
Blue’s Clues:
Practical Discovery of Non-Discoverable Bluetooth Devices

Tyler Tucker, Hunter Searle, Kevin Butler, Patrick Traynor
Florida Institute for Cybersecurity Research (FICS)
{tylertucker1, huntersearle, butler, traynor}@ufl.edu

Abstract—Bluetooth is overwhelmingly the protocol of choice
for personal area networking, and the Bluetooth Classic stan-
dard has been in continuous use for over 20 years. Bluetooth
devices make themselves Discoverable to communicate, but best
practice to protect privacy is to ensure that devices remain
in Non-Discoverable mode. This paper demonstrates the futility
of protecting devices by making them Non-Discoverable. We
introduce the Blue’s Clues attack, which presents the first
direct, non-disruptive approach to fully extracting the permanent,
unique Bluetooth MAC identifier from targeted devices in Non-
Discoverable mode. We also demonstrate that we can fully
characterize device capabilities and retrieve identifiers, some of
which we discover often contain identifying information about
the device owner. We demonstrate Blue’s Clues using a software-
defined radio and mounting the attack over the air against both
our own devices and, with institutional approval, throughout a
public building. We find that a wide variety of Bluetooth devices
can be uniquely identified in less than 10 seconds on average,
with affected devices ranging from smartphones and headphones
to gas pump skimmers and nanny-cams, spanning all versions
of the Bluetooth Classic standard. While we provide potential
mitigation against attacks, Blue’s Clues forces a reassessment
of over 20 years of best practices for protecting devices against
discovery.

I. INTRODUCTION

Bluetooth is continually the worldwide standard for lo-
cal wireless networks [1]. Connectivity between devices has
gone far beyond simply the replacement of wires, where
virtually every device that supports wireless communication
also enables Bluetooth functionality. One of the reasons for
Bluetooth’s ubiquity is the ease by which connections with
other devices can be enabled. The Discovery process involves
a device broadcasting its presence to other devices within
radio range while scanning for other devices that are similarly
advertising their capabilities. This discovery process serves
as a precursor to Bluetooth devices pairing, and subsequently
communicating, with each other.

From its inception, Bluetooth has considered security
and privacy concerns. The original Bluetooth 1.0 specifica-
tion specified that Bluetooth devices should support Non-
Discoverable mode, whereby devices (called “silent devices”
in the Bluetooth specification) do not respond to inquiries from
other devices [2]. By preventing discovery, Bluetooth devices
can prevent identifiable and unique information about them
from being made accessible. Current best practices relating
to Bluetooth security recognize that devices in Discoverable
mode are subject to attack and hence, recommendations from

organizations such as NIST and CISA recommend keeping
Bluetooth devices in Non-Discoverable mode [3], [4].

While there has been substantial work examining security
aspects of the Bluetooth Classic protocol over the past 20
years [5]–[27], only a small number of papers have ad-
dressed Non-Discoverable mode [5]–[10]. Early work was
solely theoretical, calling for up to 80 transmitting radios and
between 24 hours and a week to brute force the Bluetooth
address range to recover the Bluetooth address [5]. Recent
work substantially advances Bluetooth device identification,
bringing identification time down to seconds, but can only
provide probabilistic guarantees about whether the device is
one that has been previously seen and does not identify the
device characteristics [6].

In this paper, we demonstrate the futility of using Non-
Discoverable mode as a means of assuring the privacy of
Bluetooth Classic devices. Our Blue’s Clues attack goes well
beyond past work by incorporating active communication with
a target device using the Bluetooth Link Manager Proto-
col (LMP) to extract identifiable information. Moreover, we
demonstrate that the full Bluetooth address, which is unique
and permanent to a device, can be directly exfiltrated from
a device in Non-Discoverable mode. Such an attack occurs
transparently to the user and can be completed without the
target device ever raising any alert or notification about the
communication.

The primary contributions of this work are as follows:
• Develop New Active Attack Breaking Bluetooth Non-

Discoverable Mode: Prior work has demonstrated the
possibility of using SDRs to recover Bluetooth device
address candidates. Our active Blue’s Clues attack goes
further, and demonstrates the ability to not only recover
all device information available in Non-Discoverable
mode, but also extract the unique and permanent de-
vice identifier for any Bluetooth device. Moreover, we
demonstrate that this information can be used to launch
pre-authentication attacks.

