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   Queries and small transfers are likely to constitute a significant portion of the flows in 
emerging classes of sensor networks. Route discovery for such queries incurs much more 
communication overhead than the actual data transfer. Especially for large-scale sensor 
networks, it is quite costly to establish shortest path routes for such types of requests. 
Flooding-based approaches for routing are designed to search for high quality routes. 
Such approaches may be suitable for prolonged transfers, but not for small ones. In this 
paper, we present an architecture that is geared towards one-shot frequent queries in 
sensor networks. In our approach we aim at reducing the total energy cost query 
resolution as opposed to searching for high quality routes. 
   Our architecture uses a hybrid approach, where each node collects information about 
nodes in its proximity, up to R hops away, using a link state protocol. Beyond the 
proximity, we introduce the novel notion of contacts that act as short cuts to reduce the 
degrees of separation between the request source and the target. A new efficient, on-
demand, contact selection protocol is integrated into the search process. We do not 
assume knowledge of node locations. Several protocols to implement different policies 
for the search are introduced. Extensive simulations are used to systematically evaluate 
the performance of our protocols. Our results show substantial communication overhead 
reduction for our contact-based technique as compared to related schemes. The study 
also shows reasonable settings of parameters that work well for a wide range of 
networks. 

 

I.  Introduction 
Motivation: Classes of emerging wireless sensor 
networks are expected to have a significant impact 
and have the potential for many applications. Such 
networks are infrastructure-less, power-constraint, 
scalable networks, in which high quality route 
discovery and maintenance may be quite costly. In 
many applications of sensor networks the network 
may be treated as a distributed database that is 
queried for information. In future sensor networks, 
it is highly likely that queries and small transfers 
will constitute a significant portion of the supported 
traffic. Examples of small transfers include 
resource discovery, monitoring queries, and data 
centric storage, among others. For such small 
transfers, it is quite inefficient to establish optimal 
(shortest path) routes, where the cost of such routes 
exceeds (by far) the cost of the actual data transfer. 
Hence, it is crucial for the efficiency of sensor 

networks to provide routing protocols geared 
towards queries and small transfers. In this work, 
we propose a novel architecture for small transfers 
in sensor networks. We design our protocols to be 
self-configuring, power-efficient and scalable. 

Background: Sensor networks consist of wireless, 
power-constrained devices that may be used to 
instrument a physical setting (e.g., habitat 
monitoring, object tracking). As such, sensor 
networks may be viewed in several classes of 
applications as a distributed database. One of the 
main functions of such networks is to resolve 
queries and carry out transactions and small 
transfers. Queries may be classified based on their 
semantics into different categories. A query may be 
simple (e.g., inquiring about one variable, such as 
temperature), or complex (e.g., an expression of 
several variables). A query may be one-shot or 
persistent; the latter leading to flow of information 
for an extended amount of time after the query 
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transfer. Also, the query may be for unique or 
replicated data. In this paper we target simple, one-
shot queries, for potentially replicated data. One 
distinguishing characteristic of such queries is that 
the communication cost for route discovery (to 
resolve the query) may exceed the cost of data 
transfer. Since communication is a major consumer 
of energy, the cost of route discovery for one-shot 
queries and small transfers should be minimized to 
conserve energy.  

   Routing protocols for wireless networks [4] [3] 
[11] [12] have been traditionally designed to 
discover and maintain routes of high quality, to 
achieve efficient prolonged data transfers over 
those routes. This is a suitable approach for long 
transfers, where the cost of the initial route 
discovery is amortized over the savings during 
efficient data transfer. However, in cases of query 
resolution and small transfers - those that do not 
extend beyond the discovery phase – high-cost-
high-quality routes may not be justified. In our 
approach the main design goal is not high quality 
routes, but to achieve successful delivery with very 
low overhead. 

   Flooding is a commonly used technique for 
resource discovery. For frequent requests in large-
scale networks, however, flooding may incur 
significant communication overhead. Expanding 
ring search techniques are also commonly used for 
discovery, but are quite inefficient for large-scale 
sensor networks, where the network diameter tends 
to be quite high (due to clustering of nodes). For 
scalability, several hierarchical approaches have 
been proposed [18][19]. Many such architectures 
are cluster-based, in which nodes elect cluster-
heads (or dominating set) to relay the traffic. A 
cluster-head may become a single point of failure 
or a point of traffic concentration. The landmark 
approach [5][13][14] avoids using the landmarks 
for communication, but uses them as directions for 
routing. However, the highest level landmark needs 
to periodically flood information throughout the 
network. One major concern in these hierarchical 
approaches is their reliance on complex 
coordination mechanisms that are susceptible to 
major re-configuration with node failures, node 
sleep/wake-up schedules and node mobility.  

   On-demand routing approaches in ad hoc 
networks (such as DSR[4] and AODV[3]) use 
caching schemes to alleviate the cost of flooding. 
These schemes can be quite efficient for small 
scale, static networks. The efficacy of caching, 
however, degrades severely with dynamics of the 
network, especially for large-scale networks, where 
the cache validity drops significantly. 

   Location-based or geographic routing is 
becoming a very attractive alternative when 
location information is available. Geographic 
routing (e.g., GPSR[34]) is stateless and only needs 
local neighbor location information to forward the 
packet towards the destination. An inherent 
assumption in geographic routing, however, is that 
the destination address is known. In the 
applications we target in this study (i.e., resource 
discovery and queries) the destination location is 
not known a priori. Hence, even if location 
information is available (which may not be the case 
for many sensor networks) an efficient resource 
discovery protocol is still needed. Some approaches 
use consistent distributed hashing for location 
discovery or data-centric storage (e.g., GLS[6], 
GHT[29], RRs[35]). Those approaches work well 
when the network boundary is known, there are no 
gaps or unoccupied areas, and a map of the network 
is configured into each node. In cases where the 
network boundary is not known a priori (e.g., due 
to rapid sensor deployment from an aircraft or 
vehicle) or is dynamic (due to node mobility), or 
when node failure creates gaps, these approaches 
may fail. The CAPTURE architecture avoids all 
these limitations by virtue of being location-free. 

   In this paper we introduce a new architecture for 
power-efficient resource discovery and small-
transfers in large-scale sensor networks, called 
CAPTURE. Instead of using shortest path or 
optimal routes, our design goal is to conserve 
network energy, while achieving high request 
success ratio. We avoid the use of flooding or 
complex coordination mechanisms in our approach. 
We design what we call on-demand on-the-fly 
loosely coupled hierarchy, in which instances of the 
hierarchy are efficiently constructed during the 
query process, without having to be maintained or 
re-configured. In our architecture, every node 
independently collects information from 
neighboring nodes up to R hops away. This is 
called a node’s proximity. Targets beyond the 
proximity of the node are discovered with the aid 
of contacts. Use of contacts is key for efficient 
discovery in our scheme. The idea behind the 
contacts borrows from small worlds [1] [16] [17]. 
Unlike relational or random graphs, wireless 
networks are spatial graphs (in which links are a 
function of distance, among other factors) that tend 
to be highly clustered, leading to very high path 
length. For a node, contacts are a few nodes outside 
of the proximity that act as short cuts to transform 
the wireless network into a small world and hence 
reduce the average degrees of separation between 
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the querier and the target. When a request1 is made, 
the contact-selection protocol is invoked. Contact 
selection employs a simple, yet effective, 
mechanism to reduce proximity-overlap and to 
elect contacts that increase the search coverage. 
The search proceeds according to a search policy 
until the target is located or the query is resolved. 

Salient features of our architecture include its 
ability to select useful contacts on-the-fly without 
having to maintain contact information a priori. 
Also, our protocols exhibit very good performance 
over a wide range of networks, without the need for 
parameter optimization for each network. 
Furthermore, our protocols respond well to 
replication with a drastic decrease in query 
overhead. 

