
Mobile Computing and Communications Review, Volume 8, Number 1 27

CAPTURE: location-free Contact-Assisted Power-efficienT qUery REsolution
for sensor networks

Ahmed Helmy∗
helmy@usc.edu

Department of Electrical Engineering
University of Southern California

Los Angeles, CA 90089-2562

∗ This work was funded by grants from NSF CAREER Award 0134650, Intel and Pratt&Whitney ICT.

 Queries and small transfers are likely to constitute a significant portion of the flows in
emerging classes of sensor networks. Route discovery for such queries incurs much more
communication overhead than the actual data transfer. Especially for large-scale sensor
networks, it is quite costly to establish shortest path routes for such types of requests.
Flooding-based approaches for routing are designed to search for high quality routes.
Such approaches may be suitable for prolonged transfers, but not for small ones. In this
paper, we present an architecture that is geared towards one-shot frequent queries in
sensor networks. In our approach we aim at reducing the total energy cost query
resolution as opposed to searching for high quality routes.
 Our architecture uses a hybrid approach, where each node collects information about
nodes in its proximity, up to R hops away, using a link state protocol. Beyond the
proximity, we introduce the novel notion of contacts that act as short cuts to reduce the
degrees of separation between the request source and the target. A new efficient, on-
demand, contact selection protocol is integrated into the search process. We do not
assume knowledge of node locations. Several protocols to implement different policies
for the search are introduced. Extensive simulations are used to systematically evaluate
the performance of our protocols. Our results show substantial communication overhead
reduction for our contact-based technique as compared to related schemes. The study
also shows reasonable settings of parameters that work well for a wide range of
networks.

I. Introduction
Motivation: Classes of emerging wireless sensor
networks are expected to have a significant impact
and have the potential for many applications. Such
networks are infrastructure-less, power-constraint,
scalable networks, in which high quality route
discovery and maintenance may be quite costly. In
many applications of sensor networks the network
may be treated as a distributed database that is
queried for information. In future sensor networks,
it is highly likely that queries and small transfers
will constitute a significant portion of the supported
traffic. Examples of small transfers include
resource discovery, monitoring queries, and data
centric storage, among others. For such small
transfers, it is quite inefficient to establish optimal
(shortest path) routes, where the cost of such routes
exceeds (by far) the cost of the actual data transfer.
Hence, it is crucial for the efficiency of sensor

networks to provide routing protocols geared
towards queries and small transfers. In this work,
we propose a novel architecture for small transfers
in sensor networks. We design our protocols to be
self-configuring, power-efficient and scalable.

Background: Sensor networks consist of wireless,
power-constrained devices that may be used to
instrument a physical setting (e.g., habitat
monitoring, object tracking). As such, sensor
networks may be viewed in several classes of
applications as a distributed database. One of the
main functions of such networks is to resolve
queries and carry out transactions and small
transfers. Queries may be classified based on their
semantics into different categories. A query may be
simple (e.g., inquiring about one variable, such as
temperature), or complex (e.g., an expression of
several variables). A query may be one-shot or
persistent; the latter leading to flow of information
for an extended amount of time after the query

28 Mobile Computing and Communications Review, Volume 8, Number 1

transfer. Also, the query may be for unique or
replicated data. In this paper we target simple, one-
shot queries, for potentially replicated data. One
distinguishing characteristic of such queries is that
the communication cost for route discovery (to
resolve the query) may exceed the cost of data
transfer. Since communication is a major consumer
of energy, the cost of route discovery for one-shot
queries and small transfers should be minimized to
conserve energy.

 Routing protocols for wireless networks [4] [3]
[11] [12] have been traditionally designed to
discover and maintain routes of high quality, to
achieve efficient prolonged data transfers over
those routes. This is a suitable approach for long
transfers, where the cost of the initial route
discovery is amortized over the savings during
efficient data transfer. However, in cases of query
resolution and small transfers - those that do not
extend beyond the discovery phase – high-cost-
high-quality routes may not be justified. In our
approach the main design goal is not high quality
routes, but to achieve successful delivery with very
low overhead.

 Flooding is a commonly used technique for
resource discovery. For frequent requests in large-
scale networks, however, flooding may incur
significant communication overhead. Expanding
ring search techniques are also commonly used for
discovery, but are quite inefficient for large-scale
sensor networks, where the network diameter tends
to be quite high (due to clustering of nodes). For
scalability, several hierarchical approaches have
been proposed [18][19]. Many such architectures
are cluster-based, in which nodes elect cluster-
heads (or dominating set) to relay the traffic. A
cluster-head may become a single point of failure
or a point of traffic concentration. The landmark
approach [5][13][14] avoids using the landmarks
for communication, but uses them as directions for
routing. However, the highest level landmark needs
to periodically flood information throughout the
network. One major concern in these hierarchical
approaches is their reliance on complex
coordination mechanisms that are susceptible to
major re-configuration with node failures, node
sleep/wake-up schedules and node mobility.

 On-demand routing approaches in ad hoc
networks (such as DSR[4] and AODV[3]) use
caching schemes to alleviate the cost of flooding.
These schemes can be quite efficient for small
scale, static networks. The efficacy of caching,
however, degrades severely with dynamics of the
network, especially for large-scale networks, where
the cache validity drops significantly.

 Location-based or geographic routing is
becoming a very attractive alternative when
location information is available. Geographic
routing (e.g., GPSR[34]) is stateless and only needs
local neighbor location information to forward the
packet towards the destination. An inherent
assumption in geographic routing, however, is that
the destination address is known. In the
applications we target in this study (i.e., resource
discovery and queries) the destination location is
not known a priori. Hence, even if location
information is available (which may not be the case
for many sensor networks) an efficient resource
discovery protocol is still needed. Some approaches
use consistent distributed hashing for location
discovery or data-centric storage (e.g., GLS[6],
GHT[29], RRs[35]). Those approaches work well
when the network boundary is known, there are no
gaps or unoccupied areas, and a map of the network
is configured into each node. In cases where the
network boundary is not known a priori (e.g., due
to rapid sensor deployment from an aircraft or
vehicle) or is dynamic (due to node mobility), or
when node failure creates gaps, these approaches
may fail. The CAPTURE architecture avoids all
these limitations by virtue of being location-free.

 In this paper we introduce a new architecture for
power-efficient resource discovery and small-
transfers in large-scale sensor networks, called
CAPTURE. Instead of using shortest path or
optimal routes, our design goal is to conserve
network energy, while achieving high request
success ratio. We avoid the use of flooding or
complex coordination mechanisms in our approach.
We design what we call on-demand on-the-fly
loosely coupled hierarchy, in which instances of the
hierarchy are efficiently constructed during the
query process, without having to be maintained or
re-configured. In our architecture, every node
independently collects information from
neighboring nodes up to R hops away. This is
called a node’s proximity. Targets beyond the
proximity of the node are discovered with the aid
of contacts. Use of contacts is key for efficient
discovery in our scheme. The idea behind the
contacts borrows from small worlds [1] [16] [17].
Unlike relational or random graphs, wireless
networks are spatial graphs (in which links are a
function of distance, among other factors) that tend
to be highly clustered, leading to very high path
length. For a node, contacts are a few nodes outside
of the proximity that act as short cuts to transform
the wireless network into a small world and hence
reduce the average degrees of separation between

Mobile Computing and Communications Review, Volume 8, Number 1 29

the querier and the target. When a request1 is made,
the contact-selection protocol is invoked. Contact
selection employs a simple, yet effective,
mechanism to reduce proximity-overlap and to
elect contacts that increase the search coverage.
The search proceeds according to a search policy
until the target is located or the query is resolved.

Salient features of our architecture include its
ability to select useful contacts on-the-fly without
having to maintain contact information a priori.
Also, our protocols exhibit very good performance
over a wide range of networks, without the need for
parameter optimization for each network.
Furthermore, our protocols respond well to
replication with a drastic decrease in query
overhead.

 We use extensive simulations to evaluate the
performance of our protocols in terms of energy
consumption, success rate and latency. We
compare our protocols to flooding, expanding ring
search and ZRP. Our results show significant
savings for our technique. For medium to high
request rates, CAPTURE incurs 20-30% of flooding
overhead, and achieves even greater savings for
expanding ring search. Our protocols may be
implemented using simple extensions to zone-
routing protocols.

 The rest of the paper is outlined as follows.
Section II introduces an architectural overview of
CAPTURE. Section III presents the contact-
selection protocol and search policies. Section IV
provides request processing and forwarding rules.
Section V provides evaluation and comparison
results. Section VI discusses related work and
Section VII concludes.

II. CAPTURE Architectural Overview

 In the CAPTURE architecture, each node in the
network keeps track of a number of nodes in its
vicinity within R hops away. This defines the
proximity of a node, where R is called the
proximity children. The lead subset for my
technology. The proximity is maintained using a
proactive localized link state broadcast. Each node
chooses its proximity independently, and hence no
major re-configuration is needed when a node
moves or fails. There is no notion of cluster head,
and no elections that require consensus among
nodes. We assume the existence of a neighbor
discovery protocol by which each node identifies
nodes 1 hop away (through periodic beacons). The

1 We use the terms request and query inter-changeably.

link state protocol provides neighbor information to
other nodes in the proximity. Typically the number
of nodes in the proximity is small (in our study we
limit the number of proximity nodes to 100, by
limiting R). As part of the proximity information
each node keeps routes to nodes and pointers to
resources in its proximity. Nodes R hops away are
called borders. Overhead and dynamics of the link
state protocol are evaluated in Section 5.3.3.