• Find and Identify a Wide Range of Devices: Bluetooth
radios can be found on a wide range of devices, whose
purposes can range from benign entertainment (e.g., wire-
less earphones, smartphones) to more malicious intents
(e.g., gas pump skimmers, hidden cameras). We collect
21 different devices spanning Bluetooth versions 2.1 to
5.2 and demonstrate that our attack is capable of finding
and identifying all of them. We then demonstrate that our



Header Data HEC Payload CRCLAP

LAP UAP NAP

HEC

Generation

CRC

Generation

Bluetooth Address

Access Code Header Data

Bluetooth Frame

Fig. 1. This diagram highlights the relationship between the Bluetooth MAC address and the Bluetooth packet frame. The Lower Address Portion (LAP) is
inserted directly into the Access Code portion of the frame while the Upper Address Portion (UAP) is combined with the Header Data and Payload to create
the HEC and CRC codes, respectively. The Non-Significant Address Portion (NAP) does not contribute to any portion of the packet.

approach can find far more devices than the traditional
discovery process [21]–[23] through an IRB-approved
study of our office space. Regardless of the age of the
device or the Bluetooth specification that it supports,
every device we test is vulnerable to Blue’s Clues.

• Present Potential Mitigations: Bluetooth-capable de-
vices run the gamut of capabilities and interfaces, making
one simple mitigation unlikely to completely address our
attack. As such, in addition to disclosing a protocol fix to
the Bluetooth SIG, we discuss a number of point solutions
for constrained devices (i.e., those without interfaces to
make authentication easy) and evaluate one mitigation
option on a Bluetooth device.

The Blue’s Clues attack forces a reassessment of over
20 years of best practices for Bluetooth security and with
over 4 billion Bluetooth devices shipped in 2020 and billions
more deployed devices [1], significant efforts will need to be
made to address these issues in design and implementation of
Bluetooth.

The remainder of this paper is organized as follows: Sec-
tion II provides background on Bluetooth; Section III discusses
our threat model; Section IV details the methodology of the
Blue’s Clues attack; Section V discusses the implementation
of our attack; Section VI evaluates the success of our attack
against a wide range of Bluetooth-enabled devices and pe-
ripherals; Section VII discusses related issues and potential
mitigations; Section VIII contextualizes this effort against
related work; and Section IX provides concluding remarks.

II. BACKGROUND

A. Overview

Bluetooth is a wireless personal area network protocol oper-
ating in the 2.4 GHz ISM frequency band. Its spectrum is di-
vided into 79 physical channels spaced 1 MHz apart. Only one
channel is used by each connection at a time. Communicating
devices use adaptive frequency hopping, switching between a
subset of the Bluetooth channels 1600 times per second. The

subset of channels is negotiated between devices in response to
interference or noise in certain channels. In order to establish
a connection, two devices must exchange addresses, as well
as synchronize frequency hopping sequences. Connections are
initiated by a central device, although central and peripheral
roles1 may be switched later in the process. The process of
establishing a connection between unfamiliar devices is called
pairing and is composed of two parts, inquiry and paging.

B. Bluetooth Pairing

The central device will begin the pairing process by trans-
mitting an inquiry packet on one of three designated inquiry
channels. This packet uses a general inquiry address, so it
is not directed to any particular device. Bluetooth devices
in Discoverable mode monitor these channels, waiting for
inquiry packets. When they receive the packet, they will
respond with an inquiry response message containing their full
address, device capabilities, and name. The initiating device
then has enough information to make a full connection with
the responding device and will begin the paging process to
establish a direct connection.

The paging process is similar to the inquiry process, except
the peripheral device’s address is used in place of the general
value used for inquiry. This assures that only the intended
device will respond. As the hopping patterns have yet to be
synchronized, the central device has a low chance of trans-
mitting on the correct channel. To overcome this, the central
device will send many paging request messages in quick
succession until it receives a response. After the response is
received by the central device, it will send a frequency hopping
synchronization (FHS) packet to provide the peripheral with
the information it needs to synchronize its frequency hopping
scheme with that of the central device. Once the peripheral

1The Bluetooth specification uses the terms Master and Slave, but we
choose to replace these terms throughout our paper in light of community
discussion [28]–[30].

2



responds to the FHS packet, the connection is established and
the two devices can begin exchanging information.

In the Non-Discoverable mode, Bluetooth devices do not
respond to inquiry messages. This prevents the creation of
any connections with unknown devices. However, regardless
of discoverability, the device will always respond to paging
packets formed with its address. Thus, the only requirement
for establishing a connection with an unknown device is to
know the necessary portions of that device’s address.

C. Bluetooth Addressing

There are three parts to a Bluetooth address: a 24-bit
Lower Address Portion (LAP), an 8-bit Upper Address Portion
(UAP), and a 16-bit Non-Significant Address Portion (NAP)
as shown at the top of Figure 1. Most Bluetooth packets
are categorized as ID packets, meaning they contain the
LAP within the packet. Additionally, the UAP is used as a
parameter to a linear feedback shift register in generating the
cyclic redundancy check (CRC) and header-error-check (HEC)
sections of a packet’s header, shown at the bottom of Figure 1.
The NAP is not used in producing any other values, meaning
that it cannot be recovered by inspecting any packet headers.

