative figures for the scales of data 
involved; it’s estimated that the log-
ging overhead would be on the or-
der of 150 Mbytes per subscriber, 
per month.13 In addition to the 
technical overhead of storing such 
a large volume of data, searching 
and locating relevant records over 

a legally mandated retention pe-
riod would also present a significant 
technical challenge.

The second issue raised in 
RFC6269 against connection log-
ging is that even if connection logs 
store all combinations of timestamp, 
source IP, source port, and destina-
tion IP, querying this information 
without a source port (because the 
service operator hasn’t recorded the 
source port) wouldn’t be sufficient 
to distinguish the activity of one 
individual from another in cases in 
which the destination IP is popular. 
This problem is further exacerbated 
in the case of protocols that make 
multiple connections per session 
(for example, HTTP/HTTPS) and 
in cases of criminal activity that in-
volve deliberate generation of large 
volumes of traffic (for example, dis-
tributed denial of service). Thus, 
connection logging alone, despite 
potentially significant technical and 
operational overhead, can’t guaran-
tee that the retained information is 
sufficient to identify an individual 
suspect.

Separately, the privacy con-
cerns arising from connection log-
ging have also been repeatedly 
raised.15,16

In summary, it’s clear that 
large-scale IP address–sharing infra-
structure operators need to retain re-
cords to enable the identification of 
suspects; however, there’s no central-
ized solution that removes the need 
for Internet-facing server operators 
to retain source port information.

Challenges to Capturing 
Source Port
It’s relatively easy to explain why an 
operator of an Internet-facing server 
would want to retain source port 
information for incoming connec-
tions. If server operators (or the us-
ers that they serve) find themselves 
the victim of a crime, having infor-
mation to facilitate a criminal inves-
tigation is preferable. On the other 
hand, there are numerous reasons 

why a server operator might not 
have the required source port infor-
mation. In this section, I enumerate 
factors that could negatively influ-
ence server operators’ ability and 
inclination to capture and record 
source port information.

Lack of Awareness
One of the main problems with 
the increasing use of large-scale IP 
address–sharing technologies is 
server operators’ lack of awareness 
that there are direct implications for 
them should they (or their users) 
become the victim of a crime.

At the time of writing, a mini-
mal amount of material is available 
online concerning this issue, even 
for those actively seeking to find in-
formation on source port logging. 
Where vendors have provided guid-
ance or information concerning the 
logging of incoming source ports, 
no explanation is provided for why 
this is something that server opera-
tors might want to do.

There is, therefore, a consider-
able awareness gap between the 
importance of this issue for investi-
gating criminal activity online and 
the awareness of those who need 
to act to ensure availability of the 
information needed to facilitate a 
criminal investigation.

Poor Software Support 
for Logging Source Ports
Before server operators can decide 
to log source port information, the 
software they are using must sup-
port logging of incoming connec-
tions’ source ports. Many, but not 
all, major software distributions 
support such logging. Lack of sup-
port in server software is an insur-
mountable technical obstacle for a 
server operator.

In some cases, even where soft-
ware supports logging the source 
port of incoming connections, it 
can only be achieved by enabling 
verbose logging in the software. 
This would substantially (and 
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unnecessarily) increase the size of 
the logs produced by the server 
and reduce the server’s production 
performance.

Many major software distribu-
tions provide default log formats in 
their configuration files. A review of 
the default log format of the latest 
versions of some common server 
software has been carried out, and 
in only one case (OpenSSH 7.5) 
was the source port of incoming 
connections logged by default.17

Breaking Downstream Tooling
By default, commercial and free log 
analysis software expects logs to be 
in a particular format. Consider, 
for example, the ubiquity of the 
Apache Common and Extended 
Log Formats. Most software can 
be configured to parse arbitrary 
log formats, but this is additional 
configuration work for a server op-
erator.18,19 Without migration plan-
ning, a change to default log formats 
would likely cause substantial dis-
ruption to a considerable amount 
of downstream processing of server 
log files. In addition to commercial 
and freely available software, many 
administrators have developed or 
downloaded scripts that expect logs 
to be in a particular log format.

Therefore, log processing soft-
ware, and in particular custom 
scripts, might break if log formats 
change unexpectedly. The tooling 
might need to be updated to cor-
rectly process the additional fields 
now present in log files.

Accuracy of Recorded Time
In addition to recording the connec-
tion’s IP address and source port, it’s 
important to record the exact con-
nection time. It’s been suggested 
that there’s a need to keep the ex-
act time against some sort of global 
standard (for instance, Network 
Time Protocol [NTP]);12 however, 
this might not be possible for prac-
tical, security, or legacy reasons. In 
practice, it’s usually not necessary 

to keep time against a global stan-
dard, as long as time is recorded 
consistently. Any discrepancies can 
be calculated and compensated for 
manually. Time offsets of this na-
ture are commonly encountered 
and well understood in the digital 
forensics world.

