
0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

ProXray: Protocol Model Learning and Guided
Firmware Analysis

Farhaan Fowze, Dave Tian, Grant Hernandez, Kevin Butler, and Tuba Yavuz

Abstract—The number of Internet of Things (IoT) has reached 7 billion globally in early 2018 and are nearly ubiquitous in daily life.
Knowing whether or not these devices are safe and secure to use is becoming critical. IoT devices usually implement communication
protocols such as USB and Bluetooth within firmware to allow a wide range of functionality. Thus analyzing firmware using domain
knowledge from these protocols is vital to understand device behavior, detect implementation bugs, and identify malicious components.
Unfortunately, due to the complexity of these protocols, there is usually no formal specification available that can help automate the
firmware analysis; as a result significant manual effort is currently required to study these protocols and to reverse engineer the device
firmware. In this paper, we propose a new firmware analysis methodology using symbolic execution called ProXray, which can learn a
protocol model from known firmware, and apply the model to recognize the protocol relevant fields and detect functionality within
unknown firmware automatically. After the training phase, ProXray can fully automate the firmware analysis process while supporting
user’s queries in the form of protocol relevant constraints. We have applied ProXray to the USB and the Bluetooth protocols by learning
protocol constraint models from firmware that implement these protocols. We are then able to map protocol fields and identify USB
functionality automatically within all 6 unknown USB firmware while achieving more than an order of magnitude speedup in reaching
protocol relevant targets in unknown Bluetooth firmware. Our model achieved high coverage of the USB and Bluetooth specifications
for several important protocol fields. ProXray provides a new method to apply domain knowledge to firmware analysis automatically.

Index Terms—Protocol Learning, Model Extraction, Firmware, Symbolic Execution.

F

1 INTRODUCTION AND MOTIVATION

THE number of Internet of Things (IoT) devices has
reached 7 billion globally in early 2018 [1]. These de-

vices have penetrated into almost every aspect of society,
such as medicine and industrial control systems. Due to
their interactions with the physical world, e.g., via sensors
and actuators, and low-cost microcontroller architectures,
IoT devices have a wide attack surface, which can be ex-
ploited to cause significant damage as in the case of the
Mirai botnet [2]. Analyzing the firmware of IoT devices for
safety and security is becoming critical.

IoT devices usually implement communication protocols
such as USB and Bluetooth within firmware to allow a
variety of functionality. Different vendors often have their
own protocol stack implementations based on their interpre-
tation of a protocol specification. Unfortunately, there is usu-
ally no formal specification to check whether the firmware
implements the protocol(s) correctly. Transforming an in-
formal protocol specification into a formal representation is
often infeasible due to the complexity of these protocols. For
instance, the core Bluetooth 5.0 specification [3] has almost
3,000 pages excluding different application protocols (a.k.a.,
profiles).

Protocol related bugs contribute to the IoT’s wide attack
surface. Linux kernel maintains a long list of “unusual” USB
devices called “quirks” [4], which essentially violate some
parts of the USB specification. Over 80 bugs were found
within the Linux USB subsystem as well in the past year [5].
Even worse, attackers can exploit these vulnerabilities to
steal sensitive information or achieve privilege escalation
within target systems. BlueBorne [6] allows attackers to
inject worms into Android devices by exploiting a Bluetooth
protocol stack vulnerability within Android. BleedingBit [7]
enables attackers to break into an enterprise environment

undetected by exploiting a Bluetooth Low Energy (BLE)
vulnerability within TI devices. In the worst case, attackers
can reprogram the firmware to add malicious functionality,
such as BadUSB attacks [8].

Accordingly, existing firmware analysis frameworks ei-
ther ignore the domain knowledge from these protocols,
e.g., treating firmware the same as typical binary executa-
bles [9], [10], [11], [12], or require manual effort to study
these protocols and reverse engineer the firmware [13]. The
complexity of protocol implementations, i.e., complex data-
flow and implicit calls through function pointers, leaves
pure NLP-based approaches and light-weight static analysis
ineffective for reasoning about protocol-relevant behavior.
Dynamic symbolic execution, on the other hand, serves as a
feasible approach to solving this problem due to its precise
memory model.

In this paper, we propose a new firmware analysis method-
ology called ProXray, which utilizes dynamic symbolic ex-
ecution. As illustrated in Figure 1, ProXray can learn a
protocol model from known firmware and apply the model
to recognize the protocol and to identify functionality within
unknown1 firmware automatically.

ProXray has three stages. To learn a protocol model
without a formal specification of the protocol, we use vari-
ous path prioritization heuristics for symbolic execution to
extract protocol field constraints by running some known
firmware implementing the protocol. The protocol model
is essentially the collection of those constraints. Once the
protocol model is available, ProXray can apply the model

1. We use the term unknown firmware to denote firmware that is
known to implement a specific protocol and for which the source code
is not available.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Protocol
Model Extraction

Protocol
Model Guided

Symbolic Exec.
Protocol Field

Discovery
Constraint

Model

Query
Firmware and Field Mapping

Training Set

Query
Result

Unknown Firmware
Field Mapping

100001
1011011
0011101
0101010
1010010

100001
1011011
0011101
0101010
1010010

100001
1011011
0011101
0101010
1010010

100001
1011011
0011101
0101010
1010010

100001
1011011
0011101
0101010
1010010

100001
1011011
0011101
0101010
1010010

Unknown Firmware

100001
1011011
0011101
0101010
1010010

100001
1011011
0011101
0101010
1010010

100001
1011011
0011101
0101010
1010010

Fig. 1: ProXray: Protocol model extraction and its utilization in guided symbolic execution.

to unknown firmware to recognize the protocol usage by
mapping binary execution into protocol field constraints
using symbolic execution. After the firmware is tagged with
protocol fields automatically, ProXray accepts queries in
the form of protocol relevant data constraints, leverages
the protocol model again to accelerate path explorations in
symbolic execution, and generates answers.

The first stage of our approach, in which we extract
protocol constraints from the firmware in the training set,
can be viewed as an instantiation of the generic feature
extraction approach of Eisenbarth et al. [46]. The novelty
of our approach stems from the fact that we represent
the extracted features formally and combine these formal
models extracted from different source code to generate a
protocol constraint model. The benefit of having a protocol
model is that when we do not have the source code available
for a system under analysis and, therefore, cannot apply the
approach of Eisenbarth et al. [46], we can reverse engineer
the protocol relevant features of the code via Protocol Field
Discovery and leverage this information in Protocol Model
Guided Symbolic Execution.

We have applied ProXray to the USB protocol by learn-
ing a USB protocol model from 23 known USB firmware im-
ages. We are then able to automatically map protocol fields
and identify USB functionality by answering queries like
“Does the firmware contain a USB keyboard functionality?”
within all 6 unknown USB firmware images. We have also
applied ProXray to the Bluetooth protocol and we achieved
more than an order of magnitude speedup in analyzing
unknown firmware using the learned HCI and L2CAP mod-
els. Specifically, ProXray answers four important research
questions:

1) Does constraint-based search prioritization perform bet-
ter than the baseline symbolic execution (BSE)?

2) Can we use the extracted constraint model to discover the
program variables that correspond to the protocol fields in
unknown firmware?

3) How effective is protocol-guided symbolic execution in
driving symbolic execution to the protocol relevant tar-
gets in unknown firmware?

4) How precise is constraint model based functional classi-
fication on unknown firmware?

Our contributions can be summarized as follows:

• We introduce a learning algorithm that employs
several symbolic execution prioritization and prun-
ing heuristics to generate a protocol model from

firmware directly. Our experiments show that our
constraint-based search prioritization heuristics perform
better than the BSE and extract up to 1.54 and 1.76 times
more unique constraints on average for the USB and the
Bluetooth protocols2, respectively.

• We present a discovery algorithm that uses the proto-
col model to recognize the protocol usage within un-
known firmware automatically. Our experiments show
that our approach achieves on average 100% and 75%
precision in mapping the variables that correspond to the
two fields, wValue and bRequest, respectively, which
are instrumental in determining the functionality of USB
devices. For the Bluetooth protocol, we achieved 100%
precision for the HCI event type and the L2CAP
signaling command code fields.

• We design a protocol guided symbolic execution
algorithm that identifies functionality and answers
queries about unknown firmware.

• We have applied our methodology to the USB pro-
tocol and the HCI and L2CAP layers of the Blue-
tooth protocol and evaluated ProXray using the
firmware that runs on MSP430 and Intel 8051 micro-
controllers. Our experimental results show at least an
order of magnitude speedup for the Bluetooth firmware
and up to 73.8 times speedup in reaching USB proto-
col related targets for MSP430 firmware and 1.5 times
speedup for 8051 firmware. Our approach can correctly
match functionality of every USB firmware in our test set
from both MSP430 and Intel 8051 architectures.

The rest of the paper is organized as follows. Section
2 provides background information on the symbolic exe-
cution of firmware. Section 3 presents an overview of our
methodology. Section 4 presents the individual steps of our
approach. Section 5 applies our methodology to the USB and
Bluetooth protocols. Section 6 presents experimental results.
Section 7 discusses threats to validity and other challenges.
Section 8 presents the related work, and Section 9 concludes
and considers future work.

2 BACKGROUND

2.1 Protocol Model Learning
Model learning refers to inferring a model of software
components [14]. This model could be a Hidden Markov-
Chain Model (HMM), for example, or relations between

2. The extracted protocol models can be found at https://
firmware-analysis.org/

https://firmware-analysis.org/
https://firmware-analysis.org/

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

objects, class hierarchies, or implemented protocols. For the
latter, protocol state transitions are often set as the learning
target. Depending on the availability of the code in some
analyzable form, either a black-box or a white-box method
can be applied. White-box methods learn the model by
analyzing the source code or the binary executable. When
it is not feasible to analyze the implementation of a system
under analysis, black-box methods are used to infer the
state machines by observing the inputs and outputs of the
program. Both passive and active learning are possible. In
passive learning, the training data is labeled upfront. In
active learning, however, labeling is performed on the spe-
cific instances when explicit queries are submitted. Unlike
previous protocol learning techniques (see Section 8 for a
detailed discussion), ProXray targets learning of protocol
constraints rather than a state machine of the protocol.
ProXray is essentially a white-box and a passive model
learning method.

2.2 Firmware Analysis using Symbolic Execution

Classical symbolic execution uses symbolic values for inputs
and executes the instructions symbolically to propagate
symbolic data flow among the program variables. When a
branch instruction that involves a symbolic condition gets
executed, multiple successors may potentially be created to
represent the feasible paths in the program. Each path is
associated with a symbolic expression, the path condition, to
represent all decisions made on the symbolic inputs along
that path.

Dynamic symbolic execution extends classical symbolic
execution by mixing concrete and symbolic values to deal
with challenging cases such as library calls and non-linear
expressions. Concolic Testing [15] and Execution-Generated
Testing (EGT) [16] are two specializations of dynamic sym-
bolic execution. In Concolic Testing the program is executed
with concrete input values while computing both concrete
states and symbolic states for variables that have symbolic
values. It uses the symbolic path expressions to generate
new concrete input values that can potentially execute new
parts of the code. EGT, on the other hand, uses symbolic
input values, keeps a symbolic state for the relevant vari-
ables, and performs concrete computation only when all the
variables are concrete. So an EGT based symbolic execution
engine, such as KLEE [17], can mix concrete inputs with
symbolic inputs. Please see [18] for an overview on various
symbolic execution approaches. In this paper, the algorithms
we present in Section 4 assume that the underlying symbolic
execution engine implements the EGT approach.

Symbolic execution of firmware poses challenges that
do not exist for the symbolic execution of user space ap-
plications. These include specification of the architectural
elements, e.g., special function registers of a specific mi-
crocontroller architecture, and the interrupt service routines
(ISRs) . FIE [9] extends the KLEE symbolic execution engine
to enable analysis of MSP430 firmware. It enables specifi-
cation of the microcontroller specific memory layout and
symbolic regions as well as ISRs. It implements an approxi-
mate interrupt scheduling policy. In previous work [13], we
have extended FIE with binary execution capability and a
support for Intel 8051 firmware by developing an LLVM

lifter for Intel 8051 ISA and modeling the architectural
elements. ProXray uses FIE with our extensions to extract
USB protocol relevant constraints from a set of 23 MSP430
firmware. The combination of extracted constraints that are
rewritten in terms of the protocol fields forms the learned
protocol model. We have used ProXray and the learned
model to a test set of firmware that consists of four MSP
430 firmware images and two Intel 8051 firmware images
to show the effectiveness of our approach in reaching pro-
tocol relevant code locations, which we call targets, and
identifying the specific functionality implemented by these
firmware images.

3 SYSTEM OVERVIEW

This section presents an overview of ProXray, which extracts
a formal protocol model from known firmware and lever-
ages it in the analysis of unknown firmware. Figure 1 shows
the data flow and major processing phases.
Model Extraction Phase: The first phase involves protocol
model extraction. We assume the availability of a repre-
sentative set of firmware implementing the protocol of
interest. This is a reasonable assumption as microcontroller
vendors provide software developer packages (SDKs), e.g.,
the MSP430 SDK provided by Texas Instruments [19], for
their boards and the associated toolchains. These developer
packages demonstrate programming of both the microcon-
troller specific features and the communication protocols
that they use. This type of program-based documentation of
the protocol supplements the original protocol specification
and helps developers understand how to program their
firmware to use the protocol. SDKs often use identifier
names that are similar to the protocol field names. Thus,
in firmware that comes with an SDK, a simple text search
often suffices to identify the variables that implement the
protocol field names.