Aside from inquiry packets, which use a reserved UAP and
LAP, packets are formed from a device’s UAP and LAP so that
only the intended device will receive and respond to a packet.
These come from the peripheral’s address during the paging
process, and the central device’s address once the connection
has been established. The header containing the LAP, CRC,
and HEC is whitened, or encoded, before transmission, to
prevent long sequences of bits from being transmitted (e.g.,
00000000 or 11111111). However, the header can be de-
whitened with relative ease [6], [7]. Thus, the LAP is readily
available in every packet. The UAP is not directly present in
the packet, but the CRC and HEC contain enough information
to narrow down the possibilities for the UAP. By sniffing
a packet with a HEC or CRC, the packet data, generation
algorithm, and result (shown in Figure 1) are known, and so
the UAP can be recovered using this information from several
packets as shown by prior work [6], [7]. Both the LAP and
UAP are necessary to establish a connection.

D. Link Manager Protocol

Bluetooth Classic uses the Link Manager Protocol (LMP)
to control all aspects of the Bluetooth connection between two
devices [31]. This includes the negotiation and management
of logical transports and logical links, as well as physical
links. LMP connects the Link Managers (LM) between the
devices, which sit just above the Link Control (LC) level that
decodes packets received from the physical layer. Messages
are exchanged in connected sets, called transactions, with each
attempting to achieve a particular purpose. All LMP messages
strictly apply to LM, LC, or physical layers. These layers
are situated in the Bluetooth controller, and no messages are
passed directly to the host device.

LMP begins immediately after the paging process. The pag-
ing device uses LMP messages to request device information

such as clock offset, Bluetooth version, device capabilities,
and device name. Using this information, the paging device
requests a connection and, if accepted, negotiates pairing,
authentication, and encryption. LMP is also responsible for
determining the roles of the devices in a connection, and so
allows these roles to be changed via an LMP Role Switch
message. This is useful when a device designed to take the
peripheral role is the one to establish the connection (e.g.,
turning on a pair of wireless headphones that automatically
connects to your phone). The device that creates the connec-
tion is set as the central device by default, so the headphones
would need to perform a role switch with the phone to become
the peripheral device. The host, and by extension the user,
is not aware of any LMP message exchange. If the process
is terminated, either by a device not responding, or a device
sending an LMP detach message, the host is never notified of
the messages that were sent.

III. THREAT MODEL

In this paper, we assume that an adversary can capture all
communications within the Bluetooth spectrum and transmit
legitimate Bluetooth packets with arbitrary addresses, access
codes, and payloads. These are both possible using commercial
off-the-shelf devices and open-source code, meaning that a rel-
atively unsophisticated adversary is capable of performing this
attack. Additionally, the attacker requires no prior knowledge
of any devices within the attack area, and only minimal time
in proximity to a device to complete the attack.

The threat model in this paper is fundamentally different
from the threat model assumed when the Non-Discoverable
mode was originally introduced. At that time, the possibility of
full-band eavesdropping on commodity hardware was nonex-
istent. Only with the recent rise in the availability of low-cost
software-defined radios have attacks of the kind we present be-
come feasible. Additionally, Bluetooth-compliant transceivers
with open-source code, such as the Ubertooth, have made
Bluetooth research more accessible to a wider swath of the
population than ever before. This lower barrier to entry into
Bluetooth has opened the path for more sophisticated attacks
that would not have been possible 20 years ago.

IV. METHODOLOGY

There are two main challenges with finding Non-
Discoverable devices. First, they will not respond to any
broadcast messages, so no attempts to “ping” them will yield
results if the address is not previously known. Second, we
cannot recover the entire Bluetooth MAC address by passively
capturing generic Bluetooth packets, as they only reveal a
portion of this address. Therefore, a passive eavesdropping
attack can, at best, recover the lower portions of the MAC
address in the UAP and LAP. This provides a pseudo-unique
identifier2 for a local device but does not provide any further

2We use the term pseudo-unique here because the MAC address fragment
is not guaranteed to be unique without the upper NAP portion of the address,
although the probability of two local devices having the same lower address
portions is low.