 When a querier node Q (potentially any node in
the network) issues a query or request, it first
checks to see if the resource (or destination) is in its
proximity. If not, then it seeks the assistance of a
number of contacts (NoC) outside the proximity, as
follows. First, a request is issued to NoC (say 3) of
Q’s borders (R hops away). Each border, B,
receiving the request would in turn select another
node, C, at r hops away to which to forward the
request. We call C a contact node and r the contact
distance. To increase search efficiency, C should
have low proximity overlap with Q. Proper setting
of the parameter r helps to reduce such overlap.
Contact nodes act as short cuts that bridge between
disjoint proximities. This helps to reduce the
degrees of separation between Q and the target
nodes. Degrees of separation in this context refer to
the number of intermediate nodes to get from the
querier node to the target.

R

R

R

R

Q

contact

contact

contact

 Q: Querier Node
 B: Border Node
 C: Contact Node
 R: Proximity radius
 r: contact distance

r

C2

C1

C3

B1

B2

B3

Figure 1. Each node in the network has a
proximity of radius R hops. A querier node, Q,
sends a request through a number of its borders
equal to the number of contacts (NoC), in this
case NoC=3. Each border node, Bi, chooses one
of its borders, Ci, to be the direction for
forwarding the request r hops further until it
reaches the contact. The contacts are up to
(R+r) hops away from Q. In this example
r=R=3.

 The main architecture is shown in Figure 1,
where the querier node Q chooses three of its
borders, B1, B2, B3 to which to send a request

30 Mobile Computing and Communications Review, Volume 8, Number 1

message. Each of the borders in turn chooses one
contact at r hops away to which to forward the
request. C1, C2, and C3 represent the contacts. The
number of borders (and subsequently contacts)
chosen, NoC, and the contact distance (r hops) are
design parameters. If r=R then the contact is a
border of a border of Q.

Questions regarding setting the design
parameters, such as number of contacts (NoC),
contact distance (r), and proximity radius (R), shall
be investigated in the evaluation section. First, we
describe our contact selection scheme.

III. Contact Selection and Search Policies

 This section introduces the contact-selection
protocol and the notion of levels of contacts. Then
presents various policies by which these levels may
be traversed during the search, in a single attempt
or multiple attempts.

III.A. Contact Selection Protocol

 The main purpose of a contact node is to act as a
short cut to increase the view of the network by
searching for the target in uncovered parts of the
network. Hence, it is important for a contact to
have a proximity that does not overlap significantly
with that of the querier node, Q, or the other
contacts of Q. This is a distributed algorithm in
which contacts do not know about each other, and
do not know their shortest distance to the querier
(remember that contacts are outside of the querier’s
proximity). Instead of attempting to find an optimal
solution, the basic idea of our approach is to
develop a simple, yet efficient algorithm, that
attempts to reduce proximity overlaps, thus
increasing coverage and reducing search overhead.
The algorithm should incur low communication
overhead, achieve high success rate and should
scale to large networks.

 The first kind of overlap occurs between the
contact’s proximity and the querier’s proximity. To
reduce this overlap the request is directed out of the
querier’s proximity. One simple approach to try to
achieve this is for the border node to randomly
choose one of its borders to which to forward the
request. This, however, often leads to significant
overlap with the querier’s proximity rendering the
contact ineffective and the query success rate
becomes low. Another simple approach is for the
border node to avoid sending the request through
the node from which it was received. However,
wireless networks have a high clustering coefficient

[1][16] 2 . This means that, on average, there is
relatively high probability that the neighbors of a
neighbor of B are also neighbors of B. Therefore, it
is not sufficient to avoid only the previous hop
since there may still be a good chance that the
border may forward the request through nodes that
belong to Q’s proximity. This is illustrated in
Figure 2 (a), where the border node B receives the
request from node L (the previous hop), and
forwards it to contact C1 through node x. Node x is
a neighbor of node L and is within Q’s proximity,
and hence would lead to a contact less than R+r
hops away. In many cases the contact chosen this
way may have a proximity heavily overlapping
with Q’s proximity.

 The problem in forwarding the request outside of
Q’s proximity to a useful contact is the loss of
direction for the forwarded message at the border
of the proximity (since Q knows only about nodes
R hops away). Remember that we do not assume or
rely on knowledge of location information, since
such information may not be available in some
scenarios. This renders our scheme applicable to a
wider class of sensor networks. To achieve a sense
of direction without location information, we
introduce a mechanism that uses information about
the neighbors of B’s previous hop, L, as explained
next.

 A querier node, Q, sends a request to NoC of its
borders. Consider one of those borders, B. Let node
L be the last hop before B on that path. Note that B
is R hops away from Q, and L is R-1 hops away
from Q. All L’s neighbors (including B) are 1 hop
away from L, and hence are at most R hops away
from Q. That is, all L’s neighbors are within Q’s
proximity. As was mentioned before, due to high
clustering many of L’s neighbors (all of which are
in Q’s proximity) may also be B’s neighbors.
Hence, B should attempt to avoid forwarding the
request through any of L’s neighbors. As illustrated
in Figure 2 (b), B avoids L’s neighbors (x,y,z) and
is able to forward the request to a contact, C2, that
has significantly less proximity overlap with Q than
C1 does. If B cannot find a contact without passing
through L’s neighbors, then it randomly chooses a
contact that does not pass through L. This scheme
reduces overlaps drastically, as we shall show later
on in the evaluation section. We call this scheme
the proximity overlap reduction (POR) scheme.
Note that for the above examples we have used
r=R for illustration. In cases where r is not equal to

2The clustering coefficient (cc) measures the probability that
neighbors of a node are also neighbors of each other. In
[16][17] it was shown that for wireless networks cc=0.58 (high
clustering) for settings similar to our study.

Mobile Computing and Communications Review, Volume 8, Number 1 31

R, POR is used to select a border for B that
provides direction for choosing the contact, we call
this the direction border. If r<R then POR is
performed by B and then the contact is selected
between B and its direction border. If r>R then the
direction border needs to perform POR again to
find its own direction border, and so on. POR is
performed without incurring any extra
communication overhead and in general is
performed ⎡r/R⎤ times at each chosen border.

R
R

Q

contact

Q : Querier Node
B : Border Node

C : Contact Node
R : zone radius

B

C1

R

x
L

(a)

R

R

Q

contact

tr: transmission trange

 tr
L

B
C2

R

 x

 y

 z

(b)
Figure 2. (a) The border node, B, forwards the
request towards its border C1 via node x. C1’s
proximity has significant overlap with Q’s
proximity. By only using random forwarding or
avoiding only node L (the previous hop) B can
easily lose sense of direction and choose a poor
contact. (b) By using neighbor information of L,
B avoids forwarding the request to L or any of
its neighbors (x,y,z), all of which are in Q’s
proximity. Hence, B is more likely to choose a
useful contact, C2. The overlap between C2’s
proximity and Q’s proximity is a lot less than
overlap between C1’s and Q’s proximities.

 The second type of overlap occurs between
proximities of contacts. To reduce this overlap the
querier node, Q, attempts to select borders to which
it has disjoint routes. This is done using the
proximity information (with no extra overhead). If
NoC borders are chosen by the end of this
procedure then Q sends the request to the chosen
borders. Otherwise, borders are chosen with
minimum route overlap (i.e., with different 2nd hop
nodes, then 3rd hop nodes, etc.). Otherwise, new
borders are chosen randomly until NoC borders are
chosen. This scheme does not guarantee non-
overlap between contacts’ proximities, but
performs quite efficiently during requests, as we
shall show. We call this scheme the route overlap
reduction (ROR) scheme.

 It is quite conceivable that a power-related metric
may be integrated into the contact selection
process. For example, in addition to resource
information (e.g., sensor type and capability)
exchange in the proximity, the power and drainage
levels may also be piggybacked on the proximity-
limited link state algorithm. When selecting
contacts, those nodes with the highest power metric
among the nodes that reduce the overlap will be
chosen.

III.B. Levels of Contacts – putting the first
pieces together

 The above contact selection schemes (POR and
ROR) provide a mechanism to select NoC contacts
that have distances up to R+r hops away from Q.
We call these contacts level-1 contacts. To select
the level-1 contacts Q performs ROR to reach NoC
borders, then those borders (and their respective
direction borders, and so on, ⎡r/R⎤ times) perform
POR to get the direction for the contacts.

 To select farther contacts, this process is further
repeated as needed at the level-1 contacts, level-2
contacts and so on, up to a number of levels called
maxDepth, D. We shall study the effect of D in the
evaluation section. The only difference between Q
selecting the level-1 contacts, and level-i contacts
selecting level-i+1 contacts is that level-i contacts
need to perform POR and ROR. That is, a level-i
contact, selects borders with disjoint routes from its
set of borders that do not pass through its previous
hop (L’s) neighbors.

III.C. Search Policies – putting all the pieces
together

 Given a request and a number of levels, D, the
target search process may proceed using different
policies. We investigate three different policies for

32 Mobile Computing and Communications Review, Volume 8, Number 1

target search. The first is called single-shot, in
which the querier sends out a request, in a single
attempt, to traverse the contact levels in succession,
up to D levels. The second policy is called level-by-
level (lbl), in which the request is sent out in
several attempts. The first attempt is performed
with level depth of 1. Until and unless the target is
found, each subsequent attempt, i, is performed
with level depth di=1+di-1. Attempts continue up to
di=D. The third policy is called step search (or
simply step), and is very similar to lbl except that
increasing the depth occurs in steps instead of
increments of 1. For our study we choose an
exponential step increase; i.e., di=2di-1.

