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Abstract: A new generation of “behavior-aware” services and networks are emerging
in what may define future mobile social networks. It is of great importance for current
set of mobility models to understand and realistically model mobile users behavioral
characteristics and also realistically reproduce their effects on the performance of
networking protocols. Recent work on mobility modeling focused on replicating metrics
of encounter statistics and spatio-temporal preferences to improve the realism of mobility
models. No studies have been conducted, however, to show whether matching these
metrics is sufficient to accurately reproduce structural dynamics and mobile networking
protocol performance. In this study, we address these specific problems, and attempt
to show the sufficiency (or lack thereof) of existing encounter and mobility metrics
in reproducing realistic effects of mobility on networking protocols. We first analyze
the characteristics of two well-established mobility models; the random direction and
the time-variant community (TVC) models, and study whether they capture encounter
statistics and preference patterns observed in realworld traces. Second, we introduce
mobile user similarity, its definition, analysis and modeling. To define similarity, we
measures the difference of the major spatio-temporal behavioral trends using their
association matrix. Such measure is then used to cluster users into similarity communities
and compare them in the traces and the mobility models. Finally, we contrast the
performance of epidemic routing on the mobility models, to that based on extensive
mobility traces. We provide three main findings: (i) Careful parameterization of
the models can indeed replicate the metrics in question (e.g., inter-encounter time
distribution). (ii) Our results show a rich set of similar communities in real mobile societies
with distinct behavioral clusters of users. This is true for all the traces studied, with the
trend being consistent over time. (iii) Even carefully crafted mobility models surprisingly
result in structural dynamics and protocol performance that is dramatically different
from the trace-driven performance. These findings strongly suggest that similarity should
be explicitly captured in future mobility models, which motivates the need to re-visit
mobility modeling to incorporate accurate behavioral models in the future.
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1 Introduction

The proliferation of highly capable mobile devices
(e.g., laptops, smart phones, tablets) with multi-sensing
capabilities greatly facilitates the capture of mobility
traces(Helmy, et al., 2010; Kotz, et al., 2005) and
the direct exchange of information through encounters.
Mobility traces can then be used as guidelines for
modeling purposes. More realistic mobility models
have been created, by mimicking encounter statistics
(Chaintreau, et al., 2007; Karagiannis, et al., 2007)
or mobile user location visitation preferences (Hsu,
et al., 2009). Much of the recent modeling work
focused on encounter metrics; such as inter-encounter
and hitting time distribution (Chaintreau, et al.,
2007), meeting duration (Chaintreau, et al., 2007;
Hsu, et al., 2009), or spatio- temporal profiles (Hsu,
et al., 2009). These metrics are generally considered
important to the operation of mobile networks in
general, including DTNs, adhoc and sensor networks.

DTNs are characterized by intermittent connectivity,
limited end-to-end connectivity and node resources.
Future social networks are expected to have classes of
applications that are aware of mobile users’ behavioral
profiles and preferences and are likely to support peer-
to-peer mobile networking including DTNs. A new
generation of protocols is emerging, including behavior-
aware communication paradigms (such as profile-cast
(Hsu, et al., 2008)) and service architectures (such
as participatory sensing (Nazir, et al., 2010; Shilton,
et al., 2008)). Such behavior-aware communication
paradigm leverages user behavior and preferences to
achieve efficient operation in DTNs (e.g., interest-
based target message forwarding; encounter-based
routing, mobile resource discovery). Accurate models
of mobile user behavioral profiles are essential for the
analysis, performance evaluation, and simulation of such
networking protocols. Hence, there is a compelling need
to understand and realistically model mobile users
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behavioral profiles, similarity and clustering of user
groups.

Earlier work on mobility modeling presented
advances in random mobility models (e.g., RWP, RD
(Camp, et al., 2002)), synthetic models that attempt to
capture spatial correlation between nodes (e.g., group
models (Bai et al., 2008)) or temporal correlation
and geographic restrictions (e.g., Freeway, Manhattan,
Pathway Models (Bai et al., 2008)). More recent
models tend to be trace-driven and some account
for location preferences and temporal repetition (Hsu,
et al., 2009). However, similarity characteristics between
clusters of nodes, which lie in the heart of behavior-
aware networking, have not been modeled explicitly by
these mobility models. Hence, it is unclear whether (and
to which degree) similarity between mobile nodes is
captured, and more importantly, how closely can such
models be fine-tuned to replicate “social structures”,
such as groups with distinct behavior observed from real
traces.

Also, no studies have been conducted to show
whether matching metrics is sufficient to accurately
reproduce DTN protocol performance. In this study, we
thoroughly examine this specific problem, and attempt
to show, for the first time, the sufficiency (or lack
thereof) of existing encounter and mobility metrics in
reproducing realistic effects of mobility on structural
dynamics and the performance of networking protocols.

In this paper, first we analyze spatio-temporal
properties and encounter statistics of two realistic
wireless measurement traces. We then evaluate the same
characteristic on the synthetic traces produced by two
different mobility models; the random direction model
(Royer, et al., 2001) and the time-variant community
(TVC) model (Hsu, et al., 2009). Specifically, we analyze
two commonly used encounter statistics; inter-meeting
time and meeting duration, in addition to two spatio-
temporal metrics; periodic re-appearance and location
visitation preference. Our results show that models
mimic such statistics if carefully tuned.