3



Brute force
attack could
recover full
address
Requires 79
radios and 24
hours of active
transmission 

Address
fragment
recovered from
packets
Only requires 1
radio
Capture time is
reduced to
seconds

Anonymous
devices can be
tracked using a
likely unique
identifier
Without full
address,
identifier is not
truly unique
No additional
device
information

Using paging messages, exact
UAP can be discovered
Forcing a role switch recovers NAP
Using LMP messages, device
name, device manufacturer, and
Bluetooth version are recovered

Devices can be
tracked by
address or
name

Attacks
requiring the
Bluetooth
address are
possible with
no prior
knowledge

Non-
Discoverable
mode is
rendered
completely
ineffective

Theoretical [5] Passive Eavesdropping [6,7] Blue's Clues

TakeawayResult Technique Result TakeawayTakeaway

OUI List [7]

Anonymous
devices can be
tracked using a
fully unique
identifier
No additional
device
information

TakeawayResult

NAP recovered
by brute forcing
the public OUI
list of MAC
addresses


Fig. 2. We compare Blue’s Clues with past work to show our improvements over theoretical and practical solutions to detecting Non-Discoverable devices.
We are the only attack to recover all information designed to be concealed by the Non-Discoverable mode, as past solutions stop once they recover at most
the device’s MAC address.

information. Our contribution is an attack that combines both
passive eavesdropping and active communication to overcome
these challenges. With this attack, we can find all communi-
cating devices, recover the entire Bluetooth MAC address, and
retrieve the same information from Non-Discoverable devices
as the standard inquiry process does from Discoverable de-
vices, thereby fully defeating the Non-Discoverable security
feature of Bluetooth Classic.

A. Motivation

With the increased adoption of Bluetooth in consumer de-
vices since the inception of the Non-Discoverable mode [32],
past approaches to location tracking based on the inquiry
process cannot find most modern devices. We, therefore, aim
to show that not only is location tracking still possible, it
is practical under a new threat model. This new model no
longer assumes devices are Discoverable but considers any
device using Bluetooth vulnerable. While other works have
aimed to passively detect these Non-Discoverable devices, they
cannot (1) recover a full MAC Bluetooth address, (2) gather
any further information on the device, nor (3) interact with
the device, all of which our attack overcomes. Due to these
limitations, passive attacks [6], [7], [24], [25] cannot claim to
break the Non-Discoverable mode of Bluetooth, as they do
not recover all of the information that this security feature is
designed to hide. We highlight this distinction in Figure 2.

1) Inability to directly recover full Bluetooth address
This first limitation of a passive attack is important
because the full MAC address of a Bluetooth device
will never change. The address, therefore, acts as a
unique and permanent identifier that can be associated
with the user. With this, an adversary can ping for
a recovered MAC address anywhere and will always
receive a response if the device is within range. This
allows an adversary to check for user presence in any
location and guarantees a response as long as Bluetooth
is turned on. While one past work [7] has proposed an
active portion of their attack to iteratively guess at NAPs
until one is confirmed using a public OUI list of MAC
addresses [33], our solution removes the guesswork and
can directly extract the NAP.

2) No device information accessible The second current
limitation is that no further details about the device are
recovered through passive attacks. With our attack, we
can recover device owner names (e.g., John’s iPhone or
Kevin’s Pixel), which are personally identifying on top of
the unique and permanent MAC address. Additionally,
we gather device manufacturer and device types, all of
which can be leveraged to filter for an individual (e.g.,
the adversary knows their target is using an iPhone, so
they search for smartphones made by Apple).

3) Lack of interaction The third limitation is that, by
definition, passive attacks do not interact with any de-
vice. By establishing a connection with each device,
we create a vector for exploiting vulnerabilities that
propagate through Bluetooth. The information we gather
allows us to reason about the device model, allowing
us to target a vulnerability from a subset of devices
(e.g., Google Pixels). This in turn can allow for a DoS
attack in a local area or even remote code execution
against certain devices. We show that this concern is a
reality by executing a known exploit against an Android
smartphone after discovering it automatically through
our attack. Additionally, we can extend our active com-
munication to complete device pairing with devices that
do not require a Bluetooth PIN to accept a connection.
The majority of Bluetooth accessories (e.g., headphones
and speakers) do not require PINs to accept a connection
and therefore will freely pair with any device that knows
its MAC address.

In short, our attack fully breaks Non-Discoverable mode
and allows for an attacker to recover sensitive information
and potentially connect directly to all Bluetooth devices
that are turned on.

B. Passive Eavesdropping

A purely passive attack will recover portions of MAC ad-
dresses but fail to gather any further details about local devices.
Instead, it only provides possibilities for a section of the MAC
address of a device. We can, however, use these recovered
MAC address fragments (consisting of the LAP and UAP) to
establish our own connection to these devices to fill this gap.
Therefore, our attack begins by passively eavesdropping on a

4



subset of channels of the Bluetooth spectrum to recover LAPs
of nearby devices. The exact number of channels affects the
speed at which devices will be discovered but is otherwise
irrelevant to the process.

