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ABSTRACT
Building’s density, as its number of nodes at a specific period, is a
significant parameter that affects mobile and smart applications per-
formances and evaluations. Consequently, the buildings’ temporal
density predictions and their nodes spatial distribution modeling
have to follow real-world scenarios to provide a realistic evalua-
tion. However, there is lack of real-world building-level density
studies that examine these aspects thoroughly. As a result, this
work is a data-driven study that investigates the temporal density
predictability and spatial density distributions of more than 100 real
buildings with ten different categories, over 150 days across three
semesters. The study covers the buildings nodes’ temporal model-
ing and predictions, and their spatial distributions in the building.
Seasonal predictive models are utilized to predict hour-by-hour
density for a variable length of consequent periods using training
data with different lengths. The models include Seasonal Naive,
Holt-Winters’ seasonal additive,TBATS, and ARIMA-seasonal. The
results show that the Seasonal Naive model is often selected as the
best predictive model when training phase covers a shorter period.
For example, Seasonal Naive predicted with the least error in 73%,
63% and 57% of cases in summer, spring and fall respectively when
using only one week to predict its consecutive five weeks with
mean normalized error ∼25% on average. However, when using five
weeks of data to predict the sixth week, the TBATS model predicted
with the least error in 60%, 54% and 43% of cases in fall, spring
and summer respectively with mean absolute error ∼19% on aver-
age. When investigating the spatial density distributions, power
law, log-logistic and lognormal distributions are usually selected as
the first best-fit distributions for 82%, 65%, 62% of buildings in the
summer, spring and fall respectively.
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1 INTRODUCTION
Several recent mobility models studies have taken a data-driven
approach where real data traces are collected and analyzed us-
ing user-centric or location-centric approach. Most of the studies
were user-centric where they focused on the mobile user historical
individual, pairwise or collective behavioral patterns [16]. Location-
centric approach focuses on the location and model the statistical
characteristics of its users’ visitations regardless of the identity or
mobility histories of their users. It involves studying the location
density distributions or the location pair-wise characteristics such
as the flow of users between locations [8, 15]. Indoor nodes density,
as a location-centric individual pattern, is an important parameter
since it affects many aspects of wireless characteristics such as ca-
pacity and connectivity. Besides, the correlation between encounter
events and density are strongly positive in most buildings [7]. Also,
many indoor operations depend on the population density updated
information, for example, system management of pedestrian flow
inside crowd buildings [15]. Therefore, understanding the different
aspects of indoor density, and reproducing them is requisite for re-
alistic indoor modeling and smart service designing and evaluation.
Some previous models preserve the density distributions, but they
targeted outdoor environment [10, 14], and do not cover the tempo-
ral density modeling and prediction. This paper, however, studies
the spatial distributions of users at the building levels and covers
the temporal density predictions using a data-driven approach. Our
data include more than 99 million mobile records from more than
100 buildings during three different semesters: spring, summer,
and fall. It covers several buildings categories including academic,
museums, libraries, labs, administrations offices, sports facilities,
dining, theaters, housing and health-care facilities. We study hourly
population prediction since it is an important mechanism when
designing future advanced indoor services or evaluating them. For
example, predicting the nodes number in a critical situation such
as emergency evacuation helps to implement the right and efficient
plan. Since the spectrum analysis of time series data shows a day as
the dominant cycle [7], we use several seasonal models to predict
hour by hour density in the buildings. Models include Seasonal
Naive [12], Holt-Winters’ seasonal (additive) [12], TBATS [9], and
ARIMA-seasonal [13]. More than 5 million hour prediction opera-
tions are performed to establish the validity of these models using
training and testing data with different length. Moreover, the paper
investigates the indoor nodes statistical distributions, and reports
the best fit distributions using Kolmogorov-Smirnov statistic (KS-
stat). While the power-law was demonstrated as the best fit for
outdoor density distribution, it is only reported for 29% to 35% of
cases as the first best fit distribution for nodes at the building level.
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Table 1: Wireless Trace Information

Semester From To Records Mac# Aps#
Spring 12-Mar 30-Apr 40,975,015 100,871 1727
Summer 22-Jun 10-Aug 14,106,673 66,839 1938
Fall 6-Sep 25-Oct 43,976,833 103,216 1974

To the best of our knowledge, our investigation of temporal dy-
namic density predictions and spatial distributions at the building
level is the first of its kind in term of data or level of analysis.
Besides, the result of this study is expected to have a beneficial
impact on the future mobility modeling, evaluation, and designing
of IoTapplications including the ones related to crowd management,
tracking, infection tracing or wireless communications.