Second, we address issues related to mobile
user similarity, its definition, analysis and modeling.
Similarity, in this study, is defined by mobility
preferences, and is meant to reflect the users interests
to the extent that can be captured by wireless
measurements of on-line usage. To define similarity, we
adopt a behavioral-profile based on users mobility and
location preferences using an on-line association matrix
representation, and then use the cosine product of their
weighted Eigen-behaviors to capture similarity between
users. This quantitatively compares the major spatio-
temporal behavioral trends between mobile network
users, and can be used for clustering users into similarity
groups or communities. Note that this may not reflect
social ties between users or relationships per se, but
does reflect mobility- related behavior that will affect
connectivity and network topology dynamics in a DTN
setting.

We analyze similarity distributions of mobile user
populations in two settings. The first analysis aims
to establish deep understanding of realistic similarity
distributions in such mobile societies. It is based on real
measurements of over 8860 users for a month in four
major university campuses, USC (Helmy, et al., 2010)
IBM Watson , Dartmouth (Kotz, et al., 2005) and UF.
It may be reasonable to expect some clustering of users
that belong to similar affiliations, but quantification of
such clustering and its stability over time is necessary
for developing accurate similarity models. Furthermore,
on-line behavior that reflects distribution of active
wireless devices may not necessarily reflect work or
study affiliations or social clustering. For DTNs, on-
line activity and mobility preferences translate into
encounters that are used for opportunistic message
forwarding, and this is the focus of our study rather than
social relations per se. The second similarity analysis we
conduct aims to investigate whether existing mobility
models provide a reasonable approximation of realistic
similarity distributions found in the campus traces.

Our results show that among mobile users, we can
discover distinct clusters of users that are similar to
each other, while dissimilar to other clusters. This is
true for all campuses, with the trend being consistent
and stable over time. We find an average modularity of
0.64, clustering coefficient of 0.86 and path length of 0.24
among discovered clusters. Surprisingly, however, we
find that the existing mobility models do not explicitly
capture similarity and result in homogeneous users
that are all similar to each other (in one big cluster).
This finding generalizes to all other mobility models
that produce homogeneous users, not only the mobility
models studied in this paper. Thus the richness and
diversity of user behavioral patterns is not captured in
any degree in the existing models. Our findings strongly
suggest that unless similarity is explicitly captured in
mobility models, the resulting behavioral patterns are
likely to deviate dramatically from reality, sometimes
totally missing the richness in the similarity distribution
found in the traces. Furthermore, this indicates our
current inability to accurately simulate and evaluate
similarity-based protocols, services and architectures
using mobility models.

Finally, we perform epidemic routing (Vahdat,
et al., 2000) on the synthetic (model generated) traces
and real network traces and compares their network
performance. Surprisingly, through systematic analysis,
we find that even when mobility models reflect equivalent
spatio-temporal and encounter statistics, they exhibit
large DTN routing performance discrepancy with the
real scenarios. Furthermore, they clearly show the
insufficiency of existing encounter and preference metrics
as a measure of mobility model goodness. Systematically
establishing a new set of meaningful mobility metrics
should certainly be addressed in future works. This
also motivates the need to re-visit mobility modeling to
incorporate accurate behavioral models in the future.
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The paper is structured as: In section 3, we describe
various types of wireless traces used in this study, in
section 4, we discuss mobility models used to compare
against real-world traces. We study human mobility
characteristics in the section 5 and compare the routing
performance in section 6. Finally, we discuss the results
in section 7 and concludes this paper in section 8.

2 Related Work

Delay Tolerant Networks (DTNs) are essentially
opportunistic networks. These types of networks do
not demand permanent connectivity between source
and destination; instead attempt to make best use of
any scheme available that can get the message across.
Mobility of the nodes is often realized for transferring
the messages. Design of any communication protocols for
DTNs is heavily dependent on how well the underlying
mobility is understood (Bai et al., 2003; Spyropoulos,
et al., 2006a). There are two elemental ways to design
and test the protocols for DTNs, namely Trace-Based
and Mobility Model based (Bai et al., 2008). In case
of trace based design and evaluation, a mobility trace
can be downloaded from a limited number of trace
repositories (Helmy, et al., 2010; Kotz, et al., 2005).
These trace are from the real world and capture real
mobility patterns of the users belonging to the traces.
For the trace collection environment, testing the protocol
on the traces would produce most realistic results. But
there are quite a few drawbacks of using real traces
such as limited number of traces, not capturing all
scenarios and inability to generalize the results based
on a few traces. Due to these drawbacks, researchers
have proposed models that capture key characteristics of
human mobility and produce synthetic traces.

Due to the complexity of understanding human
mobility and modeling it, models are created to
reproduce few characteristics from real traces such
as inter-encounter time (Cen, et al., 2008), regularity
(Costa, et al., 2008) and community behavior (Eagle,
et al., 2006; Cen, et al., 2008; Hsu, et al., 2009; Girvan,
et al., 2002; Kotz, et al., 2005). In most cases, a synthetic
trace is validated by comparing a few key characteristics
against the real trace. This validation we think is not
the best, as it does not test the application oriented
parameters of the generated trace.