We employ the current state-of-the-art in passive Bluetooth
monitoring [6] as a method for recovering addresses from local
traffic. This program is open-source [34] and only requires
a software-defined radio to operate. While monitoring a set
of channels, all packets are captured and the header is de-
whitened (decoded) to reveal the LAP of the central device of
the Bluetooth connection. Recall from our background section
that Bluetooth whitening is simply a method of encoding to
prevent sequences of repeated bits (e.g., 00000000) from being
transmitted for accuracy improvement in demodulation [35].
Next, the program recovers error-checking codes HEC and
CRC, which help narrow down the possibilities for the UAP of
the device. The UAP, along with the 8-bit central device clock,
is used as a seed when generating these values, so the code can
generate HEC values for a packet using combinations of these
two values and compare that to the HEC that was recovered
over the air. When the two HECs match, the UAP is logged as
a viable candidate. This method provides two possible UAPs
to consider in the best case, which is a limitation of the SDR
approach we adopt. With two possible UAPs, we have two
options for MAC address fragments for a device but have no
further information. Our work builds on this process, so our
contribution begins after this step.

While the existence of a device is revealed this way, this
is not equivalent to the information provided by the inquiry
process against Discoverable devices and therefore does not
fully defeat the Non-Discoverable mode. We can, however, use
these address fragments to add a second stage to our discovery
process in which we establish a short connection with the
central devices to fill this gap.

C. Active Communication

To overcome Non-Discoverable mode, we need to recover
the information it conceals past only a portion of the MAC
address. We achieve this by establishing a short connection
to the device during which we exchange information
between our device and the target device in our active
stage, which is our main contribution and the link to
overcoming Non-Discoverable mode. When we enter the
active stage, we have a device’s LAP and a small number
of possible UAPs. Figure 3 contains a sequence diagram
overview of our active connection process. In the first portion
of our active process, we iteratively attempt to establish a
connection to the device using the standard paging process
outlined in our background. We exhaustively test the remaining
possibilities by creating paging requests with the known LAP
and a possible UAP (this is labeled as Paging Procedure in
our diagram). We transmit these test packets on many different
channels to increase the likelihood that the device will receive
at least one, producing hundreds of attempts per second. If
we receive a response from the device that ends the paging

Transceiver Victim Device

Address fragment recovered from SDR

Paging Request

ID Packet

FHS Packet

ID Packet

Paging
Procedure

LAP & UAP Discovered

LMP Features Exchange

LMP Ext. Features Exchange

LMP Version Exchange

LMP Name Transaction

All Device Attributes Discovered

LMP Role Switch

FHS Packet

Full MAC Address Discovered

LMP
Procedure

Fig. 3. Sequence Diagram of the Blue’s Clues attack. Once a valid LAP+UAP
MAC address fragment is produced by the SDR program, the transceiver
will perform a standard paging procedure. If a second ID packet is received,
the transceiver can then send LMP messages to the foreign device to gather
information on it.

process, we can conclude that our UAP is correct and we can
immediately begin the second portion of our active process.

Our second portion, called LMP Procedure in Figure 3, con-
sists of transactions of LMP messages between our transceiver
and the foreign device. These messages are all sent before au-
thentication occurs, so all devices will respond to this process
even though our MAC address is completely unknown to them.
The Features and Extended Features LMP messages provide
the capabilities of the device (e.g., encryption, Bluetooth LE,
Secure Simple Pairing). Next, the Version message contains
what Bluetooth version the device uses and the manufacturer
of the Bluetooth module. The Name message will tell us
what human-readable name the device is given. We noted this
information in our motivation section because it is particularly
impactful on location privacy, as the name of the device often
includes the name of the owner, such as Steve’s iPhone. These
four messages are sent whenever two devices begin pairing,
so they mirror the behavior of the standard pairing procedure.

No LMP message exists to retrieve the full Bluetooth
address, but we can utilize the LMP Role Switch message to
recover it directly. Recall that a role switch is used when a

5



SDR Host
Transceiver

1

2 3

4

5

6

Device

Fig. 4. Blue’s Clues Attack Architecture, consisting of six stages. The attack first (1) detects a transmission from a nearby Bluetooth device and (2) sends
the data to a program running on a computer. The address fragment for the Bluetooth device is then (3) forwarded to the transceiver which will (4) establish
its own connection to the device and (5) receive information from the device. Finally, the transceiver will (6) send the gathered information back to the host
program for database logging.

device would like to change roles from either a central to a
peripheral device or a peripheral to a central device. When
a role switch message is accepted by a device, that device
immediately sends over a frequency hopping synchronization
(FHS) packet, similar to the one we send out during the paging
procedure portion of our connection. This message contains all
three portions of the Bluetooth MAC address as well as both
the Major Device Class and Minor Device Class fields (e.g.,
Phone and Smart Phone for an iPhone). Therefore, we can use
the role switch procedure in an unintended manner as a method
of recovering the device type and the NAP portion of the
MAC address. The only aspect of our attack that deviates from
standard pairing behavior is our immediate disconnection after
performing the role switch. The end-user will not be aware of
this behavior, however, because this messaging procedure is
not translated to higher layers in the Bluetooth stack.