2 DATA-DRIVEN BUILDING LEVEL DENSITY
ANALYSIS AND MODELING FRAMEWORK

Data Processing  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Buildings'  
Categories 

 
 
 
 
 
 

 
 

Data Filtering 
 
 
 
 
 
 

Academic  Libraries 

Administration

Housing Dining

Health

Museum 

Theater

Sport

Labs

Reduce Ping Pong 
Session Duration 

Phones Vs. Laptop

Density Analysis & Modeling 
Temporal Density

Predictions per Hour 
 
 
 
 
 
 

Seasonal Naive 

Holt Winters' Seasonal 
TBATS 

Spatial Density
 
 

Building Level Nodes' Distributions

Tr
ai

ni
ng

 a
nd

 T
es

tin
g 

D
at

a
W

in
do

w
s

Pr
ed

ic
tio

ns
 A

ss
es

sm
en

t 

ARIMA 

Figure 1: Data Driven Density Analysis Framework

Figure 1 shows the analysis framework where it has two main
parts: data processing and spatiotemporal density analysis. The data
processing involves data filtering and buildings’ categorization. The
analysis part consists of temporal and spatial studies. The temporal
analysis studies hour by hour density modeling and prediction
using variable lengths of training and testing data, while spatial
analysis focuses on the nodes’ distributions in the buildings.

2.1 DataSet
This section describes the wireless data collection, processing, fil-
tering and its buildings’ categorization.

2.1.1 Wireless data. The data are collected from more than 100
buildings on the university campus. The mobile records show when
a user starts and ends an association with an access point. Each
access point is taggedwith the buildings’ code and the room number.
The traces are for 150 days for three semesters: spring, summer and
fall, and includes more than 99 million records. Table 1 provides
more information about the wireless data.

2.1.2 Records Filters. Filters are applied to select phone devices,
reduce ping pong effect and eliminate very short sessions.

Filtering phone devices. The data contain phones and laptops
mobile records. Most of the people always have their smartphone
at their side day and night [1], and they are more likely to use it
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Figure 2: Training and testing data windows when training
period= one week, and testing period = one week

while they are moving than laptops users. As a result, we focus
on the phones’ data and filter out the laptop ones. The device mac
address and its website visitations are used to identify if a device is
a laptop or a phone. Device types classification are explained [6].

Filtering very short session duration. Since the analysis is per-
formed at the building level, mobile traces of people that are passing
outdoor have to be discarded. As a result, records with session du-
ration that are less than θ are filtered out. The study assigns θ to
one second. Increasing θ period may risk deleting indoor records.

Filters to reduce the ping-pong effect. The ping-pong effect occurs
when the wireless users are at the edge of the two access points and
hop between them. The users here do not change their location, but
they are being directed back and forth between the access points.
Then, the users appear to be repeatedly associated with a fixed
number of access points. Due to incomplete information and the
ambiguity of ping-pong interpretation, there is no perfect solution
to this problem [17]. To reduce the ping-pong effect in this study,
we build a filter which discards the records that have association
back and forth between two access points in less than λ. We run the
ping-pong filters and assigns λ =10 seconds. Increasing λ value risks
deleting mobile records that are not results of ping-pong effects.

2.1.3 Assigning Buildings Category. The buildings have been
categorized into academic, administration, labs, dining, housing,
sports facilities, museum, libraries, theaters and auditorium and
health care. Online information such as campus map and building
information [3–5] assisted the categorization process.

2.2 Density Analysis and Modeling
The density analysis investigates the temporal predictions and
nodes density distributions at the building level.

2.2.1 Temporal Density Prediction. This section describes the
training and testing period windows, seasonal prediction models
that are used in this study and the assessment metric.
Prediction testing and training windows: we have investigated the
temporal density of six consecutive weeks of data for each build-
ing in each semester. Since many buildings are not visited on the
weekends, we include the weekday data only from 8: am to 8: pm,
where the majority of the buildings are occupied during this period.
Buildings that are not occupied during this period are filtered out.
Figure 2 shows the windows when we have training data length =
one week, and testing period is one week. All possible combination
of different windows in terms of weeks are investigated.
Prediction models: four seasonal predictive models are used to pre-
dict hour by hour density. The models are Seasonal Naive, Holt-
Winters’ seasonal (additive), TBATS and auto.ARIMA. The following



paragraphs describe them briefly. You can see [12] for more details.
Seasonal Naive: it is the simplest model, where the predicted value
is equal to the last value from the same season.

