Who Are You (I Really Wanna Know)? Detecting Audio DeepFakes Through Vocal
Tract Reconstruction

Logan Blue, Kevin Warren, Hadi Abdullah, Cassidy Gibson, Luis Vargas, Jessica O’Dell, Kevin Butler,
Patrick Traynor

University of Florida, Gainesville, FL.
Email: {bluel, kwarren9413, hadil0102, c.gibson, lfvargasl4, odelljessica, butler,
traynor}@ufl.edu

Abstract

Generative machine learning models have made convincing
voice synthesis a reality. While such tools can be extremely
useful in applications where people consent to their voices
being cloned (e.g., patients losing the ability to speak, ac-
tors not wanting to have to redo dialog, etc), they also allow
for the creation of nonconsensual content known as deep-
fakes. This malicious audio is problematic not only because
it can convincingly be used to impersonate arbitrary users,
but because detecting deepfakes is challenging and generally
requires knowledge of the specific deepfake generator. In
this paper, we develop a new mechanism for detecting audio
deepfakes using techniques from the field of articulatory pho-
netics. Specifically, we apply fluid dynamics to estimate the ar-
rangement of the human vocal tract during speech generation
and show that deepfakes often model impossible or highly-
unlikely anatomical arrangements. When parameterized to
achieve 99.9% precision, our detection mechanism achieves
a recall of 99.5%, correctly identifying all but one deepfake
sample in our dataset. We then discuss the limitations of this
approach, and how deepfake models fail to reproduce all as-
pects of speech equally. In so doing, we demonstrate that
subtle, but biologically constrained aspects of how humans
generate speech are not captured by current models, and can
therefore act as a powerful tool to detect audio deepfakes.

1 Introduction

The ability to generate synthetic human voices has long been a
dream of scientists and engineers. Over the past 50 years, tech-
niques have included comprehensive dictionaries of spoken
words and formant synthesis models that create new sounds
through the combination of frequencies. While such tech-
niques have made important progress, their outputs are gener-
ally considered robotic-sounding and easily distinguishable
from organic speech. Recent advances in generative machine-
learning models have led to dramatic improvements in syn-
thetic speech quality, with convincing voice reconstruction

now available to groups including patients suffering from the
loss of speech due to medical conditions and grieving family
members of the recently deceased [1,2].

While these speech models are a powerful and important
enabler of communication, they also create significant prob-
lems for users who have not given their consent. Specifically,
generative machine learning models now make it possible to
create audio deepfakes, which allow an adversary to simu-
late a targeted individual speaking arbitrary phrases. While
public individuals have long been impersonated, such tools
make impersonation scalable, putting the general population
at risk. Such attacks have reportedly been observed in the
wild, including a company that allowed an attacker to instruct
funds to be sent to them using generated audio of the victim
company’s CEO’s voice [3]. In response, researchers have
developed detection techniques using bispectral analysis (i.e.,
inconsistencies in the higher-order correlations in audio) [4,5]
and training machine learning models as discriminators [6];
however, both are highly dependent on the specific, previously
observed generation techniques to be effective.

In this paper, we develop techniques to detect deepfake au-
dio samples by solely relying on limitations of human speech
that are the results of biological constraints. Specifically, we
leverage research in articulatory phonetics to apply fluid dy-
namic models that estimate the arrangement of the human
vocal tract during speech. Our analysis shows that deepfake
audio samples are not fundamentally constrained in this fash-
ion, resulting in vocal tract arrangements that are inconsistent
with human anatomy. Our work demonstrates that this incon-
sistency is a reliable detector for deepfake audio samples.

We make the following contributions:

* Identify inconsistent vocal tract behavior: Using a
combination of fluid dynamics and articulatory phonet-
ics, we identify the inconsistent behavior exhibited by
deepfaked audio samples (e.g., unnatural vocal tract di-
ameters). We develop a technique to estimate the vocal
tract during speech to prove this phenomenon.

* Constructing a deepfake detector: After proving the
existence of the phenomena, we construct a deepfake

detector that is capable of detecting deepfake audio
(Precision: 99.9%, Recall: 99.5%) from a large dataset
we create using the Real-Time Voice Cloning genera-
tor [7]. Finally, we also demonstrate that entries from the
ASVSpoof2019 dataset are easily detectable in the pre-
filtering portion of our mechanism due to a high word
error rate in automatic transcription.

¢ Analysis of deepfake detector: We further analyze
which vocal tract features and portions of speech cause
the deepfakes to be detectable. From this analysis, we
determine that on average our detector only requires a
single sentence to detect a deepfake with a true positive
rate (TPR) of 92.4%.

* Analysis of Potential Adaptive Adversaries: We con-
ducted two large-scale experiments emulating both a
naive and an advanced adaptive adversary. Our experi-
ments consist of training 28 different models and show
that in the best case, an adaptive adversary faces greater
than a 26x increase in training time, increasing the ap-
proximate time necessary to train the model to over 130
days.

We note that the lack of anatomical constraints is consis-
tent across all deepfake techniques. Without modeling the
anatomy or forcing the model to operate within these con-
straints, the likelihood that a model will learn a biologically
appropriate representation of speech is near zero. Our detector,
therefore, drastically reduces the number of possible models
that can practically evade detection.

The paper is organized as follows: Section 2 provides con-
text by discussing related work; Section 3 gives background
on relative topics used throughout this paper; Section 4 dis-
cusses our underlying hypothesis; Section 5 details our threat
model; Section 6 explains our methodology and detection
method; Section 7 describes our data collection and experi-
mental design; Section 8 discusses the results of our experi-
ments; Section 9 details the intricacies and consequences of
our work; and Section 10 provides concluding remarks.

2 Related Work

Advances in Generative Adversarial Networks (GANs) have
enabled the generation of synthetic “human-like” audio that is
virtually indistinguishable from audio produced by a human
speaker. In some cases, the high quality of GAN-generated
audio has made it difficult to ascertain whether the audio heard
(e.g., over a phone call) was organic [8]. This has enabled
personalized services such as Google Assistant [9], Amazon
Alexa [10], and Siri [11], which use GAN-generated audio
to communicate with users. GANs can also be trained to
impersonate a specific person’s audio, this kind of audio is
known as a deepfake [12].

The dangerous applications of deepfake audio have spurred
the need to automatically identify human audio samples from

deepfakes. Some of the current work in this area has focused
on identifying subtle spectral differences that are otherwise
imperceptible to the human ear [4,5]. In some cases, the deep-
fake audio will be played over a mechanical speaker, which
will itself leak artifacts into the audio sample. These artifacts
can be detected using a variety of techniques such as machine
learning models [13, 14], additional hardware sensors [15],
or spectral decomposition [16]. Researchers have also tried
to detect these artifacts by using mobile devices. They use
differences in the time-of-arrival in phoneme sequences, ef-
fectively turning the mobile devices into a Doppler Radar that
could verify the audio source [17, 18]. These techniques fall
within the category of liveness detection and have spawned
major competitions such as the ASV Spoof Challenge [19].
However, these methods have certain limitations including the
distance of the speaker from the recording microphone, accu-
racy, additional hardware requirements, and large training sets.
Phonetics (the scientific study of speech sounds) is commonly
used by language models for machine learning systems built
for speech to text [20,21] or speaker recognition [22]. Speech
recognition and audio detection tools also use phonetics to
increase their overall performance and capabilities [23,24].
While articulatory phonetics is not commonly used in secu-
rity, this has been used in past work, such as reconstructing
encrypted VoIP calls by identifying phonemes [25].

Using concepts of articulatory phonetics, our work attempts
to extract the physical characteristics of a speaker from a
given audio sample; these characteristics would otherwise not
be present in deepfake audio. Human or organic speech is
created using a framework of muscles and ligaments around
the vocal tract. The unique sound of each of our voices is
directly tied to our anatomy [26]. This has enabled researchers
to use voice samples of a speaker to extract the dimensions
of their anatomical structures such as vocal tract length [27—
31], age [32], or height [33,34] of the speaker. These works
attempt to derive an acoustical pipe configuration by modeling
the human pharynx. This configuration can then be used
as a proxy for the human anatomy to retrieve the physical
characteristics of the speaker. Since deepfakes are generated
using GANS, the physical dimensions are likely inconsistent.
This inconsistency can be measured and help differentiate
between deepfake and human audio samples.

3 Background

3.1 Phonemes

Phonemes are the fundamental building blocks of speech.
Each unique phoneme sound is a result of different config-
urations of the vocal tract components shown in Figure 1.
Phonemes that comprise the English language are categorized
into vowels, fricatives, stops, affricates, nasals, glides, and
diphthongs (Table 1).

Vowels (e.g., “/1/” in ship) are created using different ar-

Palate Oral Cavity

Alveolar Ridge

Figure 1: The vocal tract is composed of various components
that act together to produce sounds. Distinct phonemes are ar-
ticulated based on the path the air travels, which is determined
by how the components are positioned.

rangements of the tongue and jaw, which result in resonance
chambers within the vocal tract. For a given vowel, these
chambers produce frequencies known as formants whose re-
lationship determines the actual sound. Vowels are the most
commonly used phoneme type in the English language, mak-
ing up approximately 38% of all phonemes [35]. Fricatives
(e.g.,“/s/” in sun) are generated by turbulent flow caused by a
constriction in the airway, while stops (e.g.,*/g/” in gate) are
created by briefly halting and then quickly releasing the air-
flow in the vocal tract. Affricatives (e.g.,”/tf/” in church) are
a concatenation of a fricative with a stop. Nasals (e.g.,”/n/”
in nice) are created by forcing air through the nasal cavity
and tend to be at a lower amplitude than the other phonemes.
Glides (e.g.,“/1/” in lie) act as a transition between different
phonemes, and diphthongs (e.g.,”/e1/” in wait) refer to the
vowel sound that comes from the lips and tongue transitioning
between two different vowel positions.

Phonemes alone do not encapsulate how humans speak.
The transitions between two phonemes are also important for
speech since it is a continuous process. Breaking speech down
into pairs of phonemes (i.e., bigrams) preserves the individual
information of each phoneme as well as transitions between
them. These bigrams generate a more accurate depiction of
the vocal tract dynamics during the speech process.

3.2 Organic Speech

Human speech production results from the interactions be-
tween different anatomical components, such as the lungs,
larynx (i.e., the vocal cords), and the articulators (e.g., the
tongue, cheeks, lips), that work in conjunction to produce
sound. The production of sound' starts with the lungs forc-

I'This process is similar to how trumpets create a sound as air flows
through various pipe configurations.