While the NAP is not used as a seed for generating anything
about the connection like the other portions, it does tell us what
the OUI (manufacturer) of the host device is (e.g., Google Inc.
or Apple). Also, the retrieval of the NAP completes the entire
Bluetooth MAC address. Since this value is static for Bluetooth
Classic, this serves as a permanent and unique identifier for
the device.

Once we retrieve the complete set of identifying informa-
tion, we terminate the connection before any communication
is sent to the host. The host, and therefore the user, is never
aware of our presence, nor is there any record that we have
communicated with the device.

V. IMPLEMENTATION

Our goal is to automatically detect Bluetooth transmissions
and connect to the corresponding transmitters, so our attack
consists of two stages. The first stage requires a radio receiver
to monitor a subset of Bluetooth channels for ID packets
which can be de-whitened to reveal the LAPs of the devices
that transmitted them. Once the LAP is recovered, this stage
must then begin recovering the UAP of that device. Both

steps are crucial because both address portions are required
for connection establishment. Previous work in Bluetooth
sniffing [6], [7] can fulfill this role.

The second stage requires a Bluetooth transceiver to perform
a paging procedure for every possible address it receives from
the radio until it confirms that it knows the valid address for
the device. We desire two separate radios here so that we
can simultaneously listen for Bluetooth traffic and attempt
a direct connection to a local device. Once the address is
known, the transceiver must establish a connection with the
device to exchange LMP messages before any authentication
is challenged. Once we have collected all of this information,
we can simply stop communicating with the foreign device.
The end-user of the device will receive no notification that
any communication took place, as LMP messages are not
propagated to higher layers.

Our setup consists of three components: an SDR, a Blue-
tooth transceiver, and a host machine. Figure 4 provides
a diagram of the implementation with embedded dataflow.
Packets are first gathered by our SDR and sent to the host
computer for de-whitening and UAP computation in Steps 1
and 2. Then, the recovered LAP along with a list of possible
UAPs is sent to the transceiver host program which selects
one MAC address fragment to send to the transceiver in
Step 3. The transceiver will page that address fragment and
establish a connection with the corresponding device in Step
4, assuming the address is valid. If the address is invalid, the
transceiver notifies the host program to send another option.
During a connection, the transceiver will send out LMP request
messages and send the responses to the host for logging in
Steps 5 and 6. These LMP messages are listed in Figure 3
as LMP Procedure. Finally, the transceiver will disconnect
from the foreign device by simply ceasing to send any further
messages and waiting for the next address to try to connect
to.

6



A. Hardware Implementation

We chose to use the Ettus Research USRP B210 SDR [36]
running open-source code [34] to simultaneously monitor 8
channels of the Bluetooth spectrum for local traffic. The code
both recovers LAPs from Bluetooth packets and iteratively
narrows down the UAP of a nearby Bluetooth device to two
possibilities. This program, therefore, fits the requirements of
our attack, as we require both address portions to establish
a connection with an external device. Additionally, this code
allows the user to expand to two B210 SDRs to cover the
entire Bluetooth spectrum. We decided to use a single SDR to
(1) keep the overall cost of the setup to a minimum and (2)
make the setup as portable as we could. While other solutions
for Bluetooth sniffing exist [37], they rely on monitoring
a single frequency at a time. This method misses out on
significantly more packets and therefore would require much
longer exposure to a connection to accurately recover the
device UAP.

Our chosen Bluetooth transceiver is an Ubertooth One [38],
a popular and inexpensive embedded Bluetooth prototyping
platform that connects to a host through USB. This portable
solution gave us access to lower Bluetooth layers, allowing us
to send arbitrary LMP messages and pass the responses to a
host program. Open-source code is readily available [39] and
supports paging, inquiry, and LMP procedures, making it ideal
to implement our attack.

While the Ubertooth itself can act as a Bluetooth sniffer, we
chose to use an external SDR for two reasons. First, like other
solutions, the Ubertooth can only monitor a single channel
at a time and will therefore be inefficient at discovering
and narrowing down addresses. Second, the Ubertooth cannot
monitor for addresses and transmit simultaneously, so our
setup would miss out on even more packets while attempting
a connection through paging. We employ a laptop running
Ubuntu 18.04 LTS as our host machine (both natively and
through a VM) but note that any device supporting the Ettus
USRP [40] and Ubertooth [39] libraries will be able to run
our attack. Our physical hardware setup is shown in Figure 5.