   We use extensive simulations to evaluate the 
performance of our protocols in terms of energy 
consumption, success rate and latency. We 
compare our protocols to flooding, expanding ring 
search and ZRP. Our results show significant 
savings for our technique. For medium to high 
request rates, CAPTURE incurs 20-30% of flooding 
overhead, and achieves even greater savings for 
expanding ring search. Our protocols may be 
implemented using simple extensions to zone-
routing protocols. 

   The rest of the paper is outlined as follows. 
Section II introduces an architectural overview of 
CAPTURE. Section III presents the contact-
selection protocol and search policies. Section IV 
provides request processing and forwarding rules. 
Section V provides evaluation and comparison 
results. Section VI discusses related work and 
Section VII concludes. 

II.  CAPTURE Architectural Overview 

   In the CAPTURE architecture, each node in the 
network keeps track of a number of nodes in its 
vicinity within R hops away. This defines the 
proximity of a node, where R is called the 
proximity children. The lead subset for my 
technology. The proximity is maintained using a 
proactive localized link state broadcast. Each node 
chooses its proximity independently, and hence no 
major re-configuration is needed when a node 
moves or fails. There is no notion of cluster head, 
and no elections that require consensus among 
nodes. We assume the existence of a neighbor 
discovery protocol by which each node identifies 
nodes 1 hop away (through periodic beacons). The 

                                                      
1 We use the terms request and query inter-changeably. 

link state protocol provides neighbor information to 
other nodes in the proximity. Typically the number 
of nodes in the proximity is small (in our study we 
limit the number of proximity nodes to 100, by 
limiting R).  As part of the proximity information 
each node keeps routes to nodes and pointers to 
resources in its proximity. Nodes R hops away are 
called borders. Overhead and dynamics of the link 
state protocol are evaluated in Section 5.3.3.  

   When a querier node Q (potentially any node in 
the network) issues a query or request, it first 
checks to see if the resource (or destination) is in its 
proximity. If not, then it seeks the assistance of a 
number of contacts (NoC) outside the proximity, as 
follows. First, a request is issued to NoC (say 3) of 
Q’s borders (R hops away). Each border, B, 
receiving the request would in turn select another 
node, C, at r hops away to which to forward the 
request. We call C a contact node and r the contact 
distance. To increase search efficiency, C should 
have low proximity overlap with Q. Proper setting 
of the parameter r helps to reduce such overlap. 
Contact nodes act as short cuts that bridge between 
disjoint proximities. This helps to reduce the 
degrees of separation between Q and the target 
nodes. Degrees of separation in this context refer to 
the number of intermediate nodes to get from the 
querier node to the target. 
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Figure 1. Each node in the network has a 
proximity of radius R hops. A querier node, Q, 
sends a request through a number of its borders 
equal to the number of contacts (NoC), in this 
case NoC=3. Each border node, Bi, chooses one 
of its borders, Ci, to be the direction for 
forwarding the request r hops further until it 
reaches the contact. The contacts are up to 
(R+r) hops away from Q. In this example 
r=R=3. 
 
   The main architecture is shown in Figure 1, 
where the querier node Q chooses three of its 
borders, B1, B2, B3 to which to send a request 
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message. Each of the borders in turn chooses one 
contact at r hops away to which to forward the 
request. C1, C2, and C3 represent the contacts. The 
number of borders (and subsequently contacts) 
chosen, NoC, and the contact distance (r hops) are 
design parameters. If r=R then the contact is a 
border of a border of Q. 

Questions regarding setting the design 
parameters, such as number of contacts (NoC), 
contact distance (r), and proximity radius (R), shall 
be investigated in the evaluation section. First, we 
describe our contact selection scheme. 
 

III.  Contact Selection and Search Policies 

   This section introduces the contact-selection 
protocol and the notion of levels of contacts. Then 
presents various policies by which these levels may 
be traversed during the search, in a single attempt 
or multiple attempts. 

III.A. Contact Selection Protocol 

   The main purpose of a contact node is to act as a 
short cut to increase the view of the network by 
searching for the target in uncovered parts of the 
network. Hence, it is important for a contact to 
have a proximity that does not overlap significantly 
with that of the querier node, Q, or the other 
contacts of Q. This is a distributed algorithm in 
which contacts do not know about each other, and 
do not know their shortest distance to the querier 
(remember that contacts are outside of the querier’s 
proximity). Instead of attempting to find an optimal 
solution, the basic idea of our approach is to 
develop a simple, yet efficient algorithm, that 
attempts to reduce proximity overlaps, thus 
increasing coverage and reducing search overhead. 
The algorithm should incur low communication 
overhead, achieve high success rate and should 
scale to large networks. 

   The first kind of overlap occurs between the 
contact’s proximity and the querier’s proximity. To 
reduce this overlap the request is directed out of the 
querier’s proximity. One simple approach to try to 
achieve this is for the border node to randomly 
choose one of its borders to which to forward the 
request. This, however, often leads to significant 
overlap with the querier’s proximity rendering the 
contact ineffective and the query success rate 
becomes low. Another simple approach is for the 
border node to avoid sending the request through 
the node from which it was received. However, 
wireless networks have a high clustering coefficient 

[1][16] 2 . This means that, on average, there is 
relatively high probability that the neighbors of a 
neighbor of B are also neighbors of B. Therefore, it 
is not sufficient to avoid only the previous hop 
since there may still be a good chance that the 
border may forward the request through nodes that 
belong to Q’s proximity. This is illustrated in 
Figure 2 (a), where the border node B receives the 
request from node L (the previous hop), and 
forwards it to contact C1 through node x. Node x is 
a neighbor of node L and is within Q’s proximity, 
and hence would lead to a contact less than R+r 
hops away. In many cases the contact chosen this 
way may have a proximity heavily overlapping 
with Q’s proximity. 

   The problem in forwarding the request outside of 
Q’s proximity to a useful contact is the loss of 
direction for the forwarded message at the border 
of the proximity (since Q knows only about nodes 
R hops away). Remember that we do not assume or 
rely on knowledge of location information, since 
such information may not be available in some 
scenarios. This renders our scheme applicable to a 
wider class of sensor networks. To achieve a sense 
of direction without location information, we 
introduce a mechanism that uses information about 
the neighbors of B’s previous hop, L, as explained 
next. 

   A querier node, Q, sends a request to NoC of its 
borders. Consider one of those borders, B. Let node 
L be the last hop before B on that path. Note that B 
is R hops away from Q, and L is R-1 hops away 
from Q. All L’s neighbors (including B) are 1 hop 
away from L, and hence are at most R hops away 
from Q. That is, all L’s neighbors are within Q’s 
proximity. As was mentioned before, due to high 
clustering many of L’s neighbors (all of which are 
in Q’s proximity) may also be B’s neighbors. 
Hence, B should attempt to avoid forwarding the 
request through any of L’s neighbors. As illustrated 
in Figure 2 (b), B avoids L’s neighbors (x,y,z) and 
is able to forward the request to a contact, C2, that 
has significantly less proximity overlap with Q than 
C1 does. If B cannot find a contact without passing 
through L’s neighbors, then it randomly chooses a 
contact that does not pass through L. This scheme 
reduces overlaps drastically, as we shall show later 
on in the evaluation section. We call this scheme 
the proximity overlap reduction (POR) scheme. 
Note that for the above examples we have used 
r=R for illustration. In cases where r is not equal to 
                                                      
2The clustering coefficient (cc) measures the probability that 
neighbors of a node are also neighbors of each other. In 
[16][17] it was shown that for wireless networks cc=0.58 (high 
clustering) for settings similar to our study. 
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R, POR is used to select a border for B that 
provides direction for choosing the contact, we call 
this the direction border. If r<R then POR is 
performed by B and then the contact is selected 
between B and its direction border. If r>R then the 
direction border needs to perform POR again to 
find its own direction border, and so on. POR is 
performed without incurring any extra 
communication overhead and in general is 
performed ⎡r/R⎤ times at each chosen border. 
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Figure 2. (a) The border node, B, forwards the 
request towards its border C1 via node x. C1’s 
proximity has significant overlap with Q’s 
proximity. By only using random forwarding or 
avoiding only node L (the previous hop) B can 
easily lose sense of direction and choose a poor 
contact. (b) By using neighbor information of L, 
B avoids forwarding the request to L or any of 
its neighbors (x,y,z), all of which are in Q’s 
proximity. Hence, B is more likely to choose a 
useful contact, C2. The overlap between C2’s 
proximity and Q’s proximity is a lot less than 
overlap between C1’s and Q’s proximities. 