Our approach can leverage the domain knowledge en-
coded in such sample firmware to extract a constraint-based
model of the protocol. As shown in Figure 1, each firmware
that is used in the training set is accompanied with a map-
ping of the protocol fields to the memory locations (program
variables) in the firmware3. In this paper, we assume that
the mapping information needed for the model extraction
phase is generated manually by scanning the source code of
the sample firmware.

The protocol model extraction stage takes the sample
firmware along with the associated mapping between the
protocol fields and the program variables. It performs sym-
bolic execution on a set of training firmware in a way that
prioritizes exploration of protocol-relevant paths. The main
information that guides the symbolic execution of this stage
is the protocol field mapping and the protocol-related sym-
bolic program constraints extracted from various branches
in the firmware as paths are explored.

Let us assume that the variables sdata and req of a
firmware in the training set have been mapped to the USB
protocol fields bmRequestType and bRequest, respectively
(see Section 5.1 for a brief background on the USB protocol).

3. In this paper, we use memory locations and program variables
interchangeably. The memory location concept facilitates explanation
of our algorithms that extend basic symbolic execution.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

One way of guiding the exploration is to prioritize paths
that have explored new symbolic regions representing some
of the protocol fields. As an example, assume that a path
has so far executed branch conditions involving the variable
sdata. If a successor of this path has recently executed a
branch condition involving req while another successor has
not executed such a branch condition yet then the former
path should be prioritized over the latter. Another way is
to prioritize paths based on the number of different branch
conditions that they have executed. As an example, a path
that has recently checked a new condition, e.g., sdata == 1
in addition to sdata == 0 should be prioritized over a path
that has only checked sdata == 0.

Protocol relevant program constraints are captured in
a canonical form, exp OP κ where OP and κ denote a
relational operator and a constant, respectively. exp may
consist of a protocol field, m, or an expression that involves
one or more bitwise operators manipulating some protocol
fields, e.g., m BOP κ1 or (m1 BOP1 κ1) BOP2 m2, where
m, m1, and m2 denote protocol fields, BOP , BOP1 and
BOP2 denote bitwise operators, and κ1 denotes a constant.
Basically, our atomic constraints correspond to the atomic
constraints of the Bitvector Logic [20]. Extracted protocol-
relevant constraints are rewritten by replacing each variable
with the corresponding protocol field. Thus, the constraint
model shown in Figure 1 consists of a set of canonical
constraints, where the identifiers in the constraints cor-
respond to some protocol field. Protocol constraints that
are extracted from each firmware in the training set are
eventually combined to represent the protocol constraint
model. Specifically, we compute the union of all sets of
canonical constraints to combine them. The protocol model
is leveraged by the second and third phases of our approach
to uncover functionality of unknown firmware.
Protocol Field Discovery: In the second phase of our
approach, a given unknown firmware is analyzed to dis-
cover the mapping between the variables of the firmware
and the protocol fields. It should be noted that for ar-
bitrary firmware, which may be in binary form only, it
may not be feasible to do this manually. We propose an
automated technique to discover this relationship between
the firmware variables/memory regions and the protocol
fields. We achieve this by leveraging the protocol constraint
model. Our approach employs standard symbolic execution
to explore some of the paths and compares the constraints
in the path condition with those in the protocol constraint
model for detecting semantic matching. Those constraints
that match semantically provide potential mappings. We use
statistical information, i.e., the number of times a memory
region is matched to a protocol field, to refine the discovered
mapping.
Protocol Model Guided Symbolic Execution: The third
phase of our approach leverages the discovered mapping
for the unknown firmware to perform protocol-guided
symbolic execution. The inputs consist of an unknown
firmware that has not been analyzed w.r.t. to protocol use,
the discovered mapping between the firmware variables
and the protocol fields, and a query in the form of a
protocol constraint representing the part of the protocol
of interest. Note that the query helps to focus the analy-
sis to a specific functionality of the protocol. Our guided

symbolic execution rewrites the input protocol constraint
to reflect all possible mappings that have been discov-
ered. As an example, in one of the USB firmware we
examined, the bmRequestType field was implemented by
the variable tSetupPacket.bmRequestType. So, the con-
straint bmRequestType == 161 as a query is rewritten as
tSetupPacket.bmRequestType == 161 if bmRequestType
has been mapped to {tSetupPacket.bmRequestType} and
is rewritten as tSetupPacket.bmRequestType == 161 ∨
sdata == 161 if bmRequestType has been mapped to
{tSetupPacket.bmRequestType, sdata} to reflect all pos-
sible candidate mappings. Then we apply a customized
pruning algorithm to expand the paths that satisfy the
transformed protocol constraint. In this paper, we focus on
two applications of protocol-guided analysis of unknown
firmware: 1) checking whether the unknown firmware han-
dles a given protocol constraint and 2) discovering the
functionality class(es) an unknown firmware implements.

4 APPROACH

The goal of ProXray is to automatically extract a constraint-
based model of a protocol using a representative set of
firmware and then use this model to perform guided sym-
bolic execution in new firmware. We present our protocol
model extraction in Section 4.1, discovery of protocol ele-
ments in a new firmware in Section 4.2, and protocol guided
symbolic execution in Section 4.3.

4.1 Protocol Model Extraction

Algorithm 1 Protocol Constraint Model Extraction Algo-
rithm
1: ExtractProtocolConstraints(F : Firmware, M :
MemLoc → Identifier, Cscope : {perPath, perGroup}
,Ccov : {code, constraint, field}, Cwindow : N , τ : R):
P(Constraint)

2: s0 : SEState
3: Let s0 denote the initial symbolic execution state/path for F
4: global ActivePaths← {s0}
5: global SC ← ∅
6: global stashStack ← empty stack of SEState
7: global newPaths← ∅
8: global toBeStashed← ActivePaths
9: start the new window of size Cwindow for executing paths in
ActivePaths

10: while τ seconds not elapsed and ActivePaths 6= ∅ do
11: while exists some path in ActivePaths for which end of win-

dow has not been reached do
12: s← chooseNext(ActivePaths)
13: update s’s coverage based on Ccov and the next instruction
14: s.successors← ExecuteNextInstruction(s)
15: for each s′ ∈ s.successors do
16: Let Mem denote the memory locations that appear in

s′.PC
17: ExtractAtomicConstraints(Mem, s′.PC,M)
18: end for
19: if FilterStates(Cscope, s) then
20: break
21: end if
22: end while
23: NextFrontierSet()
24: start the new window of size Cwindow

25: end while
26: return SC

Algorithm 1 presents our approach for extracting a pro-
tocol constraint model from a single firmware F . It takes

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

as input a mapping M from firmware memory locations to
the protocol fields and configuration options that we will
explain below. It uses symbolic execution to explore the
paths in F and returns a set of atomic constraints, SC, on
the protocol fields.

One challenge of symbolic execution is the path explosion
problem. The exponential growth in the number of paths
slows down the progress made for each path. Depending on
the goal of the underlying analysis, the achieved coverage
may be far from the ideal. Our goal is to explore the paths
of the firmware that implement the protocol functionality
while traversing as diverse set of protocol relevant paths as
possible. Although symbolic execution engines come with
path exploration heuristics such as those based on random
selection and coverage, we need customized heuristics to
maximize the unique number of protocol constraints ex-
tracted.

We thus designed three types of “knobs” to fine tune our
model extraction process. The first knob, Ccov , configures
the type of coverage we would like to measure as the explo-
ration progresses. In addition to traditional code coverage,
we also consider constraint coverage and protocol field
coverage. The second knob, Cscope, configures the scope
of coverage computation. One possible scope is per-path
and the other possibility is per-group (considering all active
paths). The third knob, Cwindow, configures the duration
of coverage computation, denoting the number of blocks
executed.

Algorithm 1 keeps track of a frontier set of symbolic
execution states or paths, ActivePaths, that is initialized
with the initial state (line 4). It keeps a stack of stashed
paths, stashStack, representing all paths other than the
current frontier set and to be considered later. The algorithm
runs until a time bound τ is reached or the frontier set
becomes empty. Each time ActivePaths is initialized, a
window of size Cwindow starts (lines 9 and 24). Until the
window ends, paths in ActivePaths execute as in standard
symbolic execution by choosing a path from the frontier set
(line 12), updating coverage based on the type of coverage
configuration (line 13), and executing the next instruction to
compute possible successors (line 14).

After executing an instruction for a path s, the path
conditions of the successors are analyzed (lines 15-18) using
Algorithm 2 to check the appearance of a new protocol
relevant constraint. Algorithm 2 uses the protocol field
mapping M to identify such constraints (lines 3-4), which
are stored in the set SC (line 5).

Algorithm 2 An algorithm for extracting atomic constraints
from a given expression using a mapping from the memory
locations to the protocol fields.
1: ExtractAtomicConstraints(Mem : P(MemLoc), E : Expression,
M :MemLoc→ Identifier)

2: MMem← {m |m ∈Mem ∧ M(m) 6= undef}
3: for each χ ∈ ATOMIC(E) and m ∈MMem do
4: if m ∈ V ar(χ) then
5: SC ← SC ∪ χ[M(m)/m]
6: end if
7: end for

Figure 2 shows a sample code snippet from the MSP430
SDK for the USB protocol [19]. In this SDK, class spe-
cific descriptors are defined by class specific code (lines

5-18). The common functionality (lines 21-58) uses data
structures defined by the class specific functionality, e.g.,
the tUsbRequestList array, to check for the matching
request types and the requests. Figure 3 shows the extracted
protocol relevant constraint on the protocol field bRequest
that corresponds to the condition at line 32 when the request
matches the fields of the array entry on lines 7-16.

Figure 4 shows a sample code snippet from an imple-
mentation of the Bluetooth protocol [21]. The transport layer
function hci_transport_h4_block_read (line 22) reads
the raw HCI packet and calls a callback function through
the function pointer packet_handler (line 23), which
gets resolved to the packet_handler function defined on
line 28. The packet_handler function checks the HCI
packet type and calls the event_handler function for HCI
event type packets. Line 41 shows one of the cases han-
dled by the event_handler function that involves check-
ing the HCI Command Complete event for the sub-event
hci_read_local_name. To check this particular case, it
uses the HCI_EVENT_IS_COMMAND_COMPLETE macro and
according to the definition of this macro (lines 16-17)
it checks two conditions: 1) the event code correspond-
ing to HCI_EVENT_COMMAND_COMPLETE (line 16) and 2)
the sub-event code that consists of two bytes and when
read in little endian mode corresponds to the opcode of
the hci_read_local_name command (line 17). Figure 5
shows the extracted atomic constraint that corresponds to
the condition at line 17. In this case the bitwise operators
are the bitwise Or and the shift left (Shl) operators.

In addition to ActivePaths, Algorithm 1 keeps two
sets of paths, newPaths and toBeStashed, denoting the
next set of frontier paths and the paths from the current
frontier set that will be stashed away. Filtering of paths into
the next frontier set and stashing of others are performed
by Algorithm 3 and depends on the configured scope of
the analysis. At the beginning of each window, newPaths
and toBeStashed are initialized to an empty set and to
ActivePaths, respectively (lines 7-8 of Algorithm 1 and 11-
12 of Algorithm 4). If the scope is per group (lines 2-14) then
filtering does not happen until all the paths in the frontier
set reach the end of the current window. While inside the
window, the algorithm updates the frontier set (line 4) and
the paths to be stashed away (line 5).

When a path reaches the end of the current window,
it is removed from the frontier set (line 7). If such a path
achieves new coverage based on the type of coverage, its
successors are added to the next frontier set (line 9) and
it is not considered for stashing (line 10). Otherwise, its
successors are stashed (line 12).

If the scope is per path (lines 15-19) then new coverage
is checked after each instruction execution (line 15) and
handled immediately even if the end of the window is not
reached yet. As in the per group case, when a path is filtered
the next set of frontier paths and the set of stashed paths get
updated (line 16 and 17). Unlike in the per group case, when
a path is filtered it signals to stop executing the paths in the
current frontier set (line 18).

After executing the paths in the current frontier set,
Algorithm 1 calls Algorithm 4 to compute the next frontier
set (line 23). Algorithm 4 pushes the stashed paths, if any,
onto the stack (line 3) and updates the frontier set using the

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

1 // MSP430_USB_API/USB_API/USB_Common/usb.h
2 #define USB_MSC_GET_MAX_LUN 0xFE // 254 in decimal
3

4 // MSP430_USB_API/examples/MSC_massStorage/M2_SDCardReader/USB_config/descriptors.c
5 const tDEVICE_REQUEST_COMPARE tUsbRequestList[] =
6 { ...
7 {
8 // Get Max Lun
9 USB_REQ_TYPE_INPUT | USB_REQ_TYPE_CLASS | USB_REQ_TYPE_INTERFACE,

10 USB_MSC_GET_MAX_LUN,
11 0x00,0x00, // always zero
12 MSC0_DATA_INTERFACE,0x00, // MSC interface is 0
13 0x01,0x00, // Size of Structure (data length)
14 0xff,&Get_MaxLUN,
15 ...
16 },
17 ...
18 };
19

20 // MSP430_USB_API/USB_API/USB_Common/usb.c
21 uint8_t usbDecodeAndProcessUsbRequest (void){
22 ...
23 const uint8_t* pbUsbRequestList;
24 ptDEVICE_REQUEST ptSetupPacket = &tSetupPacket;
25 ...
26 pbUsbRequestList = (uint8_t*)&tUsbRequestList[0];
27 while (1) {
28 bRequestType = *pbUsbRequestList++;
29 bRequest = *pbUsbRequestList++;
30 ...
31 if ((bRequestType == tSetupPacket.bmRequestType) &&
32 (bRequest == tSetupPacket.bRequest)){
33 bResult = 0xc0;
34 bMask = 0x20;
35 for (bTemp = 2; bTemp < 8; bTemp++) {
36 if (*((uint8_t*)ptSetupPacket + bTemp) == *pbUsbRequestList){
37 bResult |= bMask;
38 }
39 pbUsbRequestList++;
40 bMask = bMask >> 1;
41 }
42 if ((*pbUsbRequestList & bResult) == *pbUsbRequestList){
43 pbUsbRequestList -= 8;
44 break;
45 } else {
46 pbUsbRequestList += (sizeof(tDEVICE_REQUEST_COMPARE) - 8);
47 }
48 }
49 else {
50 pbUsbRequestList += (sizeof(tDEVICE_REQUEST_COMPARE) - 2);
51 }
52 }
53
54 lAddrOfFunction =
55 ((tDEVICE_REQUEST_COMPARE*)pbUsbRequestList)->pUsbFunction;
56

57 bWakeUp = (*lAddrOfFunction)();
58 }

Fig. 2: Code snippets from the USB SDK for MSP430 MCUs [19].