A new paradigm of protocols that relies on the
human behavioral patterns has gained recent attention
in DTN-related research. In these studies, researchers
attempt to use social aspects of human mobility to
derive new services and protocols (Chaintreau, et al.,
2007; Fall, et al., 2002; Horn, et al., 1990; Hsu, et al.,
2006a). As an example, researchers created a behavior-
oriented service, called profile-cast, that relies on spatio-
temporal similarities between the users(Ekman, et al.,
2008). Profile-cast provides a systematic framework to
utilize implicit relationships discovered among mobile
users for interest- based message efficient forwarding

and delivery in DTNs. Participatory sensing (Kumar,
et al., 2010; Mtibaa, et al., 2010; Nelson, et al., 2007)
provides a service for crowd sourcing using recruiting
campaigns using mobile user profiles (Fall, et al., 2002).
All these works rely on and utilize similarity of mobile
user profiles. In all the above scenarios how can we be
sure that a given mobility model can capture all the
characteristics needed to test these protocols.

In an attempt to answer the above question, in this
work, we have taken a novel approach for evaluating the
mobility models; which is to compare the performance
of routing protocols on synthetic trace and on real trace
whose characteristics were utilized to create/validate the
mobility model. This approach allows us to test and
create mobility models while keeping the applicability
of the generated traces. In this work, as a case study,
we consider a complex mobility model TVC (Hsu,
et al., 2009) (along with random direction mobility
model (Hsu, et al., 2005)). This model generates the
non- homogeneous behaviors of mobile users in both
space and time. The traces generated by this model
show (i) skewed location visiting preferences; (ii) time
dependent periodical reappearance of mobile users as
seen in WLAN measurements along with other encounter
statistics such as average node degree and meeting time.
It uses several real traces to validate the correctness of
its design.

Table 1 Details of Wireless Measurements

Campus # Users Duration

Dartmouth 1500 Fall 2007

Infocom 42 3 days

IBM Watson 1366 Fall 2006

Univ. of Florida 3000 Fall 2008

USC 3000 Fall 2007

3 Data Set and Trace Analysis

In this section, we discuss the details of the traces
used. One set of traces contain WLAN session logs. The
other type of traces contain logs of bluetooth encounters
among mobile devices.

3.1 Data Set

In order to realize the efficacy of mobility models
matching real protocol performance and network
dynamics, we intend to compare their output against
wireless measurements. WLAN dataset from four
university campuses are considered as shown in Table
2. We collect these datasets from the publicly available
MobiLib(Helmy, et al., 2010) and Crawdad(Kotz, et al.,
2005) repositories. Table 2 provides the detail of these
WLAN measurements. We chose university campuses
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because they are extensive, have high density of active
users and include location information. Also, these
datasets have been used in previous studies of mobility
modeling (Hsu, et al., 2009; Hui, et al., 2008; Kim,
et al., 2007; Yoneki, et al., 2007). We perform Systematic
Random Sampling (Schutt, et al., 2006) on the datasets
to get an unbiased subset of mobile users from the
population. Table 2 specifies the sampling frame that we
use for this study. In the second step, we extract relevant
statistics of mobile user spatio-temporal patterns. In the
third step, for each mobile user we obtain normalized
association matrix with time granularity of one day.
On this matrix we apply SVD to extract the dominant
trends. Finally, we compute the cosine similarity of
all user pairs. We perform this process iteratively for
four different time intervals: 1 week, 2 weeks, 3 weeks
and 4 weeks. These traces are publicly available at
(Kotz, et al., 2005) although we customized it in a
format that suits us. Initially, we investigate mobile
users’ preferential attachment to certain locations and
their time- dependent periodic behavior. Later on we
investigate structural dynamics and compare them with
the mobility models output.

Our second type dataset comprise encounter (radio
contact between two mobile devices) traces from IEEE
Infocom 2005 iMotes experiment(Scott, et al., 2009).
This data is collected using Intel’s iMote, which
communicate on Bluetooth protocol and log contact
information of all visible Bluetooth capable devices.
Such a record contains three entities - MAC address,
start time, end time that correspond to each encounter
between the host and foreign device. As part of the
experiment, these devices were distributed in conference
settings to 41 participants for a period of three-four
days. We transformed the gathered data for our need to
study inter-meeting time and duration of meeting among
mobile users and compare output between model and
reality. This dataset is available at (Kotz, et al., 2005).

3.2 Encounter Traces

In order to pursue a study on the encounter statistics
and dynamic routing in DTN, we need measurements
that quantitatively depict the contact (a.k.a. encounter)
between mobile users. An encounter occurs between a
pair of nodes when they are in a radio communication
range of each other. This is straightforward for
the iMotes Bluetooth measurements that contain
precise encounter information. However, the WLAN
measurements are accumulated at the access point level
and contain usage patterns. So, we need to convert
these measurements in a way to get user encounters
as well as maintaining their spatio-temporal footprints.
We consider encounter in WLAN if two users connect
to same access point and share online session time.
For example, Alice and Bob are connected to access
point AP-1 between 10:00 AM-02:00 PM. A counter
argument can be established by saying that some WLAN
devices may miss encounters beyond their coverage

region of access points, but WLAN measurements have
the advantage to obtain traces in much larger sizes
with richer user presence. They also contain location
information, which helps in spatio-temporal analysis.
Mostly, a Bluetooth experiment has small set of user
base for a limited time period.