   The second type of overlap occurs between 
proximities of contacts. To reduce this overlap the 
querier node, Q, attempts to select borders to which 
it has disjoint routes. This is done using the 
proximity information (with no extra overhead). If 
NoC borders are chosen by the end of this 
procedure then Q sends the request to the chosen 
borders. Otherwise, borders are chosen with 
minimum route overlap (i.e., with different 2nd hop 
nodes, then 3rd hop nodes, etc.). Otherwise, new 
borders are chosen randomly until NoC borders are 
chosen. This scheme does not guarantee non-
overlap between contacts’ proximities, but 
performs quite efficiently during requests, as we 
shall show. We call this scheme the route overlap 
reduction (ROR) scheme. 

   It is quite conceivable that a power-related metric 
may be integrated into the contact selection 
process. For example, in addition to resource 
information (e.g., sensor type and capability) 
exchange in the proximity, the power and drainage 
levels may also be piggybacked on the proximity-
limited link state algorithm. When selecting 
contacts, those nodes with the highest power metric 
among the nodes that reduce the overlap will be 
chosen. 

III.B. Levels of Contacts – putting the first 
pieces together 

   The above contact selection schemes (POR and 
ROR) provide a mechanism to select NoC contacts 
that have distances up to R+r hops away from Q. 
We call these contacts level-1 contacts. To select 
the level-1 contacts Q performs ROR to reach NoC 
borders, then those borders (and their respective 
direction borders, and so on, ⎡r/R⎤ times) perform 
POR to get the direction for the contacts. 

   To select farther contacts, this process is further 
repeated as needed at the level-1 contacts, level-2 
contacts and so on, up to a number of levels called 
maxDepth, D. We shall study the effect of D in the 
evaluation section. The only difference between Q 
selecting the level-1 contacts, and level-i contacts 
selecting level-i+1 contacts is that level-i contacts 
need to perform POR and ROR. That is, a level-i 
contact, selects borders with disjoint routes from its 
set of borders that do not pass through its previous 
hop (L’s) neighbors.  

III.C.  Search Policies – putting all the pieces 
together 

   Given a request and a number of levels, D, the 
target search process may proceed using different 
policies. We investigate three different policies for 
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target search. The first is called single-shot, in 
which the querier sends out a request, in a single 
attempt, to traverse the contact levels in succession, 
up to D levels. The second policy is called level-by-
level (lbl), in which the request is sent out in 
several attempts. The first attempt is performed 
with level depth of 1. Until and unless the target is 
found, each subsequent attempt, i, is performed 
with level depth di=1+di-1. Attempts continue up to 
di=D.  The third policy is called step search (or 
simply step), and is very similar to lbl except that 
increasing the depth occurs in steps instead of 
increments of 1. For our study we choose an 
exponential step increase; i.e., di=2di-1. 

Single-shot Policy 

   In this policy the request is sent out from the 
querier node once, in a single attempt. The request 
is forwarded directly from level-1 contacts to level-
2 contacts, up to level-D contacts. In a sense, this 
policy is analogous to flooding between contacts. 
An example of single-shot with D=2, R=r=3, and 
NoC=3 is given in Figure 3 (a). To further clarify 
this policy we give a simple, first order, theoretical 
estimate of its overhead. These estimates are given 
only for illustration purposes. At each level-i, the 
theoretical number of contacts visited is (NoC)i, 
and the theoretical number of hops traversed is 
(R+r).(NoC)i. Hence, the number of transmissions 
is given by ∑

=

+
D

i

iNoCrR
1

])().[( . We note that this is 

only a theoretical upper bound. The search employs 
loop and re-visit prevention mechanisms, the effect 
of which are not considered in this simple 
theoretical analysis. After considering these 
mechanisms via detailed simulations, the overhead 
is reduced drastically, as will be shown Section 5. 

Level-by-level (lbl) Policy 

   In lbl the querier node, Q, may need to send the 
request several times, in multiple attempts, until the 
target is reached or D is reached. Starting with 1 
level, the number of levels visited in each attempt d 
is incremented by 1. If the querier does not get a 
positive response, it initiates another attempt3 after 
increasing d. Hence, the number of contacts visited 
in each attempt is given by∑

=

d

i

iNoC
1

)( , and the upper 

limit on number of transmissions is 

])().[(
1 1

∑∑
= =

+
D

d

d

i

iNoCrR . Again, these are only 

                                                      
3  For lbl and step, the querier waits for time t between 
attempts; t α d.(R+r). Single-shot does not use t, since it uses a 
single-attempt per request. 

illustrative theoretical estimates. Detailed 
simulation results are given in the evaluation 
section.  
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(b) 
Figure 3. Examples of search policies with D=2, 
R=r=NoC=3: (a) The single-shot policy forwards 
the request in one attempt reaching level-1 and 
level-2 contacts (called contact-1 and contact-2), 
(b) The level-by-level lbl policy forwards the 
request in multiple attempts with increasing the 
visited levels. In the first attempt only ‘3’ level-1 
contacts are visited. In the second attempt 3 
different level-1 contacts are visited and the 
request is forwarded to ‘9’ level-2 contacts. It is 
clear that different policies reach different parts 
of the network. Single-shot may not be able to 
achieve good coverage near Q with low NoC. 
 



Mobile Computing and Communications Review, Volume 8, Number 1                  33 

attempt 1

attempt 1

attempt 1

attempt 2

attempt 2

attempt 2

attempt 3

attempt 3

attempt 3

Q

Figure 3(c). The rotation-like effect between 
attempts in step and lbl increases network 
coverage. In lbl, attempti reaches the leveli 
contacts. 

 

Exponential Step Search Policy 

   Step search is similar to lbl, except that the 
number of levels visited in attempt i, di, is 
incremented exponentially; i.e., di=2di-1 (e.g., 
1,2,4,8..) until the target is found or dmax is reached, 
where dmax is the first di that satisfies the inequality 
2dmax>D for D>2. (For D≤2, dmax=D). For example, 
if D=20 then dmax=16. For the step policy the upper 
limit on number of transmissions is given by 

])().[(
max

...8,4,2,1 1
∑ ∑

= =

+
d

d

d

i

iNoCrR . 

   An example of lbl (or step) with D=2, R=r=3, 
and NoC=3 is given in Figure 3 (b). Schemes lbl 
and step are identical for D=2. It is important to 
note that level-1 contacts visited on the first attempt 
are not necessarily the same as level-1 contacts 
visited on the second attempt. This is due to the 
randomization of the first border selection. From 
Figure 3 this effect is clear, and it results in 
different policies reaching different parts of the 
network. It seems, however, that single-shot may 
not reach parts of the network near the querier, but 
those parts are likely to be reached by lbl and step 
due to the randomization (rotation-like) effect, as 
illustrated in Figure 3 (c). We shall investigate this 
effect further in the evaluation section. Another 
performance implication due to the different 
policies is in the request latency. Intuitively, single-
shot incurs less delivery time than the other policies 
because it completes its search in a single attempt. 
Step search is expected to complete its search in 
less number of attempts than lbl. We shall 
investigate this further in the evaluation section. 