(Eq 254 (Read w8 0 bRequest))

Fig. 3: The extracted USB protocol constraint (the
USB_MSC_GET_MAX_LUN request) that corresponds to the
condition on line 32 in Figure 2 when the request matches

the fields of the array entry bw lines 7-16 in Figure 2.

paths that have been filtered, if any (line 6). On the other
hand, if no paths could be filtered from the frontier set, the

next set of frontier paths is received from the top of the stack
of stashed paths (lines 8 and 9).

4.2 Protocol Field Discovery
The goal of protocol field discovery is to analyze an arbitrary
firmware known or suspected to implement a protocol func-
tionality and identify the set of potential memory locations
corresponding to each data field of the protocol. The idea is
to use symbolic execution to explore paths of the firmware
under analysis and utilize the protocol constraint model
that has been extracted as presented in Section 4.1 for this
discovery process.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

1 // bluetooth.h
2 #define OGF_CONTROLLER_BASEBAND 0x03
3 // bluetooth.h
4 #define HCI_EVENT_COMMAND_COMPLETE 0x0E
5

6 // src/hci_cmd.c
7 #define OPCODE(ogf, ocf) (ocf | ogf << 10)
8 // ===> (0x0014 | 0x0003 << 10) ====> (0x0014 | 0x0C00) ====> 0x0C14 = 3092
9

10 // src/hci_cmd.c
11 const hci_cmd_t hci_read_local_name = {
12 OPCODE(OGF_CONTROLLER_BASEBAND, 0x14), ""
13 };
14

15 // src/hci.h
16 #define HCI_EVENT_IS_COMMAND_COMPLETE(event,cmd) (event[0] == HCI_EVENT_COMMAND_COMPLETE &&
17 little_endian_read_16(event,3) == cmd.opcode)
18

19 // src/hci_transport_h4.c
20 static uint8_t * hci_packet = &hci_packet_with_pre_buffer[HCI_INCOMING_PRE_BUFFER_SIZE];
21

22 static void hci_transport_h4_block_read(void){
23 packet_handler(hci_packet[0], &hci_packet[1], read_pos-1);
24 }
25

26

27 // src/hci.c
28 static void packet_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){
29 hci_dump_packet(packet_type, 1, packet, size);
30 switch (packet_type) {
31 case HCI_EVENT_PACKET:
32 event_handler(packet, size);
33 break;
34 ...
35 }
36 }
37

38 // src/hci.c
39 static void event_handler(uint8_t *packet, int size) {
40 ...
41 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_local_name)){
42 ...
43 }
44 }

Fig. 4: Code snippets from a Bluetooth stack implementation [21].

Algorithm 3 An algorithm for filtering the symbolic execu-
tion states based on relevance to extracting protocol relevant
constraints.
1: FilterStates(Cscope : {perPath, perGroup}, s : SEState): boolean
2: if Cscope = perGroup then
3: if not end of current window for s.successors then
4: ActivePaths← ActivePaths ∪ s.successors \ {s}
5: toBeStashed← toBeStashed ∪ s.successors \ {s}
6: else . end of current window for s.successors
7: ActivePaths← ActivePaths \ {s}
8: if s covers new based on Ccov in the current window then
9: newPaths← newPaths ∪ s.successors

10: toBeStashed← toBeStashed \ s
11: else . no new coverage by the end of the window
12: toBeStashed← toBeStashed ∪ s.successors \{s}
13: end if
14: end if
15: else if s covers new based on Ccov then // Cscope = perPath
16: newPaths← newPaths ∪ s.successors
17: toBeStashed← toBeStashed \ s
18: return true . Terminate current window
19: end if
20: return false

(Eq 3092
(Or w16

(Shl w16
(ZExt w16 (Read w8 5 hci_packet))

8)
(ZExt w16 (Read w8 4 hci_packet))

)
)

Fig. 5: The extracted Bluetooth protocol constraint
(HCI_Read_Local_Name command) that corresponds to

the condition on line 17 in Figure 4.

Algorithm 5 presents the details of our protocol field
discovery algorithm. The inputs include a set of atomic
constraints over protocol fields PM , the set of protocol
fields PF , and a time threshold τ . The algorithm returns
mappings between the protocol fields and the set of mem-
ory locations. It collects candidate mappings as it explores
program paths by running the standard symbolic execution
algorithm. When a path condition is updated, it checks to
see if each constraint in the path condition matches some

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 4 An algorithm for computing the next frontier
set.
1: NextFrontierSet()
2: if toBeStashed 6= ∅ then
3: stashStack.push(toBeStashed)
4: end if
5: if newPaths 6= ∅ then
6: ActivePaths← newPaths
7: else
8: ActivePaths← stashStack.top()
9: stashStack.pop()

10: end if
11: newPaths← ∅
12: toBeStashed← ActivePaths

Algorithm 5 Protocol Field Discovery Algorithm
1: DiscoverProtocolFields(F : Firmware, PM : P(Constraint),
PF : P(Identifier), τ : R) : Identifier → P(MemLoc)

2: Let M,Mbest : Identifier → P(MemLoc)
3: M,Mbest ← λx.∅
4: Let Freq :MemLoc→ Identifier → N
5: Freq ← λx.λy.0
6: Let s0 denote the initial symbolic execution state/path for F
7: ActivePaths← {s0}
8: while τ seconds not elapsed and ActivePaths 6= ∅ do
9: s← chooseNext(ActivePaths)

10: s.successors← ExecuteNextInstruction(s)
11: ActivePaths← ActivePaths ∪ s.successors \ {s}
12: for each s′ ∈ s.successors do
13: for each cpc ∈ ATOMIC(s′.PC) do
14: for each pf ∈ Identifier do
15: if ∃c ∈ PM. (isV alid(c↔ cpc[pf/m]) then
16: M ←M [pf ←M(pf) ∪ {m}]
17: Freq ← Freq[(m, pf)← Freq(m, pf) + 1]
18: end if
19: end for
20: end for
21: end for
22: end while
23: Mbest ← λpf.{m | Freq(m, pf) =MAXpfi∈PF (Freq(m, pfi))}
24: return Mbest

constraint in the protocol model. If so, it maps the memory
location that appears in the matching constraint from the
path condition to the protocol field in the matching protocol
constraint (line 16). It also updates a frequency function that
keeps track of the number of unique matches that have been
observed between a memory location and a protocol field
(line 17).

By the time the symbolic execution stage terminates, the
algorithm has some mappings between protocol fields and
sets of memory locations, M , and the number of times a
match has been observed between two entities, Freq. We
choose the candidate mapping with the highest frequency
as the final mapping (line 23). The main idea behind this se-
lection is that the more number of times a protocol field has
been matched to a memory location, the more confidence
we have that the match is correct.

Figure 6 shows a code snippet from the Phison BadUSB
firmware [22]. Using the extracted constraints including
the one shown in Figure 3, we can map the protocol field
bRequest to the SETUPDAT[1] using Algorithm 5. This
is because SETUPDAT array will be marked symbolic due to
being one of the data ports of the firmware. Symbolic execu-
tion will identify the correspondence between the program
variable bRequest and the memory region SETUPDAT[1]
due to the assignment statement at line 18. The symbolic

condition that gets captured at line 63 will semantically
match the constraint in Figure 3 (line 15 of Algorithm 5)
and the memory region SETUPDAT[1] will be added to
the mapping for the protocol field bRequest (line 16 of
Algorithm 5).

4.3 Protocol Model Guided Symbolic Execution
The goal of guided symbolic execution is to steer the execu-
tion into the specific parts of the program. ProXray utilizes
the extracted protocol constraint model to guide symbolic
execution to explore paths that implement protocol related
functionality. We assume that the protocol field discovery
has already been performed on the firmware of interest as
explained in Section 4.2 and that we have a specific protocol
relevant query specified in terms of the fields of the protocol
representing a specific protocol functionality.

Algorithm 6 Protocol Guided Symbolic Execution Algo-
rithm
1: ProtocolGuidedSymEx(F : Firmware, Q : Constraint, M :
Identifier → P(MemLoc), τ : R): P(SEState)

2: Let Q ≡
∨N

i=1

∧ki
j=1 qij

3: Let

T (q) =

{ ∨
m∈M(pf) q[m/pf] M(pf) 6= ∅ // case 1

true otherwise // case 2

}
4: Let Q′ ≡

∨N
i=1

∧ki
j=1 T (qij)

5: Let s0 denote the initial symbolic execution state/path for F
6: ActivePaths← {s0}
7: while τ seconds not elapsed and ActivePaths 6= do
8: s← chooseNext(ActivePaths)
9: s.successors← ExecuteNextInstruction(s)

10: filtered, pruned← false
11: filteredPaths← ∅
12: for each s′ in s.successors do
13: if s′.PC ∧Q′ 6= false then
14: filtered← true
15: filteredPaths← filteredPaths ∪ {s′}
16: end if
17: if s′.PC ∧Q′ = false then
18: pruned← true
19: end if
20: end for
21: if filtered ∧ pruned then
22: ActivePaths← filteredPaths
23: else
24: ActivePaths← ActivePaths ∪ filteredPaths \ {s}
25: end if
26: end while
27: return ActivePaths

Algorithm 6 presents our protocol model guided sym-
bolic execution algorithm. The input includes a reachability
query, Q, in the form of a protocol relevant constraint
(the query in Figure 1), discovered mappings from pro-
tocol fields to a set of memory locations, M (generated
by Algorithm 5), and a time threshold τ . The algorithm
first transforms the protocol relevant input query into a
program specific constraint by utilizing the mapping M
(line 4). If a protocol field is mapped to a nonempty set of
memory locations (line 3, case 1) then each memory location
is considered to be legitimate separately and the query is
rewritten by replacing the protocol field with that memory
location. Constraints that are obtained through rewriting
are combined using the disjunction operator. However, if
a protocol field could not be mapped to a memory location
(line 3, case 2) then the constraint is replaced with true.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

1 // firmware/defs.h
2 __xdata __at 0xF0B8 volatile BYTE SETUPDAT[8];
3

4 // firmware/usb.c
5 BYTE bmRequestType, bRequest;
6 WORD wValue;
7

8 //firmware/main.c
9 void main() { ...

10 while (1) { HandleUSBEvents(); } ...
11 }
12

13 void usb_isr(void) __interrupt USB_VECT {
14 if (UsbIntStsF080 & 1) {
15 XVAL(0xF080) = 1;
16 if (EP0CS & bmSUDAV) {
17 bmRequestType = SETUPDAT[0];
18 bRequest = SETUPDAT[1];
19 wValue = SETUPDAT[2] | (SETUPDAT[3] << 8);
20 wIndex = SETUPDAT[4] | (SETUPDAT[5] << 8);
21 wLength = SETUPDAT[6] | (SETUPDAT[7] << 8);
22 }}}
23

24 void HandleUSBEvents(void) {
25 ... HandleControlRequest(); ... }
26

27 static void HandleControlRequest(void) {
28 BYTE res;
29 switch(bmRequestType & 0x60) {
30 case 0:
31 res = HandleStandardRequest(); break;
32 case 0x20:
33 res = HandleClassRequest(); break;
34 case 0x40:
35 res = HandleVendorRequest(); break;
36 default:
37 res = FALSE;
38 } ...
39 }
40

41 // firmware/control.c
42 BYTE HandleStandardRequest() {
43 switch(bRequest) {
44 case 0x06: { ... return GetDescriptor(); }
45 case 0x05: case 0x09: default: ...
46 }
47 }
48

49 static BYTE GetDescriptor() {
50 BYTE type = (wValue >> 8) & 0xFF;
51 switch (type) {
52 case 0x22: ...
53 case 0x01:...case 0x02:...case 0x06:...
54 default: ...
55 }
56 return ret;
57 }
58

59 // firmware/control.c
60 BYTE HandleClassRequest() {
61 switch(bRequest) {
62 case 0x09: ... case 0x0A: ...
63 case 0xFE: ... {
64 return GetMaxLUN(); }
65 default:
66 { return FALSE;}
67 }
68 }

Fig. 6: Code snippets from the Phison BadUSB
firmware [22].

