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Abstract— Performance of geographic routing suffers from
mobility-induced location errors. Location errors can also occur
due to infrequent and/or lost updates to location servers,
especially when the nodes are highly mobile. In GLS the location
update frequency to the higher order location servers is very low.
A query to a location server fails when a node moves far away
from its previous location rendering the cached location in the
location servers invalid. In this work we present a detailed study
on the impact of node velocity on query failure rates and reasons
in GLS, across different mobility models. Correct and efficient
mobility prediction by the location serves themselves can improve
the query success rate in the Grid/GLS framework. We present a
comparative study to investigate the performance of various
prediction schemes with GLS over a rich set of mobility models.

Keywords- Mobile ad hoc networks, geographic routing,
mobility prediction,GLS, prediction, location prediction.

L INTRODUCTION

Geographic routing has been proposed as a solution for
routing in mobile ad hoc networks. It eliminates the need for
route set up and maintenance in mobile networks by making
use of the geographic locations of the mobile nodes. For
geographic routing to work, the location information of the
destination has to be known. Various location services have
been suggested for this purpose. The Grid Location Service
(GLS) [1] 1s a distributed location service in which each node
in the network maintains a part of the overall location database.
It uses the concept of a grid wherein all the nodes are aware of
the complete grid topology and each node knows only a cell-
worth of other nodes. Therefore for the purpose of reaching any
node in GLS, the location of the each node 1s reduced from an
actual geographic position to the grid location.

In GLS, a node i1s called the location server of another node
if it stores the mapping of the node’s ID to its location. Three
main functions of GLS are location server selection, location
query request, and location server update. If node A wants to
find the location of node B, then A will send a request to the
least node greater than or equal (in circular ID space) to B for
which A has location information (using greedy forwarding).
The node receiving the request forwards the query in the same
way until the query reaches one of the location servers that
know the location of B, and this location server will forward
the query to B itself. B responds directly to the requestor (A)
since the request contains A’s location.
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The rate at which nodes update their location servers falls
off with increasing distance from the location server, thereby
minimizing update traffic. However, this also means that the
location update frequency to the higher order location servers is
low. A query to a location server fails when a node moves far
away from its previous location rendering the cached location
in the location servers invalid. Location errors can occur due to
infrequent and/or lost updates to location servers, especially
when the nodes are highly mobile.

We performed an extensive study of the reasons for query
failure in GLS for various mobility models [2], namely the
Random Way-Point (RWP), Reference Point Group Mobility
(RPGM), Freeway (FW), and Manhattan (MH), across a range
of node speeds. We observed an increase in the query failure
rates with node velocity due to location errors.

In order to study potential improvements in GLS query
success rate by incorporating prediction in the location servers
themselves, we implemented three prediction schemes, namely
linear velocity prediction (LVP), weighted velocity prediction
(WVP) and recent history based Order (1) Markov prediction
(MHP). We performed a comparative study to investigate GL.S
performance for the three prediction schemes.

The remainder of the paper is organized as follows. Section
II explains the related work covering various prediction
schemes. Section III explains the environment for our
simulations and analysis of the GLS query failure reasons. The
implementation of the prediction schemes is presented in
Section IV, and the simulation results are discussed in Section
V. Finally, our conclusions from this study and planned future
work are listed in Section VL.

1. RELATED WORK

A.  Prediction Schemes

The improvements suggested in [3], namely NLP and DLP,
advocate location prediction by forwarding node. However,
this is more useful when routing packets hop-by-hop. We
address the issue at the query point (location server) even
before a destination location is given to start the routing.
Problems may arise if the location information maintained in
the location server itself is in error. The situation further
deteriorates in presence of node mobility. To solve this
problem we suggest that the location server employ a
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prediction scheme to proactively provide more accurate
location information. This will provide better improvements if
the location server queried by the source is far from the
destination node in terms of distance, as making a correct
prediction the routing would choose paths better to reach the
correct destination location. For example, a second or third
order square location server in GLS or a server in a far-off
region is more likely to have incorrect location information,
hence would result in a better accuracy with prediction.
Various prediction schemes have been suggested in [4], [5],
[6], [7] and [8]. [4] discusses predicting random movement of
nodes using random mobility model. [5] explains the cause and
effect relationship between group mobility and network
partitioning, and suggests methods to predict network
partitioning,. [6] compares various unicast and multicast routing
protocol performance with and without prediction of link and
route expiration times. [7] suggests a method to capture history
of node movements using efficient path updates. [8]
implements a prediction scheme using movement patterns in a
grid setting. To the best of our knowledge no prediction
scheme has been suggested for location servers in GLS. In this
work, we investigate the query failure rates along with
associated reasons (across different node speeds, node densities
and mobility models) in detail to determine the major factors
contributing to query failures. We then analyze the
applicability of three prediction schemes to GLS, over a rich
set of mobility models.