Single-shot Policy

 In this policy the request is sent out from the
querier node once, in a single attempt. The request
is forwarded directly from level-1 contacts to level-
2 contacts, up to level-D contacts. In a sense, this
policy is analogous to flooding between contacts.
An example of single-shot with D=2, R=r=3, and
NoC=3 is given in Figure 3 (a). To further clarify
this policy we give a simple, first order, theoretical
estimate of its overhead. These estimates are given
only for illustration purposes. At each level-i, the
theoretical number of contacts visited is (NoC)i,
and the theoretical number of hops traversed is
(R+r).(NoC)i. Hence, the number of transmissions
is given by ∑

=

+
D

i

iNoCrR
1

])().[(. We note that this is

only a theoretical upper bound. The search employs
loop and re-visit prevention mechanisms, the effect
of which are not considered in this simple
theoretical analysis. After considering these
mechanisms via detailed simulations, the overhead
is reduced drastically, as will be shown Section 5.

Level-by-level (lbl) Policy

 In lbl the querier node, Q, may need to send the
request several times, in multiple attempts, until the
target is reached or D is reached. Starting with 1
level, the number of levels visited in each attempt d
is incremented by 1. If the querier does not get a
positive response, it initiates another attempt3 after
increasing d. Hence, the number of contacts visited
in each attempt is given by∑

=

d

i

iNoC
1

)(, and the upper

limit on number of transmissions is

])().[(
1 1

∑∑
= =

+
D

d

d

i

iNoCrR . Again, these are only

3 For lbl and step, the querier waits for time t between
attempts; t α d.(R+r). Single-shot does not use t, since it uses a
single-attempt per request.

illustrative theoretical estimates. Detailed
simulation results are given in the evaluation
section.

Q

contact-1

contact-1

contact-1

contact-2contact-2

contact-2

contact-2

contact-2

contact-2

contact-2

contact-2

contact-2

(a)

Q

contact-1

contact-1

contact-1

contact-1

contact-1

contact-1

contact-2

contact-2

contact-2

contact-2

contact-2

contact-2

contact-2
contact-2

contact-2

(b)
Figure 3. Examples of search policies with D=2,
R=r=NoC=3: (a) The single-shot policy forwards
the request in one attempt reaching level-1 and
level-2 contacts (called contact-1 and contact-2),
(b) The level-by-level lbl policy forwards the
request in multiple attempts with increasing the
visited levels. In the first attempt only ‘3’ level-1
contacts are visited. In the second attempt 3
different level-1 contacts are visited and the
request is forwarded to ‘9’ level-2 contacts. It is
clear that different policies reach different parts
of the network. Single-shot may not be able to
achieve good coverage near Q with low NoC.

Mobile Computing and Communications Review, Volume 8, Number 1 33

attempt 1

attempt 1

attempt 1

attempt 2

attempt 2

attempt 2

attempt 3

attempt 3

attempt 3

Q

Figure 3(c). The rotation-like effect between
attempts in step and lbl increases network
coverage. In lbl, attempti reaches the leveli
contacts.

Exponential Step Search Policy

 Step search is similar to lbl, except that the
number of levels visited in attempt i, di, is
incremented exponentially; i.e., di=2di-1 (e.g.,
1,2,4,8..) until the target is found or dmax is reached,
where dmax is the first di that satisfies the inequality
2dmax>D for D>2. (For D≤2, dmax=D). For example,
if D=20 then dmax=16. For the step policy the upper
limit on number of transmissions is given by

])().[(
max

...8,4,2,1 1
∑ ∑

= =

+
d

d

d

i

iNoCrR .

 An example of lbl (or step) with D=2, R=r=3,
and NoC=3 is given in Figure 3 (b). Schemes lbl
and step are identical for D=2. It is important to
note that level-1 contacts visited on the first attempt
are not necessarily the same as level-1 contacts
visited on the second attempt. This is due to the
randomization of the first border selection. From
Figure 3 this effect is clear, and it results in
different policies reaching different parts of the
network. It seems, however, that single-shot may
not reach parts of the network near the querier, but
those parts are likely to be reached by lbl and step
due to the randomization (rotation-like) effect, as
illustrated in Figure 3 (c). We shall investigate this
effect further in the evaluation section. Another
performance implication due to the different
policies is in the request latency. Intuitively, single-
shot incurs less delivery time than the other policies
because it completes its search in a single attempt.
Step search is expected to complete its search in
less number of attempts than lbl. We shall
investigate this further in the evaluation section.

IV. Request Forwarding and Processing

 The rules for processing the requests are the same
for all of the above policies. This section presents
details of request processing, forwarding, and loop
prevention.

IV.A. The Request Message

 The request message contains the target ID,
which could be the node ID or the resource key.
The destination-ID in the request message contains
the ID of the border node (or the direction border).
The request message also contains the maximum
number of levels to visit (d) for that attempt, the
querier ID (Q) and a sequence number (SN). For
every new attempt the querier issues a new SN.

IV.A.1. Loop Prevention and Re-visit Avoidance

 As the message is forwarded, each node traversed
records the SN, Q and P, where P is the previous
hop node, from which the request was received. P
may be used later to send a response to the querier,
Q, through the reverse path. If a node receives a
request with the same (SN,Q), it drops the request.
This provides for loop prevention and avoidance of
re-visits to the covered parts of the network. This
mechanism is important to keep the overhead from
exponentially growing at each level. The recorded
(SN,Q,P) is kept as soft state, associated with a
short timer, adding robustness against querier
failure and SN wrap around. Also, if a contact
reached at any level finds the querier in its own
proximity, indicating a loop, then the contact drops
the request.

IV.A.2. Search, Processing and Forwarding

 A contact (or border) receiving the request, first
performs a target search in its local proximity
information. If the target is found, the request is
delivered and a response is forwarded on the
reverse path (if needed), with each node forwarding
the response to its recorded previous hop, P.
Otherwise, further processing is performed as
follows.

 In order for a recipient of a request message to
determine which functions to perform, and whether
it is a contact, two fields are included in the request
message; level-count and the hop-count. Initially,
the level-count is set to d and the hop-count set to
(R+r). The hop-count is decremented with every
hop and is checked:

• If hop-count reaches ‘0’, then the receiving node
acts as a contact. A contact decrements the level-

34 Mobile Computing and Communications Review, Volume 8, Number 1

count and resets the hop-count field to (R+r). If
level-count reaches ‘0’ the contact drops the
request. If level-count is not ‘0’, the contact
selects NoC borders (using POR and ROR as in
section 3), and sends the request to those borders.

• If the hop-count is not ‘0’, and the current node
ID is same as the destination ID of the request
message, the receiving node acts as a border
node. It selects a direction border (using POR as
in section 3), and sends the request towards it.

• Otherwise, the request is simply forwarded to the
next hop to the destination.

 Note that only nodes along the forwarding path
need to process the request. No processing is
necessary by the neighbors of those nodes. This is
an important feature that allows nodes in the sensor
network to sleep and wake-up to save energy
without affecting the behavior of the protocol. This
feature, along with on-the-fly contact selection,
distinguish this work from other related work that
does not consider sensor nodes sleep/wake-up
cycles (e.g., in ZRP the query is broadcast and is
processed by nodes neighboring those forwarding
the message, and in dominating set or backbone
based approaches, sleep/wake-up cycles trigger
major re-configuration of the network).

Evaluation and Comparison

 In this section we study the various design
parameters of CAPTURE. In addition, we compare
CAPTURE to other related approaches including
flooding, expanding ring search 4 and ZRP
([11][12]).

 Particularly, for CAPTURE, we attempt to
systematically answer the following questions: (1)
How many contacts (NoC) to choose? (2) What is
the best contact distance (r)? (3) What should be
the maximum depth (D) for the search? (4) How
should we set the proximity radius (R)? (5) What is
the best search policy, single-shot, lbl or step? (6)
How does replication affect the protocol
performance? and (7) Is there a specific
combination of settings that performs well for a
wide variety of networks?

 The main performance metrics include
communication overhead and the request success
rate. Overhead is measured in number of
transmitted and forwarded messages during query

4 We investigated several variants of expanding ring search
with various constant and exponential TTL increments. All
these variants were found to perform worse than flooding due
to the large network diameter. For brevity we omit results for
the expanding ring search.

resolution and proximity maintenance. Note the
trade-off between success rate and overhead; the
more the success rate the more the overhead and
vice versa. In order to balance these conflicting
goals we introduce a penalty for request failures.
Any request failure for the contact-query
mechanism will be recovered using flooding.
Hence, one scheme used in our simulations is
contact-based search, if failed then fallback to
flooding. Since the penalty of flooding is quite
expensive it will be natural for our best performing
parameters to avoid resorting to flooding by
achieving a very high request success rate. We
define the term ‘contact search’ to refer to only that
part of the protocol that uses contact-based search
without fallback to flooding. For clarity we present
results for the contact search only – in average
number of transmitted messages per query, and
success rate (or packet delivery ratio) – and present
results for contact search with fallback to flooding.

IV.A.3. Simulation setup

 We use extensive simulations to investigate the
design space parameters and evaluate the
performance of our proposed protocols under
various settings of r, NoC, D and replication. We
also evaluate the overall communication overhead
for our architecture. This overhead consists of two
components: (a) proximity establishment and
maintenance, and (b) request (or query) overhead.