Phoneme Type | Phoneme | Example

Vowel /1/ ship
Fricative /s/ sun
Stop /9/ gate

Affricative Jtf/ church
Nasal /n/ nice

Glide /1/ lie

Diphthong et/ wait

Table 1: English is composed of these seven categories of
phonemes. Their pronunciation is dependent on the configu-
ration of the various vocal tract components and the airflow
that goes through it.

spectrogram

& e [
speaker § —
embedding —]

“/lzzaetz)t/” Synthesizer
cal

Figure 2: Deepfake generation has several stages to create
a fake audio sample. The encoder generates an embedding
of the speaker, the synthesizer creates a spectrogram for a
targeted phrase using the speaker embedding, and the vocoder
converts the spectrogram into the synthetic waveform.

waveform

(dog)

ing air through the vocal cords, which induces an acoustic
resonance that contains the fundamental (lowest) frequency
of a speaker’s voice. The resonating air then moves through
the vocal cords and into the vocal tract (Figure 1). At this
point, different configurations of the articulators (e.g., where
the tongue is placed, how large the mouth is) shape the path
for the air to flow, which creates constructive/destructive in-
terference that produces the unique sounds of each phoneme.

3.3 Deepfake Audio

Deepfakes are digitally produced speech samples that are
intended to sound like a specific individual. Currently, deep-
fakes are produced via the use of machine learning (ML)
algorithms. While there are numerous deepfake ML algo-
rithms in existence, the overall framework the techniques are
built on are similar. As shown in Figure 2, the framework is
comprised of three stages: encoder, synthesizer, and vocoder.

Encoder: The encoder learns the unique representation of
the speaker’s voice, known as the speaker embedding. These
can be learned using a model architecture similar to that of
speaker verification systems [36]. The embedding is derived
from a short utterance using the target speaker’s voice. The
accuracy of the embedding can be increased by giving the
encoder more utterances, with diminishing returns. The output
embedding from the encoder stage is passed as an input into
the following synthesizer stage.

Synthesizer: A synthesizer generates a Mel Spectrogram

from a given text and the speaker embedding. A Mel Spectro-
gram is a spectrogram that has its frequencies scaled using
the Mel scale, which is designed to model audio perception of
the human ear. Some synthesizers can produce spectrograms
solely from a sequence of characters or phonemes [37].

Vocoder: Lastly, the vocoder converts the Mel Spectrogram
to retrieve the corresponding audio waveform. This newly
generated audio waveform will ideally sound like a target
individual uttering a specific sentence. A commonly used
vocoder model is some variation of WaveNet [38], which uses
a deep convolutional neural network that uses surrounding
contextual information to generate its waveform.

Although the landscape of audio generation tools is ever-
changing, these three stages are the foundational components
of the generation pipeline. The uniqueness of each tool is
derived mainly from the quality of models (one for each stage)
and the exact design of their system architecture.

4 Hypothesis

Human-created speech is fundamentally bound to the anatom-
ical structures that are used to generate it. Only certain ar-
rangements of the vocal tract are physically possible for a
speaker to create. The number of possible acoustic models
that can accurately reflect both the anatomy and the acous-
tic waveform of a speaker is therefore limited. Alternatively,
synthetic audio is not restricted by any physical structures
during its generation. Therefore, an infinite set of acoustic
models could have generated the synthetic audio. The details
of this phenomenon will be discussed shortly in Section 6. It
is highly improbable that models used to generate synthetic
audio will mimic an acoustic model that is consistent with
that of an organic speaker. As such, synthetic audio can be
detected by modeling the acoustic behavior of a speaker’s
vocal tract.

5 Security Model

Our security model consists of an adversary, a victim, and a
defender. The goal of the adversary is to create a deepfake
audio sample of the victim uttering a specific phrase. We
assume a powerful adversary, one who has access to enough
of the victim’s audio and enough computing power to generate
a deepfake sample.

The adversary offers the defender either the deepfake or
an organic audio sample. The defender is tasked with ascer-
taining whether the adversary-provided sample is deepfake or
organic audio. If the defender makes the correct assessment,
the adversary loses.

The defender does not have knowledge of, or audio data
from, the victim the adversary will attempt to impersonate
(i.e., no user-specific audio samples of the victim). The de-
fender also has no knowledge of, or access to, the attacker’s

audio generation algorithm. This is a stronger threat model
than existing works in the area, which often use very large
training data sets (order of thousands of audio samples) [6].
Lastly, we assume that the defender wants an explanation
as to why their detection system flagged a sample as either
deepfake or organic.

A practical example of this scenario is as follows. An adver-
sary creates a deepfake of a local politician and releases it to
the media to further some goal. The media is the defender in
this scenario and must decide whether the adversary’s audio
sample is authentic. Once the authenticity of the audio sam-
ple has been checked the media can choose to either ignore
or publish the audio. If the media publishes a synthetically
generated audio sample, then the adversary has successfully
victimized the politician by making them appear to have said
something they did not. Additionally, any media outlet which
publishes a synthetic audio sample could have its reputation
damaged if it is later discovered that the audio sample was
inauthentic. By leveraging our technique, the media outlet can
prevent reporting inauthentic audio samples, thus preventing
their loss of reputation and the victimization of the politician.

6 Methodology

Our technique requires a training set of organic audio and a
small set of deepfake audio samples generated by the deepfake
algorithm.” The process of determining the source of an audio
sample (i.e., organic vs deepfake) can then be broken down
into two logical steps:

* Vocal Tract Feature Estimator: First, we construct a
mathematical model of the speaker’s vocal tract based
on the amplitudes of certain frequencies (commonly
referred to as the frequency response) present in their
voice during a specific pair of adjacent phonemes (i.e.,
bigram). This model allows us to estimate the cross-
sectional area of the vocal tract at various points along
the speaker’s airway.

* Deepfake Audio Detector: Next, we aggregate the
range of values found for each bigram-feature pair in our
organic dataset. These values determine if the audio sam-
ple can be realistically produced by an organic speaker.
This enables our system to discriminate between organic
and deepfake samples. Additionally, we can isolate the
bigram-feature pairs that best determine the source of
an audio sample to create a set of ideal discriminators.
These ideal discriminators allow us to optimally deter-
mine whether an unseen audio sample is a deepfake.

2The training data is a general set that does not require samples of the
specific victim that is being targeted. Additionally, the training data required
for this technique is significantly less than the data required with prior ML-
based techniques.

Cross Sectional Area

Vocal Tract Position

Cross Sectional Area

Vocal Tract Position

Who
/hu/

Has
/haez/

Figure 3: The sound produced by a phoneme is highly dependent on the structure of the vocal tract. Constriction made by tongue

movement or jaw angle filters different frequencies.

6.1 Reader Participation

Before we go further into the details of these two steps, we
would like to help the reader develops a deeper intuition of
phonemes and speech generation.

For speech, air must move from the lungs to the mouth
while passing through various components of the vocal tract.
To understand the intuition behind our technique, we invite
the reader to speak out loud the words “who” (phonetically
spelled “/hu/”) and “has” (phonetically spelled “/haz/”) while
paying close attention to how the mouth is positioned during
the pronunciation of each vowel phoneme (i.e., “/u/” in “who”
and “/&/” in “has”).

Figure 3 shows how the components are arranged during
the pronunciation of the vowel phonemes for each word men-
tioned above. Notice that during the pronunciation of the
phoneme “/u/” in “who” the tongue compresses to the back
of the mouth (i.e., away from the teeth) (A) at the same time,
the lower jaw is held predominately closed. The closed jaw
position lifts the tongue so that it is closer to the roof of the
mouth (B). Both of these movements create a specific path-
way through which the air must flow as it leaves the mouth.
Conversely, the vowel phoneme “/&/” in “has” elongates the
tongue into a more forward position (A) while the lower jaw
distends, causing there to be more space between the tongue
and the roof of the mouth. This tongue position results in a
different path for the air to flow through, and thus creates a
different sound. In addition to tongue and jaw movements, the
position of the lips also differs for both phonemes. For “/u/”,
the lips round to create a smaller more circular opening (C).
Alternatively, “/2/” has the lips unrounded, leaving a larger,
more elliptical opening. Just as the tongue and jaw position,
the shape of the lips also impacts the sound created.

One additional component that affects the sounds of a
phoneme is the other phonemes that are adjacent to it. For
example, take the words “ball” (phonetically spelled “/bol/”*)
and “thought” (phonetically spelled “/65t/”). Both words con-
tain the phoneme “/o/,” however the “/o/” in “thought” is

affected by the adjacent phonemes differently than how “/o/”
in “ball” is. In particular “thought” ends with the plosive “/t/”
which requires a break in airflow, thus causing the speaker to
abruptly end the “/o/” phoneme. In contrast, the “/o/” in “ball”
is followed by the lateral approximant “/1/,” which does not
require a break-in airflow, leading the speaker to gradually
transition between the two phonemes.

6.2 Vocal Tract Feature Estimator

Based on the intuition built in the previous subsection, our
modeling technique needs to be able to extract the shape of
the vocal tract present during the articulation of a specific
bigram. To do this, we use a fluid dynamic concatenated tube
model to estimate the speaker’s vocal tract that is similar to
Rabiner et al.’s technique [27]. Before we go into the details
of this model, it is important to discuss the assumption the
model makes.

* Lossless Model: Our model ignores energy losses that
result from the fluid viscosity (i.e., the friction losses
between molecules of the air), the elastic nature of the
vocal tract (i.e., the cross-sectional area changing due
to a change in internal pressure), and friction between
the fluid and the walls of the vocal tract. Ignoring these
energy losses will result in our model having acoustic
dampening, causing the lower formant frequencies to in-
crease in value’ and an increase in the bandwidth of all
formant frequency spikes*. Additionally, we assume the
walls of the vocal tract have an infinitely high acoustic
impedance (i.e., sound can only exit the speaker from
their mouth) which will result in our model missing trace
amounts of low bass frequencies. Overall, these assump-
tions simplify the modeling processing while decreasing
the accuracy of our technique by a marginal amount and
are consistent with prior work [27].

3This effect is mainly caused by the elastic nature of the vocal tract walls.
4The viscosity and friction losses predominately effect frequencies above
4 kHz [27].

Figure 4: The cross sectional area of each pipe is calculated
to characterize the speaker’s voice tract.

¢ Unidirectional Traveling Waves: We assume that,
within the model, we will only have traveling waves
along the centerline of the tube. It stands to reason that
this assumption is accurate enough for our model given
the small diameter of our tubes (i.e., vocal tract). This
assumption should not affect our results since any error
caused by this assumption will most likely occur in fre-
quencies greater than 20 kHz (far above human speech).
As we will discuss later in this section, our model is most
accurate for lower frequencies and thus we only analyze
frequencies beneath 5 kHz.