Conclusions and Next Steps
There’s clearly substantial work to 
be done to bring about the regular 
recording of source port informa-
tion at Internet-facing servers, and 
there are undoubtedly criminals 
free right now because the informa-
tion required to identify them from 
their online activity isn’t available.

I present some possible courses 
of action based on the current state 
of source port logging.

Raise Awareness of 
Logging Source Port in 
Deployment Guidance
Both free and commercial software 
publishers should consider releas-
ing deployment guidance or best 
practices that describe why server 
administrators need to record 
source port information, as well 
as instructions for how to do this. 
This will help to address the lack of 
awareness of this issue’s importance.

Considering also the aware-
ness of those building software ap-
plications, or otherwise involved 
with coding of Internet-facing ap-
plications, secure coding guidance 
should be updated to include ref-
erence to source port information, 
particularly where such guidance 
already touches on the issue of log-
ging. For example the OWASP Se-
cure Coding Practices specifies a list 
of important log event data.20 How-
ever, at the time of writing, the “im-
portant log event data” list doesn’t 
include source port.

Increase Software Support 
for Logging Source Port
Many software packages support 
logging of source port information, 

but only 11 of 16 examined in a re-
cent study support logging in a way 
that wouldn’t significantly negatively 
impact server software operation.18 
Therefore, software publishers must 
consider their level of support for 
logging source port. In particular, 
software should support the logging 
of source port without needing to 
enable a verbose logging level.

Change Default Log Formats 
to Include Source Port
In cases in which a particular soft-
ware package supports logging of 
incoming source port, one possi-
bility is to incorporate one or more 
log formats that include incoming 
source port as a field logged by de-
fault. Obviously, this won’t impact 
deployments of software already in 
place, but for future deployments, 
incorporating source port into the 
log format means that administra-
tors using the unaltered default log 
format will automatically store the 
required information.

Parallel Logging to a 
Connection Log
Configuring parallel logging of con-
nection information to a separate 
log stream is a possible solution to 
address the fact that changes to log 
format might break downstream 
tooling. It’s also a possible solu-
tion for server software types that 
log via syslog. In this case, software 
publishers could produce guidance 
on how to configure syslog to log 
connection information parallel to 
main log files.

Such a solution would help to 
ease the transition to an alternate log 
format: current log formats wouldn’t 
need to be changed because the re-
quired source port information is 
stored separately but can still be cor-
related with the main log files.

Adequate Timestamp 
Accuracy in Logs
Operators of large-scale address- 
sharing infrastructure will likely 
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need connection times specified 
with the granularity of at least one 
second. Most server software will 
log times with this granularity by 
default, but there’s no guarantee 
that this is the case.

Server operators should ensure 
that the times being recorded in 
their log files have sufficient accu-
racy to allow identification of the 
required records. As mentioned 
earlier, the times don’t necessarily 
need to be recorded with reference 
to a centralized time source (for in-
stance, NTP) as long as they’re re-
corded consistently.

This factor must also be consid-
ered by software developers when 
they produce software; although 
time recording is mentioned in the 
OWASP Secure Coding Practices, 
the required accuracy/granularity of 
the recorded time is not discussed.

M uch work needs to be done 
to bring about the routine 

logging of source port information, 
and there’s no centralized solution 
to this problem. Ultimately what’s 
required is a wide recognition that 
IP addresses don’t necessarily repre-
sent individual users’ activity on the 
Internet. A shift in understanding, 
combined with raising awareness 
of this issue, will hopefully lead to 
an increase in the availability of the 
information that needs to be logged 
and more online criminals being 
brought to justice. 
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IN FOCUS

The Open Science Cyber 
Risk Profile:
The Rosetta Stone for Open 
Science and Cybersecurity

Sean Peisert | Berkeley Lab
Von Welch | Indiana University

A common misconception—
one often held even by  

scientists—is that open science 
is “open” by definition, so hackers 
wouldn’t target it. The reality is that 
even open science is rarely entirely 
open at all times. For example, it can 
often be misleading to the public or 
even other researchers to publish 
raw data before it’s been verified, val-
idated, and interpreted. Beyond situ-
ations in which raw data is published 
almost immediately, there are cer-
tainly many circumstances in which 
raw data contains valuable intellec-
tual property that could be at risk 
of theft—both domestically and in-
ternationally. Or data might contain 
personally identifiable information, 
such as during clinical drug trials.