In our architecture, each node keeps track of
other nodes in its proximity. To keep storage
requirements and proximity overhead at a
reasonable limit, we limit the number of nodes per
proximity to 100 nodes. This limit is achieved for
all simulated networks by setting R=3.

Nodes

Area (mxm) Node
Degree

Border
Nodes

Proximity
Nodes

200 1000x1000 7.6 15.1 35

500 1400x1400 8.9 20.5 44.8

1000 2000x2000 9.1 21.7 46.8

2000 2800x2800 9.7 24.7 52.9

4000 3700x3700 11 30.3 62.2

8000 4800x4800 13 38.8 77.8

16000 6500x6500 14.3 44.6 88.2

32000 9200x9200 14.3 45 88.9

Table 1. Networks used in the simulation. Nodes
are initially randomly distributed. Number of
border and proximity nodes are given for R=3.

Mobile Computing and Communications Review, Volume 8, Number 1 35

The transmission range (tr) is set to 110m. We
study a wide range of networks, as shown in Table
1. We vary the area of the network to maintain
network good connectivity, and to keep the
proximity nodes under 100 (for proximity radius of
R=3). N nodes are randomly placed in a square of
‘l m xl m’.

 We developed a discrete event simulator and
implemented the protocols under study. The first
part of the results systematically discusses the
effect of r, NoC, D, and replication, on the
performance of the different search policies. For
this set of simulations we use the 1000 node
topology in Table 1. Then we present scalability
analysis for CAPTURE, flooding and ZRP. For this
set of simulations we use specific parameter
settings for CAPTURE policies based on the first
set of simulations and use various topologies.

 Each data point represents an average of 10
simulation runs with different random seeds. Low
variability between runs was observed. Querier-
target pairs were chosen randomly. 1000 such
queries were performed in each run; i.e., a total of
10,000 queries (or requests) for each data point.

IV.B. Overhead per Query

 The overhead per query is affected by the various
design parameters. Here we investigate the effect of
the contact distance (r), the number of contacts
(NoC), the maximum depth (D), and the degree of
replication. Our aim is to understand the behavior
of the different CAPTURE policies with the various
design parameters, and study trends to aid us in
identifying desirable parameter settings. For each
parameter we show the overhead and success rate
for the contact search only (without fallback to
flooding), then the overhead for the contact search
with fallback to flooding.

IV.B.1. Effect of contact distance (r)

 We have conducted several experiments with
various NoC and D. We only show partial results
that represent the trend, using NoC=3 and D=33 in
a 1000 node network. Figure 4 shows the effect of
varying r. Figure 4 (c) indicates favorable settings
for the different search policies. In general, as r
grows, the contacts’ location extends farther away
from the querier’s proximity.

For single-shot policy, with r≤3 the transmission
overhead decreases as r increases, then it rises
noticeably with further increase in r. This is due to
a sharp drop in the contact-based request success
rate above r=3. Remember that drop in success rate

translates into fallback to flooding, which
consistently produces more transmissions. The drop
in success rate is due to reduced coverage of areas
near Q’s proximity or the contacts’ proximities.
This effect was qualitatively illustrated earlier in
Figure 3. Hence, higher values of r (r>3) are not
preferred for single-shot.

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Contact Distance (r)

C
on

ta
ct

 S
ea

rc
h

Tr
an

sm
is

si
on

s

Step
lbl
Single-shot

(a) Overhead of the contact search per query
(without fallback to flooding)

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Contact Distance (r)

C
on

ta
ct

 S
ea

rc
h

Su
cc

es
s

R
at

e

Step
lbl
Single-shot

(b) Success rate for the contact search (without
fallback to flooding)

250

300

350

400

450

500

550

600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Contact Distance (r)

Tr
an

sm
is

si
on

s
pe

r Q
ue

ry Step
lbl
Single-shot

(c) Overhead per query for contact search with
fallback to flooding

Figure 4. Effect of Contact Distance (r)

On the other hand, for lbl and step policies, the
trend is different. Due to multiple attempts and
randomization of contact selection between
attempts, lbl and step can maintain good coverage

36 Mobile Computing and Communications Review, Volume 8, Number 1

with increase in r. Hence, high request success rate
is achieved with less transmissions due to fallback
to flooding. Further increase in r generally leads to
more transmissions due to drop in success rate. At
very low values of r (e.g., r≤2), although lbl and
step achieve high success rate, they also incur
added overhead due to proximity overlap between
Q and level-1 contacts (and in general between
level-i contacts and level-i+1 contacts). This
overlap reduces with increase in r, with the best
values around 3-8 hops (3 being best for single-shot
and step and 8 being best for lbl).

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

Number of Contacts (NoC)

C
on

ta
ct

 S
ea

rc
h

Tr
an

sm
is

si
on

s

Step
lbl-8
Single-shot

 (a) Overhead of the contact search per query
(without fallback to flooding)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Number of Contacts (NoC)

C
on

ta
ct

 S
ea

rc
h

Su
cc

es
s

R
at

e

Step
lbl-8
single-shot

 (b) Success rate for the contact search (without
fallback to flooding)

200

300

400

500

600

700

1 2 3 4 5 6 7 8

Number of Contacts (NoC)

Tr
an

sm
is

si
on

s
pe

r Q
ue

ry

Step
lbl-8
single-shot

(c) Overhead per query for contact search with
fallback to flooding

Figure 5. Effect of Number of Contacts (NoC)

IV.B.2. Effect of Number of Contacts (NoC)

 To understand the effects of NoC on the different
policies we evaluate different favorable settings of
r based on our previous analysis. Results in Figure
5 are shown for r=3 (for single-shot), r=8 (for lbl)
and r=3 (for step). For all policies, a very low
number of contacts (NoC<3) incurs high number of
transmissions due to fallback to flooding because
of low success rate. Increasing NoC increases
success rate until almost all requests succeed then
we see an increase in overhead due to additional
(unnecessary) search branches with increase in
NoC. From Figure 5 (c) we see that for all search
policies the best setting is at NoC=3.

IV.B.3. Effect of Maximum Depth (D)

 Using favorable settings for r and NoC we
investigate the effect of increasing the maximum
contact depth, D. Results in Figure 6 show that
increasing D generally decreases the transmissions
by increasing the success rate and subsequently
reducing fallback to flooding. It is not the case that
increasing D exponentially increases the number of
contacts visited. Although the number of potential
contacts grows, loop prevention drastically reduces
the number of visited contacts. After certain values
of D (10 for lbl, 13 for single-shot and 33 for step)
most requests (97.5% or more) become successful
and overhead almost saturates. Note that D=33 for
step translates into a maximum of 6 attempts.
Increase in D does not necessarily translate into
increase in number of attempts. The average
number of attempts (for D>10) is 3.1 attempts for
step, 4.0 for lbl, and of course 1 for single-shot. For
larger networks we expect this number to rise and
we suspect that D required for high success rates
may rise as well. We shall return to this point later
in this section.

0

50

100

150

200

250

300

350

400

1 6 11 16 21 26 31

max Depth (D)

C
on

ta
ct

 S
ea

rc
h

Tr
an

sm
is

si
on

s

Step
lbl
Single-shot

(a) Overhead of the contact search per query
(without fallback to flooding)

Mobile Computing and Communications Review, Volume 8, Number 1 37

0

0.2

0.4

0.6

0.8

1

1 6 11 16 21 26 31

maxDepth (D)

C
on

ta
ct

 S
ea

rc
h

Su
cc

es
s

R
at

e

Step
lbl
Single-shot

(b) Success rate for the contact search (without
fallback to flooding)

250

350

450

550

650

750

850

1 6 11 16 21 26 31

maxDepth (D)

Tr
an

sm
is

si
on

s
pe

r Q
ue

ry Step
lbl
Single-shot

(c) Overhead per query for contact search with
fallback to flooding

Figure 6. Effect of maximum depth (D)

IV.C. Effect of replication

 The degree of replication represents the number
of copies of a target object within the network
(degree of 1 means no replication). We present
simulations to show the effect of replication on the
protocol performance. We use various replication
models. The first assumes the replicas are randomly
distributed across the network, for which we use
replication degrees from 1 to 10. The second
replication model assumes replication degree of 10,
but restricts the maximum distance between a
replica and the original copy. We do not consider
the cost of replication. So, for the shown results
these replications must have been created naturally
(due to the phenomena monitored or sensed) or
placed when the network was deployed. We also
assume a model of anycast in which the source is
looking for any one of the copies and not some or
all of them.

 Figure 7 (a) shows the effect of random
replication on the different search policies. We see
significant decrease in overhead in all policies with
the increase in replication degree. For lbl and step
this mainly happens due to the decrease in the
average required number of attempts before success
(i.e., reaching any replica). This number drops

drastically from 3.1 (without replication), to 2.4
(with 1 replica) to 1.1 (with 8 replicas). For single-
shot the drop occurs due to branch termination
upon success.