4 Mobility Models Studied

In this section, we discuss two mobility models used for
evaluation. We use Random Direction Model (Royer,
et al., 2001), which does not posses any spatial or
temporal structure in mobility decisions, as an example
from typical random mobility models. The lack of
spatial and temporal structure leads to faster mixing
of the mobile nodes, and sets the lower bound for
delay and message delivery overhead. This, as we will
show, deviates from realistic mobility traces significantly.
We further consider Time Variant Community model
(Hsu, et al., 2009) as an example of trace-based
mobility models, which incorporate realistic mobility
characteristics observed in real traces. Our goal is to
evaluate whether such realistic mobility models lead to
more realistic evaluation of routing performances. In
the following text, we briefly describe these models and
construct trace driven DTN scenarios to estimate routing
performance.

4.1 Random Direction Model

In random direction model, a mobile node makes random
mobility decisions with respect to current time or
location, independent of other nodes. A node randomly
picks a movement direction, and takes straight-line
movement towards that direction for a given distance.
The node then stops for a given pause time before
selecting a new direction to move. This model is
more stable as compared to other random models and
provides quantitatively even distribution of nodes in
the simulation area. We setup this model to investigate
the effect of random movements on DTN performance.
We modify this model in two ways: (1) the baseline
random direction model described above; (2) we add
on/off behavior of mobile nodes (i.e., when a node is ‘off’,
it cannot receive/transmit packets), which corresponds
to the fact that mobile devices are not always turned on.

4.2 Time Variant Community Model

We choose the TVC model (Hsu, et al., 2009) as an
example of trace-based mobility models that capture
realistic features of human mobility. Specifically, the
TVC model allows configurations to capture (1) spatial
preference and (2) temporal periodicity in human
mobility. With the setting of communities, preferred
locations can be designated and mobile nodes visit
such locations more often. The visits are further made
periodically with the setting of time periods. TVC model
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Figure 1 (a) Periodic re-appearances of mobile users in
the IBM Watson Campus. TVC Model recreates
similar preferences as observed in real traces. (b)
TVC depicts skewed location visiting preferences
as observed in IBM Watson WLAN traces.

also includes on/off behavior of mobile nodes. It is
shown that with careful community and time period
setup, TVC model produces mobility characteristics that
match with the real mobility traces better. Since the
setup of TVC model is scenario specific, in this paper
we have considered two instances of TVC model setup.
We synthesize mobility traces from different settings of
TVC (i) with matching location-visiting preferences and
periodical visits to a trace collected at a research lab (ii)
with matching encounter statistics at a conference. It is
our goal in this paper to evaluate whether such improved
realism in mobility characteristics translates to higher
similarity in terms of routing performance to real traces,
when we use TVC as opposed to random models.

5 Human Mobility Characteristics

In this section, we analyze set of metrics used to
capture non-homogenous behavior of human mobility.
It includes spatio-temporal preferences and encounter
statistics. Later, we introduce the concept of similarity
among mobile users and demonstrate its existence in the
realworld traces and discover clusters of such users with
high similarity index. Finally, we also evaluate current
mobility models to capture similarity and clustering
effects.
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Figure 2 (a) TVC Model depicts meeting duration as
measured in the real Infocom traces. (b)
Inter-meeting time between mobile users are also
similar for the TVC and real Infocom traces.

5.1 Analysis of Spatio-Temporal Preferences

The non-homogenous behavior of mobile users in space
and time is captured by: (i) Skewed location visiting
preferences (ii) Periodical reappearances. Studies carried
out in (Eagle, et al., 2006; Hsu, et al., 2007, 2006;
Scott, et al., 2009; Kim, et al., 2007) tell us that
mobile user exhibit preferential attachment and periodic
reappearances to few locations in DTNs. We assume,
understanding these distributions aid to better message
dissemination, prediction of information transmission
and the message delivery in opportunistic setting.

We construct the TVC model to generate a month
long synthetic trace for IBM Watson’s 1366 nodes.
In Figure 1 (a) and (b), we see that TVC model
demonstrates realistically close location visiting and
periodic reappearance properties. For brevity, periodic
re-appearances are plotted for seven days only. The re-
appearance of spikes demonstrates users visit the same
location(s) with higher probability in a periodic fashion.
A normalized curve of location preferences show nodes
visit very few locations although spending significant
amount of their online time. These two characteristics
when combined results in better predicting the mobility
and on/off patterns of mobile nodes. Furthermore, it
can also help to identify hotspots and to measure
an approximate delay in message reception. Next, we
analyze the state space of encounters among mobile
nodes.
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5.2 Analysis of Encounter Statistics

In dynamic infrastructure-less mobile networks (like
DTNs etc.), the routing is performed by data carrying
mobile nodes. The exchange of information takes
place when two nodes encounter (a.k.a meet) each
other. Intuitively, we can improve routing mechanism
given we understand the statistics of these encounter
patterns. So, we analyze two encounter statistics:
(i) Intermeeting Time, which is the time gap that
separates two consecutive mobile encounters. (ii)
Meeting Duration, which is the single uninterrupted
meeting duration surrounded by intermeeting times.
Thus, our statistics alternate between each other. These
statistics as mentioned in (Karagiannis, et al., 2007)
can have important implications on the performance
of opportunistic forwarding algorithms in challenged
networks.