Moreover, it would be a mistake 
to ignore security risks outside con-
fidentiality, including integrity and 
availability. While scientists might 
not feel anyone wants to interfere 
with their results, any scientist de-
veloping or testing something of 
commercial value can certainly be 

at risk of having their work tam-
pered with in a way that causes it 
to behave unpredictably or to make 
something look more or less suc-
cessful than it actually is. Consider 
the possibilities of tampering with 
science related to politically sensi-
tive subjects or public safety, such 
as meteorology or public health.

The reality is that, aside from 
the “why me?” question, the most 
important issue is really the “what 
if ” question. Producing scientific 
results takes months or years of 
careful labor of many people using 
expensive and often unique instru-
ments. These results, in turn, are 
often built upon by others, again 
over months, years, or even de-
cades. While the scientific process 
has done a good job of finding er-
rors and inaccuracies in science, 
there are steps to help this process 
with regard to errors owing to com-
puter attacks. The goal is to mitigate 
errors from the outset, or at least 
spend less time and money to iden-
tify them after they do happen.

Bringing cybersecurity to bear 
on open science often presents both 
a culture clash and a knowledge gap. 
Cybersecurity professionals don’t 
have much experience with rare, 
even unique, scientific instruments, 
and the sensitivities of their data, 
unlike say HIPAA (Health Insur-
ance Portability and Accountability 
Act) regulatory data, aren’t defined. 
Scientists, believing themselves to 
not be targets, will often see cyber-
security as simply administrative 
hindrances to their work. The re-
sult is that the application of cyber-
security to open science can be off  
target—an impediment to science 
and less than optimally effective.

The Open Science Cyber Risk 
Profile (OSCRP) aims to help im-
prove IT security for open science 
projects—that is, science that’s un-
classified and often funded by US 
government agencies, such as the 
NSF, the Department of Energy’s 
Office of Science, and the National 
Institutes of Health. The OSCRP 
working group has created a docu-
ment that motivates scientists by 
demonstrating how improving their 
security posture reduces the risks to 
their science, and enables them to 
have a conversation with IT secu-
rity professionals regarding those 
risks so that appropriate mitigations 
can be discussed.

Given all the potential risks, the 
OSCRP working group examined a 
variety of different types of scien-
tific computing–related assets and 
divided them into key categories, 
including various types of

■■ data (for instance, public data, 
embargoed data, and internal 
data),



■■ facilities (for instance, physical stor-
age, power, and climate control),

■■ system and hardware assets (for in-
stance, networks, front ends, serv-
ers, databases, and mobile devices),

■■ software assets (including both 
internal and third-party software),

■■ instruments (for instance, sensors 
or control systems), and

■■ intangible and human assets 
(ranging from project reputation 
to human staff to collaborative 
materials and financial assets).

Note that it’s key that the work-
ing group focused on assets, which 
are things that a scientist knows 
and cares about, rather than specific 
threat actors, which are difficult for 
anyone to predict and whose moti-
vations and tactics change over time 
(for example, the rise of ransomware 
over the past few years has greatly 
changed the threat landscape).

To accomplish this task, we as-
sembled a group of security experts 
as well as domain scientists running 
large science projects, including 
particle physicists, oceanographers, 
genomic researchers, and more.

This group considered a set of 
common open science assets as well 
as how open science projects relied 
on each—and, hence, the risks asso-
ciated with each asset’s failures. We 
then mapped possible IT threats to 
these science risks. Scientists can 
use the OSCRP document to enu-
merate all the assets of importance 
and the risks each brings to their 
science mission. Using this informa-
tion, they can prioritize the relevant 
IT threats. IT security profession-
als can then design and implement 
appropriate mitigations tuned spe-
cifically for the science risks, and 
scientists would understand the 
value of these mitigations.

It’s our hope that this docu-
ment helps scientists better un-
derstand reasons why they might 
be interested in pursuing further 
discussions with computer secu-
rity experts and, conversely, help 

got flaws?

Find out more and get involved:
cybersecurity.ieee.org

institutional community efforts 
best convey important messages to 
domain scientists about the risks to 
open science.

The OSCRP can be found at 
trustedci.github.io/OSCRP. It re-
flects an initial set of assets and the 
group’s early valuation of those as-
sets’ risks. Over time, assets will 
change and so will risks; hence, we 
envision it as a living document that 
will evolve over time. To this end, 
we followed a NIST practice and 
used the popular GitHub source 
code repository to author the OS-
CRP. This allows for the public’s 
submission of proposed additions, 
changes, and comments on the doc-
ument. Note that the lists of assets 
and their risks are not comprehen-
sive; more contributions in either of 
these areas are welcome. We’ve al-
ready received some great commu-
nity feedback and hope for not just 
more feedback but a community 
sense of ownership.