 Figure 7 (b) shows the effect of restricted
replication for degree of replication of 10, where
any replica is allowed to exist only at a random
distance [0,maxDist] from the original copy. We
investigate various settings of maxDist. From the
figure, it is clear that the overhead decreases with
the increase in maxDist, which means wider
distribution of the replicas. However, the overhead
reduction saturates at some point reaching that of
random distribution of replicas around
maxDist~650m for step and lbl and around ~950m
for single-shot.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10
Degree of Replication

Tr
an

sm
is

si
on

s
pe

r Q
ue

ry

Step
lbl
single-shot

(a) Effect of random replication

0

50

100

150

200

250

300

350

0 250 500 750 1000 1250 1500

maxDist(m), Max distance from original to replicas

Tr
an

sm
is

si
on

s
pe

r q
ue

ry Step
lbl
Single-shot

(b) Effect of restricted replication

Figure 7. Effect of replication

 Related schemes, e.g., flooding and ZRP, do not
show as drastic improvement with replication.
Among related schemes, expanding ring search
responds best to replication. However, related
schemes incur overhead significantly higher than
CAPTURE protocols. For the rest of this paper we
do not assume replication.

Note on the effect of traffic patterns

 Note that the performance of flooding and ZRP is
not greatly affected by the location of the target

38 Mobile Computing and Communications Review, Volume 8, Number 1

(whether near or far from the querier), since there is
no notion of search termination. By contrast,
CAPTURE’s step and lbl do terminate the search
when the target is found and no further attempts
(with larger search depth) are triggered. Simulation
results for various traffic patterns are omitted for
brevity.

IV.D. Scalability Analysis of Total Overhead

 In this section we evaluate the scalability of the
CAPTURE protocols. In particular, we want to
investigate how the overhead grows with the
increase in number of nodes in the network. There
are two main overhead components for CAPTURE:
(a) query overhead, and (b) proximity
maintenance. In the previous section we have
studied the overhead per query. The overall query
overhead is a function of the overall number of
queries, which in turn is a function of the query rate
(query/sec) per node, the number of nodes, and the
simulation time. Proximity overhead, on the other
hand, is a function of the degree of mobility (m/s),
the number of nodes in a proximity, the number of
nodes in the network and the simulation duration.
In order to be able to combine these two overhead
components in a meaningful way we represent the
query rate as a function of mobility. We also
normalize all the measures per node per second per
m/s of mobility. We use a metric called QMR
(query-mobility-ratio, q) defined per node as
query/s/(m/s) or simply query/m. Let us call the
proximity overhead Z(R), defined in terms of
packets transmitted and is a function of the
proximity radius, R. Z(R) has units of
‘transmissions per sec per node per (m/s)’. Also, let
us call the transmissiosn per query for single-shot,
lbl and step are Tsingle, Tlbl and Tstep, respectively.
The overall query overhead for lbl (for example),
TQlbl = q.Tlbl. The units of TQlbl are in ‘transmissions
per sec per node per m/s’, compatible with Z(R).
The total overhead for lbl (for example) becomes
TTlbl=Z(R)+TQlbl.

 Our goal in this section is to obtain trends and
comparisons of total overhead for CAPTURE
protocols as well as related schemes, for a wide
range of query rates and over various networks
(200 to 32,000 nodes) (See Table 1).

IV.E. Related schemes

 We compare our protocols to flooding, ZRP and a
variant of ZRP that we call ZRP*. Let Tflood be the
transmissions per query for flooding. In a network
of N nodes, the request is transmitted by N-1 nodes;
that is, Tflood≈N-1. In ZRP [11][12] the querier

sends the request to its zone borders, and the
borders send it to their borders, so on. Query
control is used to reduce redundant querying.
Request messages are broadcast (or multicast) hop
by hop and nodes along the forwarding path (and
their neighbors) record the request information.
Requests that are sent to previously visited borders
are terminated. For a zone of radius R, each node
keeps track of nodes up to 2R-1 hops. We modify
ZRP such that a request from a border node
suppresses the requests from its neighboring border
nodes. In our simulations, this reduced ZRP’s
overhead without decrease in query success rate.
We call this modified version ZRP*.

 Next, we analyze scalability of the query
overhead, then proximity overhead, followed by
analysis of total overhead.

IV.F. Scalability of Query Overhead

 Simulation results are analyzed for the different
CAPTURE protocols. Parameter setting was based
on earlier analysis. For single-shot we present
results for r=3, NoC=3. The maximum depth, D,
was increased to 65 to achieve better success rate
for single-shot.

 For step and lbl we used D=33 and NoC=3. For
step we used r=3, and for lbl r=8. Results are
presented in Figure 8. Remember that the scheme
used in the simulations always achieves (at least)
97.5% success rate by falling back to flooding if
the contact-based search fails. For all network sizes
it is clear that the step policy achieves the best
performance (with success rate of 97.5% or better
for all network sizes). lbl achieves similar success
rate but with more overhead.

 Single-shot with (NoC=3, r=3) exhibits an
interesting behavior. For small-medium networks,
single-shot performs worse than lbl, but for large
networks (above 4000 nodes) its performance
approaches that of step and becomes superior to
that of lbl. The reason for this can be explained by
examining the query success rate. For sizes below
4000, lower success rates (82-89%) are reached,
the success rate increases to (94-97%) for 4000-
8000 nodes. After 8000 nodes this setting achieves
97.5% and above success rate.

 More specifically, with the increase in number of
nodes there are more branches to search, giving
more chance to cover, at higher contact-levels,
what was not covered at lower contact-levels (near
Q), thus increasing the success rate for contact-
based search and decreasing the overall overhead.

Mobile Computing and Communications Review, Volume 8, Number 1 39

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5000 10000 15000 20000 25000 30000

Network size, N (nodes)

Tr
an

sm
is

si
on

s
pe

r Q
ue

ry

Step
lbl
single-shot

Figure 8. Scalability of query overhead for
CAPTURE policies

IV.F.1. Latency Analysis

 Figure 9 shows the trend for average number of
attempts with increase in nodes. The single-shot
average is always around 1, and the largest increase
occurs for lbl (reaching 13.7 attempts for 32,000
nodes). Step scales well, with 5.2 average attempts
for 32,000 nodes. Based on this analysis, we feel
that lbl provides no advantage over single-shot or
step. Step provides the best performance in terms of
number of transmissions, and possesses desirable
scaling characteristics in terms of delay. Single-
shot exhibits the best delay among these policies
and may be set to achieve good performance at
higher scale. One nice feature of step, however, is
its persistent good performance over a wide
spectrum of network sizes, with the setting
(NoC=3,r=3,D=33 [max attempts=6]).

0

2

4

6

8

10

12

14

200 500 1000 2000 4000 8000 16000 32000

Network size, N (nodes)

A
ve

ra
ge

 n
um

be
r o

f a
tte

m
pt

s

lbl
step
single-shot

Figure 9. Average attempts per query for
CAPTURE policies

 It is important to note that the purpose here is not
to decide on a winning policy in all situations.
Rather, by developing an understanding between
the different characteristics of the different policies,
each policy may have an advantage depending on
the requirement (e.g., for getting consistently the
lowest energy we may use step, but for getting the

best response delay we may use single-shot). It is
conceivable that different policies be used for
different kinds of requests. This is achieved by
simply setting the right parameters in the request
message. For example, to implement single-shot,
the querier sets the maximum level of contacts to
visit (d) to the maximum depth (D) and performs a
single attempt.

IV.F.2. Comparison with Related Schemes (Query
Overhead)

 We compare our CAPTURE protocols to flooding
and ZRP* for the various networks. In Figure 10
we show the results for query overhead for step,
lbl, single-shot, flooding, ZRP and ZRP*. It is quite
clear that there is a drastic improvement in
performance using contacts, quantified next.

0

5000

10000

15000

20000

25000

30000

0 5000 10000 15000 20000 25000 30000

Network size, N (nodes)

Tr
an

sm
is

si
on

s
pe

r Q
ue

ry

Flooding
ZRP
ZRP*
lbl
single-shot
Step

Figure 10. Ratio of step query overhead vs. other
approaches

0

0.1

0.2

0.3

0.4

0.5

200 500 1000 2000 4000 8000 16000 32000
Network size, N (nodes)

O
ve

rh
ea

d
ra

tio
 (v

s.
 F

ld
)

ZRP*/Fld
Step/Fld
lbl/Fld
single-shot/Fld

Figure 11. Query overhead of CAPTURE,
flooding and ZRP

 Figure 11 shows the query overhead ratio for the
various protocols with respect to flooding, with
various network sizes. It is clear that step incurs the
least overhead for all network sizes with per-query
overhead ratio between 0.21 (for small networks)
and 0.3 (for large networks). Single-shot performs
worse than step, but approaches 0.3 for large
networks. ZRP* has overhead ratio of 0.31 (for

40 Mobile Computing and Communications Review, Volume 8, Number 1

small networks) and 0.44 (for larger networks).

IV.F.3. Proximity Overhead

 The proximity overhead includes the energy
consumed by the link state message exchange.
Alternatively, we can use more efficient proximity
maintenance protocols (e.g., [15] or other). For link
state, the proximity exchange is in the form of
broadcast messages by each node, up to R-1 hops
away. This exchange increases linearly with
mobility (with more link changes). So, this
overhead is normalized with respect to mobility
using Z(R). The proximity overhead is also a
function of the number of nodes in the proximity.
This number is a function of R, and increases with
the proximity area (i.e., with R2). Figure 12 shows
Z(R) for CAPTURE and for ZRP. (ZRP uses link
exchange of 2R-1 to employ efficient early
termination).