The algorithm keeps a set of frontier paths,ActivePaths,
and starts the symbolic execution from the initial symbolic
execution state for F . As in standard symbolic execution, it

chooses the next path to execute (line 8) and executes the
instruction to produce the successors (line 9). Some of the
successors may be filtered (lines 13-16) and some of them
may be pruned (line 17-19). It keeps a set to record which
successors of the current path gets filtered in filteredPaths,
which has been initialized to an empty set at line 11. Path
condition of each successor will be checked to decide if it
satisfies part of the transformed protocol constraint. If so,
the successor will be added to the set of filtered paths (line
15). If there are filtered paths as well as pruned paths, the
frontier set is updated with the filtered successors of the
current path. Otherwise, the frontier set is expanded with
the filtered successors (line 24). The intuition behind this is
to detect branches where decisions related to the query are
made and to aggressively replace the active paths with the
successors of the current path that make decisions consistent
with the query. At branches without query related decisions,
the algorithm preserves the current active set by expanding
it with all the successors.

In one extreme case, each protocol field might be
mapped to an empty set and the transformed query would
evaluate to true. In the other extreme case, each protocol
field might be mapped to a large set of memory locations
yielding a large transformed query. In both cases, steering
the execution to the relevant part of the program will not
be effective as effective pruning will not be achieved. More-
over, the latter will have an additional overhead in terms
of constraint solving due to the size of the transformed
query. So the effectiveness of Algorithm 6 in steering the
execution to the desirable part of the program depends on
the precision of the mapping between the protocol fields
and the memory locations provided as an input.

As an example, consider the BadUSB code given in Fig-
ure 6 and a query that describes the USB standard request
for reporting of the HID functionality: bRequest = 0x06 ∧
wValue_high = 0x22. Assume that Algorithm 5 has
mapped the bRequest field and the wValue_high4 field
to {SETUPDAT[1],SETUPDAT[3]} and {SETUPDAT[3]},
respectively, in the context of the BadUSB firmware. This
mapping gets passed to Algorithm 6 along with the query.
The query would be rewritten as (SETUPDAT[1] = 0x06 ∨
SETUPDAT[3] = 0x06) ∧ SETUPDAT[3] = 0x22 to
generate a constraint, as shown on line 4 of Algorithm 6,
that refers to the memory regions of the BadUSB firmware.
Using this constraint, the guided symbolic execution stage,
as shown on lines 7-26 of Algorithm 6, prunes the paths that
satisfy the conditions of the lines 45, 53, 54, 62, and 63 and
reaches the target location of reporting the HID functionality
by filtering paths that satisfy the conditions of the lines 44,
52, and 65 of the BadUSB firmware.

5 APPLYING PROXRAY TO THE USB AND BLUE-
TOOTH PROTOCOLS

5.1 Universal Serial Bus
We choose the USB protocol as one of our case studies
for ProXray because of its ubiquity in embedded systems
and IoT devices. On one hand, the core USB specification,
e.g., USB 2.0 [23] or USB 3.0 [24] is still approachable with

4. Refers to the high byte of the wValue field.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Host Device
GetDeviceDescriptors

ResetDevice/AssignAddress

GetConfigDescriptors

GetInterfaceDescriptors

USBClassSpecificRequest/Response

Fig. 7: USB Enumeration Procedure.

bm
Request
Type

bRequest

w
Value

H
ighByte

w
Length

w
Value

Low
Byte

w
Index

Low
Byte

w
Index

H
ighByte

Fig. 8: Protocol fields used in the USB Setup packet in the
Enumeration Procedure.

few hundreds of pages. On the other, its ability to support
versatile functionality via different USB classes [25] also
reflects the challenges in firmware analysis.

Each USB class defines one kind of functionality. The
most common classes are Communication Device Class
(CDC), Human Interface Device (HID), and Mass Stor-
age Class (MSC). Different USB classes introduce their
own request/response messages, which follow the stan-
dard request/response structure defined by the USB spec.
As shown in Figure 7, all USB devices follow the same
procedure called enumeration once plugged into the host
machine. Initiated by the host, this procedure is used to pro-
vide the device configuration information, including GetDe-
viceDescriptors, GetConfigDescriptors, and GetInterfaceDescrip-
tors. Once the enumeration phase is complete, the corre-
sponding device driver loaded by the OS starts to serve the
device using USB class-specific requests.

All USB requests start with a Setup packet, as shown
in Figure 8, This is an 8-byte structure, containing 1-byte bm-
RequestType and bRequest fields, and 2-byte wValue, wIndex,
and wLength fields. bmRequestType is a bitmap determining
data transfer direction, type, and recipient. bRequest is the
request code defined by the USB and class-specific specs.
Both wValue and wIndex are separated into low and high
bytes, which act as parameters passed by a given request
type. wLength shows the number of bytes to be transferred
during the data stage if one exists.

5.2 Bluetooth

While USB dominates wireline connections for embedded
systems and IoT devices, Bluetooth [26] provides a most
common way to connect with these devices wirelessly, espe-
cially after the introduction of Bluetooth Low Energy (BLE)
and Bluetooth Mesh [27]. Comparing to the USB protocol,

Host Controller Interface (HCI)
Bluetooth Module

L2CAP

R
F
C
O
M

B
N
E
P

S
D
P

A
V
D
T
P

A
V
C
T
P

A
T
T

S
M
P

T
C
S

Profiles
Applications

.. ..

Fig. 9: Bluetooth protocol stack.

Bluetooth [28] is a more complex protocol suite, including
different layers within the protocol stack. As shown in Fig-
ure 9, from the bottom up we have Bluetooth Module, Host
Controller Interface (HCI), Logical Link Control and Access
Protocol (L2CAP), a variety of sub protocols used to support
different Bluetooth Profiles, and finally the Applications.

The HCI layer is the bottom part of the Bluetooth soft-
ware stack passing HCI packets to the hardware Bluetooth
modules. Packets at this layer follow typical TLV format.
There are four types of HCI packets in total, including
Command, Event, ACL, and SCO. As its name implies, the
L2CAP layer maintains logical connections between differ-
ent Bluetooth devices, and can be treated as the transport
layer within the stack (e.g., TCP and IP). Similar to TCP,
L2CAP provides the foundation of different application
protocols defined by the Bluetooth specification. Given their
importance, we focus on the protocols fields within the HCI
and the L2CAP layers.

5.3 Model Generation and Analysis

FIE [9] is a firmware analysis tool that leverages KLEE
to perform symbolic execution on MSP430 firmware. We
extend FIE to record all conditions evaluated on any pro-
tocol field while executing the training firmware set. The
core execution engine of FIE considers every read from
a symbolic memory region independently and as a new
version of that location on the executing path. As a result,
every read from a specific memory creates a new node in the
underlying abstract syntax tree (AST) used for representing
symbolic expressions. This procedure helps in capturing the
dynamic interactions between the firmware and its environ-
ment. However, this complicates our model extraction as we
have to deal with multiple versions of the same memory
location. To get the unique constraints imposed on each
protocol field, we first find the memory regions used in
each branch condition. We developed a custom expression
AST traversal to emit the atomic constraints from the branch
conditions. If the memory region in the atomic constraint
turns out to be a protocol field, we rewrite the conditional
expression in terms of that protocol field. For every such
expression we evaluate uniqueness of that constraint using
validity checking interface of the Simple Theorem Prover
(STP), which is the SMT solver that FIE uses. If the new
conditional expression turns out to be different from all the
constraints in our model, we accept it as a newly found

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

unique constraint. We store all the unique constraints in the
syntax of the KQuery [29] language.

We also use the KQuery language in specifying protocol
relevant queries for guided execution. Based on the protocol
field mapping found for the firmware under test, we rewrite
these queries in terms of the mapped memory regions of
the firmware. We utilize the caching solver provided by
KLEE in all phases of our approach to minimize the runtime
overhead.

6 EVALUATION

To evaluate the effectiveness of ProXray in the context of the
four research questions we mentioned in Section 1, we ap-
plied it to the USB and Bluetooth protocols. For the USB pro-
tocol we used the USB development package available from
MSP’s USB developer site [19] and two Intel 8051 firmware,
Phison BadUSB firmware [22] and EzHID firmware [30].
The MSP430 package is provided as an example for USB
firmware developers working on the MSP430 architecture.
It contains a rich set of example firmware images with each
demonstrating a different use-case of the USB protocol. In
general, a single firmware image focuses on a specific device
class, except for the composite firmwares, which combine
functionalities from multiple classes. For the Bluetooth pro-
tocol, we used the BTStack framework [21] that implements
the Bluetooth Core Specification version 4.0 and provides
a variety of embedded firmware examples, eight of which
were ported to an MSP 430 architecture. We chose BTStack
due to being a fully open source implementation and having
MSP 430 examples that we could analyze with FIE5.

We divide all the firmware into the training set and
the testing set for each protocol type. The USB training
set contains 23 firmware images from the MSP430 pack-
age, implementing 3 different USB classes, including Com-
munication Device Class (CDC), Human Interface Device
(HID), and Mass Storage Class (MSC). The USB testing set
contains 6 firmware, including another 4 firmware from
the MSP430 package and 2 Intel 8051 firmware. Table 1
shows the individual USB firmware images and their size
while Table 2 shows the number of firmware images by the
USB class type along with the quantitative details on the
unique constraints extracted for each. Table 1 also shows the
individual firmware images used for Bluetooth experiments.
The sizes include the size of the BTStack core. We evaluate
our Protocol Model Extraction (6.1) using the training set,
Field Discovery (6.2), and finally Guided Execution (6.3)
using the testing set.

6.1 Protocol Model Extraction

In this subsection, we answer the question: Does constraint-
based search prioritization perform better than the baseline
symbolic execution (BSE)? We have found out that all of our
heuristics provided in Algorithm 1 perform better than the
baseline symbolic execution (BSE), i.e., they extract more
protocol information from the training firmware set in a
given amount of time compared to BSE as shown in Figure

5. The MSP430 Bluetooth SDK contains 3rd party libraries that are in
binary only form, which prevents us from generating the LLVM bitcode
that was needed for symbolic execution.

Firmware Name Lines of Code

Training Set

USB CDC
C0 SimpleSend 18,764
C1 LedOnOff 18,855
C2 ReceiveData 18,764
C3 EchoToHost 18,493
C4 PacketProtocol 18,429
C5 SendDataWaitTillDone 18,323
C6 SendDataBackground 18,269

USB MSC
M2 SDCardReader 19,128
M3 MultipleLUN 20,403
M4 DoubleBuffering 19,053
M5 CDROM 23,055

USB HID
H0 SimpleSend 18,777
H1 LedOnOff 18,850
H2 ReceiveData 18,540
H3 EchoToHost 18,404
H4 PacketProtocol 18,476
H5 SendDataWaitTillDone 18,491
H6 SendDataBackground 18,432
H8 Keyboard 18,876
H7 Mouse 18,649
H9 Remote Wakeup 18,865
H10 ReceiveData EncryptDecrypt 18,911
H11 LedOnOff EncryptDecrypt 18,724

Bluetooth
ble server 32,387
gap inquiry 47,428
led counter 47,315
spp and le counter 58,121

Test Set

USB
CC1 term2term 18,946
CH1 term2hidDemo 18,640
CHM1 term2HidDemo 2LUN 24,287
HH1 hidDemo2hidDemo 18,647
BadUSB Firmware 1,696
EzHID Firmware 8,683

Bluetooth
spp counter 47,397
spp flowcontrol 47,389
sdp general query 47,378
sdp rfcomm query 47,368

TABLE 1: The list of firmware examples analyzed and their
lines of code generated from David A. Wheeler’s

SLOCCount tool.

10, which shows the average number of unique constraints
extracted over a period of 15 minutes (900s). Figure 11, 12,
and 13 shows model extraction data for USB, Bluetooth
HCI, and Bluetooth L2CAP protocols, respectively. The
graphs compare the performance of the heuristics on
firmware where BSE showed its best performance, i.e,
BSE’s number of extracted constraints were highest in the
given time among all the firmware using that protocol. Our
heuristics achieved much better performance than BSE in
all cases.

The USB host request in the protocol is dependent on
these five fields: bmRequestType, bRequest, wValue, wIndex,
and wLength. For Bluetooth, the requests are based on

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

Time (s)

#
U

ni
qu

e
C

on
st

ra
in

ts
BSE

code, perGroup
field, perPath

constraint, perPath

Fig. 10: Performance of heuristics compared to BSE. The figure shows average number of constraints recovered at different
time intervals for MSP430 USB firmware.

0 200 400 600 800
0

5

10

15

20

25

30

35

Time (s)

#
U

ni
qu

e
C

on
st

ra
in

ts

constraint, perPath

field, perPath

code, perGroup

BSE

Fig. 11: Performance of different heuristics compared to
baseline symbolic execution (BSE) for USB. Cwindow is 5 for

the heuristics.

Type FW# CBE BSE
Min. Max. Avg. Min. Max. Avg.

CDC 7 37 42 40 18 24 22
HID 12 34 41 38 19 33 27
MSC 4 34 39 37 27 30 29

TABLE 2: USB protocol constraints extracted from the
training firmware set by Constraint Based Extraction (CBE)
and Baseline Symbolic Execution (BSE). CBE corresponds

to Ccov = constraint, Cscope = perPath. Since CBE
achieved the best extraction results over time amongst our

heuristics, we compare the results against BSE here. The
diversity of the firmware set in terms of functionality can

be seen from this table.