IV.  Request Forwarding and Processing 

   The rules for processing the requests are the same 
for all of the above policies. This section presents 
details of request processing, forwarding, and loop 
prevention. 

IV.A. The Request Message 

   The request message contains the target ID, 
which could be the node ID or the resource key. 
The destination-ID in the request message contains 
the ID of the border node (or the direction border). 
The request message also contains the maximum 
number of levels to visit (d) for that attempt, the 
querier ID (Q) and a sequence number (SN). For 
every new attempt the querier issues a new SN.  

IV.A.1. Loop Prevention and Re-visit Avoidance 

   As the message is forwarded, each node traversed 
records the SN, Q and P, where P is the previous 
hop node, from which the request was received. P 
may be used later to send a response to the querier, 
Q, through the reverse path. If a node receives a 
request with the same (SN,Q), it drops the request. 
This provides for loop prevention and avoidance of 
re-visits to the covered parts of the network. This 
mechanism is important to keep the overhead from 
exponentially growing at each level. The recorded 
(SN,Q,P) is kept as soft state, associated with a 
short timer, adding robustness against querier 
failure and SN wrap around. Also, if a contact 
reached at any level finds the querier in its own 
proximity, indicating a loop, then the contact drops 
the request. 

IV.A.2. Search, Processing and Forwarding 

   A contact (or border) receiving the request, first 
performs a target search in its local proximity 
information. If the target is found, the request is 
delivered and a response is forwarded on the 
reverse path (if needed), with each node forwarding 
the response to its recorded previous hop, P. 
Otherwise, further processing is performed as 
follows. 

   In order for a recipient of a request message to 
determine which functions to perform, and whether 
it is a contact, two fields are included in the request 
message; level-count and the hop-count. Initially, 
the level-count is set to d and the hop-count set to 
(R+r). The hop-count is decremented with every 
hop and is checked: 

• If hop-count reaches ‘0’, then the receiving node 
acts as a contact. A contact decrements the level-
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count and resets the hop-count field to (R+r). If 
level-count reaches ‘0’ the contact drops the 
request. If level-count is not ‘0’, the contact 
selects NoC borders (using POR and ROR as in 
section 3), and sends the request to those borders. 

• If the hop-count is not ‘0’, and the current node 
ID is same as the destination ID of the request 
message, the receiving node acts as a border 
node. It selects a direction border (using POR as 
in section 3), and sends the request towards it. 

• Otherwise, the request is simply forwarded to the 
next hop to the destination. 

   Note that only nodes along the forwarding path 
need to process the request. No processing is 
necessary by the neighbors of those nodes. This is 
an important feature that allows nodes in the sensor 
network to sleep and wake-up to save energy 
without affecting the behavior of the protocol. This 
feature, along with on-the-fly contact selection, 
distinguish this work from other related work that 
does not consider sensor nodes sleep/wake-up 
cycles (e.g., in ZRP the query is broadcast and is 
processed by nodes neighboring those forwarding 
the message, and in dominating set or backbone 
based approaches, sleep/wake-up cycles trigger 
major re-configuration of the network). 

Evaluation and Comparison 

   In this section we study the various design 
parameters of CAPTURE. In addition, we compare 
CAPTURE to other related approaches including 
flooding, expanding ring search 4  and ZRP 
([11][12]).  

   Particularly, for CAPTURE, we attempt to 
systematically answer the following questions: (1) 
How many contacts (NoC) to choose? (2) What is 
the best contact distance (r)? (3) What should be 
the maximum depth (D) for the search? (4) How 
should we set the proximity radius (R)? (5) What is 
the best search policy, single-shot, lbl or step? (6) 
How does replication affect the protocol 
performance? and (7) Is there a specific 
combination of settings that performs well for a 
wide variety of networks? 

   The main performance metrics include 
communication overhead and the request success 
rate. Overhead is measured in number of 
transmitted and forwarded messages during query 
                                                      
4 We investigated several variants of expanding ring search 
with various constant and exponential TTL increments. All 
these variants were found to perform worse than flooding due 
to the large network diameter. For brevity we omit results for 
the expanding ring search. 

resolution and proximity maintenance. Note the 
trade-off between success rate and overhead; the 
more the success rate the more the overhead and 
vice versa. In order to balance these conflicting 
goals we introduce a penalty for request failures. 
Any request failure for the contact-query 
mechanism will be recovered using flooding. 
Hence, one scheme used in our simulations is 
contact-based search, if failed then fallback to 
flooding. Since the penalty of flooding is quite 
expensive it will be natural for our best performing 
parameters to avoid resorting to flooding by 
achieving a very high request success rate. We 
define the term ‘contact search’ to refer to only that 
part of the protocol that uses contact-based search 
without fallback to flooding. For clarity we present 
results for the contact search only – in average 
number of transmitted messages per query, and 
success rate (or packet delivery ratio) – and present 
results for contact search with fallback to flooding. 

IV.A.3. Simulation setup 

   We use extensive simulations to investigate the 
design space parameters and evaluate the 
performance of our proposed protocols under 
various settings of r, NoC, D and replication. We 
also evaluate the overall communication overhead 
for our architecture. This overhead consists of two 
components: (a) proximity establishment and 
maintenance, and (b) request (or query) overhead.  

In our architecture, each node keeps track of 
other nodes in its proximity. To keep storage 
requirements and proximity overhead at a 
reasonable limit, we limit the number of nodes per 
proximity to 100 nodes. This limit is achieved for 
all simulated networks by setting R=3. 

 

   
Nodes 

Area (mxm) Node 
Degree 

Border 
Nodes 

Proximity 
Nodes 

200 1000x1000 7.6 15.1 35 

500 1400x1400 8.9 20.5 44.8 

1000 2000x2000 9.1 21.7 46.8 

2000 2800x2800 9.7 24.7 52.9 

4000 3700x3700 11 30.3 62.2 

8000 4800x4800 13 38.8 77.8 

16000 6500x6500 14.3 44.6 88.2 

32000 9200x9200 14.3 45 88.9 

Table 1. Networks used in the simulation. Nodes 
are initially randomly distributed. Number of 
border and proximity nodes are given for R=3. 
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The transmission range (tr) is set to 110m. We 
study a wide range of networks, as shown in Table 
1. We vary the area of the network to maintain 
network good connectivity, and to keep the 
proximity nodes under 100 (for proximity radius of 
R=3). N nodes are randomly placed in a square of 
‘l m xl m’. 

   We developed a discrete event simulator and 
implemented the protocols under study. The first 
part of the results systematically discusses the 
effect of r, NoC, D, and replication, on the 
performance of the different search policies. For 
this set of simulations we use the 1000 node 
topology in Table 1. Then we present scalability 
analysis for CAPTURE, flooding and ZRP. For this 
set of simulations we use specific parameter 
settings for CAPTURE policies based on the first 
set of simulations and use various topologies. 

   Each data point represents an average of 10 
simulation runs with different random seeds. Low 
variability between runs was observed. Querier-
target pairs were chosen randomly. 1000 such 
queries were performed in each run; i.e., a total of 
10,000 queries (or requests) for each data point. 

IV.B. Overhead per Query 

   The overhead per query is affected by the various 
design parameters. Here we investigate the effect of 
the contact distance (r), the number of contacts 
(NoC), the maximum depth (D), and the degree of 
replication. Our aim is to understand the behavior 
of the different CAPTURE policies with the various 
design parameters, and study trends to aid us in 
identifying desirable parameter settings. For each 
parameter we show the overhead and success rate 
for the contact search only (without fallback to 
flooding), then the overhead for the contact search 
with fallback to flooding. 