* Vowel Limitation: The model used in this paper was
only designed to accurately model vowel phonemes.
Other phonemes are generated via fundamentally dif-
ferent and more difficult model mechanisms such as
turbulent flow. Despite this, we apply the same model
across all bigrams throughout this work for reasons dis-
cussed in Section 9.1.

Our concatenated tube model consists of a series of open
pipe resonators that vary in diameters but share the same
length. A simplified representation can be seen in Figure 4.

To estimate the acoustics of an individual tube at a specific
time during a bigram, we need to understand the behavior
of pressure waves within the resonator. The simplest way to
do this is to model the net volumetric flow rate of the fluid
(i.e., the air in the vocal tract) within the resonator. We can
model the acoustics of a resonator via the flow rate since the
volumetric flow rate and the pressure (i.e., sound) within the
resonator are directly related [27].

Modeling the interaction between two consecutive tubes is
accomplished by balancing the volumetric inflows and out-
flows of the two tubes at their connection. Since the volumet-
ric flow rate between two consecutive tubes must be equal, but
the cross-sectional areas (and thus the volumes) may differ,
there may exist a difference in fluid pressure between them.
This pressure difference at the boundary results in a reflection
coefficient, which affects the fluid flow rates between the two
tubes. A schematic of the intersection between two tubes can
be seen in Figure 5. Mathematically, the interactions between

51t is worth noting that most information in human speech is found below
5 kHz. It is also the reason why cellular codecs, such as those used in GSM
networks, filter out noise in higher frequencies [39].

Positive flow

| Negative flow uy”

‘
Uy (141 Uy

Uy (1) uy”

Figure 5: In our model we must account for airwaves being
able to move in different directions within the vocal tract and
anticipate how they interact with each other.

two consecutive pipes can be written as follows:
uj =ug (1+r)+ Uy (k) (1)

ug =uy (1—re) + U (—ri) (2)

where uaL and u is the forward and reverse volumetric flow
rate in the left pipe, ;" and u| is the forward and reverse
volumetric flow rate in the right pipe and ry is the reflection
coefficient between the two consecutive pipes.

The reflection coefficient r; can be expressed as follows:

Ak — A

rp=—-—- 3
“T A + A &)

where Ay is the cross-sectional area of the tube that is down-
stream (i.e., further from the pressure source) in the tube series
and Ay, is the cross-sectional area of the tube that is upstream
(i.e., closer to the pressure source) in the tube series. It should
be noted that r; is mathematically bound between —1 and
1. This bounding represents the scenarios where either Ay or
A1 is infinitely larger than the next pipe adjacent to it.
Between these three equations, we can fully describe a sin-
gle intersection between two tubes. Our vocal tract model
consists of various tubes with multiple intersections being
concatenated to form a series. To model this, we need to ex-
pand these equations to incorporate additional tube segments
and intersections. In particular, we need to incorporate N
connected tubes with N — 1 intersections between them. The
resulting differential equation is the transfer function of our
N-segment tube series and when simplified is the following:

0.5(1+r¢) HQ’ZI (14 r)e N
D(w)

V(o) = “)

1 —n
D(w) = [1,-rg] [_rlezLij eZLCjo):|

1 —IN 1
_rN672LC]w e*ZLC‘](JJ FAtm

where r is the reflection coefficient at the glottis, r;...ry are
the reflection coefficients for every consecutive tube pair in

(&)

Sample FFT

4000
3000
2000

]
|

\

1000 w }
J
|

|

wf)
/\
l“w Y \
sl | WA YN

s /‘U‘ \‘ ‘ ‘A‘\‘V‘M Ine
Sl

A Rl

3 560 1000 1500 2000 0 1000 2000 3000 4000 5000
Time (s) Frequency (Hz)

Amplitude
‘Amplitude (dB)

2000
3000

WO,y s WN

1 Adjust ro

Transfer Function T
f
70 + SEED, ..., T N e _l_'_l_ Al
I o —— . T B | §o

Subtract

Amplitude (c6)

plitude (6)

W
r!

o 100

2000 3000 4000 5000
Frequency (H2

\

min < error’ error” >

Figure 6: High-level overview of how the vocal tract feature estimator works. A speaker’s audio sample (a single-window from
a bigram) has its frequency data extracted using an FFT, the output of which is used as the target for our transfer function to

reproduce. The transfer function is run twice over a range of frequencies wy, ...,
ry with a step size offset added to a single coefficient. The second application

uses the current reflection coefficients ry, ...,

wy. The first application of the transfer function

instead subtracts the step size offset from the same single coefficient. The estimated frequency response curve calculated for both
series is subtracted from the target curve. Whichever reflection coefficient results in a lower area under the resulting curve will be
selected for the next iteration. This process continues (applying the step size offset to all of the reflection coefficients) until the
area under the subtracted curves approach zero, indicating that we have found a reflection coefficient series that approximately

replicates the original speaker’s vocal tract.

the series, ras, is the reflection coefficient at the mouth, L
is the length of each tube, C is the speed of sound (34,300
cm/s), j is the imaginary constant, and ® is the frequency
of the waveform in rad/s. V() is the volumetric flow rate
at the lips during the pronunciation of a certain frequency,
which is directly related to acoustic pressure (i.e., amplitude
of the voice at frequency m). We separate the denominator
of Equation 4 out separately into Equation 5 for increased
readability.

These equations together are a simplified representation of
a system of 2N equations (N Equation 1’s and N Equation 2’s)
that represents a series of N connected tube intersections
(Figure 6). Since the volumetric flow rate through every tube
within this series must be equal, we can simplify the 2N
equations to Equation 4 and 5.

We refer the reader to Rabiner et al.’s work for a full deriva-
tion of these equations [27].

It is important to note that this differential equation lacks
a closed-form solution and thus, we must specify several
boundary conditions before solving the equation. Specifically,
we must fix the number of tubes used in the series (V) and the
reflection coefficients at both the beginning (rs) and end of
the series (rsy,). This helps to more closely bind our equation
to the physical anatomy from which it is modeled.

We can determine the number of tubes necessary for our
model by taking the average human vocal tract length (approx-
imately 15.5 cm [40]) and dividing by the length of each tube.
This length, L, can be determined by the following equation
(derivation of this equation can be found in Section 3.4.1 of

Rabiner et al.’s work [27]):

TC

L= (6)
where T is the period between samples in our audio record-
ings. In our study, all of our audio samples had a sampling rate
of 16 kHz. This sampling rate was selected since it captures
the most important frequencies for speech comprehension
and is also the most commonly found sampling rate for voice-
based systems [41]. By sampling at 16 kHz, our vocal tract
model will be made up of 15 distinct pipe resonators.

Next, we can use our understanding of human anatomy to
fix the first reflection coefficient in the series (rg in Equation
5). This reflection coefficient represents the fluid reflection
that occurs at the speaker’s glottis. During large portions of
speech (e.g., during vowels) the glottis is actively being en-
gaged. This means that the vocal folds are actively vibrating
and thus preventing fluid flow in the reverse direction. With
this in mind, we can set rg to 1, symbolizing only fluid flow
in the forward direction. Finally, the last reflection coefficient
rarm 1s representing the behavior of the flow at the opening of
the mouth. Here, once again, we can expect to see predomi-
nately only positive flow. This is because, during speech, the
vocal tract is raised to a higher than atmospheric pressure, pre-
venting flow from moving from the atmosphere back into the
vocal tract. We can, therefore, set the last reflection coefficient
Farm €qual to 1.

With these boundary conditions, we now have a solvable
differential equation that describes the acoustic behavior of
our concatenated tube model. Using this equation we are
now able to accurately estimate the amplitude of a certain
frequency ® during a bigram for a known speaker (that has

a known ryg, ..., ry series). However, in our case, we do not
know the dimensions of the speaker’s vocal tract and cannot
simply apply the transfer function. We do, however, have
access to samples of the speaker’s voice. Thus, we can use
these audio samples and our transfer function to estimate the
speaker’s vocal tract during various articulations. The process
of estimating a speaker’s vocal tract can be seen in Figure 6.

The estimation is done by running a segment of a speaker’s
speech through a Fast Fourier Transform (FFT) to get the rel-
ative amplitudes for the frequencies that make up their voice.
The found frequency response curve is effectively the output
we would expect from the transfer function if we knew the
speaker’s ry, ..., ry values. We can use the frequency response
curve found with the FFT to check if a certain ry,...ry se-
ries correctly matches our speaker. We can, therefore, find
an accurate approximation of a speaker’s vocal tract by find-
ing a ry, ..., ry series that accurately reproduces the speaker’s
frequency response curve.

To avoid naively searching the entire ry, ..., ry space for a
match, we can instead construct an error function that can be
optimized with gradient descent to find a good solution. Since
gradient descent searches for a local minimum, we subtract
the outputs from our transfer function from the frequency
response curve found using the FFT. The transfer function
is initially run with all reflection coefficients ry, ..., ry set to
zero. This is analogous to a constant diameter tube, which is a
configuration achievable by the human vocal tract. We then
integrate the resulting curve to find the overall error between
the two curves. As the output of our transfer function ap-
proaches the frequency response curve, the area between the
two curves will approach zero and result in a local minimum.
The rg, ..., ry values used in the transfer function should ap-
proximate the speaker’s vocal tract during that bigram.

Once we have found the optimal series of reflection coef-
ficients, we can convert them into cross-sectional area esti-
mates using Equation 3. This step requires us to make one
last assumption about the vocal tract since there is one more
cross-sectional area measurement than there are reflection
coefficients (i.e., N — 1 tube intersections). To mitigate this,
we set the cross-sectional area at the glottis to the average
size of a human glottis of 3.7¢m? [40]. With this assumption,
we can then calculate the cross-sectional area series dy, ...,y
that closely approximates the human vocal tract.

6.3 Deepfake Audio Detector

Using the vocal tract estimator we can design a generalized
detector for deepfake audio. Our detector has two phases.
First, it extracts the acceptable organic ranges for bigram-
feature pairs that describe organic speech. Next, the detector
will use these acceptable organic ranges to classify whole

SDuring the “/o/”” phoneme the vocal tract roughly resembles a constant
diameter tube.

samples of audio as either deepfake or organic. The associ-
ated code for this paper is available at https://github.com/
blue-logan/who_are_you/.

6.3.1 Organic Range Extraction

The organic range extraction phase begins with the detector
ingesting known organic audio samples. These audio samples
also have associated metadata containing timestamps for both
the words and individual phonemes that make up the sample.
The phoneme metadata is then augmented to create the neces-
sary bigram timing information. For this, we need to define
which phonemes are considered to be adjacent to one another.
We define two phonemes as being adjacent if they are both in
the same word and occur one after the other. For example, the
word cat (phonetically spelled “/ke&t/”’) contains two bigram
pairs, “/k — @/~ and “/2— t/”. We consider a bigram to begin
at the start of the first phoneme and stop at the end of the
second phoneme. The bigram timing information will later
be associated to estimate features from processing the audio.