100 200 300 400 500 600
0

10

20

30

40

50

60

Time (s)

#
U

ni
qu

e
C

on
st

ra
in

ts

constraint, perPath

field, perPath

code, perGroup

BSE

Fig. 12: Performance of different heuristics compared to
baseline symbolic execution (BSE) for Bluetooth HCI.

Cwindow is 5 for the heuristics.

packet type, event type, HCI command, and the L2CAP sig-
naling command code (sig cmd code). To extract the protocol
model from a given firmware, first we manually find the ad-
dresses of these protocol relevant fields within that firmware
and pass this information as an input to Algorithm 1 so that
the relevant memory locations can be tracked throughout
the symbolic execution. For USB, the protocol fields had the
same name in the firmware as in the specification (lines 24,
31, and 32 in Figure 2). In Bluetooth firmware, the protocol
fields corresponded to the various elements of an array
named hci_packet_with_pre_buffer (line 20, Figure
4). So, the protocol fields could be easily mapped since the
hci_packet_with_pre_buffer array was always used
to pass data from the HCI layer to the L2CAP layer and the
conditional statements in the firmware mostly used different
elements of this array.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

150 200 250 300 350 400
0

5

10

15

20

25

Time (s)

#
U

ni
qu

e
C

on
st

ra
in

ts

constraint, perPath

field, perPath

code, perGroup

BSE

Fig. 13: Performance of different heuristics compared to
baseline symbolic execution (BSE) for Bluetooth L2CAP.

Cwindow is 5 for the heuristics.

We have used three configuration parameters, Ccov ,
Cscope, and Cwindow, to control the exploration during con-
straint extraction. Ccov denotes the coverage criteria, which
can be code, constraint or field coverage. Code coverage
is used to prioritize paths that cover new instructions, con-
straint coverage prioritizes paths that lead to more unique
condition extraction, and field coverage prioritizes paths
based on the visibility of multiple fields in a certain path.

Depending on the firmware’s implementation, each of
these criteria has unique advantages. For a small firmware
with few branches just doing code based coverage may be
enough to extract information. For a large firmware with
many branches, on the other hand, constraint coverage is
more suitable, since it produced better yield in a short
amount of time by prioritizing paths that provide new
constraints. Field coverage showed faster extraction of con-
straints deeper in the code which involved multiple protocol
fields.

Cscope denotes the scope for which the coverage is eval-
uated and can be perPath or perGroup. Cwindow specifies
the granularity of the window for executing the paths in the
frontier set. It is given in terms of the number of basic blocks.
Cscope combined with Cwindow determines the frequency of
action taken based on Ccov . In a perPath scoping, the fron-
tier set gets updated every time new coverage is achieved.
However, for perGroup scoping, updating the frontier set
is delayed until all paths have executed Cwindow number
of blocks. There are six possible configurations based on
the values of Ccov and Cscope. We have combined these
with window sizes from one through ten. We observed that
too small a window size does not let paths cover much
and too large a window size lets all paths cover something
new. We found window sizes of 4-7 performs better in all
cases than others. The graph in Figure 11 shows results
for Cwindow = 5. Due to space restrictions we will discuss
the best performing combinations for each Ccov here. We
should note that all configurations discussed below could

extract on average 33 unique constraints for USB by the
end of the analysis window, which was set to 900 seconds.
For Bluetooth HCI and L2CAP layers the average number
of unique constraints extracted are 59 and 29, respectively,
within an analysis window of 900 seconds.

1) Ccov = code, Cscope = perGroup : This configura-
tion is the closest to BSE. Focusing on paths with
better code coverage reduced the number of paths
to execute and led to more constraint extraction.
As Figure 10 shows, this configuration extracts the
least number of unique constraints compared to the
other two configurations in the early phases of the
analysis. Using perPath scope with code coverage
achieves worse performance as only one path is
chosen until it stops achieving new coverage. So,
it may cause divergence from the protocol relevant
parts of the code.

2) Ccov = field, Cscope = perPath : This configura-
tion performs slightly better than configuration (1)
as it extracts more constraints in the early phases as
shown in Figure 10. Protocol field based extraction
performs better than instruction coverage because
it better relates to our goal. We choose paths based
on finding new protocol fields. If a path has seen at
least one new protocol field we expand on that path
and stop executing it when it does not reach any
new protocol field in the given window. Since the
scope is per path, the window size only comes into
play when there is no field coverage. This configu-
ration performed the best for the Bluetooth L2CAP
layer, which has a higher variation of constraints on
different fields. So focusing on paths with different
fields gets the constraints faster. For the Bluetooth
HCI layer and the USB protocol it is beneficial
to focus on the unique constraints found on the
same field than variety of fields, that is why this
configuration does not have the best results there.

3) Ccov = constraint, Cscope = perPath : In gen-
eral, this configuration produces the best result as
it extracts more constraints than the other config-
urations in a given amount of time as shown in
Figures 10 - 12 for USB and Bluetooth HCI. This
approach is most related to the goal of extraction.
Since we want to extract as many unique constraints
as possible from a firmware, we choose paths that
provide us with constraints that have not been
seen yet. Only the constraints on protocol fields are
considered while evaluating paths. The perGroup
scope combined with constraint coverage performs
slightly worse than (3) as it executes more paths in
the same time which delays extraction compared to
perPath scope and performs much better than all
other combinations.

6.1.1 Ground Truth Evaluation
We extracted 58 unique constraints in total across three dif-
ferent USB classes; see Table 2 for the number of constraints
for each class of firmware. It is important to note that the ex-
tracted constraints come in different formats. For example,
two constraints on bmRequestType are ((bmRequestType &

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

USB bmRequestType bRequest wValue wIndex wLength

CDC 10 12 6 4 5
HID 9 10 5 3 10
MSC 10 11 5 3 4

BT packet Type event Type sig cmd code command

HCI 3 27 - 12
L2CAP - 7 6 -

TABLE 3: Unique values contained in the equality
constraints for each protocol field in the extracted model

from the training set for both USB and Bluetooth (BT).
Equality constraints directly compare the data read from a

memory location to a specific value.

Type USB 2.0 CDC 1.2 HID 1.11 MSC 1.3

bmRequestType Coverage

CDC 6/6 2/2 – –
HID 5/6 – 3/4 –
MSC 5/6 – – 2/2

bRequest Coverage

CDC 9/11 8/39 – –
HID 9/11 – 7/8 –
MSC 9/11 – – 3/5

TABLE 4: bmRequestType and bRequest value coverage
comparing with different USB specifications based on the

23 firmware in the training set.

Field BT 4.0 BTStack Extracted

packet type 4 4 3
command 137 15 12
event type 66 40 27

sig cmd code 23 16 5

TABLE 5: Value coverage for Bluetooth fields in the
training set. BT 4.0 and BTStack lists the number of

possible values for the field in Bluetooth 4.0 specification
and the number of values listed in BTStack core. Extracted

shows the number of values extracted by ProXray.

128) 6= 0) and (bmRequestType == 161). Both constraints
appear on the same path and the latter satisfies the former.
The first is used to identify the direction of the request i.e.,
from host to device or device to host. The second is used
to identify the specific request. We examine all extracted
constraints to find all possible values for each protocol field
contained, and list the number of unique values for each
field in Table 3. Both bmRequestType and wIndex share the
same possible values among all these classes. For wIndex, the
variation is limited. In most cases, the default value is zero.
For bmRequestTypes, which tells the data transfer direction,
recipient, etc, each value can also be reused by different
USB requests. This means that given enough USB requests,
it is possible to enumerate every bmRequestType permitted
for this USB class. bRequest shows minor differences among
different classes due to the class-specific USB requests. Other
fields vary since they heavily rely on the semantics of the
USB request.

We then look into all the values found in the constraints
for bmRequestType and bRequest. We first manually extract

C0 C1 C2 C3 C4 C5 C6 H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 M2M3M4M5
Samples

0.0

0.2

0.4

0.6

0.8

1.0

bm
Re

qu
es

tT
yp

e
Co

ve
ra

ge

USB 2.0
USB Class

Fig. 14: bmRequestType value coverage comparing with
different USB specifications for each firmware within the

training set.

all possible values explicitly listed in different USB speci-
fications for these fields. We compare the values found in
the constraints with the ones included in the specifications.
The coverage for these fields are shown in Table 4. For
bmRequestType, all three classes of firmware show a mini-
mum 83% and even 100% coverage on the standard USB 2.0.
This is expected since different USB classes still follow the
enumeration procedure using the standard USB requests.
We also find 75% and 100% coverages on CDC 1.2, HID
1.11, and MSC 1.3 class-specific protocols accordingly based
on different classes of the firmware.

For bRequest, all these three classes of firmware show
an 82% coverage on the standard USB requests defined by
USB 2.0. The only missing ones are “SET DESCRIPTOR”
and “SYNCH FRAME”, which are optional or only used by
audio streaming devices. CDC firmware shows the lowest
coverage comparing to the CDC 1.2 specification due to a
large number of requests defined by its four different sub
specifications, including Public Switched Telephone Net-
work (PSTN), Integrated Services Digital Network (ISDN),
Ethernet Control Model (ECM), and Abstract Control Model
(ACM). HID firmware demonstrates 87.5% coverage com-
paring to the HID 1.11 specification. Both the 2 requests
defined by the MSC 1.3 specification but not covered by
our MSC firmware, are for Lockable Mass Storage device, a
different kind of MSC devices.

We further look into each firmware sample used during
the model extraction, and investigate its bmRequestType and
bRequest coverage. As shown in Figure 14, every firmware
in our training set has over 60% coverage of the USB 2.0
specification and over 70% coverage of other USB class
specifications respectively on bmRequestType. For bRequest
shown in Figure 15, most firmware except the CDC class
have over 50% coverage of different USB specifications.
Again, the coverage limitation of the CDC class is due to
its sub protocol variations defined by the spec. Note that
we did not include wValue and wIndex in our ground truth
study, because although important, these fields depend on
bRequest rather than being self-contained.

Due to the complexity of the Bluetooth HCI and L2CAP
layers, we focus on protocols fields packet type, command,

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

C0 C1 C2 C3 C4 C5 C6 H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 M2M3M4M5
Samples

0.0

0.2

0.4

0.6

0.8
bR

eq
ue

st
 C

ov
er

ag
e

USB 2.0
USB Class

Fig. 15: bRequest value coverage comparing with different
USB specifications for each firmware within the training

set.

and event type within HCI and sig cmd code within L2CAP.
As shown in Table 5, for packet type within HCI, we have
successfully recovered 3 types out of 4. The only missing
one is the “Command” type. We realize all the firmware
examples we used do not build HCI Command packets
directly. Instead, the BTStack lower level takes care of send-
ing these packets automatically during the initialization.
This is further proved by the recovery of command protocol
fields within HCI Command packet. While the Bluetooth
spec defines over 100 different commands, the BTStack only
includes 15 of them and we are able to recover 12 with
80% coverage. For event type within HCI Event packets, the
BTStack again only covers 40 of 60 defined by the Blue-
tooth spec. The coverage of our extraction is 67.6% against
the BTStack implementation. For the sig cmd code within
L2CAP signaling packets, we have recovered 5 different
values out of 16 defined by the BTStack implementation. A
further investigation reveals a classic path explosion issue
that prevents us from reaching another 5 different values.

In summary, although not 100% coverage for all possible
values of each field defined by the specs, our constraints did
a good job to cover the most common values of the most im-
portant fields (e.g., bRequestType and command), which help
pinpoint the usage of the USB and Bluetooth protocols and
potential functionality with a high confidence. Our study
of the training set proves that each firmware does provide
a lot of information about different specifications, which
bases our model extraction methodology using firmware.
Since we extracted the constraints from the most commonly
available firmware images, other firmware images that con-
tain less common functionality, e.g., PSTN, can help us to
improve our constraint set. But those are relatively rare
and less used. We also notice the limitations of firmware
built upon certain protocol stack implementations, e.g., the
BTStack implementation. In general, with the help of more
diverse firmware collection, the coverage of our constraints
is expected to get better.

6.2 Protocol Field Discovery
In this subsection, we answer the following research ques-
tion: Can we use the extracted constraint model to discover

10−2 10−1 100 101 102
10−2

10−1

100

101

102

BSE Time (s)

PG
SE

Ti
m

e
(s

)

T1
T2
T3
T4
T5

Fig. 16: Comparison of PGSE and BSE w.r.t. time to target
for MSP430.

100 101 102 103
100

101

102

103

BSE #Paths

PG
SE

#P
at

hs
T1
T2
T3
T4
T5

Fig. 17: Comparison of PGSE and BSE w.r.t. number of
paths generated for MSP430.

50 100 150 200 250

100

200

BSE #Paths

PG
SE

#P
at

hs

BadUSB
EzHID

Fig. 18: Comparison of PGSE and BSE w.r.t. number of
paths generated for BadUSB and ezHID

the program variables that correspond to the protocol fields in
unknown firmware?. One of our main contributions in this
paper is automatic discovery of the protocol fields within a

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

5 10 15 20 25 30 35

10

20

30

BSE Time (s)

PG
SE

Ti
m

e
(s

)
BadUSB
EzHID

Fig. 19: Comparison of PGSE and BSE w.r.t. time to target
for BadUSB and ezHID

Protocol Fields Mapped
Firmware Fields

Precision

Min. Max. Avg.

bmRequestType bmRequestType 100% 100% 100%
bRequest bRequest,

wLength
0% 100% 75%

wValue wValue 100% 100% 100%
wIndex wIndex 100% 100% 100%
wLength wLength 100% 100% 100%

TABLE 6: USB Field Mapping precision results for MSP430
(4) Composite firmware.