IV.B.1. Effect of contact distance (r) 

   We have conducted several experiments with 
various NoC and D. We only show partial results 
that represent the trend, using NoC=3 and D=33 in 
a 1000 node network. Figure 4 shows the effect of 
varying r. Figure 4 (c) indicates favorable settings 
for the different search policies. In general, as r 
grows, the contacts’ location extends farther away 
from the querier’s proximity.  

For single-shot policy, with r≤3 the transmission 
overhead decreases as r increases, then it rises 
noticeably with further increase in r. This is due to 
a sharp drop in the contact-based request success 
rate above r=3. Remember that drop in success rate 

translates into fallback to flooding, which 
consistently produces more transmissions. The drop 
in success rate is due to reduced coverage of areas 
near Q’s proximity or the contacts’ proximities. 
This effect was qualitatively illustrated earlier in 
Figure 3. Hence, higher values of r (r>3) are not 
preferred for single-shot.  
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Figure 4. Effect of Contact Distance (r) 

On the other hand, for lbl and step policies, the 
trend is different. Due to multiple attempts and 
randomization of contact selection between 
attempts, lbl and step can maintain good coverage 
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with increase in r. Hence, high request success rate 
is achieved with less transmissions due to fallback 
to flooding. Further increase in r generally leads to 
more transmissions due to drop in success rate. At 
very low values of r (e.g., r≤2), although lbl and 
step achieve high success rate, they also incur 
added overhead due to proximity overlap between 
Q and level-1 contacts (and in general between 
level-i contacts and level-i+1 contacts). This 
overlap reduces with increase in r, with the best 
values around 3-8 hops (3 being best for single-shot 
and step and 8 being best for lbl).  
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Figure 5. Effect of Number of Contacts (NoC) 

IV.B.2. Effect of Number of Contacts (NoC) 

   To understand the effects of NoC on the different 
policies we evaluate different favorable settings of 
r based on our previous analysis. Results in Figure 
5 are shown for r=3 (for single-shot), r=8 (for lbl) 
and r=3 (for step). For all policies, a very low 
number of contacts (NoC<3) incurs high number of 
transmissions due to fallback to flooding because 
of low success rate. Increasing NoC increases 
success rate until almost all requests succeed then 
we see an increase in overhead due to additional 
(unnecessary) search branches with increase in 
NoC. From Figure 5 (c) we see that for all search 
policies the best setting is at NoC=3. 

IV.B.3. Effect of Maximum Depth (D) 

   Using favorable settings for r and NoC we 
investigate the effect of increasing the maximum 
contact depth, D. Results in Figure 6 show that 
increasing D generally decreases the transmissions 
by increasing the success rate and subsequently 
reducing fallback to flooding. It is not the case that 
increasing D exponentially increases the number of 
contacts visited. Although the number of potential 
contacts grows, loop prevention drastically reduces 
the number of visited contacts. After certain values 
of D (10 for lbl, 13 for single-shot and 33 for step) 
most requests (97.5% or more) become successful 
and overhead almost saturates. Note that D=33 for 
step translates into a maximum of 6 attempts. 
Increase in D does not necessarily translate into 
increase in number of attempts. The average 
number of attempts (for D>10) is 3.1 attempts for 
step, 4.0 for lbl, and of course 1 for single-shot. For 
larger networks we expect this number to rise and 
we suspect that D required for high success rates 
may rise as well. We shall return to this point later 
in this section. 
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(c) Overhead per query for contact search with 
fallback to flooding 

Figure 6. Effect of maximum depth (D) 

IV.C. Effect of replication 

   The degree of replication represents the number 
of copies of a target object within the network 
(degree of 1 means no replication). We present 
simulations to show the effect of replication on the 
protocol performance. We use various replication 
models. The first assumes the replicas are randomly 
distributed across the network, for which we use 
replication degrees from 1 to 10. The second 
replication model assumes replication degree of 10, 
but restricts the maximum distance between a 
replica and the original copy. We do not consider 
the cost of replication. So, for the shown results 
these replications must have been created naturally 
(due to the phenomena monitored or sensed) or 
placed when the network was deployed. We also 
assume a model of anycast in which the source is 
looking for any one of the copies and not some or 
all of them. 

   Figure 7 (a) shows the effect of random 
replication on the different search policies. We see 
significant decrease in overhead in all policies with 
the increase in replication degree. For lbl and step 
this mainly happens due to the decrease in the 
average required number of attempts before success 
(i.e., reaching any replica). This number drops 

drastically from 3.1 (without replication), to 2.4 
(with 1 replica) to 1.1 (with 8 replicas). For single-
shot the drop occurs due to branch termination 
upon success. 

   Figure 7 (b) shows the effect of restricted 
replication for degree of replication of 10, where 
any replica is allowed to exist only at a random 
distance [0,maxDist] from the original copy. We 
investigate various settings of maxDist. From the 
figure, it is clear that the overhead decreases with 
the increase in maxDist, which means wider 
distribution of the replicas. However, the overhead 
reduction saturates at some point reaching that of 
random distribution of replicas around 
maxDist~650m for step and lbl and around ~950m 
for single-shot. 
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(b) Effect of restricted replication 

Figure 7.  Effect of replication 

   Related schemes, e.g., flooding and ZRP, do not 
show as drastic improvement with replication. 
Among related schemes, expanding ring search 
responds best to replication. However, related 
schemes incur overhead significantly higher than 
CAPTURE protocols. For the rest of this paper we 
do not assume replication. 

Note on the effect of traffic patterns 

   Note that the performance of flooding and ZRP is 
not greatly affected by the location of the target 
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(whether near or far from the querier), since there is 
no notion of search termination. By contrast, 
CAPTURE’s step and lbl do terminate the search 
when the target is found and no further attempts 
(with larger search depth) are triggered. Simulation 
results for various traffic patterns are omitted for 
brevity. 

IV.D. Scalability Analysis of Total Overhead 

   In this section we evaluate the scalability of the 
CAPTURE protocols. In particular, we want to 
investigate how the overhead grows with the 
increase in number of nodes in the network. There 
are two main overhead components for CAPTURE: 
(a) query overhead, and  (b) proximity 
maintenance. In the previous section we have 
studied the overhead per query. The overall query 
overhead is a function of the overall number of 
queries, which in turn is a function of the query rate 
(query/sec) per node, the number of nodes, and the 
simulation time. Proximity overhead, on the other 
hand, is a function of the degree of mobility (m/s), 
the number of nodes in a proximity, the number of 
nodes in the network and the simulation duration. 
In order to be able to combine these two overhead 
components in a meaningful way we represent the 
query rate as a function of mobility. We also 
normalize all the measures per node per second per 
m/s of mobility. We use a metric called QMR 
(query-mobility-ratio, q) defined per node as 
query/s/(m/s) or simply query/m. Let us call the 
proximity overhead Z(R), defined in terms of 
packets transmitted and is a function of the 
proximity radius, R. Z(R) has units of 
‘transmissions per sec per node per (m/s)’. Also, let 
us call the transmissiosn per query for single-shot, 
lbl and step are Tsingle, Tlbl and Tstep, respectively. 
The overall query overhead for lbl (for example), 
TQlbl = q.Tlbl. The units of TQlbl are in ‘transmissions 
per sec per node per m/s’, compatible with Z(R). 
The total overhead for lbl (for example) becomes 
TTlbl=Z(R)+TQlbl. 

   Our goal in this section is to obtain trends and 
comparisons of total overhead for CAPTURE 
protocols as well as related schemes, for a wide 
range of query rates and over various networks 
(200 to 32,000 nodes) (See Table 1). 