Each bigram audio sample was divided using a sliding
window of 565 samples with an overlap between windows
of 115 samples. To find these values, we found the minimum
and maximum duration for any bigram that existed in our
feature extraction set (more detail of the feature extraction set
in Section 7). We then selected sliding window parameters
(565 samples per window with an overlap of 115 samples) that
ensure that every bigram would have between three and seven
windowed samplings taken from them. This ensured that we
capture the temporal behavior of every bigram. Since speech
is not discrete, each bigram captures the transitional behavior
that exists as the speaker moves from the initial phoneme to
the final phoneme. Windowing the audio allows us to examine
individual stages of these transitions (e.g., beginning, middle,
end). This forces deepfake audio samples to be generated
correctly throughout the transition between phonemes in order
to evade detection. Without windowing, it would be possible
to evade detection by merely generating correct phonemes
without a transition. Each windowed segment of audio is then
passed through our vocal tract estimator and assigned a feature
vector of 15 cross-sectional areas. The 15 different cross-
sectional areas are estimates of the vocal tract at different
points between the glottis and the oral cavity opening. Each
windowed segment is then labeled with the word, bigram, and
window index which corresponds to it.

We are now able to determine which bigrams and features
best differentiate organic and deepfake audio. This is done
by finding divergences in the distributions of features in spe-
cific bigrams between deepfake and organic audio samples.
In other words, we look for differences in the distribution
of the cross-sectional area estimations found for organic and
deepfake audio. The detection of a difference in the cross-
sectional area distributions found for the two types of audio
indicates that the deepfake audio is being created by an inor-

https://github.com/blue-logan/who_are_you/
https://github.com/blue-logan/who_are_you/

PDF for Bigram = a1 -- k

Organic Audio
010 —— Deepfake Audio

0.08

0.06

Probability

=]
o
i

=]
o
~

\/

20 25 30 35 40 45
Cross-sectional Area Estimate (cm”2)

=]
o
=]

(a) High Overlap

PDF for Bigram = av -- t

=]
—
o

Organic Audio
—— Deepfake Audio

Probability
o o o (=] (=] (=]
(=] (=] o - - -
B = @ (=} ~N '

=3
o
~

=]
o
=]

15 20 25 30 35 40
Cross-sectional Area Estimate (cm”2)

(b) No Overlap

Figure 7: The divergence of the cross-sectional area estimate distributions for each bigram can be used to help identify deepfake
samples from organic ones. The plots show the distributions of the cross-sectional area estimates for the bigrams (a) “ar — k™ as
in “like” and (b) “auv —t” as in “out”. Because the distributions in (a) overlap, “ar — k™ is a poor indicator of whether a sample is
deepfake or not. In contrast, the distributions in (b) do not overlap at all. This means “av —t” is a good indicator to differentiate
between deepfake and organic audio samples. Our technique would then select a threshold value, such as 2.1cm?, that divided

the two distributions.

ganic source. These divergences exist because the biological
framework of the vocal tract limits organic speech, whereas
GAN-generated audio is not limited in the same way. Thus, we
are then able to identify deepfake audio samples from organic
ones by looking for irregular (i.e., inorganic) cross-sectional
area estimates. We, therefore, record the distributions of the
cross-sectional area estimates extracted from the organic au-
dio set to be used for future comparison. One distribution is
recorded for each unique set of a bigram, window index, and
vocal tract position.

6.3.2 Whole Sample Detection

The second phase of our detector is used to determine whether
whole audio samples were GAN or organically generated.
This phase begins similarly to the organic range extraction
phase described in the previous section.

This phase begins by creating the necessary bigram timing
information from the sample’s metadata. Next, it windows
and evaluates the audio samples using the vocal tract estima-
tor. Finally, it associates the estimated vocal tract features to
specific bigrams and words just as in the ideal feature selec-
tion phase. At this point, our whole sample detection phase
deviates from the organic range extraction phase.

Instead of calculating the cross-sectional area distributions
for all bigram-features pairs in the data, this phase checks
whether every bigram-feature pair falls within the previously
determined organic ranges. More specifically, we extract ev-
ery bigram-feature pair from the sample that exists in both
itself and the organic ranges (our set of organic ranges has
no guarantee of containing all possible bigram-feature pairs).
Next, each feature is compared against the maximum and min-
imum values found in the distribution of previously extracted
organic samples. If the majority of the bigram-feature pairs

found in the audio sample are outside the organic distributions,
the audio sample is labeled as a deepfake.

6.4 Detector Optimization

Although the previously described detector can differentiate
between organic and deepfake audio samples, it is inefficient.
Not all bigram-feature pairs act as effective discriminators
since deepfake audio models might be accidentally learning
the correct distribution for some bigram-feature values. This
scenario is likely possible as these models do produce high-
quality “human-like” audio. Thus, our detector is estimating
large numbers of bigram-feature pairs that are unlikely to in-
dicate the origin of the audio sample. To prevent this, we con-
struct an ideal feature set that contains only bigram-feature
pairs that act as strong indicates of the audio authenticity.

6.4.1 Ideal Feature Set Creation

To determine the ideal bigram-feature pairs that act as good
discriminators, we initially follow the same procedures laid
out in our organic range extraction phase. Namely, extract the
timing information from the sample’s metadata, window the
audio, evaluate it using the vocal tract estimator, and construct
an association between the vocal tract features and specific
bigrams. We then plot the probability density function (PDF)
(Figure 7) for each bigram-feature pair. The PDF represents
the likelihood of the random variable, in this case, the bigram-
feature pair, having a certain value. If there is a large over-
lap between the PDF curves for organic and deepfake audio
(Figure 7a), then that feature is a poor discriminator, which
indicates that the model has learned the correct distribution
of the bigram-feature pair. In contrast, if there is little-to-no
overlap between the PDF curves (Figure 7b), then that bigram-

feature pair is an ideal discriminator (i.e., can be used to help
differentiate between deepfake and organic audio).

Our set of ideal features consists of bigram-feature pairs
that can differentiate between deepfake and organic audio
samples with a precision-recall of at least 0.9. We determine
these threshold values by a sweep through a range of potential
values for each bigram-feature pairs. This process continues
until a threshold value (the threshold k, which is chosen on a
per-feature basis) achieves the desired precision-recall values.
This results in a triplet bigram-feature-threshold that we refer
to as an ideal feature. Next, we weigh each bigram-feature pair
to avoid outlying bigram-features pairs that meet our require-
ments but only contain a relatively small number of samples.
This weight is the number of samples used in our selection
criteria calculations. We then filter our bigram-feature pairs
using these weights so that only the pairs whose weight are
equal to or greater than the average weight of the set are kept.
The collection of all the resulting triplets is hereby referred to
as our ideal feature set.

It is worth noting that our thresholds singularly divide the
PDEF. That is, thresholds in our ideal set will label all bigram-
feature pairs as organic only if it shares a certain relationship
with their threshold (i.e., less than or greater than). Therefore
it is possible to create two ideal feature sets, one where values
below the thresholds are labeled as organic and one where
values above the thresholds are labeled as organic. Unless
otherwise stated we will be referring to the ideal feature set
as the set of thresholds where values less than the threshold
are labeled as deepfakes and the values greater than or equal
to the threshold are labeled as organic.

6.4.2 Optimized Detector

Finally, we construct an optimized detector that only computes
and analyzes bigram-features that have been shown to act as
strong indicators (i.e., our ideal feature set). This detector will
follow the same initial operation as our whole sample detector,
decorating the audio data with its corresponding timing and
phoneme data. However, unlike the whole sample detector,
our optimized detector will only check the bigram-features
that best indicate whether the audio sample is organic or
deepfake. More specifically, we extract every feature from the
sample that exists in both itself and the ideal feature set. For
every one of these features, we compare the previously found
threshold from the ideal feature set with the value found in the
current sample. We count the number of times the values from
the test audio samples cross the threshold. If more bigram-
feature values cross the threshold than do not, we label the
audio sample as a deepfake (i.e., majority voting).

7 Datasets

We now discuss the datasets that our technique was tested
against as well as the process that was performed in generat-

ing deepfakes. For our transfer function, we use the TIMIT
Acoustic-Phonetic Continuous Speech Corpus [42] as it is the
standard in acoustic-phonetic studies and is manually verified

by the National Institute of Standard and Technology (NIST).
78

Organic Audio The TIMIT dataset is a speech corpus that is
used in phonetic studies and is commonly used in the training
of ML models for speech recognition systems [45]. Despite
its age, the TIMIT dataset is widely used in research today
with over 1,900 citations since 2015 according to Google
Scholar. TIMIT provides documentation of the time align-
ments for the phonemes and words in each audio file, which
is information that is essential for developing our modeling
process. The TIMIT dataset is comprised of 630 speakers
of 8 different American English dialects speaking phoneti-
cally balanced sentences [42]. Each speaker has 10 sentences
recorded with a sampling rate of 16 kHz. For our experiments,
we randomly sampled 300 speakers from the TIMIT dataset
to have a similarly-sized dataset as that of previous work [46].
For consistency, we also performed our time alignments
using an open-source forced aligner called Gentle [47] which
time-aligns words of transcription with phonemes in an audio
sample. Gentle is built on the Kaldi model [48], which is
a toolkit frequently used for automatic speech recognition.
We use Gentle since any audio samples outside the TIMIT
dataset will not have the phoneme time-alignment information
needed for extraction. By performing our time-alignments
on the TIMIT dataset, we can keep any error in alignments
consistent across all samples (i.e., organic and deepfake).

Deepfake Audio We derived our own set of synthetic
TIMIT audio samples using the open-source Real-Time-
Voice-Cloning (RTVC) tool from Jemine [7, 49], the most
widely used publicly available deepfake generation tool.
RTCV is an implementation of Tacotron 2 by Liu et al.,
which uses Tacotron as the synthesizer and Wavenet as a
vocoder [50]. For each of our 300 TIMIT speakers, we trained
an RTCV model on a concatenation of all 10 TIMIT audio
recordings (approximately 30 seconds). Each RTCV model
was then used to create a deepfake version of every TIMIT
sentence spoken by each speaker. In total, this creates 2,986
usable synthetic audio samples of our 300 original speakers.
The 14 missing audio samples were too noisy for Gentle to
process and were thus unable to be used in our experiments.

Additionally, we contacted several commercial companies
with Deepfake generation tools in an attempt to test our tech-
nique against other systems. Most of these companies never
returned our requests to use their products in our research. The
few companies that responded would only give us extremely

"External factors such as face coverings during audio recording do not
affect the features our technique needs to operate [43].