A lthough open science is in-
deed open, it’s not exempt 

from the risks of computer-related 
attacks, and there are cultural and 
technical challenges to applying cur-
rent cybersecurity approaches. We 
hope the OSCRP serves to bridge 
the communication gap between sci-
entists and IT security professionals 
and allows for the effective manage-
ment of risks to open science caused 
by IT security threats. 

Sean Peisert is a staff scientist at 
Lawrence Berkeley National Lab-
oratory, chief cybersecurity strat-
egist at CENIC, and an associate 
adjunct professor at UC Davis. 
Contact him at sppeisert@lbl.gov.

Von Welch is director of the Cen-
ter for Applied Cybersecurity 
Research and the NSF Cyber-
security Center of Excellence at 
Indiana University. Contact him 
at vwelch@iu.edu.
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LAST WORD

Bruce Schneier
Harvard University

IoT Security: What’s Plan B?

I n August, four US Senators introduced 
a bill designed to improve Internet of 

Things (IoT) security. The IoT Cybersecurity 
Improvement Act of 2017 is a modest piece of 
legislation. It doesn’t regulate the IoT market. 
It doesn’t single out any industries for partic-
ular attention, or force any companies to do 
anything. It doesn’t even modify the liability 
laws for embedded software. Companies can 
continue to sell IoT devices with whatever 
lousy security they want.

What the bill does do is leverage the gov-
ernment’s buying power to nudge the market: 
any IoT product that the government buys 
must meet minimum security standards. It 
requires vendors to ensure that devices can 
not only be patched but are patched in an 
authenticated and timely manner, don’t have 
unchangeable default passwords, and are free 
from known vulnerabilities. It’s about as low a 
security bar as you can set, and that it would 
considerably improve security speaks vol-
umes about the current state of IoT security. 
(Full disclosure: I helped draft some of the 
bill’s security requirements.)

The bill would also modify the Computer 
Fraud and Abuse and the Digital Millennium 
Copyright Acts to allow security researchers 
to study the security of IoT devices purchased 
by the government. It’s a far narrower exemp-
tion than our industry needs. But it’s a good 
first step, which is probably the best thing you 
can say about this legislation.

However, it’s unlikely this first step will 
even be taken. I am writing this column in 
August, and have no doubt that the bill will 
have gone nowhere by the time you read it 
in October or later. If hearings are held, they 
won’t matter. The bill won’t have been voted 
on by any committee, and it won’t be on any 
legislative calendar. The odds of this becom-
ing law are zero. And that’s not just because 
of current politics—I’d be equally pessimistic 
under the Obama administration.

But the situation is critical. The Internet 
is dangerous—and the IoT gives it not just 
eyes and ears, but also hands and feet. Secu-
rity vulnerabilities, exploits, and attacks that 

once affected only bits and bytes now affect 
flesh and blood. 

Markets, as we’ve repeatedly learned over 
the past century, are terrible mechanisms for 
improving the safety of products and ser-
vices. It was true for automobile, food, restau-
rant, airplane, fire, and financial-instrument 
safety. The reasons are complicated, but basi-
cally, sellers don’t compete on safety features 
because buyers can’t efficiently differentiate 
products based on safety considerations. The 
race-to-the-bottom mechanism that markets 
use to minimize prices also minimizes quality. 
Without government intervention, the IoT 
remains dangerously insecure.

The US government has no appetite for in-
tervention, so we won’t see serious safety and 
security regulations, a new federal agency, or 
better liability laws. We might have a better 
chance in the EU. Depending on how the Gen-
eral Data Protection Regulation on data priva-
cy pans out, the EU might pass a similar security 
law in five years. No other country has a large 
enough market share to make a difference.

Sometimes we can opt out of the IoT, but 
that option is becoming increasingly rare. Last 
year, I tried and failed to purchase a new car 
without an Internet connection. In a few years, 
it’s going to be nearly impossible to not be mul-
tiply connected to the IoT. And our biggest IoT 
security risks will stem not from devices we have 
a market relationship with, but from everyone 
else’s cars, cameras, routers, drones, and so on.

We can try to shop our ideals and demand 
more security, but companies don’t compete 
on IoT safety—and we security experts aren’t a 
large enough market force to make a difference.

W e need a plan B, although I’m not 
sure what that is. Email me if you 

have any ideas. 

Bruce Schneier is a security technologist and 
a Fellow at the Berkman Klein Center for 
Internet and Society at Harvard University. 
He’s also the chief technology officer of IBM 
Resilient and special advisor to IBM Secu-
rity. Contact him via www.schneier.com.
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