Protocol Fields Mapped
Firmware Fields

Precision

Min. Max. Avg.

bmRequestType bmRequestType 100% 100% 100%
bRequest bRequest,

wLength
50% 100% 95.45%

wValue wValue 100% 100% 100%
wIndex wIndex 100% 100% 100%
wLength wLength,

wValue,
bRequest

0% 100% 79.54%

TABLE 7: USB Field Mapping precision results for MSP430
(23) Test firmware.

Firmware Protocol Field Firmware Field Precision

BadUSB

bmRequestType wValue 0%
bRequest bRequest, wValue 50%
wValue wValue 100%
wIndex wLength, wValue 0%
wLength wValue 0%

EzHID

bmRequestType bmRequestType 100%
bRequest bRequest 100%
wValue wValue 100%
wIndex SM0 0%
wLength bRequest, wValue 0%

TABLE 8: USB Field Mapping precision results for Intel
8051 firmware BadUSB and EzHID.

firmware address space. For an arbitrary firmware it may be
difficult to identify the memory locations or variables that
implement the protocol fields. The source code may not be
available at all. Using Algorithm 5 explained in Section 4.2,

Protocol Fields Mapped
Firmware Fields

Precision

Min. Max. Avg.

packet type packet buffer[6],
packet buffer[7]

50% 100% 62.5%

event type packet buffer[7] 100% 100% 100%
command packet buffer[9],

packet buffer[12]
50% 100% 62.5%

code packet buffer[15] 100% 100% 100%

TABLE 9: Bluetooth Field Mapping precision results for
MSP430 firmware. packet_buffer is an abbreviation for
hci_packet_with_pre_buffer shown in Figure 4.

we could discover the protocol fields in our benchmarks
with high precision. We compute the precision of matching
a protocol field pf in a given firmware as

100×

{
1 rc ∈Mbest(pf)

0 otherwise

|Mbest(pf)|
, where rc denotes the actual variable that implements pf
and Mbest is the output of Algorithm 5.

Tables 6 shows the field discovery data for the four
composite firmware from the MSP430 SDK for USB. For
USB, we could discover all fields except the bRequest field as
sometimes another field, wLength, yielded a higher match-
ing frequency. However, we achieve 100% precision in the
discovery of the remaining protocol fields.

Table 8 shows the field discovery data for the Intel 8051
firmware. Compared to MSP430 benchmarks, we achieve
less precision for protocol field discovery. However, we are
able to discover one protocol field, wValue, for each Intel
8051 firmware with 100% precision and an additional pro-
tocol field, bRequest, for BadUSB firmware with a precision
of 50%. In case of EzHID firmware the first 3 fields were
mapped with 100% accuracy. We found that in all of the 0%
precision cases, such as wLength for both, the actual field
was matched as a candidate. However, the correct mapping
was not selected as another variable that corresponded
to a different field (wValue for BadUSB, wValue, bRequest
for EzHID) had a higher score and prevented the correct
candidate from being included in the final set.

We also evaluated field discovery for the firmware in
the training set by excluding the firmware under analysis
from the model extraction phase and by using the constraint
model extracted from the remaining 22 firmware. Table 7
shows that we achieve similar precision values compared to
those for the composite MSP430 firmware.

Table 9 shows the field discovery data for the four testing
firmware for Bluetooth. In the case of Bluetooth, we could
discover both the HCI and the L2CAP fields properly. The
reason for lower precision for packet type is due to the lack
of variety in the values of those fields. For example, the
set of values for packet type has a lot common with the set of
values for event type. So, when a firmware uses the common
values the mapping precision is lower. However, due to the
high variety of values for event type the mapping has 100%
precision every time.

In terms of recall, we achieve 100% recall for the Blue-
tooth protocol. For the USB protocol, we achieved an aver-

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

Targets Query (Q) Time (secs) #Paths
PGSE BSE PGSE BSE

T1 (packet type0 == 0x04) ∧ (event type0 == 0x04) 173.315 174.571 61 61
T2 C(T1) ∧(packet type1 == 0x04) ∧ (event type1 == 0x03) 254.991 - 232 -
T3 C(T2) ∧(packet type2 == 0x04) ∧ (event type2 == 0x0E) 361.009 - 316 -
T4 C(T3) ∧(packet type3 == 0x03) 399.706 - 365 -
T5 C(T4) ∧(code == 0x02) 412.259 - 398 -
T6 C(T4) ∧(code == 0x0A) 414.205 - 404 -

TABLE 10: Comparison of PGSE and BSE for Bluetooth firmware w.r.t. time to target and the number of paths at the time
of reaching the target. - denotes not reaching the target within a timeout of 2 hours.

age recall of 95% for the MSP430 USB firmware, a recall of
40% for BadUSB, and a recall of 60% for EzHID. The missed
fields were not selected as the best matches although they
appeared in the candidate set of mappings.

6.3 Protocol Guided Execution
Based on our extracted model, we can increase the efficiency
of a symbolic execution engine in terms of exploring the
required paths/code locations in a goal based execution,
where the goal, or the query as shown in Figure 1, is de-
scribed in terms of a generic protocol constraint. This is dif-
ferent from preconditioned symbolic execution, where the
constraint is expressed in terms of the variables/memory
locations of the system under test. Our field mapping phase
automatically discovers potential mappings and rewrites
the constraints of the query based on these potential map-
pings. So this phase involves the field mapping phase of
Section 6.2 and uses the same experimental setup for USB
that uses the 23 MSP430 USB firmware as the training
set and six firmware from both MSP430 and Intel 8051
architecture as the testing set. Similarly for Bluetooth it has
the same training and testing set as earlier.

6.3.1 Target Finding
In this subsection, we answer the following research ques-
tion: How effective is protocol-guided symbolic execution in driv-
ing symbolic execution to the protocol relevant targets in unknown
firmware?. To achieve this, we identified several protocol rel-
evant targets in our benchmarks. For MSP430 USB firmware,
we have identified protocol relevant targets T1-T5 shown in
Table 11. As seen from Figure 17, we have achieved great
reduction in the number of paths that are relevant to the
protocol functionality of interest. Our approach achieves up
to 73.8x speedup (T5 in C1) as shown in Figure 16. Our
guided execution could reach T5 in a minimum of 1.106s
(9.883s minimum for BSE) to a maximum of 2.624s (121.866s
maximum for BSE). The number of paths in this case ranged
from a minimum of 18 (336 for BSE) to maximum 36 (1134
for BSE). In case of timing for T1 there are a few cases where
PGSE times are marginally higher than BSE. It is because
of the depth of the code point corresponding to T1. Since
the code location is not that deep within execution BSE
and PGSE have similar results. The deeper the code location
gets with respect to execution the better PGSE performs by
eliminating irrelevant code. Table 12 and Table 13 shows
the constraint based targets for Intel 8051 test firmware
BadUSB and EzHID respectively. It took 126 paths in 26.63s
to reach T8 from Table 12 compared to 236 paths in 32.852s
for BSE. From Table 1 it is evident that BadUSB Firmware

Targets Query (Q)

T1 (bmRequestType & 0x80) 6= 0
T2 C(T1) ∧(bRequest == 0x06)
T3 C(T2) ∧(wValue == 0x01)
T4 C(T3) ∧(wIndex == 0)
T5 C(T4) ∧(wLength == 0)

TABLE 11: Constraints used for Protocol Guided Symbolic
Execution of MSP430 firmware.

has much lower number of lines of code compared to the
MSP430 firmware. Smaller code is easier for BSE to explore
compared to exploring code with a high line count and more
conditional paths. In case of EzHID firmware we do not see
much difference between PGSE and BSE. It took 67 paths in
4.78s to reach T5 from Table 13 compared to 86 paths in 6.98s
for BSE. Figure 18 and Figure 19 shows the performance of
PGSE compared to BSE for the Intel 8051 test firmware. In
almost all cases, PGSE has shown improvement over BSE
both in terms of number of paths and time to reach targets.

For the Bluetooth HCI and L2CAP layers the perfor-
mance of PGSE is far superior from BSE. Table 10 shows
the targets for Bluetooth. T1 - T4 are in the HCI layer and
T5 - T6 are in the L2CAP layer. event type0 and event type1
represent the value of event type on 1st and 2nd iteration
of the main event loop6. To reach the targets in the L2CAP
layer, a specific sequence of events needs to occur in the
HCI layer. The Bluetooth firmware code contains too many
branches for BSE to achieve this sequence. For example,
there are 27 cases for only event type. Also, two types of
interrupts get fired on every iteration of the main event
loop. As a result, BSE could not reach any targets beyond T1.
Since T1 is not that deep in the code and does not require a
sequence of events, the performance of both PGSE and BSE
is similar. As the execution went deeper in the code BSE
could not keep up with PGSE. At the end of the two hour
timeout BSE had spawned 52,289 paths but not the required
one. PGSE was able to reach the all the targets with only 404
paths in 414.205 seconds.

6.3.2 Functionality Matching
In this subsection, we answer the following research ques-
tion: How precise is constraint model based functional classifica-
tion on unknown firmware?. Thus, as an additional capability
of our protocol model extraction approach, we tried to

6. Note that FIE assigns version numbers to differentiate different
versions of symbolic regions throughout the execution. So, we leverage
this version numbering to refer to different iterations during executions
of these event-based systems.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

Targets Query (Q)

T1 (bmRequestType & 0x40) == 0
T2 (bmRequestType & 0x20) == 0
T3 ((bmRequestType & 0x60) == 0)∧ (bRequest == 0x05)
T4 ((bmRequestType & 0x60) == 0)∧ (bRequest == 0x09)
T5 (bRequest == 0x06) ∧ (wValue == 0x01)
T6 (bRequest == 0x06) ∧ (wValue == 0x02)
T7 (bRequest == 0x06) ∧ (wValue == 0x06)
T8 (bRequest == 0x06) ∧ (wValue == 0x22)

TABLE 12: Constraints used for Protocol Guided Symbolic
Execution of BadUSB firmware.

Targets Query (Q)

T1 (bRequest == 0x06) ∧ (wValue == 0x01)
T2 (bRequest == 0x06) ∧ (wValue == 0x02)
T3 (bRequest == 0x06) ∧ (wValue == 0x03)
T4 (bRequest == 0x06) ∧ (wValue == 0x21)
T5 (bRequest == 0x06) ∧ (wValue == 0x22)

TABLE 13: Constraints used for Protocol Guided Symbolic
Execution of EzHID firmware.

Type Type Specific Constraints

CDC bRequest ∈ {32, 33, 34}
HID bRequest == 2 ∨ wValue ∈ {33, 34}
MSC bRequest ∈ {254, 255}

TABLE 14: USB type specific constraints used in
functionality matching.

identify the USB subclasses implemented by a given USB
firmware. The intention here is to be able report the types
of functionalities a firmware can support. For this purpose,
we have first identified the class specific constraints in the
model by automatically removing those that appear in more
than one subclass and recorded the associated subclass type
for each class specific constraint. In our benchmarks, we
have come across three USB subclasses: CDC, HID, and
MSC.

Table 14 shows CDC, HID, and MSC specific constraints
that we extracted from the 23 MSP430 firmware.

Next the protocol field discovery of the test firmware
is done in the same process as explained in Algorithm
5. Guided symbolic execution is then used to find func-
tionality by matching the type of class specific constraints
shown in Table 14. All paths in the firmware are evalu-
ated against these constraints. If a firmware is found to
conform to a specific constraint of any functionality type,
we report that the firmware implements that functionality.
We have correctly identified the functionality type for every
MSP430 and Intel 8051 firmware in our benchmarks using
this process including matching all functionalities of the 4
composite firmware. The importance of this can be seen in
case of BadUSB firmware. We found that it implements HID
functionalities in addition to its reported MSC functionality
which indicates that the firmware has a malicious aspect.

6.4 Usability
The applicability of our approach is not limited to the
USB and the Bluetooth protocols. It can be applied to any
protocol that processes requests that are structured as a set

Firmware Matched
Constraints

Class

EzHID wValue == 33 HID

wValue == 34 HID

BadUSB bRequest == 254 MSC

wValue == 34 HID

TABLE 15: Functionality matching for BadUSB firmware
and EzHID firmware.

of attribute and value pairs. The protocol model extraction
phase of our approach requires some domain knowledge.
Specifically, the analyst should understand whether the pro-
tocol involves multiple layers and the format of the packet
types for each layer. In our study, we consulted the core
specifications of both protocols to achieve this knowledge.

This level of understanding of the protocol will guide
the analyst in getting a better understanding of the corre-
sponding SDKs. The complexity of the implementation is
proportional to the complexity of the protocol. In our case,
understanding the BTStack framework that implements the
Bluetooth protocol took more time than understanding the
MSP430 USB SDK. We should acknowledge that the docu-
mentation plays a significant role and BTStack’s documen-
tation was very helpful in this regard.

The most important stage in understanding a protocol
implementation is to identify the data structures used for
the packet types of the protocol. In our experience with these
two implementations, we found out that the developers try
to use the terminology from the protocol as identifiers in
their code. For instance, MSP430 SDK uses the identifier
tSetupPacket to represent the Setup packet for the USB
protocol as shown in Figure 2 (line 24). Similarly, BTStack
framework uses the identifier hci_packet to represent the
HCI packet for the Bluetooth protocol as shown in Figure 4
(line 20). So, we needed to identify these two data structures
for all the training firmware we used in our experiments as
they all used these specific data structures defined by the
relevant libraries.