The TVC model has ability to generate
measurements to analyze encounter statistics. So, we
configure it for Infocom setting to generate individual
mobility traces for the same number of 41 nodes and
for an equivalent duration of four days. The simulation
area is modeled like a conference setting with flexibility
to visit hotel rooms and outside locations. We later on
process the generated traces and plot them along real
measurements. The CDF plots in Figure 2 show that
model significantly matches real encounter statistics.
We see intermeeting time follows Powerlaw distribution
up to a characteristic time period after which it decays
exponentially. This made us to believe that TVC can
also be used to model encounter patterns for unknown
scenarios. We conclude, TVC model is statistically
accurate on these metrics and closely follow observed
realities. We hope that TVC will capture structural
dynamics and will show close protocol performance as
well, which we see next. In our case, we assume these
metrics if captured via a model are vital in achieving
identical performance in routing

Table 2 Anonymized WLAN session sample

Mac ID Location Start Time End Time

aa:bb:cc:dd:ee:ff Loc-1 64400343 66404567

aa:bb:cc:dd:ee:ff Loc-2 85895623 86895742

aa:bb:cc:dd:ee:ff Loc-3 87444343 89404567

aa:bb:cc:dd:ee:ff Loc-4 98846767 99878766

5.3 Similarity and Structural Dynamics

5.3.1 Similarity

The congregation of mobile agents with similar
characteristic patterns naturally develops mobile
societies in wireless networks (Eagle, et al., 2009; Hui,
et al., 2007; Yoneki, et al., 2007). Upon reflection it
should come as no surprise that these characteristics in
particular also have a big impact on the overall behavior

Figure 3 (a) A prototype of Association Matrix. The
columns represent locations (access point,
building, etc) and rows represent time granularity
(days, weeks, etc.). (b) A computed matrix A
with 5 locations and time periods. Each entry
represent the percentage online time spent at
corresponding location column.

of the system (Costa, et al., 2008; Hui, et al., 2008;
Mtibaa, et al., 2010; Musolesi, et al., 2008). Researchers
have long been working to infer these characteristics
and ways to measure them. One major observation
is that people demonstrate periodic reappearances at
certain locations (Eagle, et al., 2006; Hsu, et al., 2007;
Kim, et al., 2007), which in turn breeds connection
among similar instances (McPherson, et al., 2001). Thus,
people with similar behavioral principle tie together.
This brings an important aspect where, user-location
coupling can be used to identify similarity patterns
in mobile users. So, for the purpose of our study,
to quantify similarity characteristics among mobile
agents, we use their spatio-temporal preferences and
preferential attachment to locations and the frequency
and duration of visiting these locations. It is important
to study similarity in DTN to develop behavioral
space for efficient message dissemination (Hsu, et al.,
2008) and design behavior-aware trust advisors among
others (Kumar, et al., 2010). For efficient networking,
it can help to quantify traffic patterns and develop new
protocols and application to target social networking.
Analysis of similarity can be used to evaluate the
network transitivity, which helps to analyze macro-
mobility, evolutionary characteristics and emergent
properties. In this section, we introduce association
matrix that captures spatio-temporal preferences and a
statistical technique that use it to measures similarity
among mobile users.
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5.3.2 Capturing Spatio-Temporal Preferences

We use longitudinal wireless activity session to build
mobile user’s spatio-temporal profile. An anonymous
sample is shown in Table-2 . Each entry of this
measurement trace has the location of association and
session time information for that user. The location
association coupled with time dimension provides a
good estimate of user online mobile activity and its
physical proximity with respect to other online users
(Hsu, et al., 2006; Kotz, et al., 2005). We devise a
scalable representation of this information in form of an
association matrix as shown in Figure 3. Each individual
column corresponds to a unique location in the trace.
Each row is an n-element association vector, where each
entry in the vector represents the fraction of online time
the mobile user spent at that location, during a certain
time period (which can be flexibly chosen, such as an
hour, a day, etc.). Thus for n distinct locations and t time
periods, we generate a t-by-n size association matrix.

Representation Flexibility: The representation of
spatio-temporal preferences in form of an association
matrix can be changed to use each column for a building
(where a collection of access points represent a building)
and the time granularity can be changed to represent
hourly, weekly or monthly behavior. For the purpose of
our study, each row represents a day in the trace and
column represents an individual access point.

5.3.3 Characterizing Association Patterns

For a succinct measure of mobile user behavior, we
capture the dominant behavioral patterns by using
Singular Value Decomposition (SVD) (Horn, et al., 1990)
of the association matrix. SVD has several advantages:

• It helps to convert high dimensional and high
variable data set to lower dimensional space there
by exposing the internal structure of the original
data more clearly.

• It is robust to noisy data and outliers.

• It can easily be programmed for handheld devices,
which is our other on-going work.

The Singular Value Decomposition of a given matrix
A can be represented as a product of three matrices:
an orthogonal matrix U, a diagonal matrix S, and the
transpose of an orthogonal matrix V.