0

5

10

15

20

25

200 500 1000 2000 4000 8000 16000 32000
Network size, N (nodes)

Tr
an

sm
is

si
on

s
pe

r n
od

e
pe

r s
ec

 p
er

 m
/s CAPTURE

ZRP

Figure 12. Normalized proximity overhead for
the basic proximity R-1=2, and the extended
zone of 2R-1=5 used by ZRP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.001 0.01 0.1 1 10 100 1000

Query-to-Mobility Ratio (QMR), q (query/m)

Pr
ox

im
ity

-to
-T

ot
al

 O
ve

rh
ea

d
R

at
io 200

32000

500
1000

2000
4000

8000

16000

Figure 13. Ratio of proximity maintenance
overhead to the total overhead of CAPTURE

IV.F.4. Comparisons of Total Overhead

 The total overhead is the combined effect of
proximity maintenance and query overhead. As
was mentioned, metrics used to measure these two
components need to be normalized in order to be

combined in a meaningful way. This normalization
is per second per node per mobility unit (m/s). The
equation for total overhead formulated above for
the step policy is as follows:

TTstep=Z(R)+TQstep= Z(R)+q.Tstep

 To understand the effect of proximity
maintenance on the total overhead we plot the ratio

stepTqRZ
RZ

.)(
)(

+
 against q in Figure 13. We can

observe that the contribution of the proximity
maintenance overhead is most significant for low
values of q and rapidly reduces with increase in q.

For flooding, no proximity overhead is incurred, so
TTflood=TQflood= q.Tflood. We evaluate the total
overhead ratio, OHRflood, of step to the other
protocols. We get:

flood

step

Tflood

Tstep
flood Tq

TqRZ
T
T

OHR
.

.)(+
== ,

 Figure 14 shows OHRflood, as function of the
QMR (query-to-mobility ratio) q (query/m) per
node. We note that a logarithmic scale was used for
q to resolve the rapid drop in the total overhead
ratio.

0.1

1

10

0.001 0.01 0.1 1 10 100 1000

Query-to-Mobility Ratio (QMR), q (query/m)

O
ve

rh
ea

d
ra

tio
 (S

te
p/

Fl
d) 200

500

1000
2000
4000
8000
16000
32000

N nodes

Figure 14. Total overhead ratio vs. flood
(OHRflood)

 As shown in the figure, for very low values of
q=0.001 query/m and small to medium network
sizes (200-4000 nodes) flooding performs better.
This is due to the very low number of queries
triggered as compared to the proximity
maintenance overhead5. Note that, in general, zone-

5 We suspect that a scenario of very low q, indicating relatively
inactive nodes, is unlikely in large-scale ad hoc networks. A
more likely scenario is that when the nodes are inactive for
extended periods of time, they may go to sleep or ‘off’ mode
and not participate in proximity exchange. Maintaining zone
information without being active is not desirable.

Mobile Computing and Communications Review, Volume 8, Number 1 41

based protocols perform well when the proximity
overhead is amortized over a reasonable number of
queries in order to achieve overall gain. Hence, the
gains of the contact-based approach will appear
with increase in the query rate, q. Also, note that
for non-mobile (static) or low mobility sensor
networks, q will be high.

 Let the cross-over-point (CoP) be the point after
which CAPTURE shows benefits over flooding.
For a small network size (200 nodes) CoP is
q=0.01query/m. For medium size networks (500-
4000 nodes) CoP is q=0.001-0.006query/m. For
large networks (8000-32000 nodes) CoP is below
q=0.001 query/m. For q>0.1the overhead ratio
ranges between 0.2 and 0.31 for all network sizes.

V. Related Works

 Perhaps the simplest form of resource discovery
is global flooding. This scheme does not scale well
as we have shown. Hence, it is our design goal to
avoid global flooding. Expanding ring search uses
repeated flooding with incremental TTL. This
approach and its derivatives also do not scale well
as we have shown.

 Related work on smart flooding has been
proposed in [15][20][21]. These techniques attempt
to reduce the redundancy inherent in flooding, and
may be integrated in our work to provide more
efficient zone establishment instead of regular link
state protocol. One major difference between smart
flooding and CAPTURE is that smart flooding
reduces the redundant messages in querying every
node in the network, whereas CAPTURE attempts
to create a small world and only queries a small
number of nodes (the contacts) on the order of the
degrees of separation from source to target. In
relatively sparse networks (some of which we
include in our study) smart flooding will not be
very effective since there is no significant
redundancy in flooding anyway.

 Approaches in ad hoc networks that address
scalability employ hierarchical schemes based on
clusters or landmarks[5][13][14]. Other
mechanisms use minimum dominating or covering
sets [23][22]. These architectures, however, require
complex coordination between nodes, and are
susceptible to major re-configuration (e.g.,
adoption, re-election schemes) due to mobility or
failure of the cluster-head or landmark.
Furthermore, usually the cluster-head becomes a
bottleneck. More importantly, in sensor networks
nodes may have a sleep/wake-up schedule to
conserve energy. This may require significant re-
configuration of the network in case of the above

tightly coupled hierarchies. We avoid the use of
complex coordination schemes for hierarchy
formation, and we avoid using cluster-heads.

 In GLS [6] an architecture is presented that is
based on a grid map of the network. Nodes recruit
location servers to maintain their location. Nodes
perform location updates and lookups using an ID-
based algorithm. The algorithm proposed in [2] and
[7] uses global information about node locations to
establish short cuts or friends, and uses geographic
routing to reach the destination. These are useful
architectures when a node knows the network map,
its location, and the ID of the target node. These
assumptions may not hold in our case. By contrast,
in our architecture, a source node may be looking
for a target resource residing at a node with an ID
unknown to the source node. Conceptually,
however, GLS may still be used (after
modification) to hash any resource name using
similar algorithm to [6]. In cases where the network
boundary is not known or dynamically changing
(due to node mobility or failure), or where there are
gaps in the grid map, GLS-like approaches will not
work.

 Location-based or geographic routing is
becoming a very attractive alternative when
location information is available. Geographic
routing (e.g., GPSR[34]) is stateless and only needs
local neighbor location information to forward the
packet towards the destination. An inherent
assumption in geographic routing, however, is that
the destination address is known. In the
applications we target in this study (i.e., resource
discovery and queries) the destination location is
not known a priori. Hence, even if location
information is available (which may not be the case
for many sensor networks) an efficient resource
discovery protocol is still needed. CAPTURE may
be used in conjunction with geographic routing to
provide efficient location and resource discovery.
Once the location of the resource/node is known
geographic routing may be used to deliver the
packets.

 In ZRP [8][11][9][9] the concept of hybrid
routing is used, where link state is used intra-zone
and on-demand border-casting (flooding between
borders) is used inter-zone. A good feature in ZRP
is that a zone is node-specific. Hence, there is no
complex coordination. We use the concept of zone
in our architecture. However, we avoid border-
casting by using contacts out-of-zone. The main
concepts upon which contacts were designed (small
world graphs and contacts) are fundamentally
different than ZRP’s bordercasting. We have
compared the performance of a variant of ZRP and

42 Mobile Computing and Communications Review, Volume 8, Number 1

our approach through simulations in Section 5. The
contact-based approach incurs significantly lower
overhead.

 For object tracking, in SCOUT [14] an
architecture was presented that is based on
hierarchy formation. Using concepts borrowed
from landmark hierarchy [11], where wireless
devices self-configure in a multi-level hierarchy of
parent nodes and children nodes. Each level is
associated with a radius to which the device
advertises itself. To configure the hierarchy
complex mechanisms for promotion, demotion, and
adoption are used. These mechanisms are
susceptible to major re-configurations with
dynamics. This is stated clearly in the work. The
root nodes of the hierarchy use global flooding to
send advertisements. If the root nodes sleep, fail or
move, new root nodes may be elected, and all
nodes in the network may need to re-map all
tracked objects. This does not scale well under
dynamic conditions.

 Directed diffusion [24] provides a data
dissemination paradigm for sensor networks. This
scheme targets continuous queries in sensor
networks. Without location information about the
sensors or the sensed information, directed
diffusion uses flooding to advertise the interests
from sinks to sources throughout the network. Data
delivery occurs over diffusion paths re-inforced by
the sources. Interests are periodically refreshed by
the sinks. For continuous queries the cost of
flooding is amortized over the amount of
information exchanged over possibly extended
periods of time. For one-shot queries or with
mobility, directed diffusion with flooding may
incur excessive overhead especially in large-scale
networks. In such situations, our contact-based
architecture may be integrated with directed
diffusion to discover resources in a scalable manner
instead flooding.

 In [29] a data-centric storage architecture was
proposed for sensor networks. The architecture
uses distributed hash tables that map objects into
locations in the network. The object/data is stored
in (or retrieved from) the node nearest to that
location. Gegoraphic routing is used to route the
data/request to that location. Data is replicated in
nodes near to that location in case of movement of
the node nearest to that location. This scheme may
be well-suited for scenarios in which geographic
information is available, and in which the network
boundary is fixed and known a priori such that
consistent hashing leads to a location within the
boundaries of the network. This scheme was not
designed for location-free networks, or when the

boundaries of the network change with time.

 In [26][27][28] approaches are proposed that treat
the sensor network as a database. Concepts of data-
centric and in-network processing are emphasized,
and query resolution is presented as one of the
essential mechanisms for sensor networks. The
CAPTURE architecture presented in this paper fits
in that model, and provides a very efficient
alternative for query resolution of one-shot, simple
queries for potentially replicated data.

 The ACQUIRE algorithm [33] was proposed for
complex query resolution in sensor networks,
where the query message is active, querying up to d
hops away in each step. This is similar to the zone
concept used in this paper. The amortization factor,
c, has some parallels to the query rate, q. The
ACQUIRE paper presented an analytical
framework to evaluate query resolution
mechanisms. We plan to leverage such framework
to model CAPTURE in future work.