Despite the ease of finding the data structures that cor-
respond to the protocol specific packet types, the data-flow
in these protocol implementations is typically complicated
as can be seen in the sample snippets of code provided in
Figures 2 and 4. This is due to pointer arithmetic and using
function pointers to implement callbacks for various event
types in the protocol. These programming constructs require
a precise analysis to avoid false positives. Dynamic symbolic
execution provides a precise memory model and proved to
be effective for protocol constraint model extraction.

We think that as more microcontoller (MCU) architec-
tures get fully supported by the state-of-the-art symbolic
execution engines such as FIE, more code bases can be
explored for model extraction and model guided analysis.
In this study, we have been restricted to MSP430 and 8051
architectures as these were the only MCUs that were sup-
ported by FIE with our extensions from [13]. Another chal-
lenge is the proprietary code that comes with the SDKs. As
an example, we were not able to use TI’s MSP430 Bluetooth
SDK due to having some 3rd party libraries in binary only

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 19

form. This prevented us from generating the LLVM bitcode
for that SDK, which was needed for symbolic execution.

Finally, any mistakes related to the setup of the model
extraction phase, e.g., identifying a wrong data structure for
the packet type, could lead to the extraction of wrong proto-
col constraints. A low-quality constraint model would lead
to a low-quality field discovery and, hence, to a mislead-
ing analysis result during protocol model guided analysis.
Another issue could be the implementation mistakes in the
SDKs. One way to deal with these issues is to use a variety
of SDKs and a diverse set of firmware examples. We think
that with better support for diverse set of MCU types, it
will be practical to analyze a variety of SDKs and extract
high quality protocol models.

7 DISCUSSION

In this paper, we have focused on the USB protocol, and,
specifically, the USB (control) requests issued by the host,
and the HCI and L2CAP layers of the Bluetooth protocol. It
should be sufficient to analyze different device firmware to
capture these parts of the USB and the Bluetooth protocols.
Our training set was restricted to MSP430 firmware as FIE
has been specialized for this microcontroller architecture.
Although our evaluation is based on sample firmware im-
plementations from the vendor rather than the USB and
Bluetooth firmware in the wild, these non-toy implementa-
tions provide a strong base of how the real-world firmware
would be implemented.

ProXray also needs the source files of the firmware
to map program variables into protocol fields during the
training phase. However, access to the source file might
be infeasible due to various reasons. It is not uncommon
to have only the binary format of firmware available. For-
tunately, it is still possible to recover the protocol fields
from the binary using static analysis. One way is to look
for certain binary patterns from within the binary, e.g., the
binary pattern of a USB setup packet. We will include binary
parsing/mapping support in our future work.

Threats to Validity: Threats to internal validity include
not having a training set that is comprehensive in terms of
the USB subclass functionality. However, despite this limita-
tion, our approach could precisely discover the functionality
of all USB firmware in the test set. We think that the quality
of the extracted model can be improved by enriching the
training set. Threats to external validity include application
of ProXray to the USB and Bluetooth protocols, which do
not involve relational constraints, e.g., p1 ROP p2, where
p1 and p2 are protocol fields. Although our implementation
focuses on constraints that relate some protocol field to some
constant value, the implementation of our approach can
be easily adapted to protocols that involve relational con-
straints by incorporating 1) prioritization heuristics that can
compare two paths w.r.t. the potential for covering richer
relational constraints in the model extraction phase and
2) matching heuristics that consider pairwise associations
in the potential mappings for the protocol field discovery
phase.

8 RELATED WORK

Protocol Model Learning: Black-box model learning has
been used for extracting models of the Session Initiation
Protocol [31], the Europay-MasterCard-Visa protocol (EMV)
[32], the Transmission Control Protocol (TCP) [33], [34], the
Transport Layer Security (TLS) protocol [35], a botnet com-
mand and control protocol [36], a smart-card reader [37],
and the Secure Shell Protocol (SSH) [38]. White-box model
learning has been combined with predicate abstraction and
symbolic execution in [39] to systematically consider the
input space for the learned protocol model. MACE [40]
extracts finite state machines (FSMs) from reference imple-
mentations in an incremental way by using the extracted
FSM to guide concolic execution and by using guided con-
colic execution to enrich the model. Our approach focuses
on extraction of the protocol constraints rather than the
underlying FSM of the protocol, which may not be relevant
to protocols such as the USB protocol as the specification
explicitly advises the firmware developers to handle any
type of request at any time during the communication with
the host. Also, we use the extracted models to reverse
engineer unknown protocol implementations.

USB Protocol Modeling: In the hardware/software co-
design, USB has been modeled as a 8-bit wide channel,
where each transfer takes 8 cycles [41]. This bandwidth-
and timing-based modeling was designed to ease the par-
titioning during the co-design, but ignored the semantics
of the USB protocol. In the USBFirewall [42] work a DSL
is designed to describe the syntax of the USB protocol.
This DSL is used to compile into C code using Haskell,
generating a “formal” USB packet parser for FreeBSD. The
USB Type-C Authentication protocol [43] is formally verified
in USBSoK [44] using ProVerif [45] . Unlike previous work,
we build a constraint-based model based on standard USB
request/response message structure. This model can be
readily used by a SAT solver.

Model Extraction: There have been some interest
in (semi-)automatically extracting models from software,
which include extraction of relationships between features
and computational units [46], object models [47], [48], finite-
state models [49], [50], [51], dependence models [52], test
scenarios conforming to some temporal logic formula de-
fined over a data-flow graph [53], state predicates to guide
state exploration of a cooperating model checker [54], a
statistical language model [55], framework models for sym-
bolic execution [56], symbolic data models for web appli-
cations [57], and behavioral models for USB firmware [13].
Our approach uses symbolic execution to extract protocol
relevant constraints from firmware and it uses these con-
straints to learn a constraint-based model for the protocol
of interest. Our approach differs from related work in that
the extracted model is not used to improve the analysis of
firmware from which the models get extracted, which we
refer to as the training set, and is used to analyze unknown
firmware that is known to implement the same protocol as
the firmware in the training set.

Firmware Analysis: Symbolic execution has been used
for firmware analysis in FIE [9], AVATAR [10], Firmalice
[11], and FirmUSB [13]. FIE models the reactive nature of
firmware via scheduling interrupt functions at various gran-

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 20

ularities. AVATAR uses the S2E symbolic execution engine
to run firmware binaries in an emulator while forwarding
I/O requests to the physical device and processing the
responses from the device through state migration. S2E is
further used [58] to generate test-cases for System Manage-
ment Mode interrupt handlers in BIOS implementations for
Intel-based platforms. Firmalice combines symbolic execu-
tion and program slicing to discover backdoors and their
triggers in firmware images. FirmUSB uses static analysis
and incremental symbolic execution to discover symbolic
memory regions and uses domain-specific constraints for
guided symbolic execution. Our approach can support these
and any symbolic execution based firmware analysis with a
priori extracted protocol constraint information.

Symbolic Execution with Pruning/Prioritization: Re-
dundant paths are pruned in [59] based on the program
point, the concrete write set, the path condition, and the
variables that would be read after that program point. The
generational search approach in [60] executes a set of child
paths and uses code coverage information for prioritizing
their exploration. Structural path coverage is used in [61] to
prioritize the paths. In [62], structural path information is
enriched with data-flow facts to include only the relevant
program locations in path coverage. Dependence analysis
is used in [63] to perform pruning based on symbolic path
equivalence. The goal of our pruning heuristics is to achieve
high coverage of the protocol of interest and, hence, our
heuristics consider canonical constraints that involve the
protocol fields. Our approach is similar to the generational
search presented in [60] in that it also executes a set of child
paths and uses coverage information for evaluating their
usefulness. However, our approach also considers constraint
coverage and prioritizes symbolic paths rather than feasible
inputs.

Guided Symbolic Execution: Program dependence in-
formation and user provided abstraction strategies are used
in [64] to compute equivalence classes of paths that can
reach a specific program location. [65] uses dynamically
computed relevant slice conditions to explore paths that
are relevant to a slicing criteria. Control flow analysis and
weakest-precondition computation are combined in [66] to
generate tests that exercise code changes due to patches.
Interpolation and subsumption checking are used in [67] to
prune paths that do not lead to buggy program locations.
Approximate weakest preconditions are used in [68] to pre-
vent scheduling of paths that are guaranteed not to violate
assertions in multithreaded programs. Abstract reachability
graphs computed by a predicate abstraction based model
checker are used in [69] to avoid exploration of infeasible
paths. The program analysis phase of our approach discov-
ers associations between the protocol fields and the memory
locations. This information is used in guiding symbolic
execution by prioritizing paths that produce constraints of
the protocol model.

In [70] constraint normalization is used to efficiently
support satisfiability and model counting queries for string
manipulating programs. In our approach, constraint nor-
malization enables efficient computation of constraint cover-
age and simplifies the formal representation of the protocol.

9 CONCLUSION

We presented a methodology for protocol model guided
analysis using symbolic execution. We applied our approach
to MSP430 and Intel 8051 firmware in the context of the
USB and Bluetooth protocols. We extract a constrained-
based model of the protocol using symbolic execution. Our
path pruning and prioritization heuristics perform 1.54 and
1.76 times better than the baseline symbolic execution in
terms of the number of unique constraints extracted in the
context of the USB and Bluetooth protocols, respectively.
Our constraint-based protocol model enables analysis of
new firmware without prior knowledge of how it uses the
protocol. Our protocol field discovery can find a mapping
for each of the protocol fields and achieves high precision
for the most significant fields of both protocols. Our pro-
tocol guided symbolic execution achieves up to 73.8 times
speedup for unknown USB firmware and more than an or-
der of magnitude speedup for unknown Bluetooth firmware
in reaching the parts of the code that are relevant to a
given protocol constraint. In future work we will explore
other protocols as well as firmware for other microcontroller
architectures.

ACKNOWLEDGMENTS

This work is supported by the US National Science Foun-
dation under grant CNS-1815883 and by the Semiconductor
Research Corporation.

REFERENCES

[1] Knud Lasse Lueth, “State of the IoT 2018: Number of IoT devices
now at 7B – Market accelerating,” https://iot-analytics.com/
state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/,
2018.

[2] “Mirai (malware),” https://en.wikipedia.org/wiki/Mirai
(malware).

[3] S. Bluetooth, “Bluetooth core specification version 5.0,” Specifica-
tion of the Bluetooth System, 2016.

[4] LXR, “Unusual Devices,” https://lxr.missinglinkelectronics.com/
linux/drivers/usb/storage/unusual devs.h, 2018.

[5] Syzkaller, “Found Linux kernel USB bugs,” https:
//github.com/google/syzkaller/blob/master/docs/linux/
found bugs usb.md, 2018.

[6] armis lab, “BlueBorne,” https://www.armis.com/blueborne/,
2017.

[7] ——, “BleedingBit,” https://armis.com/bleedingbit/, 2018.
[8] K. Nohl and J. Lell, “BadUSB–On accessories that turn evil,” Black

Hat USA, 2014.
[9] D. Davidson, B. Moench, T. Ristenpart, and S. Jha,

“FIE on firmware: Finding vulnerabilities in embedded
systems using symbolic execution,” in Presented as
part of the 22nd USENIX Security Symposium (USENIX
Security 13). Washington, D.C.: USENIX, 2013, pp. 463–
478. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/paper/davidson

[10] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “AVATAR:
A framework to support dynamic security analysis of embedded
systems’ firmwares,” in 21st Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2014, San Diego, California, USA,
February 23-26, 2014, 2014.

[11] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice - automatic detection of authentication bypass vulner-
abilities in binary firmware,” in NDSS, 2015.

[12] I. Pustogarov, T. Ristenpart, and V. Shmatikov, “Using program
analysis to synthesize sensor spoofing attacks,” in Proceedings of
the 2017 ACM on Asia Conference on Computer and Communications
Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6,
2017, 2017, pp. 757–770.

https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://en.wikipedia.org/wiki/Mirai_(malware)
https://en.wikipedia.org/wiki/Mirai_(malware)
https://lxr.missinglinkelectronics.com/linux/drivers/usb/storage/unusual_devs.h
https://lxr.missinglinkelectronics.com/linux/drivers/usb/storage/unusual_devs.h
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs_usb.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs_usb.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs_usb.md
https://www.armis.com/blueborne/
https://armis.com/bleedingbit/
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 21

[13] G. Hernandez, F. Fowze, D. J. Tian, T. Yavuz, and K. R. B. Butler,
“Firmusb: Vetting USB device firmware using domain informed
symbolic execution,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, 2017, pp. 2245–
2262.

[14] F. Vaandrager, “Model learning,” Commun. ACM, vol. 60, no. 2,
pp. 86–95, Jan. 2017. [Online]. Available: http://doi.acm.org/10.
1145/2967606

[15] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing
engine for c,” in Proceedings of the 10th European Software Engineer-
ing Conference Held Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. ESEC/FSE-
13, 2005.

[16] C. Cadar and D. Engler, “Execution generated test cases: How
to make systems code crash itself,” in Proceedings of the 12th
International Conference on Model Checking Software, ser. SPIN’05,
2005.

[17] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams,” in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’08, 2008, pp. 209–224.

[18] C. Cadar and K. Sen, “Symbolic execution for software testing:
three decades later,” Commun. ACM, vol. 56, no. 2, pp. 82–90, 2013.

[19] T. Instruments, “Msp430 usb developers package,” http://www.
ti.com/tool/MSP430USBDEVPACK, 2017, online; accessed March
7th 2018.