IV.E. Related schemes 

   We compare our protocols to flooding, ZRP and a 
variant of ZRP that we call ZRP*. Let Tflood be the 
transmissions per query for flooding. In a network 
of N nodes, the request is transmitted by N-1 nodes; 
that is, Tflood≈N-1. In ZRP [11][12] the querier 

sends the request to its zone borders, and the 
borders send it to their borders, so on. Query 
control is used to reduce redundant querying. 
Request messages are broadcast (or multicast) hop 
by hop and nodes along the forwarding path (and 
their neighbors) record the request information. 
Requests that are sent to previously visited borders 
are terminated. For a zone of radius R, each node 
keeps track of nodes up to 2R-1 hops. We modify 
ZRP such that a request from a border node 
suppresses the requests from its neighboring border 
nodes. In our simulations, this reduced ZRP’s 
overhead without decrease in query success rate. 
We call this modified version ZRP*. 

   Next, we analyze scalability of the query 
overhead, then proximity overhead, followed by 
analysis of total overhead. 

IV.F. Scalability of Query Overhead 

   Simulation results are analyzed for the different 
CAPTURE protocols. Parameter setting was based 
on earlier analysis. For single-shot we present 
results for r=3, NoC=3. The maximum depth, D, 
was increased to 65 to achieve better success rate 
for single-shot.  

   For step and lbl we used D=33 and NoC=3. For 
step we used r=3, and for lbl r=8. Results are 
presented in Figure 8. Remember that the scheme 
used in the simulations always achieves (at least) 
97.5% success rate by falling back to flooding if 
the contact-based search fails. For all network sizes 
it is clear that the step policy achieves the best 
performance (with success rate of 97.5% or better 
for all network sizes). lbl achieves similar success 
rate but with more overhead.  

   Single-shot with (NoC=3, r=3) exhibits an 
interesting behavior. For small-medium networks, 
single-shot performs worse than lbl, but for large 
networks (above 4000 nodes) its performance 
approaches that of step and becomes superior to 
that of lbl. The reason for this can be explained by 
examining the query success rate. For sizes below 
4000, lower success rates (82-89%) are reached, 
the success rate increases to (94-97%) for 4000-
8000 nodes. After 8000 nodes this setting achieves 
97.5% and above success rate.  

   More specifically, with the increase in number of 
nodes there are more branches to search, giving 
more chance to cover, at higher contact-levels, 
what was not covered at lower contact-levels (near 
Q), thus increasing the success rate for contact-
based search and decreasing the overall overhead.  
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CAPTURE policies 

IV.F.1. Latency Analysis 

   Figure 9 shows the trend for average number of 
attempts with increase in nodes. The single-shot 
average is always around 1, and the largest increase 
occurs for lbl (reaching 13.7 attempts for 32,000 
nodes). Step scales well, with 5.2 average attempts 
for 32,000 nodes. Based on this analysis, we feel 
that lbl provides no advantage over single-shot or 
step. Step provides the best performance in terms of 
number of transmissions, and possesses desirable 
scaling characteristics in terms of delay. Single-
shot exhibits the best delay among these policies 
and may be set to achieve good performance at 
higher scale. One nice feature of step, however, is 
its persistent good performance over a wide 
spectrum of network sizes, with the setting 
(NoC=3,r=3,D=33 [max attempts=6]). 

 

0

2

4

6

8

10

12

14

200 500 1000 2000 4000 8000 16000 32000

Network size, N (nodes)

A
ve

ra
ge

 n
um

be
r o

f a
tte

m
pt

s

lbl
step
single-shot

Figure 9. Average attempts per query for 
CAPTURE policies 

 

   It is important to note that the purpose here is not 
to decide on a winning policy in all situations. 
Rather, by developing an understanding between 
the different characteristics of the different policies, 
each policy may have an advantage depending on 
the requirement (e.g., for getting consistently the 
lowest energy we may use step, but for getting the 

best response delay we may use single-shot). It is 
conceivable that different policies be used for 
different kinds of requests. This is achieved by 
simply setting the right parameters in the request 
message. For example, to implement single-shot, 
the querier sets the maximum level of contacts to 
visit (d) to the maximum depth (D) and performs a 
single attempt. 

IV.F.2. Comparison with Related Schemes (Query 
Overhead) 

   We compare our CAPTURE protocols to flooding 
and ZRP* for the various networks. In Figure 10 
we show the results for query overhead for step, 
lbl, single-shot, flooding, ZRP and ZRP*. It is quite 
clear that there is a drastic improvement in 
performance using contacts, quantified next. 
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   Figure 11 shows the query overhead ratio for the 
various protocols with respect to flooding, with 
various network sizes. It is clear that step incurs the 
least overhead for all network sizes with per-query 
overhead ratio between 0.21 (for small networks) 
and 0.3 (for large networks). Single-shot performs 
worse than step, but approaches 0.3 for large 
networks. ZRP* has overhead ratio of 0.31 (for 
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small networks) and 0.44 (for larger networks). 

IV.F.3. Proximity Overhead 

   The proximity overhead includes the energy 
consumed by the link state message exchange. 
Alternatively, we can use more efficient proximity 
maintenance protocols (e.g., [15] or other). For link 
state, the proximity exchange is in the form of 
broadcast messages by each node, up to R-1 hops 
away. This exchange increases linearly with 
mobility (with more link changes). So, this 
overhead is normalized with respect to mobility 
using Z(R). The proximity overhead is also a 
function of the number of nodes in the proximity. 
This number is a function of R, and increases with 
the proximity area (i.e., with R2). Figure 12 shows 
Z(R) for CAPTURE and for ZRP. (ZRP uses link 
exchange of 2R-1 to employ efficient early 
termination). 
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IV.F.4. Comparisons of Total Overhead 

   The total overhead is the combined effect of 
proximity maintenance and query overhead. As 
was mentioned, metrics used to measure these two 
components need to be normalized in order to be 

combined in a meaningful way. This normalization 
is per second per node per mobility unit (m/s). The 
equation for total overhead formulated above for 
the step policy is as follows:  

TTstep=Z(R)+TQstep= Z(R)+q.Tstep 

 
   To understand the effect of proximity 
maintenance on the total overhead we plot the ratio 

stepTqRZ
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 against q in Figure 13. We can 

observe that the contribution of the proximity 
maintenance overhead is most significant for low 
values of q and rapidly reduces with increase in q. 

For flooding, no proximity overhead is incurred, so 
TTflood=TQflood= q.Tflood. We evaluate the total 
overhead ratio, OHRflood, of step to the other 
protocols. We get:  
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   Figure 14 shows OHRflood, as function of the 
QMR (query-to-mobility ratio) q (query/m) per 
node. We note that a logarithmic scale was used for 
q to resolve the rapid drop in the total overhead 
ratio. 
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   As shown in the figure, for very low values of 
q=0.001 query/m and small to medium network 
sizes (200-4000 nodes) flooding performs better. 
This is due to the very low number of queries 
triggered as compared to the proximity 
maintenance overhead5. Note that, in general, zone-
                                                      
5 We suspect that a scenario of very low q, indicating relatively 
inactive nodes, is unlikely in large-scale ad hoc networks. A 
more likely scenario is that when the nodes are inactive for 
extended periods of time, they may go to sleep or ‘off’ mode 
and not participate in proximity exchange. Maintaining zone 
information without being active is not desirable. 
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based protocols perform well when the proximity 
overhead is amortized over a reasonable number of 
queries in order to achieve overall gain. Hence, the 
gains of the contact-based approach will appear 
with increase in the query rate, q. Also, note that 
for non-mobile (static) or low mobility sensor 
networks, q will be high.  

   Let the cross-over-point (CoP) be the point after 
which CAPTURE shows benefits over flooding. 
For a small network size (200 nodes) CoP is 
q=0.01query/m. For medium size networks (500-
4000 nodes) CoP is q=0.001-0.006query/m. For 
large networks (8000-32000 nodes) CoP is below 
q=0.001 query/m. For q>0.1the overhead ratio 
ranges between 0.2 and 0.31 for all network sizes. 