ŷT+h |T = yT+h−km , (1)

wherem is the seasonal period and k = ⌊ h−1m ⌋ + 1. In this study, a
power spectrum analysis to hour by hour time series of the density
data reveals one day as the dominant cycle [7]. As a result, one day
is considered as a season when running the model.
Holt-Winters Seasonal Model:it consist of the forecast equation and
three smoothing equations: one for the level, one for trend, and
one for the seasonal component, with smoothing parameters α , β∗
and γ . In this study, we used the additive seasonal method since the
seasonal variation is roughly constant. The seasonal component is
expressed in absolute terms in the scale of the observed series, and
in the level equation the series is seasonally adjusted by subtracting
the seasonal component [12].
TBATS Model: it isT rigonometric regressor with Box Cox Transfor-
mations, ARMA errors, T rend and Seasonality. It is used to model
series exhibiting multiple complex seasonalities. It uses a combina-
tion of Fourier terms with an exponential smoothing state space
model and a Box-Cox transformation [9].
ARIMA Model: it stands for Autoregressive Integrated Moving
Average and describes the autocorrelations in data. A seasonal
ARIMA model is formed by including additional seasonal terms in
the ARIMA model and can be written as ARIMA(p,d,q) (P ,D,Q )m ,
wherem= number of periods per season. The uppercase notation
is used for the seasonal parts of the model, and lowercase notation
for the non-seasonal parts of the model. The seasonal part of the
model consists of terms that are very similar to the non-seasonal
components of the model, but they involve backshift of the seasonal
period. For example, d is the order of first differencing, and D is
the order of seasonal differencing. Autoregressive AR (p) implies
current values depend on its p-previous values. Moving average
MA(q) means the current deviation from the mean depends on
q-previous deviations, where q is the order ofMA process. We used
auto. Arima model, which return the best ARIMA model according
to information criterion (AIC ), but it is not necessary to be the best
in term of prediction error. The order of differencing d is based
on the KPSS test, while the order of seasonal differencing is based
on OCSB test [13]. We have used forecast tool provided in [11] for
fitting the models and predicting the desnity.
Prediction Assessments The mean absolute error have been used
widely for prediction assessment.MAE can be computed as:

MAE = T−1
T∑
t=1
|ŷt − yt |, (2)

where yt denote the tth hour density and ŷt denote its prediction
values, where ŷt ≥ 0. However,MAE is scale dependent. Therefore,
it is not a useful metric to compare between different buildings
with different density. To makeMAE scale independent, theMAE
is then divided by the mean density per hour in the testing period,
which it is called the Normalized Mean Absolute Error (NMAE).

2.2.2 The density distributions. The number of users that have
associated with an access point on a day at the building is examined.

Eleven distributions are used to fit the data using the maximum like-
lihood methods. The distributions are Power-law (Pl), Weibull (W),
gamma (G), lognormal (Ln), Pareto(Pr), Normal(N), Exponential
(Ex), Uniform (U), Cauchy (C), Beta (B) and Log-logistic (Ll). The
KS-stat is used to evaluate the fitted distributions. The three best
fit distributions are selected. Also, the percentage of distributions
that have resulted in KS-stat ≤ 0.075 or 0.10 are reported.

3 RESULT AND DISCUSSION
This section discusses the hour-by- hour density predictions for
each semester using different lengths of training and testing data
period. Also, it summarizes the nodes indoor density distributions.

3.1 Temporal Density Predictions
This section discusses the density predictions from several dimen-
sions: The prediction models, the predicted period length (testing
data size), the trainingmodel length. Figure 3 showsNMAE for three
states of different training and testing data length. The semesters
show similar patterns when using the same length of training and
testing data period. Another notable result is a simple predictive
model such as Seasonal Naive provides a consistent result with less
error even when predicting a more extended period such as the
case with 3a. As a result, it could be used to model the temporal
density in many buildings due to its simplicity and accuracy as it
has been shown in this study. More detail about the models that
are predicted with the least error for each training and testing data
length are presented in [7]. The results show that the Seasonal
Naive model is usually selected as the best predictive model when
training the model with a shorter period to predict the following
periods. For example, Seasonal Naive predicted with the least error
in 73%, 63% and 57% of cases in summer, spring and fall respectively
when using only one week to predict its consecutive five weeks
with average NMAE ∼25% on average. Other models are improved
when the training period length is increased. For example, when
using five weeks of training data to predict the sixth week, TBATS
model predicted with the least error in 60%, 54% and 43% of cases in
fall, spring and summer respectively with NMAE ∼19% on average.