8 Additional experiments were conducted using the ASVspoof2019
dataset [44]. These can be found in Appendix A.

B 30 Most Common Bigrams in Ideal Feature Set
30 Most Common Bigrams in TIMIT

SNSRI BIINS 048 w\kaqu\@\ooa SO H S ,D,,,»

%’40\\’”av\‘vqg&"”~‘~&@,@e"' °,g;s\\%~x—o“°§$ osb\ 00@8*\‘\'0*0‘?“"“ ~o

Bigram

Figure 8: The bigrams found in the ideal feature set were not the most common bigrams found in speech. However, the bigrams
in the ideal feature set still made up approximately 30.9% of bigrams in our dataset.

limiting access to their product after purchase. Their restric-
tions would have limited us to at most 5 different speakers
compared to the 300 speakers present in the TIMIT Deep-
fakes we generated. We, therefore, took the largest available
of such datasets, published by Lyrebird [51], and evaluated it.
We note that the generation of these samples is black box and
represents a reasonable test against unknown models.

Feature Extraction and Evaluation Sets To evaluate and
test our technique, we subdivided both the organic and deep-
fake TIMIT samples into a feature extraction set (51 speakers)
and an evaluation set (249 speakers). The feature extraction
set is used to determine the ideal bigram-feature pairs and
their corresponding thresholds k using the ideal feature extrac-
tor outlined in Section 6.3.1. Conversely, the evaluation set is
used to evaluate the efficacy of our technique. Both datasets
contain all of the organic and deepfake audio samples for their
respective speakers. Our security model (Section 5) assumes
no knowledge of a speaker is known to the defender. As such,
both sets were selected so that they did not share any speak-
ers. This demonstrates that our technique is extracting useful
features that are inherent to deepfake audio as a class, rather
than features specific to the deepfake of an individual speaker.
This captures a stronger threat model as we do not have any
information about the speaker who will be impersonated.

The feature extraction set contains 1,020 audio files from
51 speakers, which contain a total of 702 unique bigrams. Of
these, 510 audio files from 9 speakers are deepfake samples
and 510 audio files are organic. The evaluation set consists
of 4,966 audio files from 249 speakers, which contain 835
unique bigrams. Of these, 2,476 audio files are deepfake sam-
ples and 2,490 audio files are organic. It is important to note
that our evaluation set is five times as large as our feature
extraction set. We used a smaller feature extraction set and a
larger evaluation set to showcase the efficiency of our tech-
nique. Traditional ML models require large datasets, orders
of magnitude larger than what is used here, to learn from
and capture data intricacies that improve the model’s gener-
alization [6]. Generating large datasets of DeepFakes can be
difficult, inherently limiting the effectiveness of an ML-based

detector. In contrast, our technique does not require a large
dataset to learn from since we leverage the knowledge of
human anatomy. As a result, our technique requires a signifi-
cantly smaller dataset to learn from while still being able to
generalize over a much larger evaluation set.

8 [Evaluation

In this section, we discuss the performance of our deepfake
detection technique and explain the results.

8.1 Detector Performance

We first need to find the ideal feature set using the process
detailed in Section 6.3.1. The feature extraction dataset was
used to find the set of ideal features that consisted of 865
bigram-feature-threshold triples.

To evaluate the performance of our detector, we classi-
fied all the audio samples in the evaluation dataset. To do
this, we concatenated all the sentences for each speaker to-
gether to form a single audio sample. We then ran each audio
sample through our whole sample detection phase outlined
in Section 6.3.2. Overall, we extract and compared 12,525
bigram-features pairs to the values found in our ideal feature
set. Finally, our detector was able to achieve a 99.9% preci-
sion, a 99.5% recall, and a false-positive rate (FPR) of 2.5%
using our ideal feature set.

8.2 Bigram Frequency Analysis

We now explain why the detector performed so well by an-
alyzing the bigram results. The 865 bigram-feature pairs of
the ideal feature came from 253 distinct bigrams that had 3.4
features on average within the set. These bigrams make up
approximately 30.9% of the 820 unique bigrams present in
the TIMIT dataset we tested. Since TIMIT is a phonetically
balanced dataset, it accurately represents the distribution of
phonemes in spoken English. In Figure 8, we show the 30
most common bigrams in both the TIMIT dataset and our
ideal feature set. While most of the bigrams in the ideal fea-
ture set are not in the top 30 bigrams, the total ideal feature set

17.5 Labeled Organic
Labeled Deepfake

5.0

Probably Density Function

25

o'%.O 0.2 0.4 0.6 0.8 1.0

. 3 . Percentage of features classified synthetic
Figure 9: This distribution plots show the percentage of fea-

tures classified as deepfakes per sentence. We can see that the
majority of the time the decision to classify a sentence as a
deepfake is not near the decision boundary of 0.5.

still accounts for about 15.3% of the total bigram occurrences
extracted from our evaluation set, implying that even though
our ideal features are not the most common bigrams, they still
account for a sizable portion of the speech. This makes select-
ing a phrase that does not contain multiple occurrences of the
bigrams in our ideal feature set difficult for longer phrases, es-
pecially when considering most words are constructed from
multiple bigrams. As such, an English sentence will likely
contain bigrams that are included in our ideal feature set.

With this knowledge, we next explore the likelihood that
our detector will misclassify a sentence. Figure 9 shows the
PDF and histogram of the percentage of features labeled deep-
fake for every sentence in our dataset. The figure shows that
most features evaluated in the deepfake samples are individu-
ally labeled as deepfakes, which informs us that classification
is dependent on multiple features rather than a few prominent
ones. This implies that an adversary’s model performance
would need to increase by a considerable margin before the
model could trivially beat our detection technique.

8.3 Fundamental Phenomena Confirmation

To observe the fundamental difference between deepfakes and
organic audio that our detector is based around, we conducted
an in-depth analysis of the incorrect behavior of the vocal tract
estimates found for deepfake audio in a single phoneme (“/d —
ou/”, pronounced doh). Figure 10 shows the estimated cross-
sectional area for one of the bigrams from the ideal feature set.
For comparison, we use a disjoint set of the TIMIT data to
create a secondary set of audio samples (labeled TIMIT Test)
that has not been previously used. The box plots (a) represent
the estimated cross-sectional area found by our estimator de-
scribed in Section 6.2. The dimensions represent the multiple
tubes our transfer function used to estimate the vocal tract
with, as previously seen in Figure 4. We then converted these
cross-sectional area estimates to their approximate diameters
(b). It is clear at this point that the deepfake audio is not be-

having in a manner that is similar to the organically spoken
data. The final segment of the figure (c) shows that the vocal
tract estimates found for deepfake audio are approximately
the size and shape of a drinking straw.

In addition to the bigram deep dive, we conducted a small-
scale Principle Component Analysis (PCA) experiment, the
results of which are visible in Figure 11. Our PCA experi-
ment was conducted using all bigram pairs from the organic
samples in the feature extraction set (labeled TIMIT Eval-
uation), the organic samples in the evaluation set (labeled
TIMIT Testing), and the deepfake samples in the evaluation
set (labeled Deepfake). We treated each feature vector as a
point in a 15 dimensional space and then used PCA to reduce
the data down to a single dimension that accounted for the
most variance within the data. This single dimension accounts
for approximately 48% of all the variance in the dataset. As
shown in Figure 11, deepfake audio samples are much less
variable than their organic counterparts, which demonstrates
that the “drinking straw” vocal tract observed in the bigram
deep dive is not an outlier, but rather more likely the norm.

8.4 Transferability Experiments

As discussed in Section 7, the availability of public deepfake
datasets is limited, meaning that it was not possible to test
our technique against models at the same scale done using
the RTVC tool. However, we were able to collect a limited
dataset from Lyrebird [51]. These nine synthetic audio sam-
ples of former presidents Obama and Trump were generated
using tweeted messages and publicly released as marketing
material. While our dataset is small, the internal workings of
the Lyrebird model are not public and thus we can perform
a black box test. We collected eight true-negative sentence
samples from previous State of the Union addresses for both
speakers. In total, the synthetic audio samples contained 1,914
bigram pairs representing 220 unique bigrams and the organic
audio samples contained 4,262 bigram pairs representing 270
unique bigrams. The organic and synthetic audio samples had
136 bigrams in common.

We then evaluated these samples using the ideal features
derived from our original dataset and found that they were
unable to successfully detect the Lyrebird audio. Following
this, we wanted to see if a different ideal feature set capable
of detecting Lyrebird audio existed. We proceeded to use the
organic and deepfaked audio samples of Presidents Trump
and Obama to extract an ideal feature set using the process de-
scribed in Section 6.3.1. After extraction, we found that every
one of the 136 bigrams shared between the organic and syn-
thetic audio sets would qualify as an ideal discriminator (i.e.,
an ideal feature). This means that while the ideal feature from
one deepfake model failed to transfer to another, our hypoth-
esis that deepfake models are failing to correctly mimic the
acoustic behavior of the human vocal tract, remains correct.
Because of this, we were still able to detect every synthetic

|

|

100 !
B TIMIT Test . |

= TIMIT . |

BB Deepfakes : .
80 ") |
f I
o \

60 K o L

Cross-sectional Area (cm”2)

20+

gfgéé_;&&éég}%{- J%-i- o lle e e s -

Dimensions

a)

01 2 3 45 6 7 8 9 1011 12 13 14 -——

Figure 10: a) The cross-sectional area estimates output by the transfer function for bigram “/d — ouv/.” pronounced “doh” b) The
approximate vocal tracts used to create each of the datasets. c) An anatomical approximation of a deepfaked model (bottom),
which no longer represents a regular human vocal tract (top) and instead is approximately the dimensions of a drinking straw.
This inconsistency is prevalent across more than 350 observed bigrams.

audio sample generated by Lyrebird by using an ideal feature
set that was sensitive to the Lyrebird model. We believe that
this indicates that the RTVC and Lyrebird deepfake genera-
tion models are failing to mimic human acoustics in different
ways. It, therefore, appears that the ideal features extracted
from one deepfake generation model will not necessarily ap-
ply to other models. However, the lack of overlapping ideal
features between models can be potentially circumvented by
having a defender check all bigrams within an audio sample.
This would allow a defender to practically check all possible
ideal feature sets simultaneously. However, the thoroughness
provided by checking all bigrams will result in a considerable
increase in the processing time for the detector and would
potentially require a different process for whole sample de-
tection than what was presented in Section 6.3.2. We leave
the further exploration of the concept of an all-bigram pro-
cessing method to future work. To conclude, a defender who
is concerned about detecting previously unknown deepfake
generation models will likely not be able to benefit from the
performance increases provided by the creation of an ideal
feature set. Furthermore, they will likely need to rely on a
different metric than majority voting when evaluating the set
of all bigrams within the sample.