A = U · S · V T

where UT · U = I = V T · V, U is t − by − t matrix
whose columns are orthonormal eigenvectors of AAT , S

is a t − by − n matrix with r non-zero entries on its main
diagonal containing the square roots of eigen values of
matrix A in descending order of magnitude and V T is
a n − by − n matrix whose columns are the orthonormal
eigenvectors of AT A. Thus the eigen behavior vectors of
V = {v1, v2, v3, ..., vn} summarize the important trends
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Figure 5 Log Normalized Similarity distribution of all
four data sets is shown.

in the original matrix A. The singular values of S =
{s1, s2, s3, ..., sr} ordered by their magnitude S = {s1 >

s2 > s3, ... > sr}. The percentage of power captured by
each eigen vector of the matrix A is calculated by

wi =

k∑

i=1

s2
i

rank(A)∑

i=1

s2
i

It has been shown that (Hsu, et al., 2007) SVD
achieves great data reduction on the original association
matrix and 90% or more power for most of the users
is captured by five components of the association
vectors. By this result, we infer that users’ few top
location-visiting preferences are more dominant than the
remaining ones.

5.3.4 Calculating Similarity

We use the eigen vectors of association matrix A to
quantitatively measure the similarity between behavioral
profiles of mobile user pairs. For a pair of users, with
respective eigen-vectors as X = {x1, x2, x3, ..., xrx

} and
Y = {y1, y2, y3, ..., yry

}, the behavior similarity can be
calculated by the weighted sum of pair wise inner
product of their eigen vectors as

Sim(X, Y ) =

rank(X)∑

i=1

rank(Y )∑

j=1

wxi
· wyj

|xi · yj |

Sim(X, Y ) is quantitative measure index that shows
the closeness of two users in spatio-temporal dimension.
The value of similarity lies between 0 6 Sim(X, Y ) 6

1 . A higher value is derived from users with similar
association patterns. In this study, we are the first one
to investigate the distribution of such a similarity metric
among user pairs based on realistic data sets.

5.3.5 Simialrity Analysis

The distribution histogram of similarity scores for the
campus datasets is shown in Figure 4. The figure shows
number of user pairs as a function of similarity score
that quantify the behavioral similarity between mobile
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Figure 4 Similarity distribution histogram among user pairs is shown. All the four time intervals show near consistent user
pair counts for a particular similarity score. Lowest similarity score (0.0 - 0.1) shows that users have very different
spatio-temporal preferences. A fraction of the user pairs are also very similar with (0.9 - 1.0) similarity score.

users. We observe that: 1) mobile societies compose
of users with mixed behavioral similarities, 2) For all
four time periods there is a consistency and stability
in the similarity score among mobile user pairs. The
low similarity scores (0 - 0.1) in Figure 4 indicate a
substantial portion of users is spatio-temporally very
dissimilar. On the other hand, similarity scores of (0.9
1.0) suggest a statistically significant likelihood of high-
density ties creating tightly knit groups. The variation
in the middle shows partially similar and partially
dissimilar user pairs. This is significant and provides
an insight into the existence of mobile societies in the
network with quite similar location visiting preferences.
Overall, the curves show an assortative mixing of user
pairs for all possible similarity scores. Figure 5 gives a
normalized log plot to compare data sets from different
campuses, and shows that similarity exists evenly across
all the traces. Next, we briefly explain modularity and
use a divisive algorithm to discover mobile societies in
the traces.

5.3.6 Modularity

To understand the underlying structure of mobile
societies (or communities), the similarity distribution
is not sufficient. Therefore, we use a robust method
to segregate user pairs that have high similarity score
into tightly knit groups. To detect such communities
in a graph like structure, a centrality-index-driven

method (Newman, et al., 2006) is utilized. This measure
to detect communities circumvents the traditional
clustering notion to identify most central edges. Instead,
a divisive algorithm is applied based on identifying
least central edges, which connect most communities
(via edge betweenness). First, the betweenness score
of edges are calculated as the number of shortest
paths between pair of vertices that run through it.
Understandably, tightly knit communities are loosely
connected by only few intergroup edges and hence
shortest paths traverse these edges repeatedly, thereby
increasing their respective betweenness score. If such
edges are removed, according to a threshold, what we
get are the groups of tightly knitted vertices known as
communities. To identify a reasonable threshold value,
modularity is used. Modularity is the difference of edges
falling within communities and the expected number
in an equivalent network with randomly placed edges
(Newman, et al., 2006,a; Musolesi, et al., 2008).

5.3.7 Detection of Mobile Societies

Human networks are known to exhibit a multitude
of emergent properties that characterize the collective
dynamics of a complex system (Cen, et al., 2008;
Steinhaeuser, et al., 2008; Bastian, et al., 2009). Their
ability to naturally evolve into groups and communities
is the reason they show non-trivial clustering. Here,
we consider the spatio-temporal preferences and cosine
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Table 3 Network Analysis of Datasets on three different metrics

Dataset Clustering Coefficient Average Path Length Modularity

Orig Rand Orig Rand Orig Rand

Dartmouth 0.89 0.05 0.10 2.47 0.63 0.2

IBM Watson 0.92 0.05 0.40 2.12 0.79 0.14

UF 0.78 0.051 0.30 2.605 0.67 0.24

USC 0.91 0.05 0.19 2.0 0.46 0.11
∗Orig = Original Dataset Graph ∗Rand = Random Graph

(a) Dartmouth (b) IBM Watson (c) UF (d) USC

Figure 6 Shown are the structural and spatio-temporal dynamics of Mobile Societies as function of weighted cosine
similarity score, produced from highly positive modularity values. Note: this figure is best viewed in color.

similarity of mobile users as a relative index to generate
emergent structures, which we call mobile societies.
The network transitivity structures of mobile nodes for
various campus datasets are shown in Figure 6. We
use mutual similarity score of mobile nodes to produce
a connected graph and applied random iterations of
modularity (Newman, et al., 2006,a) and betweenness
algorithm to infer the mobile societies. A set of visibly
segregated clusters validates their detection and presence
in mobile networks.