3.2 Density Distributions
The Kolmogorov-Smirnov statistic KS-stat is used to evaluate the
fitted distributions. The power law, log-logistic and lognormal dis-
tributions are usually selected as the first best-fit nodes distribu-
tions for 82%, 65%, 62% of buildings in the Summer, Spring and Fall
respectively. Also, Log-normal and power-law are the only two
distributions that are reported with KS_stat ≤ 7.5%. The previous
investigation at the campus level or park level concludes that the
power law distributions are the best fit for the population den-
sity [14]. However, this is not always the case with indoor nodes
distributions. For instance, the power law is only selected as the
first best fit for 29% of the buildings in spring to 35% of buildings
in the summer, other distributions such as log-logistic have been
selected as the best fit distribution for several buildings. Also, the
percentage of buildings that have KS-stat ≤0.10 in their fitted log-
logistic distributions are 53% in the spring, while 29% only are fitted
power-law with KS-stat ≤0.10 as it is shown in table 2. Also, power
law was not reported as one of the three best-fit distributions in
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Figure 3: Normalized MAE of density per hour predictions for each semester with variable length of testing and training data.
S: Seasonal Naive, H: Holt-Winters, T: TBATS, A: ARIMA

Table 2: Modeling empirical density distributions of population density in 23 buildings.W:Weibull, Pl: Power Law, G: Gamma,
Ll: Log Logistic, Pr: Pareto, Ln: Log Normal, N: Normal, B: Beta, E: Exponential

Semester 1st Best Fit 2nd Best Fit 3rd Best Fit ≤7.5%[KS_stat] ≤10% [KS_stat]
Fall Pl[31%], Ll[31%], W[15%] Ln[26%], Ll[21%], Pl[11%] G[26%], W[21%], Ll[16%] Ll[5%] Pl[31%], W[%26], C[%16],

C[10%] W[11%], G[11%], C[11%] Pl[11%], C[11%] Ll[%16], G[11%], Ln[11%]
Summer Pl[35%], Ll[29%], Ln[18%] Ll[24%], C[18%], Pl[18%] W[29%], Ll[29%], G[12%] Ll[18%], Pl[12%] Ll[%41], Pl[29%], Ln[%29],

W[12%] W[12%], G[12%], Ln[12%] Ln[12%], E[12%] Ln[12%] G[%29], W[%24], C[%12]
Spring Pl[29%], Ll[18%], Ln[18%] Ll[41%], G[18%], Ln[18%] Ln[24%], Ll[24%], Pl[24%] Ll[11%] Ll[%53], G[%35], Ln[%35]

G[12%] Pl[12%] W[12%], G[12%] , Pl[29%], W[11%]

some cases such as a Gym building that has 48 Access points and
has been visited by more than 2.6K of users in the summer period,
where log-logistic, log-normal, and gamma are selected as the three
best fit for its indoor nodes distributions on a summer day.

4 CONCLUSION AND FUTUREWORK
Since density, as a location individual pattern, is a very critical
parameter for indoor modeling and smart applications evaluation,
the study investigated the temporal density predictions and nodes’
spatial distributions at the buildings level. We have analyzed a real
trace data at the building level, and we have covered buildings from
various categories. Four seasonal models are fitted and evaluated
with all combination of training and testing data length. This study
is built with the purpose of developing an advanced indoor mobility
model that represents the most important observations, and en-
able accurate simulation of smart indoor services by recreating real
scenarios of population density. The mobility model will combine
the statistical data from real traces with other contextual informa-
tion such as buildings layout, constraints and vertical movement
between floors. Besides, an in-depth investigation that involves
buildings categories and distinguishes their behavioral patterns
are planned to be executed and used for realistic category-based
mobility models generation. The paper findings are beneficial for
a wide range of IoT applications that require information about
density or rely on the crowd. In the future, mobility analysis results
and tools are expected to be published on [2].
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