9 Discussion

9.1 Limitations

Acoustic Model While our acoustic modeling can process
all phonemes for a given speech sample, the pipe series are
only anatomically correct for the vocal tract while the speaker
is pronouncing a vowel. This means that our technique is

less accurate when processing non-vowel phonemes. That
being said, vowels make up 38% of all phonemes, meaning
most bigrams should contain at least one vowel phoneme.
Therefore, our use of bigrams also helps to minimize the
number of processed necessary samples.

Preprocessing During the preprocessing stage of our
pipeline, we use Gentle to automatically timestamp the audio
files according to their words and phonemes. Gentle requires
sample transcriptions, which we generate using the Google
Speech API. Thus the accuracy of the timestamps (and the fol-
lowing stages of the pipeline) are directly tied to the accuracy
of Gentle and the Google Speech API. While some phonemes
are only a few milliseconds long, Gentle’s precision is to the
nearest hundredth of a second. This forces Gentle to overesti-
mate the timestamps for short phonemes, which introduces
rounding errors. The use of bigrams helped to mitigate this
problem, since using pairs gave us more appropriate target
lengths for Gentle’s precision levels.

The noisiness of synthetically generated audio can also
cause mistranscriptions in the Google Speech API. However,
the mistranscriptions are usually phonetically similar to the
correct ones. As a result, Gentle’s timestamps will contain lit-
tle error. This limits any major impact that a mistranscription
could have on our results.

Data Access There does not exist many large publicly avail-
able corpora of deepfake audio samples or generation tools.
While we would have liked to test our technique against a
larger variety of samples, this was not possible. Our dataset
is limited to the data and tools that are currently publicly

First Principle Component
~N

: 1

-2

TIMIT Evaluation TIMIT Testing Deepfake

Figure 11: The first PCA dimension shows that deepfake
audio samples fundamentally lack the same amount of vari-
ability found in organic speech.

available. Startups in deepfake generation have propriety al-
gorithms that are either not available for purchase or other-
wise made inaccessible for use in academic research. Despite
these issues, our technique appears to be generalizable and
not targeting any specific deepfake audio generator, although
additional research is needed to verify this.

9.2 Deployment Considerations

Our optimized detector leverages a one-time preprocessing
step to amortize the cost of processing individual audio sam-
ples later. We preprocess each bigram during the feature ex-
traction phase to determine the acceptable organic ranges
and ideal features (e.g., a 60 bigram sample would take ap-
proximately 15 seconds to process). However, during the
evaluation phase, which simulates our detection process, the
preprocessing is performed only on a discriminative set of
bigrams (i.e., the ideal features extracted during feature ex-
traction). By greedily selecting the ideal features, the prepro-
cessing time for similarly-sized samples during evaluation is
approximately reduced by an order of magnitude, allowing us
to perform detection in real-time. For example, the average
sentence in the TIMIT dataset contains 25 bigrams over 2.7
seconds of audio. If our technique processed every bigram
in the sentence, it would take approximately 6.25 seconds
to complete. However, as discussed in Section 8.2, our ideal
feature set makes up about approximately 15.3% of bigram
occurrences. This means that by only processing the ideal
features our technique could evaluate the 2.7 seconds of audio
in approximately 1 second. Other techniques that use audio
analysis (e.g., PindrOp [52]) require on the order of 15 seconds
to work and are therefore not usually performed in realtime.

9.3 Performance Trade-off

Our optimized technique has a 99.9% precision rate resulting
in a minor decrease in recall to 99.5%. A high precision rate
will ensure that a deepfake audio is not accidentally labeled as
organic by our system. This is specifically designed to protect
the victim of a deepfake attack. It is far more dangerous for
a deepfake audio to be believed as real, than the converse.

For example, it is a greater threat to democracy if the popu-
lation believes that a deepfake audio of a politician making
incendiary remarks is real.

Furthermore, to achieve such a high precision rate, our de-
tector must also sacrifice its false-positive performance. The
achieved FPR of 2.5% could be seen as higher than ideal
for automated systems that process hundreds or thousands of
audio samples per day. However, we believe this trade-off is
still better overall. If an organic sample is falsely identified as
a deepfake, it is trivial for the original speaker to verify the au-
thenticity of the sample if they choose. However, a malicious
speaker could use the false-positive as an opportunity to dis-
associate from a comment they had previously made. While
ideally our technique could prevent this kind of disassociation,
we believe that allowing an individual to disassociate from
previous a comment is less of a security risk than allowing
a deepfake to go undetected. For this reason, we accept our
FPR of 2.5% as an acceptable value.

9.4 Advantages over other techniques

Our technique offers several distinct advantages over some
techniques in the current literature. Researchers have explored
the use of Deep Neural Nets (DNNs) for detecting deepfake
audio [6]. These require large training data sets (thousands
of audio samples), which is extremely limiting as generating
large amounts of deepfake audio data is not easy. If the train-
ing data is not large enough to capture the full distribution,
the trained DNN will fail to generalize. As a result, the DNN
will perform poorly on the test set. Our method only requires
a few dozen audio samples and can generalize to a much
larger evaluation set. Also, since DNNGs are black boxes, they
do not provide explanations for the predicted labels. On the
other hand, our method leverages a deep understanding of the
human anatomy to explain the predicted labels.

9.5 Robustness against Adaptive Adversaries

Attacks and defenses are in a constant arms race. An attacker
with knowledge of our technique may try to adapt their attack
to defeat it. We explore two different approaches an adaptive
adversary could use to evade our detector. The first approach
follows the general best practice as described by Tramer et
al. Ideally, a defense should only be attacked end-to-end (i.e.,
used as a loss function) if the entire defense is differentiable
and an inspection of the technique reveals that the defense
is not likely to fail due to the exploitation of one or two
subcomponents. However, our technique is not end-to-end
differentiable due to Eqns. 4 and 5. In line with Tramer et
al.’s work, however, an adversary can still attempt to evade
our technique by identifying the critical subcomponent of
the model that needs to be exploited. In the case of our tech-
nique, this subcomponent is the underlying vocal tract transfer
function represented by Eqns. 4 and 5.

15 Dimensional Models (a)

0 200 400 600 800 1000
epoch
1 Dimensional Models (b)

epoch

Figure 12: While attempting to overfit to a small dataset,
the best models were only able to achieve loss values of
approximately 10~!. This is several orders of magnitude
greater than what would be expected if the models were well
suited to learning our technique’s mapping. This indicates that
these models struggle to mimic our technique and significant
domain-specific knowledge is needed to overcome our de-
fense. Additional information on which model is represented
by each line can be found in Table 2.

To exploit this segment, an adversary needs to learn the
mapping of our technique between the Fourier Transform of
a bigram’s audio and the 15 cross-sectional area estimates of
the vocal tract. Simply put, an adversary would have to train
an ML model to predict the cross-sectional area of a speaker’s
vocal tract from the frequencies present in the audio sample.
By minimizing the error between the model’s prediction and
the extracted vocal tract estimates, the model would attempt
to learn some mapping similar to that of our technique. This
trained model would then be used to generate adversarial
audio, using a technique such as a Generative Adversarial
Network, to evade detection.

To measure the difficulty of this task, we constructed a
naive adversary that uses out-of-the-box Deep Learning mod-
els to mimic our technique. Before training on a full dataset,
we took an initial step and trained on a small sample set (i.e.,
16 random audio samples) to try to overfit the model and
get near-zero loss (e.g., around 1075 [53)). Doing so would
suggest that the models are indeed learning some mapping
between the frequencies in the audio and the 15-dimensional
output, indicating that training on a larger dataset would gen-
eralize better. However, a non-near-zero loss suggests that,
even with a small sample set, the model struggles with find-
ing a correct mapping. To further simplify the problem, we
also attempted to train the models to output only the first

Single Frame
Model Pass c) Speech to Text

a) WaveRNN

} d) Forced Phoneme
@ b) Discretized Mix Alignment
Logistic Loss

—
Single Sample
Model Pass

e) Audio Processing/
Metadata Generation

h) Pre-Calculated 9) Average Error f) Vocal Tract
. S across VT from P
Organic VT Estimation Organic Estimation

Figure 13: The modifications made to the WaveRNN model
(a) to integrate our vocal tract estimation technique as a loss
function. Every batch during training the model now generate
a full audio sample, transcribe it to text (c), align the neces-
sary metadata (d, e) before estimating the vocal tract (f) and
calculating the effective error this has incurred (g) from a set
of pre-calculated organic vocal tracts (h). This error is then
combined with original loss used by WaveRNN (b).

cross-sectional area estimate, rather than all 15.

As shown in Figure 12, the loss (calculated by mean ab-
solute error) of a wide range of models,” detailed in Table 2,
remained flat and did not converge to near-zero after training
for multiple epochs. Our best models had their loss values
converge to between 10° and 10~!, putting them four to five
orders of magnitude greater than standard practice [53].

Thus, we believe that a naive adversary would be unsuccess-
ful in evading our defense mechanism, and our results suggest
that generalizing our technique using ML is non-trivial and
requires significant domain-specific knowledge.

The second adaptive adversary approach leverages part of
the loss function during the deepfake generator training. As
discussed in Section 3.3, deepfake generators compromise
three stages; the encoder, synthesizer, and vocoder. We choose
to modify the vocoder training process as it is the final step
and is responsible for creating the life-like audio.

For this test, we modified the training process of the Wa-
veRNN [54] vocoder model used by RTVC [7]. These mod-
ification can be seen in Figure 13. The WaveRNN model’s
original loss function (b) was calculated on mini-batches of
32 single frames of training audio at a time. However, these
single frames of audio are not full audio samples and there-
fore do not contain any full bigrams our detection method
uses. Thus, during every mini-batch, we used the model to
generate a single complete audio sample. This is then run
through the transcription and phoneme aligner, discussed in
Section 7 (¢ & d). We then create the necessary metadata
(e) which is passed along with the audio to the vocal tract
estimator (f). The distance between the vocal tract estimation
for the model’s generated audio is then compared (g) to a
precalculated set of organic vocal tracts (h) to find the rela-

9While there are other architectures to consider (e.g., RNNs, LSTMs,
and transformers), those architectures tend to rely on temporal dependencies.
Since our input was the Fourier Transform of a bigram, which lacks temporal
data, testing those models would not be appropriate.

tive loss incurred by the vocal tract analysis. This loss value
is then added to the original WaveRNN loss. Training then
occurs as normal from there.