5.3.8 Modularity Analysis for Mobile Societies

Statistically, modularity greater than 0.4 is considered
meaningful in detecting community structure. For our
dataset, we also find high modularity index as compared
to an equivalent random graph. The comparison is shown
in Table-3. Henceforth, the heterogeneity in dataset has
tightly knitted Mobile Societies. This analysis further
helped us to investigate the possibility of existence of
different clusters of users based on their proximity in
similarity score values.

5.3.9 Network Analysis for Mobile Societies

We compute the average clustering coefficient and the
mean- shortest path length of these clusters. We compare
the results with a random graph of the same size
to understand the variation and capacity to depict
small world characteristics. Table-3 delineates network
properties and average modularity that provide details
of the structure of mobile societies against same size
random graph. The comparative values in the table
clearly show that mobile societies can exhibit small world

characteristics. However, we leave such small world study
for future work.

Based on the above analysis, we find that similarity
not only exists among mobile users, but its distributions
seem to be stable for different time periods. Furthermore,
this trend is consistent in all four traces, which highlights
similarity clustering as an important characteristic to
capture using mobility models.

5.3.10 Similarity in Model-The Missing Link

In this section, we evaluate existing mobility models and
contrast their output against real trace results. Trace
based mobility models (Bhattacharjee, et al., 2004; Daly,
et al., 2009; Ekman, et al., 2008; Hsu, et al., 2005;
Kim, et al., 2006; Lee, et al., 2006; Lelescu, et al., 2006;
Rhee, et al., 2008) are a close approximation of realistic
human movements and their non- homogenous behavior.
They focus on vital mobility properties like nodes’ on/off
behavior, connectivity patterns, spatial preferences
under geographical restrictions, contact duration, inter-
meeting and pause time, etc. We consider two mobility
models, the random direction model (a widely used
classic mobility model) and Time Variant Community
Model (Hsu, et al., 2009) (due to its capability to capture
spatio-temporal mobility properties). In the ensuing
text, we briefly describe the TVC model and use it to
generate realistic movements. Finally, we compare its
result against the similarity characteristic found in real
measurements.

We setup the TVC model for two university campuses
(IBM Watson and USC) to statistically evaluate the
similarity metric established previously. Our goal is two
folds:
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Figure 7 Cumulative distribution function of distances
for the similarity score of mobile users. Real trace
curves show a conformance with user pairs for
different values of similarity score, while TVC and
Random Direction Model has all users pairs in the
0.9 score range.

• As proposed by the TVC model, we seek to
maintain the skewed location visiting preferences
and time dependent mobility behavior of users.

• To analyze whether TVC model successfully
captures similarity among mobile users and
quantitatively simulate the distribution that we
have seen in the real measurements.

5.3.11 Construction of TVC Model for Campuses

Initially, we determine the number of communities that
nodes should periodically visit. We determine that
top 2-3 communities capture most skewed location
visiting preferences. Then we employ a weekly time
schedule to capture the periodic re-visits to these major
communities. To keep fair comparison against the real
measurements, we configure the TVC model with same
number of mobile nodes and generating measurements
equivalent to one month time period with one-day
granularity. Finally, for WLAN measurement we assume
mobile users are stationary while being online (Hsu,
et al., 2009).

5.3.12 Similarity Evaluation

TVC model accurately demonstrates location visiting
preferences and periodic reappearances for both
campuses(Thakur, et al., 2010). Surprisingly, it is
unable to accurately capture the richness in similarity
distribution on spatio-temporal basis. For all values
of similarity score except 0.9, TVC and Random
Direction model yields no user pairs. Figure 7 shows
similarity distribution CDF curves for both campuses.
We clearly observe a discrepancy between the curves
from actual traces and the two mobility models (TVC
and random direction). In addition, dendrograms in
Figure 8 shows the result of hierarchical clustering
based on users mutual similarity scores. Here, in real
traces we find clusters at different similarity scores.
In Figure 8(a), the average distance of 2.0 has close
to 18 small clusters and Figure 8(c) shows 16 small
clusters of mobile users. However, corresponding TVC
dendrograms in Figure 8(b) and 8(d) show only one
cluster of mobile users at a distance of 2.0. A possible
explanation is that the community assignment in TVC
model creates a homogeneous user population where
all nodes are assigned the same communities. While it
captures the location visiting and periodic preferences, it
fails to differentiate among mobile nodes with different
behaviors. What is missing here is a mechanism to assign
different locations as the communities to different nodes,
in a way that reproduces the social structure (clusters)
observed in the traces.