V.  Related Works 

   Perhaps the simplest form of resource discovery 
is global flooding. This scheme does not scale well 
as we have shown. Hence, it is our design goal to 
avoid global flooding. Expanding ring search uses 
repeated flooding with incremental TTL. This 
approach and its derivatives also do not scale well 
as we have shown. 

   Related work on smart flooding has been 
proposed in [15][20][21]. These techniques attempt 
to reduce the redundancy inherent in flooding, and 
may be integrated in our work to provide more 
efficient zone establishment instead of regular link 
state protocol. One major difference between smart 
flooding and CAPTURE is that smart flooding 
reduces the redundant messages in querying every 
node in the network, whereas CAPTURE attempts 
to create a small world and only queries a small 
number of nodes (the contacts) on the order of the 
degrees of separation from source to target. In 
relatively sparse networks (some of which we 
include in our study) smart flooding will not be 
very effective since there is no significant 
redundancy in flooding anyway. 

   Approaches in ad hoc networks that address 
scalability employ hierarchical schemes based on 
clusters or landmarks[5][13][14]. Other 
mechanisms use minimum dominating or covering 
sets [23][22]. These architectures, however, require 
complex coordination between nodes, and are 
susceptible to major re-configuration (e.g., 
adoption, re-election schemes) due to mobility or 
failure of the cluster-head or landmark. 
Furthermore, usually the cluster-head becomes a 
bottleneck. More importantly, in sensor networks 
nodes may have a sleep/wake-up schedule to 
conserve energy. This may require significant re-
configuration of the network in case of the above 

tightly coupled hierarchies. We avoid the use of 
complex coordination schemes for hierarchy 
formation, and we avoid using cluster-heads. 

   In GLS [6] an architecture is presented that is 
based on a grid map of the network. Nodes recruit 
location servers to maintain their location. Nodes 
perform location updates and lookups using an ID-
based algorithm. The algorithm proposed in [2] and 
[7] uses global information about node locations to 
establish short cuts or friends, and uses geographic 
routing to reach the destination. These are useful 
architectures when a node knows the network map, 
its location, and the ID of the target node. These 
assumptions may not hold in our case. By contrast, 
in our architecture, a source node may be looking 
for a target resource residing at a node with an ID 
unknown to the source node. Conceptually, 
however, GLS may still be used (after 
modification) to hash any resource name using 
similar algorithm to [6]. In cases where the network 
boundary is not known or dynamically changing 
(due to node mobility or failure), or where there are 
gaps in the grid map, GLS-like approaches will not 
work. 

   Location-based or geographic routing is 
becoming a very attractive alternative when 
location information is available. Geographic 
routing (e.g., GPSR[34]) is stateless and only needs 
local neighbor location information to forward the 
packet towards the destination. An inherent 
assumption in geographic routing, however, is that 
the destination address is known. In the 
applications we target in this study (i.e., resource 
discovery and queries) the destination location is 
not known a priori. Hence, even if location 
information is available (which may not be the case 
for many sensor networks) an efficient resource 
discovery protocol is still needed. CAPTURE may 
be used in conjunction with geographic routing to 
provide efficient location and resource discovery. 
Once the location of the resource/node is known 
geographic routing may be used to deliver the 
packets. 

   In ZRP [8][11][9][9] the concept of hybrid 
routing is used, where link state is used intra-zone 
and on-demand border-casting (flooding between 
borders) is used inter-zone. A good feature in ZRP 
is that a zone is node-specific. Hence, there is no 
complex coordination. We use the concept of zone 
in our architecture. However, we avoid border-
casting by using contacts out-of-zone. The main 
concepts upon which contacts were designed (small 
world graphs and contacts) are fundamentally 
different than ZRP’s bordercasting. We have 
compared the performance of a variant of ZRP and 
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our approach through simulations in Section 5. The 
contact-based approach incurs significantly lower 
overhead. 

   For object tracking, in SCOUT [14] an 
architecture was presented that is based on 
hierarchy formation. Using concepts borrowed 
from landmark hierarchy [11], where wireless 
devices self-configure in a multi-level hierarchy of 
parent nodes and children nodes. Each level is 
associated with a radius to which the device 
advertises itself. To configure the hierarchy 
complex mechanisms for promotion, demotion, and 
adoption are used. These mechanisms are 
susceptible to major re-configurations with 
dynamics. This is stated clearly in the work. The 
root nodes of the hierarchy use global flooding to 
send advertisements. If the root nodes sleep, fail or 
move, new root nodes may be elected, and all 
nodes in the network may need to re-map all 
tracked objects. This does not scale well under 
dynamic conditions. 

   Directed diffusion [24] provides a data 
dissemination paradigm for sensor networks. This 
scheme targets continuous queries in sensor 
networks. Without location information about the 
sensors or the sensed information, directed 
diffusion uses flooding to advertise the interests 
from sinks to sources throughout the network. Data 
delivery occurs over diffusion paths re-inforced by 
the sources. Interests are periodically refreshed by 
the sinks. For continuous queries the cost of 
flooding is amortized over the amount of 
information exchanged over possibly extended 
periods of time. For one-shot queries or with 
mobility, directed diffusion with flooding may 
incur excessive overhead especially in large-scale 
networks. In such situations, our contact-based 
architecture may be integrated with directed 
diffusion to discover resources in a scalable manner 
instead flooding. 

   In [29] a data-centric storage architecture was 
proposed for sensor networks. The architecture 
uses distributed hash tables that map objects into 
locations in the network. The object/data is stored 
in (or retrieved from) the node nearest to that 
location. Gegoraphic routing is used to route the 
data/request to that location. Data is replicated in 
nodes near to that location in case of movement of 
the node nearest to that location. This scheme may 
be well-suited for scenarios in which geographic 
information is available, and in which the network 
boundary is fixed and known a priori such that 
consistent hashing leads to a location within the 
boundaries of the network. This scheme was not 
designed for location-free networks, or when the 

boundaries of the network change with time.  

   In [26][27][28] approaches are proposed that treat 
the sensor network as a database. Concepts of data-
centric and in-network processing are emphasized, 
and query resolution is presented as one of the 
essential mechanisms for sensor networks. The 
CAPTURE architecture presented in this paper fits 
in that model, and provides a very efficient 
alternative for query resolution of one-shot, simple 
queries for potentially replicated data. 

   The ACQUIRE algorithm [33] was proposed for 
complex query resolution in sensor networks, 
where the query message is active, querying up to d 
hops away in each step. This is similar to the zone 
concept used in this paper. The amortization factor, 
c, has some parallels to the query rate, q. The 
ACQUIRE paper presented an analytical 
framework to evaluate query resolution 
mechanisms. We plan to leverage such framework 
to model CAPTURE in future work. 

   We first presented the general idea of contacts at 
a very high level, with no details or evaluation in 
[41]. Our previous work on contact-based 
architectures and contact-selection protocols 
includes CARD [42][43], and MARQ [44]. Both 
CARD and MARQ use a pro-active approach that 
selects and maintains contacts. CARD uses zone-
edge information to select useful contacts, while 
MARQ exploits mobility by choosing contacts 
moving away from the zone. The CAPTURE 
architecture, on the other hand, uses a re-active 
approach, by choosing contacts dynamically, on-
the-fly, when the request is issued. The reactive 
nature of this protocol reduces the maintenance 
overhead and is more resilient to network 
dynamics. 

   Rumor routing is proposed in [32] as an 
alternative to reduce flooding overhead for interests 
in directed diffusion. It was designed for 
continuous (long-term) queries. In [25] diffusion 
mechanisms are presented in which sensors are 
selectively queried for correlated data based on 
gain vs. cost. 

   Other data dissemination protocols for sensor 
networks include SPIN [30], Gossiping, and 
LEACH [31]. These protocols are designed for data 
dissemination (not query resolution for potentially 
replicated data that we address in our scheme). 