[20] D. Kroening and O. Strichman, Decision Procedures - An Algorithmic
Point of View, Second Edition, ser. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2016.

[21] M. Ringwald and M. Ringwald, “BTStack,” https://github.com/
bluekitchen/btstack, last accessed 20 March 2019.

[22] A. Caudill and B. Wilson, “Phison 2251-03 (2303) Custom
Firmware & Existing Firmware Patches (BadUSB),” GitHub,
vol. 26, Sep. 2014.

[23] Compaq, Hewlett-Packard, Intel, Microsoft, NEC, and Phillips,
“Universal Serial Bus Specification, Revision 2.0,” April 2000.

[24] Hewlett-Packard and Intel and Microsoft and NEC and ST-NXP
Wireless and Texas Instruments, “Universal Serial Bus 3.0 Specifi-
cation, Revision 2.0,” November 2008.

[25] The USB Device Working Group, “USB Class Codes,” http://
www.usb.org/developers/defined class, 2015.

[26] Bluetooth SIG, “Bluetooth core specification version 4.2,” Specifica-
tion of the Bluetooth System, 2014.

[27] S. Bluetooth, “Bluetooth mesh networking specifications,” Specifi-
cation of the Bluetooth System, 2017.

[28] ——, “Bluetooth core specification version 5.0,” Specification of the
Bluetooth System, 2016.

[29] “The reference manual for the kquery language,” https://klee.
github.io/docs/kquery/.

[30] Arnim Laeuger, “The EzHID Firmware Project,” http://ezhid.
sourceforge.net/, 2015.

[31] F. Aarts, B. Jonsson, and J. Uijen, “Generating models of infinite-
state communication protocols using regular inference with ab-
straction,” in Proceedings of the 22Nd IFIP WG 6.1 International
Conference on Testing Software and Systems, ser. ICTSS’10, 2010, pp.
188–204.

[32] F. Aarts, J. De Ruiter, and E. Poll, “Formal models of bank cards for
free,” in Proceedings of the 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation Workshops, ser. ICSTW
’13, 2013, pp. 461–468.

[33] S. Cassel, F. Howar, B. Jonsson, and B. Steffen, “Active learning for
extended finite state machines,” Form. Asp. Comput., vol. 28, no. 2,
pp. 233–263, Apr. 2016.

[34] P. Fiterău-Broştean, R. Janssen, and F. Vaandrager, Combining
Model Learning and Model Checking to Analyze TCP Implementations.
Cham: Springer International Publishing, 2016, pp. 454–471.

[35] J. de Ruiter and E. Poll, “Protocol state fuzzing of TLS implementa-
tions,” in 24th USENIX Security Symposium (USENIX Security 15),
Washington, D.C., 2015, pp. 193–206.

[36] C. Y. Cho, D. Babi ć, E. C. R. Shin, and D. Song, “Inference
and analysis of formal models of botnet command and control
protocols,” in Proceedings of the 17th ACM Conference on Computer
and Communications Security, ser. CCS ’10, 2010, pp. 426–439.

[37] G. Chalupar, S. Peherstorfer, E. Poll, and J. de Ruiter, “Automated
reverse engineering using lego®,” in 8th USENIX Workshop on
Offensive Technologies (WOOT 14). San Diego, CA: USENIX

Association, 2014. [Online]. Available: https://www.usenix.org/
conference/woot14/workshop-program/presentation/chalupar

[38] P. Fiterau-Brostean, T. Lenaerts, E. Poll, J. de Ruiter, F. W. Vaan-
drager, and P. Verleg, “Model learning and model checking of
SSH implementations,” in Proceedings of the 24th ACM SIGSOFT
International SPIN Symposium on Model Checking of Software, Santa
Barbara, CA, USA, July 10-14, 2017, 2017, pp. 142–151.

[39] N. Kothari, T. Millstein, and R. Govindan, “Deriving state ma-
chines from TinyOS programs using symbolic execution,” in Pro-
ceedings of the 7th International Conference on Information Processing
in Sensor Networks, ser. IPSN ’08, 2008, pp. 271–282.

[40] C. Y. Cho, D. Babic, P. Poosankam, K. Z. Chen, E. X. Wu, and
D. Song, “MACE: model-inference-assisted concolic exploration
for protocol and vulnerability discovery,” in 20th USENIX Security
Symposium, San Francisco, CA, USA, August 8-12, 2011, Proceedings,
2011.

[41] P. V. Knudsen and J. Madsen, “Integrating communication proto-
col selection with partitioning in hardware/software codesign,” in
Proceedings of the 11th international symposium on System synthesis.
IEEE Computer Society, 1998, pp. 111–116.

[42] P. Johnson, S. Bratus, and S. Smith, “Protecting Against Malicious
Bits On the Wire: Automatically Generating a USB Protocol Parser
for a Production Kernel,” in Proceedings of the 33th Annual Computer
Security Applications Conference, ser. ACSAC ’17, 2017.

[43] USB 3.0 Promoter Group, “Universal Serial Bus Type-C Authenti-
cation Specification, Revision 1.0,” March 2016.

[44] D. J. Tian, N. Scaife, D. Kumar, M. Bailey, A. Bates, and K. R.
Butler, “Sok: “plug & pray” today – understanding usb insecurity
in versions 1 through c,” in Security and Privacy (SP), 2018 IEEE
Symposium on. IEEE, 2018.

[45] B. Blanchet, V. Cheval, X. Allamigeon, and B. Smyth, “ProVerif:
Cryptographic protocol verifier in the formal model,” URL
http://prosecco. gforge. inria. fr/personal/bblanche/proverif, 2010.

[46] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in
source code,” IEEE Transactions on Software Engineering, vol. 29,
no. 3, pp. 210–224, March 2003.

[47] D. Jackson and A. Waingold, “Lightweight extraction of object
models from bytecode,” in Proceedings of the 21st International
Conference on Software Engineering, ser. ICSE ’99, 1999, pp. 194–202.

[48] G. Ramalingam, R. Komondoor, J. Field, and S. Sinha, “Semantics-
based reverse engineering of object-oriented data models,” in Pro-
ceedings of the 28th International Conference on Software Engineering,
ser. ICSE ’06, 2006, pp. 192–201.

[49] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu,
Robby, and H. Zheng, “Bandera: Extracting finite-state models
from java source code,” in Proceedings of the 22Nd International
Conference on Software Engineering, ser. ICSE ’00, 2000, pp. 439–448.

[50] M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Pasare-
anu, Robby, H. Zheng, and W. Visser, “Tool-supported program
abstraction for finite-state verification,” in Proceedings of the 23rd
International Conference on Software Engineering, ICSE 2001, 12-19
May 2001, Toronto, Ontario, Canada, 2001, pp. 177–187.

[51] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani, “Auto-
matic predicate abstraction of C programs,” in Proceedings of the
2001 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Snowbird, Utah, USA, June 20-22, 2001,
2001, pp. 203–213.

[52] D. Jackson and E. J. Rollins, “A new model of program depen-
dences for reverse engineering,” in Proceedings of the 2Nd ACM
SIGSOFT Symposium on Foundations of Software Engineering, ser.
SIGSOFT ’94, 1994, pp. 2–10.

[53] H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and H. Ural, “Data flow
testing as model checking,” in Proceedings of the 25th International
Conference on Software Engineering, May 3-10, 2003, Portland, Oregon,
USA, 2003, pp. 232–243.

[54] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler, “Con-
ditional model checking: A technique to pass information between
verifiers,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, ser. FSE ’12,
2012, pp. 57:1–57:11.

[55] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“A statistical semantic language model for source code,” in Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2013, 2013, pp. 532–542.

[56] J. Jeon, X. Qiu, J. Fetter-Degges, J. S. Foster, and A. Solar-Lezama,
“Synthesizing framework models for symbolic execution,” in Pro-

http://doi.acm.org/10.1145/2967606
http://doi.acm.org/10.1145/2967606
http://www.ti.com/tool/MSP430USBDEVPACK
http://www.ti.com/tool/MSP430USBDEVPACK
https://github.com/bluekitchen/btstack
https://github.com/bluekitchen/btstack
http://www.usb.org/developers/defined_class
http://www.usb.org/developers/defined_class
https://klee.github.io/docs/kquery/
https://klee.github.io/docs/kquery/
http://ezhid.sourceforge.net/
http://ezhid.sourceforge.net/
https://www.usenix.org/conference/woot14/workshop-program/presentation/chalupar
https://www.usenix.org/conference/woot14/workshop-program/presentation/chalupar

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2939526, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 22

ceedings of the 38th International Conference on Software Engineering,
ser. ICSE ’16, 2016, pp. 156–167.

[57] I. Bocic and T. Bultan, “Symbolic model extraction for web applica-
tion verification,” in Proceedings of the 39th International Conference
on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May
20-28, 2017, 2017, pp. 724–734.

[58] O. Bazhaniuk, J. Loucaides, L. Rosenbaum, M. R. Tuttle, and
V. Zimmer, “Symbolic execution for bios security,” in Proceedings of
the 9th USENIX Conference on Offensive Technologies, ser. WOOT’15,
2015, pp. 8–8.

[59] P. Boonstoppel, C. Cadar, and D. Engler, “Rwset: Attacking path
explosion in constraint-based test generation,” in Proceedings of
the Theory and Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, ser.
TACAS’08/ETAPS’08, 2008, pp. 351–366.

[60] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated white-
box fuzz testing,” in Proceedings of the Network and Distributed
System Security Symposium, NDSS 2008, San Diego, California, USA,
10th February - 13th February 2008, 2008.

[61] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to
less traveled paths,” in Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems
Languages & Applications, ser. OOPSLA ’13, 2013, pp. 19–32.

[62] H. Seo and S. Kim, “How we get there: A context-guided search
strategy in concolic testing,” in Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software En-
gineering, ser. FSE 2014, 2014, pp. 413–424.

[63] H. Wang, T. Liu, X. Guan, C. Shen, Q. Zheng, and Z. Yang,
“Dependence guided symbolic execution,” IEEE Trans. Softw. Eng.,
vol. 43, no. 3, Mar. 2017.

[64] R. Santelices and M. J. Harrold, “Exploiting program dependen-
cies for scalable multiple-path symbolic execution,” in Proceedings
of the 19th International Symposium on Software Testing and Analysis,
ser. ISSTA ’10, 2010, pp. 195–206.

[65] D. Qi, H. D. T. Nguyen, and A. Roychoudhury, “Path exploration
based on symbolic output,” ACM Trans. Softw. Eng. Methodol.,
vol. 22, no. 4, Oct. 2013.

[66] P. D. Marinescu and C. Cadar, “KATCH: high-coverage testing
of software patches,” in Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg,
Russian Federation, August 18-26, 2013, 2013, pp. 235–245.

[67] J. Jaffar, V. Murali, and J. A. Navas, “Boosting concolic testing
via interpolation,” in Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2013, 2013, pp.
48–58.

[68] S. Guo, M. Kusano, C. Wang, Z. Yang, and A. Gupta, “Assertion
guided symbolic execution of multithreaded programs,” in Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015, 2015, pp. 854–865.

[69] P. Daca, A. Gupta, and T. A. Henzinger, “Abstraction-driven
concolic testing,” in Verification, Model Checking, and Abstract Inter-
pretation - 17th International Conference, VMCAI 2016, St. Petersburg,
FL, USA, January 17-19, 2016. Proceedings, 2016, pp. 328–347.

[70] T. Brennan, N. Tsiskaridze, N. Rosner, A. Aydin, and T. Bultan,
“Constraint normalization and parameterized caching for quan-
titative program analysis,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2017,
2017, pp. 535–546.

Farhaan Fowze received his B.Sc. from
Bangladesh University of Engineering and Tech-
nology(BUET) in 2012. He is a Ph.D. candi-
date in the Department of Electrical and Com-
puter Engineering in University of Florida. His
research interests include model extraction, bi-
nary analysis, and program analysis. Contact at
farhaan104@ufl.edu .

Dave (Jing) Tian is an Assistant Professor in
the Department of Computer Science at Pur-
due University. His research involves operat-
ing system security, embedded system security,
and trusted computing. He received his Ph.D. in
computer science from the University of Florida
in 2019. For more information, please access
https://davejingtian.org.

Grant Hernandez is a Ph.D. Research Assis-
tant in the Computer and Information Science
and Engineering department at the University
of Florida. His research focuses on automated
embedded binary firmware analysis to discover
vulnerabilities at scale. Contact him via email
grant.hernandez@ufl.edu.

Kevin Butler is an Associate Professor of Com-
puter and Information Science and Engineer-
ing at the University of Florida, and Associate
Director of the Florida Institute for Cybersecu-
rity Research. His research focuses on estab-
lishing the trustworthiness of computer systems
and embedded devices. Butler received at Ph.D.
in computer science and engineering from the
Pennsylvania State University in 2010. He is a
Senior Member of IEEE and ACM.

Tuba Yavuz Tuba Yavuz is an Assistant Pro-
fessor at the Electrical and Computer Engineer-
ing Department of University of Florida. Her re-
search interests include model extraction, model
checking, and program analysis with applica-
tions to cyber-security. Yavuz received a Ph.D.
in computer science from the University of Cal-
ifornia of Santa Barbara. She has been on the
program committee of ICSE’19 and Usenix Se-
curity’19. She is a member of the IEEE and
ACM. Contact her at tuba@ece.ufl.edu address.

https://davejingtian.org
mailto:grant.hernandez@ufl.edu