III.  GLS ANALYSIS

A.  Simulation Background

All of our simulations are based on the GLS code ported to
ns-2.1b8 [9]. They were performed using CBR traffic and a
setting called fest queries only, resulting in queries being sent
out instead of data. The area of simulation used was 1000m x
1000m (unless specified otherwise). We used the
IMPORTANT [2] mobility tool to generate scenarios and
simulate node movement for the Freeway, Manhattan and
RPGM mobility models. The packet types associated with
location information are: Hello, Location Update, Location
Query, Query Response, Location Notification and Forwarding
Pointer Update [9]. Of these we mainly focus on the location
query and response packets since we are interested in
investigating GLS query failure rates. The important reasons
for dropped queries are: RLOOP, NRTE, NOSRVF and TTL [9].
GLS avoids routing loops by limiting the number of geographic
route hops from location server to the destination to four. When
the number of hops is exceeded the query packet is dropped
with RLOOP as reason. Thus RLOOP hides location errors and
prediction may be helpful in alleviating this. When a
geographic void is encountered, packet is dropped with reason
code NRTE. When no location server is found through GLS
logic (the number closest in id space), query is dropped with
NOSRVF as reason.

B.  Simulation Results and Analysis for Query Drops

This section presents the simulation results for GLS query
failures and failure reasons (RLOOP, NRTE ectc.) for different
mobility models and node speeds.
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Figure 1. Query Failure Rate for 100 nodes in 1000m x 1000m area

RWP: Simulations for RWP were done in a 1000m x
1000m area with a grid size of 250m and update distance (d)
100m. Each simulation was run for 300s and results averaged
across 5 runs. As the number of nodes or node density (because
simulation area remains the same) increases the number of
query drops reduce from a high of 75% (100 nodes — here the
nodes are basically disconnected, due to low density) to a low
of 20% (400 nodes), node speed being 30 m/s in these cases.
This trend observed due to reduction in the number of NRTE
(due to reduction in the number of voids with increasing node
density). As node speeds increase from 10 m/s to 50 m/s (Fig.
1) the query drops increase from a low of 8% to a high of 40%
primarily due to mobility induced errors (like RLOOP). Fig.2
shows the distribution of the reasons for the drop. (The
percentage of drops is the drops for that reason per 100 drops).
With an increase in speed from 10m/s to 50 m/s, failures due to
RLOOP increase from a low of 0.37% to a high of 26.9%.
NOSRVF (which are an inherent problem with GLS) stay
constant at 31%. Node mobility seems to decrease the number
of voids in this case, with the query failures due to NRTE
reducing from 55.2% (at 10 m/s) to 22.2% (at 50 m/s). Thus,
we can see that at low speeds NRTE dominates, at medium to
high speeds, we see the drops due to RLOOP being significant.

Manhattan: Simulation area is 1000m x 1000m with grid
size 250m. Simulation runs were for 300s each with

RWP Query Failure Reasons
(200 nodes in 2000x2000)
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Figure 2. RWP Query Failure Reasons vs Speed
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update distance being 100m. Query failures increase from a
low of 3% to a high of 23% when max velocity increases from
10 m/s to 50 m/s (Fig. 1). NOSRVF with a contribution of 55-
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Figure 3. Manhattan Query drop reasons, 100 nodes in 1000m x1000m area

60% to total query loss rate dominates at low speeds. Nearly
80% of failures are due to RLOOP at speeds greater than 20
m/s (Fig. 3).

Freeway: Simulation parameters are same as in Manhattan.
In case of Freeway mobility model as node speeds increase the
query drops stay steady at 15-20%. Main reasons for query
drops in this case are NOSRVF, NRTE and TTL. Our analysis
of query drops and our observations from the visual tool (nam)
make us conclude that GRID GLS may not be suitable for
models with geographic restrictions that do not resemble a
grid-like structure. We found that in this case nodes were
unable to locate location servers due to non-uniform node
distribution in grid area (which is the basic requirement for
GLS to function). In a freeway based mobility model, the
nodes are separated by linear or columnar geographic
restrictions. The columnar structure of the freeway node
distribution causes forwarding based on the GLS logic to be
very costly in terms of hops and result in TTL expiry drops.