Results in this section show that although TVC
model is able to capture location visiting preferences
and periodic reappearances, it does not capture the
similarity metric distribution and the clusters with
different behaviors in the traces. Random direction
model also fails on this front in a similar way. This study
realizes us that current mobility models are not fully
equipped to handle behavioral metrics and community
behavior of users that form mobile societies. It compels
us to revisit mobility modeling in the attempt to capture
both individual and community behavior of mobile users,
which is part of our on-going study.

6 Routing Protocol Analysis

In this section, we compare routing protocol performance
between realworld and mobility model generated traces.
Our implementation of epidemic routing input time
varying mobile encounter sessions. Essentially, they serve
a basis for intermittently connected dynamic network
topology setting where each encounter is viewed as an
opportunity to receive and forward messages. We run
epidemic routing against the IBM Watson and Infocom
traces to measure the performance on two parameters:

1. Rechability: The percentage number of nodes that
could be reached in multiple hops by a given source
averaged over all nodes in the scenario.
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Figure 8 Dendrograms giving visual representation of two-dimensional hierarchical clustering for real and TVC model
generated traces for USC and IBM Watson campus mobile users. Real traces (Figure a & c) show an incremental
built-up of component based on the similarity score strength between mobile user. TVC Model (Figure b & d),
output only one cluster containing all mobile users. Invariably, TVC treats all mobile users to have same preferences.
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Figure 9 (a,b) Show Epidemic routing results for the Infocom settings. (c,d) Show Epidemic routing results for the IBM
Watson settings. As seen, largely deviate in their network performance for delay and reachability compared to real
measurement results.

2. Delay: The percentage of number of nodes that are
reached in a given amount of time.

We plot the routing performance in Fig-9 to validate
real and synthetic traces in all cases of reachability

and delay. Surprisingly, despite models claim to exhibit
vital mobility characteristics, they dramatically deviate
in network routing performance benchmarks. Alongside,
a quantitative report is shown in Table-4. We observe
epidemic results on Infocom experiment trace takes an
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Table 4 Summary of performance measurement for epidemic routing.

average of 11 hops to deliver message to all other nodes;
while it takes only seven in case of TVC traces and
even less in case of Random Models. Meanwhile for
the delay, there are at least two folds of difference
between real measurement and synthetic trace. The TVC
and Random models take much less time in delivering
messages compared to the observed ones in the real
scenario. We find similar results in case of IBM Watson
traces as well. The difference in reachability is more than
15 hops between real and TVC model performance in
delivery the message.

7 Discussion

Mobility models are designed with a particular scenario
in mind. However, in this study we would like to question
the efficacy those metrics that are widely adopted or
expected to be vital in closing the performance gap
between modeling and reality. Now, there is an immense
need to identify them and a perception should be
made to use them for correct estimation. Our results
show current metrics like spatio-temporal preferences
and encounter statistics are inadequate; because models
completely miss out on the structure and performance
criteria. We believe it is important for the researchers
to search for fundamental characteristics that drive the
dynamics in challenged networks. Not only we should
maintain the current characteristic but also look out for
structural semblance and topological realisms between
simulation and similarity. A good research direction
would be look into measures that affect globally in a
similar way routing decision are made.

8 Conclusion

In this paper, we show that existing model demonstrate
spatio-temporal and encounter statistics seen in real
traces. We analyzed the spatio-temporal behavioral
similarity profiles among mobile users. We define
mobility profiles based on users association matrices,
and then use a SVD-based-weighted-cosine similarity
index to quantitatively compare these mobility profiles.
Analysis of extensive WLAN traces from four major
campuses reveals rich similarity distribution histograms
suggesting a clustered underlying structure. Application
of modularity based clustering validated and further
quantified the clustered behavior in mobile societies.
Similarity graphs exhibit an average modularity of

0.64, and clustering coefficient of 0.86, which indicates
potential for further small world analysis.scrutinize
mobility models on routing performance benchmarks.
We compared similarity characteristics of the traces
to those from existing common and community based
mobility models to capture similarity. Surprisingly,
existing models are found to generate a homogeneous
community with one cluster and thus deviate
dramatically from realistic similarity structures. We
also testify that despite models capture realistic human
behavioral patterns; their routing performance deviate
from reality. We used the same synthetic traces to run
epidemic routing and measure performance. By doing
so, we find that mobility models performance is not
analogous to reality. The synthetic mobility traces’
indeed carry no structural similarity. These dramatic
deviations from realism indicate serious flaws in the
existing models and their inadequacy as testbed tools
for any kind of performance evaluation purposes. In
this paper, we limit our work in verifying epidemic
routing against two well-known mobility models. In
future, we are looking to test other routing protocols
and models that parameterize. We elaborated on the
presence of similarity among mobile users and the
detection of collective behavior via community detection
in wireless networks. We showed the gap between reality
and current mobility models in demonstrating collective
behavior. In our on-going work, we are developing
a multi-dimensional mobility framework that helps
scientists to develop mobility metrics and verify current
models against realistic settings and provide guidelines
to develop new models. We are looking into a global
perspective of clustering and mobility coefficient and
maintaining structural properties and performance by
revisiting mobility modeling, which is vital for the
evaluation and design of next-generation behavior-aware
protocols.
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