B. Software Implementation

Both the Ubertooth and the SDR have their own host
programs, so we use ZMQ sockets for inter-process com-
munication. Whenever the sniffer program discovers a new
device, it will send both the LAP and a list of possible UAPs
to the transceiver code. Our goal is to discover devices as
quickly as possible, so we do not wait until the SDR program
has completely narrowed down the UAP to begin attempting
a connection with the device. We instead start attempting
a connection to a given address once the list of possible
UAPs contains four or fewer options.3 Additionally, our code
immediately stops attempting a connection to an address that
is ruled out by the SDR program.

3We determined this value by testing several options until we found the
one that gave us the best overall performance.

Fig. 5. Interior shot of the Faraday cage we used during our private tests.
Our setup and some assorted Bluetooth devices are shown within the cage.

In the worst case, the SDR program will provide 32 possible
UAPs for the Ubertooth to try. However, the SDR program
typically reduces that down to 2-4 possibilities within 2 sec-
onds. As soon as the transceiver program receives a list from
the SDR program, it will begin transmitting MAC address
fragments through paging messages until it receives a response
to its FHS packet. If no explicit response is received, we can
reasonably conclude that our UAP guess is false and move
on to the next possibility. We implemented a timeout feature
of four seconds to prevent the Ubertooth from spending too
much time waiting on a response to a paging request message.
We determined this value by measuring how long an average
paging procedure took at around three seconds and set our
value one second higher as a buffer.

The transceiver code uses a priority queue to determine the
order of devices to establish a connection to. The devices with
the smallest amount of possible UAPs are handled first, as
the Ubertooth should require less time with those on average.
This also gives the SDR code time to further narrow down the
UAP of the other devices, which will improve the transceiver
performance when the device LAP moves to the front of the
queue. When the transceiver successfully discovers a device,
it logs the total time taken to a separate file that we use
to evaluate the performance of the attack. Finally, we log
all device information including MAC address, device name,
chipset manufacturer, and Bluetooth version into an SQLite
database and remove the LAP of the device from the priority
queue to move on to other devices. Our code is available at
https://github.com/TylerTucker/BluesClues.

VI. EVALUATION

A. Ethics Statement

All studies involving identifying Bluetooth devices carry
with them inherent privacy risks. By definition, these studies
cannot target specific devices, but retrieve information from all
nearby devices to be able to identify them. Any experiments

7



run outside of a carefully controlled lab environment will
collect information from potentially uninformed and unwilling
participants. This privacy risk represents a significant ethical
challenge. Some recent works have chosen not to address the
ethics of their research, either by labeling the information
“publicly available” or by ignoring the question altogether.
We view this approach as dangerous and irresponsible.

We decided to address the ethical question directly in the
design of our research by separating our studies into two
pieces. In designing and testing the functionality of our setup,
we exclusively tested our own devices, eliminating the privacy
risk to others. To explore the implications of this attack, we
needed to run a study in a more realistic scenario, which meant
we would need to test on devices outside our control. Before
executing this test, we sought approval from our Institutional
Review Board (IRB), Office of Security and Privacy, and our
sponsor’s Human Research Protection Official (HRPO). With
their guidance, we designed a study that would be limited to
a single building owned by our university, and we notified all
students and staff who could potentially be in the building on
the days that we tested. Additionally, we gave all students and
staff the opportunity to have their devices removed from our
database and all information we collected on them deleted.
No information collected during this study has nor will ever
be shared with anyone outside of the authors of this work. It
is crucial for our work, as well as future work, to consider
the privacy risk to individuals who might be identified by
experiments and mitigate this risk to the greatest possible
degree.

We recognize that a larger study in a public place may
have discovered many more devices that were not in our
test set; however, we believed the potential consequences to
uninformed users to be too significant to warrant such an
action.

B. Goals

We formulate the purpose of our experiments into several
research questions:

RQ1 Can our attack gather information from a device within
seconds of detection?

RQ2 Does our attack apply to a variety of Bluetooth devices?
RQ3 Can our attack perform efficiently in the presence of

significant Bluetooth traffic?
RQ4 Can our attack be used as a vector for exploiting further

vulnerabilities?
RQ5 Can our attack find a significant number of devices that

previous attempts miss?
RQ6 Will the information gathered by our attack be

personally identifying to the device owner?

To answer RQ1-RQ4, we perform private tests in a con-
trolled environment consisting only of end devices we own. To
address RQ5 and RQ6, we must conduct tests against devices
we do not control and therefore must take our setup out into
the public.

Fig. 6. Probability Density Function (PDF) plot of total attack times. We
observe that almost all connections are completed in under 10 seconds from
the time we first observe a transmission from the device. Deviations in time
come from the variable paging time inherent in Bluetooth Classic and the
process of guessing at potential UAPs per device.