VI.  Conclusions and Future Work 

   We have presented a novel architecture for 
resource-discovery and small-transfers in large-
scale sensor networks. For such applications, the 
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overhead incurred for obtaining high quality routes 
is not justified as compared to the transfer of the 
actual data. Hence, the main design goal in such 
target applications is to reduce communication 
overhead and power consumption, rather than route 
optimization. In our architecture each node knows 
information about nodes within its proximity, up to 
R hops away. To service a request, we provide a 
simple, yet very effective, mechanism by which the 
querying node selects a number of contacts outside 
its proximity. These contacts act as short cuts to 
transform the network into a small world and 
reduce the degrees of separation between the 
querying node and the requested target (or 
resource). 

   Our architecture does not use tightly coordinated 
hierarchical schemes. This renders our scheme 
more robust and resilient to mobility. We do not 
assume or rely on availability of geographic 
information. 

The main contributions of this paper include:  
• Introducing the contact-based CAPTURE 

architecture for power-efficient search in large-
scale sensor networks 

• Designing a simple, on-demand, location-free 
contact selection protocol for effective overlap 
reduction 

• Supporting various search policies and 
presenting mechanisms for loop-prevention to 
improve performance 

• Evaluating, in detail, the different dimensions 
of the design space and scalability of our 
protocols 

• Comparing performance of our protocols 
against flooding and ZRP using extensive 
simulations over a wide array of networks and 
request rates 

 
   Our results show that significant savings may be 
achieved using our contact-based techniques. For 
medium to and high request rates, CAPTURE 
incurs overhead as little as 20% of flooding 
overhead and achieves even greater savings over 
variants of expanding ring search. We provide 
different search policies that may be suitable for 
different situations. A search policy may be simply 
chosen by setting different parameters within the 
request message at the time of query. Among the 
policies investigated: step achieves the best energy 
efficiency and responds best to replication, while 
single-shot achieves minimum delay. The study 
also shows reasonable settings of parameters that 
work well for a wide range of network sizes (from 
200-32000 nodes).  

   For future work we plan to investigate the utility 

of our architecture in location-aware networks, 
where CAPTURE can still be used for location 
discovery. Once the target location is known 
geographic routing is used for delivery. 
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Appendix 

A. On-demand Queries with Caching 

   A technique that is most commonly used in ad 
hoc routing is on-demand with caching; e.g., DSR-
like [4] or AODV-like [3]. In this appendix we 
build a caching model for those approaches and 
evaluate its efficacy for large-scale wireless 
networks for small transfers. Note that most (if not 
all) previous studies on on-demand ad hoc routing 
protocols used 40-100 node networks, with long 
lived connections [4] [36] [37] [38] [39] [40]. We 
are not aware of any previous study for cache 
performance with the scale of the network or for 

small transfers. 

   The caching model follows the dynamic source 
routing (DSR) design [4] [36]. A source looking for 
a traget (or a destination) triggers a route request 
(RREQ) on demand. First, the source looks up its 
own local cache for a path to the destination. If 
local cache is not found then the source sends a 
query to its first hop neighbors and they perform 
cache lookup. If a cached path is not found, or if 
the found cache does not result in positive response 
from the target (e.g., due to invalidity of the cache), 
then the source floods the route request throughout 
the network. 

   We make minor adjustments to DSR to make it 
more suitable to small transfers. For example, the 
traget responds only to the first query (as opposed 
to responding to several route requests as in DSR 
for long transfers such that the source gets multiple 
routes). This reduces the reply traffic overhead. 
Also, no intermediate caches are used. That is, 
when a local or neighbor path cache is not found 
for the destination, then the request is flooded and 
is answered by the target. A node more than 1 hop 
from the source does not respond to the source 
(since its cache may be invalid). This reduces the 
number of potential floods to reach the target. 

   The reply (from the target) traverses the reverse 
path to the source, and nodes along the path (and 
their neighbors) cache the path information (i.e., 
aggressive caching). 

   When a cached path is used and is found to be 
invalid or out-of-date, it is attached to the flooded 
route request to invalidate all copies of that path in 
the network. 

   Performance of DSR depends heavily on cache 
performance. We define the following metrics for 
evaluating the cache performance: 

(1) Cache hit ratio (p): is the ratio of route requests 
that are found in the local or neighbor cache. 

(2) Valid cache ratio (q): is the ratio of the cache 
hits that are valid (i.e., not out-of-date). 

(3) Cache efficacy (p.q): is the ratio of route 
requests that are answered correctly from a valid 
cache. 

   Simply put, if we ignore the cost of local and 
neighbor cache lookups and the cost of replies, then 
the overhead of DSR per query is given by:  

TDSR=(1-p.q).Tflood 

where Tflood is the number of transmissions 
triggered by flooding per query, and p, q as stated 
above.  
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   We observe the performance of the cache for 
simulation settings similar to those used above in 
the paper. Each data point represents an average of 
10 simulation runs with different random seeds. 
Querier-target pairs were chosen randomly. 1000 
such queries were performed in each run with 10 
queries per sec; i.e., a total of 10,000 queries (or 
requests) for each data point. Each node moves 
using a “random waypoint” model [39]. The node 
chooses a random destination and moves toward it 
with a constant speed chosen uniformly between 
zero and a maximum speed (Vmax). When the node 
reaches the destination, it chooses a new 
destination and begins moving toward it 
immediately. These simulations do not involve a 
pause time. A cache warm-up period was allowed 
before measurements were taken in each run. 

   The network area and radio range were setup for 
all topologies to have almost a constant average 
node degree (i.e., number of neighbors per node) 
equivalent to 40 nodes with 250m radio range in 
1000mx1000m network area, or 200 nodes with 
110m radio range in 1000mx1000m network area. 
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Figure A.1. The cache efficacy with various 
velocities and various network sizes. The cache 
performance degrades drastically with scale of 
the network and with (even very low) mobility. 
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Figure A.2. Cache hit ratio (p), valid cache ratio 
(q) and cache efficacy (p.q) with the network size 
for 1m/s and 20m/s. 

   The results are given in figures A.1 and A.2. 
Figure A.1 shows the cache efficacy with the max 

velocity (Vmax) for various network sizes. For 
very small scale networks (40-100 nodes) the 
efficacy is relatively high (~50-70%) especially for 
the static or low mobility cases. This result is 
consistent with previous studies on on-demand ad 
hoc routing. As the number of nodes increases, 
however, the cache efficacy drops dramatically, 
even for very low mobility (1m/s), to ~10% for 
1000 nodes and ~5% for 2000 nodes! 

   Figure A.2. gives a closer look at the cache 
metrics. It seems that the cache performance 
depends on mobility, but much more so on network 
size. The cache hit ratio (p) drops from ~73% (for 
40 nodes) to ~30% (for 2000 nodes). The more 
drastic drop occurs in the valid cache ratio (q), 
from ~92% (for 40 nodes) to ~14% (for 2000 
nodes), which brings the overall cache efficacy 
(p.q) down. 

For moderate to large-scale networks (above 
1000 nodes) the performance of on-demand routing 
with caching approaches flooding, where the on-
demand routing protocol resorts to flooding more 
than 90% of the time due to cache miss or invalid 
cache hit. 
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Figure A.3. Per-query overhead of on-demand 
routing and flooding for the same simulation 
setup, with 1m/s mobility. 
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Figure A.4. Ratio of On-demand routing 
overhead to flooding overhead. As the network 
size increases caching performance degrades 
and on-demand routing overhead approaches 
flooding overhead. 
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Figures A.3 and A.4 show the simulation results 
(in terms of number of transmissions per-query) for 
the DSR-like on-demand routing as compared to 
flooding. 

   Based on this analysis we believe that on-demand 
routing with caching approaches are not suitable for 
resource discovery, query resolution, and small 
transfers in large-scale wireless networks. 

 