RPGM: Simulation area is 1000m x 1000m and we ran
simulations for 300s with 4 groups of 15 nodes each (Total of
60 nodes). Update distance was kept constant at 100m. From
our query drop analysis for the RPGM model we observed that
NRTE dominates at lower speed (less than 30 m/s) and TTL
dominates at high speeds (greater than 40 m/s). We observed
an interesting trend that query failure rates increase from 57%
to a high of 67% at max velocity of 40 m/s; thereafter it drops
off to lower values with increasing speeds. We attribute this to
an increased connectivity with higher mobility. Another
observation we make here is that is all simulation runs for
RPGM most of the communication was within the group and
the number of queries generates were far too less than
generated for other models. Hence we studied the RPGM
model for inter-group connections with the same group
constitution as mentioned earlier. The connection pattern used
connected at a random time during the simulation one node
from one group to a node in another group. The inter group
request for queries suffers from NRTE and NOSRVF drops.
These are primarily due to network partitioning.
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IV. PREDICTION SCHEME IMPLEMENTATION

Velocity Based: We implemented two different velocity
based prediction schemes as described below:

a) Linear Velocity Prediction (LVP): This implementation
uses a simple prediction approach. Each node maintains two
history samples for every node for which it is a location server.
Each history sample consists of an (x,y.t) triplet (where t is the
time at which the update was received for location (x,y)). Node
speed is calculated using the distance-time formula. Further,
the location server predicts the current location of the node
using the time elapsed since the last location update and the
calculated speed.

b) Weighted Velocity Prediction (WVP): In this scheme we
take running weighted average (similar to TCP RTT
calculations) of node velocity for doing prediction. Whenever
the location server gets a location update for any node, it will
calculate and store the nodes velocity using the following
equation:

VBV = a VBV + (l_a) VICC (1)

Where V,, is the weighted average velocity, V. is the most
recent velocity and a is the filter gain constant.

The location server uses V,, to predict the node’s current
location. Lower the a value, higher is the contribution of
current velocity to the weighted average. At a = 0, WVP
becomes the same as LVP. So LVP can be said to be a special
case of WVP.

Both these schemes don’t take into account the change in
direction, which if incorporated is expected to provide an
improvement in prediction accuracy.

History Based: The O(l) Markov Recent History (MHP)
based prediction, as described in [10] is implemented as the
history-based prediction scheme. Each node maintains a
defined parameter (NUM_SAMPLES) worth of recent history
samples (GLS grid numbers) for every node for which it is a
location server. In order to predict the next grid for a particular
node, the algorithm searches backwards in the list to find the
preceding occurrence of the most-recent grid number. The grid
number following this grid in the history is returned as the
predicted value. In case there is no previous occurrence of the
current grid, no attempt for prediction is made, and the value as
per the default GL'S behavior is returned. The scheme incurs no
communication overhead, while the storage requirement at
location server will increase as we increase NUM_SAMPLES.
(One history sample for a single node takes 12 bytes in the
current implementation).

A.  Investigated Parameter Space

Our evaluation framework investigates the effect of the
following parameters on prediction accuracy and GLS protocol
performance: node speed, node density, mobility models,
simulation area, location update frequency and grid size.
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B.  Evaluation Metrics

In our framework the following metrics are used for
evaluating the benefit of incorporating prediction mechanisms
into location servers:

Control packet overhead: This represents the change in
terms of the number of bytes due to any additional
communication the prediction scheme incurs.

Prediction accuracy: For velocity-based prediction it is the
absolute difference between the predicted and actual location of
the node and is measured in meters. For history-based
prediction we measure the prediction accuracy in terms of grid
numbers (number of times the predicted grid number is same as
the actual grid number).

Query Success Rate: 1t is the percentage of queries sent out
to location servers that are successfully resolved.

Storage Requirement: Increase in storage requirement at
location servers for prediction scheme implementation.

V. SIMULATION RESULTS

All simulations were run for a 1000m x 1000m simulation
area, with 100 nodes. Grid size is 250m and the update distance
100m.

A. Velocity Prediction

RWP: The prediction accuracy, as compared to the accuracy
of GLS for the RWP mobility model, reduces as speed
increases. This can be attributed to the facts that the nodes
change direction in smaller intervals of time and velocity
predictions do not take change of direction into account. Even
though updates are sent at a greater rate, the need for prediction
is based more on the connection pattern and thus may not be
fresh enough. Prediction accuracy for the velocity based
mechanism is better than the value GLS would have provided
as the current location about 70% of the time for 10m/s and
drops to about 64% at 40nv/s. GLS with prediction tracks a
node, better than original GLS by greater than 100m for about
15% of the time and by greater than 250m about 2% of the
time. We observe that, if velocity prediction does give an
incorrect location, it is generally very close to the value that the
GLS system would have given without prediction, indicating
that there has been no update received from the destination
node and hence the error. The other observation is that the error
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Figure 4. Freeway GLS query performance comparison
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Figure 5. Freeway LVP accuracy at 30 m/s

in the prediction scheme is very large when RWP randomly
inserts nodes once they reach simulation area boundary.