 We first presented the general idea of contacts at
a very high level, with no details or evaluation in
[41]. Our previous work on contact-based
architectures and contact-selection protocols
includes CARD [42][43], and MARQ [44]. Both
CARD and MARQ use a pro-active approach that
selects and maintains contacts. CARD uses zone-
edge information to select useful contacts, while
MARQ exploits mobility by choosing contacts
moving away from the zone. The CAPTURE
architecture, on the other hand, uses a re-active
approach, by choosing contacts dynamically, on-
the-fly, when the request is issued. The reactive
nature of this protocol reduces the maintenance
overhead and is more resilient to network
dynamics.

 Rumor routing is proposed in [32] as an
alternative to reduce flooding overhead for interests
in directed diffusion. It was designed for
continuous (long-term) queries. In [25] diffusion
mechanisms are presented in which sensors are
selectively queried for correlated data based on
gain vs. cost.

 Other data dissemination protocols for sensor
networks include SPIN [30], Gossiping, and
LEACH [31]. These protocols are designed for data
dissemination (not query resolution for potentially
replicated data that we address in our scheme).

VI. Conclusions and Future Work

 We have presented a novel architecture for
resource-discovery and small-transfers in large-
scale sensor networks. For such applications, the

Mobile Computing and Communications Review, Volume 8, Number 1 43

overhead incurred for obtaining high quality routes
is not justified as compared to the transfer of the
actual data. Hence, the main design goal in such
target applications is to reduce communication
overhead and power consumption, rather than route
optimization. In our architecture each node knows
information about nodes within its proximity, up to
R hops away. To service a request, we provide a
simple, yet very effective, mechanism by which the
querying node selects a number of contacts outside
its proximity. These contacts act as short cuts to
transform the network into a small world and
reduce the degrees of separation between the
querying node and the requested target (or
resource).

 Our architecture does not use tightly coordinated
hierarchical schemes. This renders our scheme
more robust and resilient to mobility. We do not
assume or rely on availability of geographic
information.

The main contributions of this paper include:
• Introducing the contact-based CAPTURE

architecture for power-efficient search in large-
scale sensor networks

• Designing a simple, on-demand, location-free
contact selection protocol for effective overlap
reduction

• Supporting various search policies and
presenting mechanisms for loop-prevention to
improve performance

• Evaluating, in detail, the different dimensions
of the design space and scalability of our
protocols

• Comparing performance of our protocols
against flooding and ZRP using extensive
simulations over a wide array of networks and
request rates

 Our results show that significant savings may be
achieved using our contact-based techniques. For
medium to and high request rates, CAPTURE
incurs overhead as little as 20% of flooding
overhead and achieves even greater savings over
variants of expanding ring search. We provide
different search policies that may be suitable for
different situations. A search policy may be simply
chosen by setting different parameters within the
request message at the time of query. Among the
policies investigated: step achieves the best energy
efficiency and responds best to replication, while
single-shot achieves minimum delay. The study
also shows reasonable settings of parameters that
work well for a wide range of network sizes (from
200-32000 nodes).

 For future work we plan to investigate the utility

of our architecture in location-aware networks,
where CAPTURE can still be used for location
discovery. Once the target location is known
geographic routing is used for delivery.

References
[1] D. Watts, S. Strogatz, “Collective dynamics of

‘small-world’ networks”, Nature 393, 440
(1998).

[2] J. Kleinberg, “Navigating in a small world”,
Nature, 406, Aug. 2000.

[3] C. E. Perkins, E. M. Royer, Ad-hoc On-
Demand Distance Vector Routing, IEEE Wksp.
Mobile Comp. Sys. And Apps., Feb. 1999.

[4] D. B. Johnson, D. A. Maltz, Dynamic Source
Routing in Ad-Hoc Wireless Networks, Mobile
Computing, 1996, pp.153-181.

[5] P. Guangyu, M. Gerla, X. Hong, “LANMAR:
landmark routing for large scale wireless ad
hoc networks with group
mobility”,MobiHoc’00

[6] J. Li, J. Jannotti, D. Couto, D. Karger, R.
Morris, "A Scalable Location Service for
Geographic Ad Hoc Routing", ACM Mobicom
2000.

[7] L. Blazevic, S. Giordano, J.-Y. Le Boudec
“Anchored Path Discovery in Terminode
Routing”. Proceedings of the Second IFIP-TC6
Networking Conference (Networking 2002),
Pisa, May 2002.

[8] M. Pearlman, Z. Haas, “Determining the
optimal configuration for the zone routing
protocol”, IEEE JSAC, p. 1395-1414, Aug
1999.

[9] Z. Haas, M. Pearlman, "The Zone Routing
Protocol (ZRP) for Ad Hoc Networks", IETF
Internet draft for the Manet group, June '99.

[10] Z. Haas, M. Pearlman, "The Performance of
Query Control Schemes for the Zone Routing
Protocol", ACM SIGCOMM '98.

[11] Z. Haas, M. Pearlman, “ZRP: A Hybrid
Framework for Routing in Ad Hoc Networks”,
Book Chapter in Ad Hoc Networks, Editor C.
Perkins, Addison Wesley, pp. 221-254, 2001.

[12] Z.J. Haas, M.R. Pearlman, "The Perforamnce
of Query Control Schemes for the Zone
Routing Protocol," ACM/IEEE Transactions on
Networking, vol. 9, no. 4, pp. 427-438, August
2001.

[13] P. F. Tsuchiya, "The Landmark Hierarchy: A

44 Mobile Computing and Communications Review, Volume 8, Number 1

new hierarchy for routing in very large
networks", CCR, Vol. 18, no. 4, pp. 35-42,
Aug. 1988.

[14] S. Kumar, C. Alaettinoglu, D. Estrin,
“SCOUT: Scalable object tracking through
unattended techniques”, IEEE ICNP 2000.

[15] J.J. Aceves, M. Spohn, “Bandwidth-Efficient
Link-State Routing in Wireless Networks”,
Book Chapter in Ad Hoc Networks, Editor C.
Perkins, Addison Wesley, pp. 323-350, 2001.

[16] A. Helmy, "Small Large-Scale Wireless
Networks: Mobility-Assisted Resource
Discovery", LANL Technical Report
cs.NI/0207069, featured in the Technology
Research News (TRN) Journal (trnmag.com),
August 2002.

[17] A. Helmy, “Small Worlds in Wireless
Networks”, IEEE Communications Letters, pp.
490-492, Vol. 7, No. 10, October 2003.

[18] C.-C. Chiang, "Routing in Clustered Multihop,
Mobile Wireless Networks with Fading
Channel", Proc. IEEE SICON'97, Apr.1997.

[19] J. Liu, Q. Zhang, W. Zhu, J. Zhang, B. Li, “A
Novel Framework for QoS-Aware Resource
Discovery in Mobile Ad Hoc Networks”,ICC
’02

[20] T. Clausen, P. Jacquet, A. Laouiti, P.
Muhlethaler, A. Qayyum et L. Viennot,
Optimized Link State Routing Protocol, IEEE
INMIC 2001.

[21] S. Ni, Y. Tseng, Y. Chen and J. Sheu, "The
Broadcast Storm Problem in a Mobile Ad Hoc
Network", ACM Mobicom, ’99.

[22] W. Lou, “A cluster-based backbone
infrastructure for broadcasting
in mobile ad hoc networks”, IEEE/ACM
IPDPS WMAN, April 03.

[23] H. Gupta, S. Das, Q. Gu, “Connected Sensor
Cover: Self-Organization of Sensor Networks
for Efficient Query Execution”, ACM,MobiHoc
03.

[24] C. Intanagonwiwat, R. Govindan and D.
Estrin, “Directed Diffusion: A Scalable and
Robust Communication Paradigm for Sensor
Networks,” ACM MobiCom, August 2000.

[25] M. Chu, H. Haussecker, F. Zhao, “Scalable
information-driven sensor querying and routing
for ad hoc heterogeneous sensor networks.”
Int’l J. High Performance Computing
Applications, 2002.

[26] R. Govindan, J. Hellerstein, W. Hong, S.
Madden, M. Franklin, S. Shenker, The Sensor
Network as a Database, Technical Report 02-
771, Computer Science Department, UCLA,
September 2002.

[27] P. Bonnet, J. E. Gehrke, and P. Seshadri,
“Querying the Physical World, ” IEEE
Personal Communications, Vol. 7, No. October
2000.

[28] P. Bonnet, J. Gehrke, P. Seshadri, “Towards
Sensor Database Systems,” Mobile Data
Management, 2001.

[29] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D.
Estrin, R. Govindan, S. Shenker, “GHT – A
Geo-graphic Hash-Table for Data-Centric
Storage,” First ACM WSNA Workshop, 2002.

[30] W.R. Heinzelman, J. Kulik, and H.
Balakrishnan “Adaptive protocols for
information dissemination in wireless sensor
networks,” ACM MobiCom, pp. 174-185, Aug.
1999.

[31] W.R. Heinzelman, A. Chandrakasan, and H.
Balakrishnan “Energy-efficient communication
protocol for wireless microsensor networks,”
33rd International Conference on System
Sciences (HICSS), 2000.

[32] David Braginsky and Deborah Estrin, “Rumor
Routing Algorithm For Sensor Networks,”
First WSNA Workshop, September 2002.