In addition, we made a major optimization to the training
process. Early in the training phase, the model will not out-
put transcribable audio samples. Thus, our technique can not
estimate the vocal tract of the audio. In this case, we simply
set the component of the loss found from the vocal tract es-
timation to zero and prevent any related calculations from
occurring (d, e, f, or g). However, the model will still need to
generate a complete audio sample to determine if it is capable
of creating transcribable audio.

All testing was conducted on a local desktop machine run-
ning a 6th generation Intel i17-6770HQ with 32 GB of RAM
and a GTX 1080 with 8 GB of V-RAM. The WaveRNN model
was constructed using PyTorch 1.9.1 and Cuda 11.4.

We use the WaveRNN model’s default parameters while
training on all 4,622 samples of the TIMIT corpus as a
baseline. The model defaulted to a learning rate of 0.0001,
1,000,000 steps, a batch size of 32, and would complete 6,994
epochs. This is similar to the pretained model included in
RTVC that was trained for 1,159,000 steps at a batch size
of 50. In this configuration, the unedited model was able to
complete a batch every 0.50 seconds and an epoch every 71
seconds. The model would require approximately 5.75 days
to train.

After the inclusion of our new loss function, we saw a
considerable slowdown. During the training phases, before
the model is producing transcribable audio, the model was
able to process a single batch every 8.86 seconds and an
epoch every 1,267 seconds or 21 minutes, a slow down of
17.8x. This slow down was a result of the model having to
generate whole audio samples at every epoch, regardless of
audio transcription. In this state, the model would take a
minimum of approximately 100 days to complete ~90% of
its training. This estimate does not include the additional time
necessary for running the vocal tract estimator. We are likely
to see a further slow down at the end of the model training
when the full vocal tract estimator needs to run. At this stage,
we assumed that the adversary has already calculated the vocal
tracts for a large number of existing organic audio samples
to use as ground truth to avoid having to do the vocal tract
estimation twice per batch. For TIMIT this process would
take approximately 77 hours but only needs to be completed
one time. Once the vocal tract estimation loss function was
fully engaged the model was able to complete one batch every
31.52 seconds and one epoch every 1.25 hours. Assuming
the model will only be producing transcribable audio for the
final 10% of its total epochs, the model would complete this
phase of training in approximately 36.4 days. Overall, when
the vocal tract estimation loss function is fully engaged, the
model training is slowed by approximately a factor of 63x.
In total, training the WaveRNN model using our vocal tract
estimator in this way would require approximately 130 days.

Furthermore, since adversarial samples do not transfer across
RNN based models [41], this adversarial sample could not be
used against any other iteration of our system. Therefore, an
attacker will need to spend 130 for every single audio sample,
making this attack completely impractical.

10 Conclusion

Deepfake audio generators can now enable attackers to im-
personate any person of their choosing. Existing techniques
to detect deepfake audio often require knowledge of the spe-
cific generator. In our work, we present a novel detection
mechanism that is independent of any generator. Our method
leverages the knowledge of the human anatomy, fluid dy-
namics, and the articulatory system to detect deepfake audio
samples with a precision of 99.9% and a recall of 99.5%. In
doing so, our work presents a unique lens to view the problem
of deepfake detection — one that is explainable, generalizable,
and free of the limitations of other ML-based approaches.

Acknowledgments

The authors thank our anonymous reviewers and our shepherd,
Stjepan Picek, for their valuable comments and suggestions.
This work was supported in part by the Office of Naval Re-
search under grant number ONR-OTA N00014-21-1-2658.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the Office of Naval Research.

References

[1] T. Mills, H. T. Bunnell, and R. Patel, “Towards Personalized Speech
Synthesis for Augmentative and Alternative Comm.” Augmentative
and Alternative Communication, 2014.

[21 J. M. Costello, “Message Banking, Voice Banking and
Legacy Messages,” Boston Children’s Hospital - https:
/Iwww .childrenshospital.org/~/media/centers-and-services/
programs/a_e/augmentative-communication- program/
messagebankdefinitionsandvocab201613.ashx?la=en, 2016.

[3] C. Stupp, “Fraudsters Used Al to Mimic CEO’s Voice in Unusual
Crime,” Wall Street Journal, 2019.

[4] E. A. AlBadawy, S. Lyu, and H. Farid, “Detecting Al-Synthesized
Speech Using Bispectral Analysis,” in CVPR Workshops, 2019.

[5] H. Malik, “Securing Voice-driven Interfaces against Fake (Cloned)
Audio Attacks,” in IEEE Conference on Multimedia Information Pro-
cessing and Retrieval (MIPR), 2019.

[6] M. Alzantot, Z. Wang, and M. B. Srivastava, “Deep Residual Neural
Networks for Audio Spoofing Detection,” arXiv:1907.00501, 2019.

[7]1 C.Jemine, “Real-Time Voice Cloning,” https://github.com/CorentinJ/
Real-Time- Voice-Cloning, 2019.

[8] J. Saunders, “Detecting Deep Fakes With Mice : Machines vs Biology,”
2019.

[9] “Google Home,” https://madeby.google.com/home/, 2017.

[10] “Amazon Alexa Line,” https://www.amazon.com/Amazon-Echo-And-
Alexa-Devices/b?ie=UTF8&node=9818047011, 2017.

https://www.childrenshospital.org/~/media/centers-and-services/programs/a_e/augmentative-communication-program/messagebankdefinitionsandvocab201613.ashx?la=en
https://www.childrenshospital.org/~/media/centers-and-services/programs/a_e/augmentative-communication-program/messagebankdefinitionsandvocab201613.ashx?la=en
https://www.childrenshospital.org/~/media/centers-and-services/programs/a_e/augmentative-communication-program/messagebankdefinitionsandvocab201613.ashx?la=en
https://www.childrenshospital.org/~/media/centers-and-services/programs/a_e/augmentative-communication-program/messagebankdefinitionsandvocab201613.ashx?la=en
https://github.com/CorentinJ/Real-Time-Voice-Cloning
https://github.com/CorentinJ/Real-Time-Voice-Cloning
https://madeby.google.com/home/
https://www.amazon.com/Amazon-Echo-And-Alexa-Devices/b?ie=UTF8&node=9818047011
https://www.amazon.com/Amazon-Echo-And-Alexa-Devices/b?ie=UTF8&node=9818047011

(1]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

“Apple Siri,” https://www.apple.com/ios/siri/, 2017.

J. Lorenzo-Trueba, F. Fang, X. Wang, 1. Echizen, J. Yamagishi, and
T. Kinnunen, “Can we steal your vocal identity from the Internet?:
Initial investigation of cloning Obama’s voice using GAN, WaveNet
and low-quality found data,” arXiv:1803.00860, 2018.

Y. Wang, W. Cai, T. Gu, W. Shao, Y. Li, and Y. Yu, “Secure Your
Voice: An Oral Airflow-Based Continuous Liveness Detection for Voice
Assistants,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 2019.

Q. Wang, X. Lin, M. Zhou, Y. Chen, C. Wang, Q. Li, and X. Luo, “Voice-
pop: A Pop Noise based Anti-spoofing System for Voice Authentication
on Smartphones,” in IEEE Conference on Computer Communications,
2019.

C. Wang, S. A. Anand, J. Liu, P. Walker, Y. Chen, and N. Saxena,
“Defeating Hidden Audio Channel Attacks on Voice Assistants via
Audio-Induced Surface Vibrations,” in Proceedings of the Annual Com-
puter Security Applications Conference, 2019.

L. Blue, L. Vargas, and P. Traynor, “Hello, Is It Me You’re Looking
For? Differentiating Between Human and Electronic Speakers for Voice
Interface Security,” in Proceedings of the ACM Conference on Security
& Privacy in Wireless and Mobile Networks, 2018.

L. Zhang, S. Tan, J. Yang, and Y. Chen, “VoiceLive: A Phoneme Local-
ization Based Liveness Detection for Voice Authentication on Smart-
phones,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security, 2016.

L. Zhang, S. Tan, and J. Yang, “Hearing Your Voice is Not Enough: An
Articulatory Gesture Based Liveness Detection for Voice Authentica-
tion,” 2017.

M. Todisco, X. Wang, V. Vestman, M. Sahidullah, H. Delgado,
A. Nautsch, J. Yamagishi, N. Evans, T. Kinnunen, and K. A. Lee,
“Asvspoof 2019: Future horizons in spoofed and fake audio detection,”
arXiv:1904.05441, 2019.

S. Naren, “Speech Recognition using DeepSpeech-2,” Last accessed in
2019, https://github.com/SeanNaren/deepspeech.pytorch.

“Google Cloud Speech-to-Text API,” Last accessed in 2019, https:
//cloud.google.com/speech-to-text/.

“Azure Speaker Verification APIL,” Last accessed in 2019, available
at https://azure.microsoft.com/en-us/services/cognitive-servic/speaker-
recognition/.

W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, Attend and Spell:
A Neural Network for Large Vocabulary Conversational Speech Recog-
nition,” in ICASSP, 2016.

H. Scheidl, S. Fiel, and R. Sablatnig, “Word Beam Search: A Connec-
tionist Temporal Classification Decoding Algorithm,” in 2018 Interna-
tional Conference on Frontiers in Handwriting Recognition (ICFHR),
2018.

A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose, “Phonotac-
tic Reconstruction of Encrypted VoIP Conversations: Hookt on Fon-iks,”
in [EEE Symposium on Security and Privacy, 2011.

Z. Zhang, “Mechanics of human voice production and control,” The
Journal of the Acoustical Society of America, 2016.

L. Rabiner and R. Schafer, Digital Processing of Speech Signals. The

Journal of the Acoustical Society of America, 1978.

R. Kirlin, “A posteriori estimation of vocal tract length,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, 1978.

H. Wakita, “Normalization of vowels by vocal-tract length and its
application to vowel identification,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, 1977.

A. C. Lammert, S. Narayanan, and C. R. Larson, “On Short-Time
Estimation of Vocal Tract Length from Formant Frequencies,” in PloS
one, 2015.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

S. Flego, “Estimating vocal tract length by minimizing non-uniformity
of cross-sectional area,” in Proceedings of Meetings on Acoustics.
ASA, 2018.

S. Skoog Waller and M. Eriksson, “Vocal Age Disguise: The Role of
Fundamental Frequency and Speech Rate and its Perceived Effects,”
Frontiers in psychology, 2016.

H. Cao, Y. Wang, and J. Kong, “Correlations between body heights
and formant frequencies in young male speakers: a pilot study,” The
9th International Symposium on Chinese Spoken Language Processing,
2014.

J. H. Hansen, K. Williams, and H. Bofil, “Speaker height estimation
from speech: Fusing spectral regression and statistical acoustic models,”
The Journal of the Acoustical Society of America, 2015.