Freeway: We ran simulations at varying node speeds from
(10 ms — 40 m/s), under three scenarios, original GLS, GLS
with LVP and GLS with WVP. Fig. 4 draws a comparison
between the three different scenarios and GLS with WVP
having 5% better Query Failure Rate. LVP predicts a more
accurate location 68- 72% of times (Fig. 5) compared original
GLS although it leads to only a 2% improvement in Query
Drops. We observe that the relative ratio of the drop reason
components remains motre or less the same, though the TTL
and RLOOP drops do decrease location errors are reduced.

Manhattan: For Manhattan mobility model, LVP predicts a
more accurate location for around 57- 59% of times than
normal GLS. A comparison between the three different
scenarios (original GLS, LVP and WVP) shows that WVP
performs the best (though the improvement is not as visible as
Freeway Model). The relative ratio of the drop reason
components remains motre or less the same, though the TTL
and RLOOP drops decrease.

We observe that the velocity based prediction schemes
perform better with Freeway mobility model as compared to
Manhattan. This is because Freeway has higher geographic
restrictions as compared to Manhattan (where node can move
left or right at an intersection). Thus velocity based prediction
(without taking into consideration the direction of movement)
works better for Freeway. Performance for Manhattan is
expected to improve if we consider the knowledge of map as
well as the probabilities of node changing direction at any
intersection. WVP works better than LVP in both cases
because it filters out possible transient velocity changes by
taking the weighted running average. The error in velocity
prediction is large when the node is randomly inserted back in
to the simulation area upon reaching the simulation boundary.

Both WVP and LVP schemes have no communication
overhead and with the current implementation the storage
requirement in location server increases by 12 bytes for ecach
node (for which it serves as the location server) in case of LVP,
whereas for WVP is just 4 bytes (as we store just weighted
average velocity instead of (x,y,t) triplets). LVP being a special
case of WVP, can also have its storage requirement reduced to
4 bytes (per node) if we run WVP with o = 0. Thus for WVP if
the location server stores locations for say N nodes, the storage
requirement is N*4 bytes.
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B. History Based Prediction

In addition to using the standard mobility models (including
Random-Way Point (RWP), Manhattan (MH), and Freeway
(FW)), we were also interested in looking at the performance
for a movement scenario containing temporal patterns, since
history-based schemes are intuitively expected to perform
better in such scenarios. We created a simplistic pattern-based
scenario for ns and evaluated both the original and modified
GLS performance for the same.

Based on the analysis of GLS performance with and
without history-based prediction (specifically MHP), we
observed that there is no significant change in the query failure
rates when MHP is used in GLS. The prediction made by the
algorithm resembles very closely the choices that the original
GLS implementation makes as regards to the location grid of a
node. We investigated the reasons for the same. Intuitively, the
update frequency has a significant bearing on the history
formed at the location server. The accuracy of the predictor
closely mirrors the rate at which the location updates come in
from the node to the location server. In this respect, both the
predictor and the default GLS implementation uses similar
information in making decisions about node locations, hence
the similarity in behavior. The method of predicting node
locations in terms of grid numbers is coarse. This amounts to
predicting the position of a node to be somewhere within a 250
m x250m square. This secems to effect scarce, if any,
improvement in GLS query success rates. Further, it is
noticeable that the aforementioned prediction scheme is by
nature more suited to cases where the node movement shows a
temporal pattern.

VI. CONCLUSION

In this paper we have a presented an extensive analysis of
GLS query success rate and query drop reasons across various
mobility models and node speeds. Location error due to
infrequent and lost location updates to location servers was
identified as one of the major factors leading to query failures.
We proposed that location servers themselves employ location
prediction mechanisms so as to alleviate query failures due to
location errors. An ecvaluation framework to objectively
compare and analyze the performance of the above prediction
schemes with GLS across the various mobility models was
presented. Our framework investigates various dimensions of
the parameter space to provide insight to the performance of
the prediction schemes and to the conditions under which such
performance is desirable. We implemented two velocity based
prediction schemes and a third prediction scheme which
exploits patterns in the history of node movement. Prediction
accuracy as well as its impact on GLS performance was
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analyzed. Prediction accuracy depends on mobility models and
the prediction scheme being used. Node velocity was identified
as the major factor impacting the accuracy of a particular
prediction scheme for a specific mobility model.

In future we intend to enhance the velocity-based prediction
schemes by take into consideration the direction of node
movement. This can be combined with the knowledge of map
available at each location server. Probabilities can be used to
determine the direction of node movement at each intersection
of streets in Manhattan model. A street map can also be used to
validate the predicted location. In case of weighted average
velocity prediction scheme impact of varying o on GLS
performance for different mobility models and node speeds
would be an interesting study in itself. It would also be
interesting to evaluate history-based prediction for more
sophisticated movement models having varying levels of
temporal patterns. The current implementation of history-based
approach can be extended to one that is frequency based and
higher order Markov models with confidence thresholds.
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