[33] N. Sadagopan, B. Krishnamachari, A. Helmy,
"The ACQUIRE Mechanism for Efficient
Querying in Sensor Networks", First IEEE ICC
SNPA Workshop May 2003.

[34] B. Karp, H. Tung, “Greedy Perimeter Stateless
Routing for Wireless Networks”, ACM
MobiCom 2000.

[35] K. Seada, A. Helmy, “Rendezvous Regions: A
Scalable Architecture for Service Provisioning
in Large-Scale Mobile Ad Hoc Networks",
ACM SIGCOMM, Refereed poster, 2003.

[36] D. B. Johnson, D. Maltz, J. Broch, “DSR: The
Dynamic Source Routing Protocol for
Multihop Wireless Ad Hoc Networks”, Book
Chapter in Ad Hoc Networks, Editor C.
Perkins, Addison Wesley, pp. 139-172, 2001.

[37] Y. Hu, D. Johnson, “Caching Strategies in On-
Demand routing protocols for Ad Hoc wireless
networks”, ACM MobiCom, 2000.

[38] Yih-Chun Hu and David B. Johnson. Ensuring
Cache Freshness in On-Demand Ad Hoc
Network Routing Protocols. Proc. POMC

Mobile Computing and Communications Review, Volume 8, Number 1 45

Workshop on Principles of Mobile Computing,
pp. 25-30, October 2002.

[39] Josh Broch, David A. Maltz, David B.
Johnson, Yih-Chun Hu, and Jorjeta Jetcheva. A
Performance Comparison of Multi-Hop
Wireless Ad Hoc Network Routing Protocols,
ACM MobiCom, 1998.

[40] David A. Maltz. On-Demand Routing in
Multi-hop Wireless Ad Hoc Networks. Ph.D.
Thesis, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, May 2001.

[41] A. Helmy, “Architectural Framework for
Large-Scale Multicast in Mobile Ad Hoc
Networks”, IEEE International Conference on
Communications (ICC 2002), Vol. 4, pp. 2036-
2042, April 2002.

[42] A. Helmy, S. Garg, P. Pamu, N. Nahata,
"Contact Based Architecture for Resource
Discovery (CARD) in Large Scale MANets",
IEEE/ACM IPDPS Int’l Workshop on Wireless,
Mobile and Ad Hoc Networks (WMAN), pp.
219-227, Apr 2003.

[43] A. Helmy, S. Garg, P. Pamu, N. Nahata,
"CARD: A Contact-based Architecture for
Resource Discovery in Ad Hoc Networks",
ACM Baltzer Mobile Networks and
Applications (MONET) Journal, Kluwer
publications, Special issue on Algorithmic
Solutions for Wireless, Mobile, Ad Hoc and
Sensor Networks. To appear (1st Quarter
2004).

[44] A. Helmy, "Mobility-Assisted Resolution of
Queries in Large-Scale Mobile Sensor
Networks (MARQ)", Computer Networks
Journal - Elsevier Science (Special Issue on
Wireless Sensor Networks), Vol. 43, Issue 4,
pp. 437-458, November 2003.

Appendix

A. On-demand Queries with Caching

 A technique that is most commonly used in ad
hoc routing is on-demand with caching; e.g., DSR-
like [4] or AODV-like [3]. In this appendix we
build a caching model for those approaches and
evaluate its efficacy for large-scale wireless
networks for small transfers. Note that most (if not
all) previous studies on on-demand ad hoc routing
protocols used 40-100 node networks, with long
lived connections [4] [36] [37] [38] [39] [40]. We
are not aware of any previous study for cache
performance with the scale of the network or for

small transfers.

 The caching model follows the dynamic source
routing (DSR) design [4] [36]. A source looking for
a traget (or a destination) triggers a route request
(RREQ) on demand. First, the source looks up its
own local cache for a path to the destination. If
local cache is not found then the source sends a
query to its first hop neighbors and they perform
cache lookup. If a cached path is not found, or if
the found cache does not result in positive response
from the target (e.g., due to invalidity of the cache),
then the source floods the route request throughout
the network.

 We make minor adjustments to DSR to make it
more suitable to small transfers. For example, the
traget responds only to the first query (as opposed
to responding to several route requests as in DSR
for long transfers such that the source gets multiple
routes). This reduces the reply traffic overhead.
Also, no intermediate caches are used. That is,
when a local or neighbor path cache is not found
for the destination, then the request is flooded and
is answered by the target. A node more than 1 hop
from the source does not respond to the source
(since its cache may be invalid). This reduces the
number of potential floods to reach the target.

 The reply (from the target) traverses the reverse
path to the source, and nodes along the path (and
their neighbors) cache the path information (i.e.,
aggressive caching).

 When a cached path is used and is found to be
invalid or out-of-date, it is attached to the flooded
route request to invalidate all copies of that path in
the network.

 Performance of DSR depends heavily on cache
performance. We define the following metrics for
evaluating the cache performance:

(1) Cache hit ratio (p): is the ratio of route requests
that are found in the local or neighbor cache.

(2) Valid cache ratio (q): is the ratio of the cache
hits that are valid (i.e., not out-of-date).

(3) Cache efficacy (p.q): is the ratio of route
requests that are answered correctly from a valid
cache.

 Simply put, if we ignore the cost of local and
neighbor cache lookups and the cost of replies, then
the overhead of DSR per query is given by:

TDSR=(1-p.q).Tflood

where Tflood is the number of transmissions
triggered by flooding per query, and p, q as stated
above.

46 Mobile Computing and Communications Review, Volume 8, Number 1

 We observe the performance of the cache for
simulation settings similar to those used above in
the paper. Each data point represents an average of
10 simulation runs with different random seeds.
Querier-target pairs were chosen randomly. 1000
such queries were performed in each run with 10
queries per sec; i.e., a total of 10,000 queries (or
requests) for each data point. Each node moves
using a “random waypoint” model [39]. The node
chooses a random destination and moves toward it
with a constant speed chosen uniformly between
zero and a maximum speed (Vmax). When the node
reaches the destination, it chooses a new
destination and begins moving toward it
immediately. These simulations do not involve a
pause time. A cache warm-up period was allowed
before measurements were taken in each run.

 The network area and radio range were setup for
all topologies to have almost a constant average
node degree (i.e., number of neighbors per node)
equivalent to 40 nodes with 250m radio range in
1000mx1000m network area, or 200 nodes with
110m radio range in 1000mx1000m network area.

0

10

20

30

40

50

60

70

0 1 5 20 40 60

Vmax (m/s)

C
ac

he
 E

ffi
ca

cy
 (p

.q
)

40 nodes

100 nodes

200 nodes

500 nodes

1000 nodes
2000 nodes

Figure A.1. The cache efficacy with various
velocities and various network sizes. The cache
performance degrades drastically with scale of
the network and with (even very low) mobility.

0
10
20
30
40
50
60
70
80
90

100

0 500 1000 1500 2000

Network size, N (nodes)

Cache Efficacy [20m/s]
Cache Hit Ratio [20m/s]
Cache Efficacy [1m/s]
Cache Hit Ratio [1m/s]
Valid Cache Ratio [1m/s]
Valid Cache Ratio [20m/s]

Figure A.2. Cache hit ratio (p), valid cache ratio
(q) and cache efficacy (p.q) with the network size
for 1m/s and 20m/s.

 The results are given in figures A.1 and A.2.
Figure A.1 shows the cache efficacy with the max

velocity (Vmax) for various network sizes. For
very small scale networks (40-100 nodes) the
efficacy is relatively high (~50-70%) especially for
the static or low mobility cases. This result is
consistent with previous studies on on-demand ad
hoc routing. As the number of nodes increases,
however, the cache efficacy drops dramatically,
even for very low mobility (1m/s), to ~10% for
1000 nodes and ~5% for 2000 nodes!

 Figure A.2. gives a closer look at the cache
metrics. It seems that the cache performance
depends on mobility, but much more so on network
size. The cache hit ratio (p) drops from ~73% (for
40 nodes) to ~30% (for 2000 nodes). The more
drastic drop occurs in the valid cache ratio (q),
from ~92% (for 40 nodes) to ~14% (for 2000
nodes), which brings the overall cache efficacy
(p.q) down.

For moderate to large-scale networks (above
1000 nodes) the performance of on-demand routing
with caching approaches flooding, where the on-
demand routing protocol resorts to flooding more
than 90% of the time due to cache miss or invalid
cache hit.

10

100

1000

10000

40 100 200 500 1000 2000
Network size, N (nodes)

Tr
an

sm
is

si
on

s
Pe

r Q
ue

ry

On-demand with Caching

Flooding

Figure A.3. Per-query overhead of on-demand
routing and flooding for the same simulation
setup, with 1m/s mobility.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

40 100 200 500 1000 2000

Network size, N (nodes)

O
n

de
m

an
d

vs
. F

lo
od

in
g

(o
ve

rh
ea

d
ra

tio
)

Figure A.4. Ratio of On-demand routing
overhead to flooding overhead. As the network
size increases caching performance degrades
and on-demand routing overhead approaches
flooding overhead.

Mobile Computing and Communications Review, Volume 8, Number 1 47

Figures A.3 and A.4 show the simulation results
(in terms of number of transmissions per-query) for
the DSR-like on-demand routing as compared to
flooding.

 Based on this analysis we believe that on-demand
routing with caching approaches are not suitable for
resource discovery, query resolution, and small
transfers in large-scale wireless networks.