R. E. Hayden, “The relative frequency of phonemes in General-
American English,” Word, 1950.

L. Wan, Q. Wang, A. Papir, and I. L. Moreno, “Generalized End-to-End
Loss for Speaker Verification,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2018.

Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron: Towards end-to-
end speech synthesis,” arXiv:1703.10135, 2017.

A.v.d.Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A genera-
tive model for raw audio,” arXiv:1609.03499, 2016.

B. Reaves, L. Blue, and P. Traynor, “Authloop: End-to-end crypto-
graphic authentication for telephony over voice channels,” in USENIX
Security Symposium, 2016.

K. N. Stevens, Acoustic phonetics. MIT press, 2000.

H. Abdullah, K. Warren, V. Bindschaedler, N. Papernot, and P. Traynor,
“SoK: The Faults in our ASRs: An Overview of Attacks against Au-
tomatic Speech Recognition and Speaker Identification Systems,” in
IEEE Symposium on Security and Privacy (S&P), 2021.

J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett,
“DARPA TIMIT acoustic-phonetic continous speech corpus CD-ROM.
NIST speech disc 1-1.1,” NASA STI/Recon technical report n, 1993.

D. D. Nguyen, P. McCabe, D. Thomas, A. Purcell, M. Doble,
D. Novakovic, A. Chacon, and C. Madill, “Acoustic voice
characteristics with and without wearing a facemask,” Scientific
Reports, 2021. [Online]. Available: https://doi.org/10.1038/s41598-
021-85130-8

J. Yamagishi, M. Todisco, M. Sahidullah, H. Delgado, X. Wang,
N. Evans, T. Kinnunen, K. A. Lee, V. Vestman, A. Nautsch et al.,
“ASVspoof 2019: The 3rd Automatic Speaker Verification Spoofing
and Countermeasures Challenge database,” 2019.

J. Michélek and J. Vanek, “A Survey of Recent DNN Architectures on
the TIMIT Phone Recognition Task,” ArXiv, 2018.

N. Subramani and D. Rao, “Learning Efficient Representations for Fake
Speech Detection,” Proceedings of the AAAI Conference on Artificial
Intelligence, 2020.

lowerquality, “Gentle Force Aligner,” 2018. [Online]. Available:
https://github.com/lowerquality/gentle

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stem-
mer, and K. Vesely, “The Kaldi Speech Recognition Toolkit,” in /[EEE
2011 Workshop on Automatic Speech Recognition and Understanding,
2011.

Y. Jia, Y. Zhang, R. J. Weiss, Q. shan Wang, J. Shen, F. Ren, Z. Chen,
P. Nguyen, R. Pang, I. Lopez-Moreno, and Y. Wu, “Transfer Learning
from Speaker Verification to Multispeaker Text-To-Speech Synthesis,”
ArXiv, 2018.

https://www.apple.com/ios/siri/
https://github.com/SeanNaren/deepspeech.pytorch
https://cloud.google.com/speech-to-text/
https://cloud.google.com/speech-to-text/
https://azure.microsoft.com/en-us/services/cognitive-servic/speaker-recognition/
https://azure.microsoft.com/en-us/services/cognitive-servic/speaker-recognition/
https://doi.org/10.1038/s41598-021-85130-8
https://doi.org/10.1038/s41598-021-85130-8
https://github.com/lowerquality/gentle

[50] Y. Liu and J. Zheng, “Es-Tacotron2: Multi-Task Tacotron 2 with Pre-
Trained Estimated Network for Reducing the Over-Smoothness Prob-
lem,” Information, 2019.

[51] “LyreBird,” https://github.com/logant/Lyrebird, 2017.

[52] V. Balasubramaniyan, A. Poonawalla, M. Ahamad, M. Hunter, and
P. Traynor, “PinDrOp: Using single-ended audio features to determine
call provenance,” 2010.

[53] F. Tramer, N. Carlini, W. Brendel, and A. Madry, “On Adaptive Attacks
to Adversarial Example Defenses,” arXiv:2002.08347, 2020.

[54] O. McCarthy, “WaveRNN,” https://github.com/fatchord/WaveRNN,
2021.

A ASVSpoof Dataset

We explored the potential use of the ASVSpoof2019 dataset to eval-
uate our deepfake detection technique. The ASVspoof2019 dataset
contains a collection of synthetically modified audio samples, none
of which are actual deepfakes. Instead, these audio samples are used
for speaker verification tasks, such as voice authentication. While
our algorithm can still detect these audio samples, they should not
be used for evaluating deepfake detection algorithms. This dataset
was not designed for this task.

We ran the full dataset against our approach, which required over
1,400 hours of processing time. However, we noticed that such tests
produced very high word error (WER) rates of 0.45. This means that
nearly half of all words were transcribed incorrectly. Upon manual
listening tests, we found these audio samples sounded very robotic,
thus resulting in poor transcriptions. Therefore, the lower quality
of the audio was the source of these failures, and therefore served
as efficient filters. Further investigation revealed that contrary to
popular belief, ASVSpoof2019 is not a deepfake audio dataset -
the maintainers of this challenge note that deepfake detection is
a separate challenge, and have identified it as such in their yet-to-
be-released 2021 dataset. Even though our preprocessing stage can
detect these audio samples as being abnormal due to the high WER,
they were never intended to be used for deepfake detection and
instead target the related problem of automatic speaker verification
(ASV) (e.g., authentication), hence the name of the challenge.

B Phrases

TIMIT phrase that was converted into our deepfake dataset.

1. Cattle which died from them winter storms were referred to as
the winter

2. The odor here was more powerful than that which surrounded

the town aborigines. (si1077)

No, they could kill him just as easy right now. (si1691)

4. Yet it exists and has an objective reality which can be experi-
enced and known. (si654)

5. Ttook her word for it, but is she really going with you? (sx395)

w

Model Name Output Line Number of General Architecture

Dimen- Style Training
sions Parameters
General CNN 15 (a) 13,996,049 2 Convolutional layers, 2
(Smially Dense Fully Connected Layers
General CNN 1 (b) 6,326,275 2 Convolutional layers, 2
(Small) Dense Fully Connected Layers
General CNN 15 (a) 29853713 6 Convolutional layers, 2
(Mediam) Dense Fully Connected Layers
Gieneral CNN 1 (b) 23,044,009 6 Convolutional layers, 2
(Mediam) Dense Fully Connected Layers
Gieneral CNN 15 (a) 53,640,209 12 Convolutional layvers, 2
(Large) Dense Fully Connected Layers
Gieneral CNN 1 (b) 48,120,835 12 Convolutional layvers, 2
(Large) Dense Fully Connected Layers
VGG-16 15 (a) 23,121,873 | VGG-16 [55] with several of
(Smiall) the repeating sets of layers re-
move to reduce model size
VOG-16 1 (b} 18,265.731 VGG-16 [55] with several of
(Small) the repeating sets of layers re-
move to reduce model size
VGG-16 15 (a) 19,167,025 | VGG-16 [55] with the less of
(Medium} the repeating sets of layers re-
moved than before
VGG-16 1 (b) 17,446,961 VGG-16 [55] with the less of
(Mediam) the repeating sets of layers re-
move than before
VOG-16 15 (a) 17,998,689 VGG-16 [55] with all layers
{Large)
VOG-16 1 (b} 17,310,547 VGG-16 [55] with all layers
{Large)
General DNN 15 (a) 13,780,569 4 Dense Fully Connected Lay-

(Small) ers (2048}, 2 Dense Fully Con-
nected Layers (13)
General DNN 1 (b) 13,780,349 | 4 Dense Fully Connected Lay-
(Smially ers (2048), 2 Dense Fully Con-
nected Layers (15)

Gieneral DNN 15 (a) 30,656,977 # Dense Fully Connected Lay-

(Mediam) ers (2048}, 2 Dense Fully Con-
nected Layers (13)

General DNN 1 (b} 30,565,753 8 Dense Fully Connected Lay-

(Medium) ers (2048}, 2 Dense Fully Con-
nected Layers (13)

General DNN 15 (a) 53,744,089 14 Dense Fully Connected Lay-

(Large) ers (2048), 2 Dense Fully Con-
nected Layers (15)

Gieneral DNN 1 (b) 55,743,863 14 Dense Fully Connected Lay-

(Large) ers (2048), 2 Dense Fully Con-
nected Layers (15)

Auto-encoder- | 15 (a) 187,025 3 Dense Fully Connected Lay-

NoComv ers (256, 124, 64)

(Small)

Auto-encoder- 1 (b} 186,115 3 Dense Fully Connected Lay-

NoConv ers (256, 124, 64)

(Smally

Auto-encoder- | 15 (a) 463,249 4 Dense Fully Connected Lay-

NoComv ers (512, 256, 124, 64)

(Large)

Auto-encoder- | 1 (b} 462,339 4 Dense Fully Connected Lay-

MNoCony ers (512, 256, 124, 64)

(Large)

Auto-encoder- 15 (a) 9,240,145 2 Convolution Layers, 3 Dense

Conv (Small) Fully Connected Layers (256,
124, 64)

Auto-encoder- | 1 (b) 9.239.235 2 Convolution Layers, 3 Dense

Conv (Smally Fully Connected Layers (256,
124, 64)

Auto-encoder- | 15 (a) 18,563,153 2 Convolution Lavers, 4 Dense

Conv (Large) Fully Connected Layers (312,
256, 124, 64)

Auto-encoder- 1 (b} 18,562,243 2 Convolution Layers, 4 Dense

Conv (Large) Fully Connected Layers (512,
256, 124, 64)

Alexnet 15 (a) 21,781,841 Based off Alexnet [56]

Alexnet 1 (b} 21,724,483 Based off Alexnet [56]

Table 2: Descriptions and high-level information about the
models tested in our adaptive adversary experiments. The
corresponding results for each model can be seen in Figure 12
by the line denoted in the Line Style column.

https://github.com/logant/Lyrebird
https://github.com/fatchord/WaveRNN

	Introduction
	Related Work
	Background
	Phonemes
	Organic Speech
	Deepfake Audio

	Hypothesis
	Security Model
	Methodology
	Reader Participation
	Vocal Tract Feature Estimator
	Deepfake Audio Detector
	Organic Range Extraction
	Whole Sample Detection

	Detector Optimization
	Ideal Feature Set Creation
	Optimized Detector

	Datasets
	Evaluation
	Detector Performance
	Bigram Frequency Analysis
	Fundamental Phenomena Confirmation
	Transferability Experiments

	Discussion
	Limitations
	Deployment Considerations
	Performance Trade-off
	Advantages over other techniques
	Robustness against Adaptive Adversaries

	Conclusion
	ASVSpoof Dataset
	Phrases