C. Private Testing

To prevent our attack from interacting with foreign devices,
we performed our private testing within a professional-grade
Faraday cage in our lab. This arrangement guaranteed that we
did not gather information from devices we did not own. We
share an interior shot of our Faraday cage with assorted test
devices in Figure 5.

1) Attack Performance: To investigate RQ1, we pro-
grammed a timer into our host Ubertooth program. This
allowed us to gather timing data for every connection the Uber-
tooth made while running all of our tests. The timer begins
once the transceiver program receives a new LAP from our
SDR program and ends after the Ubertooth finishes sending
LMP messages to the foreign device, encapsulating the full
protocol. A probability density function (PDF) plot represent-
ing the results of 100 samples from our timing experiments
is shown in Figure 6. We found that our attack achieved an
average total time of 5.12 seconds, with connections finishing
in as little as 0.57 seconds in the best case. Also, we observe
a bimodal shape in this plot with peaks around 2.5 seconds
and 7.5 seconds. This occurs because we generally have two
addresses to try per device. If our first guess is correct, we
can make a connection in under five seconds. However, if our
first guess is incorrect, we have to try a second address after
hitting a four-second timeout for the first address. This leads
to a longer total discovery time that is reflected by the second
peak in our graph. Our results demonstrate that our attack
is efficient enough to be used against devices transported by
pedestrians or vehicles stopped at checkpoints or intersections.

Our discovery time is comparable to that of the traditional
inquiry process, although our attack can only attempt connec-
tions to a single device at any given moment in our current
implementation. This limitation, however, can be mitigated

8



2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Blackberry 9650

HTC ADR6400L

Gas Pump Skimmer

Nintendo Switch

Galaxy Note II

Sennheiser Headphones

Galaxy S4

Sony PS4

Gear S2 Smartwatch

Galaxy S7

Dell Precision 3510

Nexus 6P

Pixel

Pixel 3

iPhone XS

Galaxy S8+

Macbook Pro

Galaxy S10+

Amzcev Spy Camera

iPad Pro

iPhone 12

Bluetooth Version 2.1 3.0 4.0 4.1 4.2 5.0 5.1 5.2

Malicious Devices

Accessories
Computers

Phones

Fig. 7. This timeline incorporates every device we successfully tested our attack against, which we have grouped into phones, computers, accessories, and
malicious devices. These devices represent eight different Bluetooth versions, which stretch back to 2007 in release dates. This graphic shows that the Blue’s
Clues attack works against all types of devices, regardless of what version they are using.

by using several transceiver dongles simultaneously. The total
time depends on several factors including how quickly the
SDR program can narrow down the UAP, how often the target
device checks for paging messages, and how many Bluetooth
devices are transmitting in the area. Despite targeting multiple
devices with different chipsets, we did not observe any corre-
lation between the performance of our attack and the chipset
of the target device, likely due to the strict packet structure
and timing requirements in the Bluetooth standard.

2) Generality: We employed a collection of various
Bluetooth-enabled devices to look into RQ2, a summary of
which is shared in Figure 7. In this figure, we show both
the variety of victim devices and the Bluetooth versions they
run. The oldest version we tested against was Bluetooth
2.1 + EDR, which was accepted by the Bluetooth SIG in
2007, while the newest was Bluetooth 5.2, released in 2020.
The lifetime of each Bluetooth version, or the time from
inception to replacement, is represented by the colored lines
in Figure 7. Our test devices represent 13+ years of Bluetooth
versions, showing that all modern Bluetooth implementations
are vulnerable to our attack. We also report that these devices
use Bluetooth chips manufactured by five different companies:

Broadcom, Qualcomm, Marvell, Intel, and Bluetrum. While
an overwhelming majority of Bluetooth central devices are
smartphones, we are interested in what other types of devices
can be detected. These other devices included laptops, tablets,
game consoles, headphones, and malicious devices such as a
spy camera and a gas pump skimmer.4 This final device class is
particularly interesting because we chose to detect devices that
are specifically designed not to be detected, yet because they
are Bluetooth-compliant, they remain vulnerable to our attack
just as any Bluetooth device would be. The takeaway from this
experiment is that regardless of device type, Bluetooth version,
chipset manufacturer, or even device intent, any Bluetooth
Classic device is vulnerable to our attack.

3) Traffic Experiments: To answer RQ3, we set up eight
simultaneous Bluetooth connections between sixteen devices
and placed them all into our Faraday cage. We ensured that
each device was in Non-Discoverable mode by attempting an
inquiry process with a separate Bluetooth device, which found
none of them. The test devices included multiple smartphones,

4This gas pump skimmer was recovered by law enforcement from a crime
scene and shared with our lab.

9



headphones, speakers, and laptops to simulate a public envi-
ronment. Our attack discovered all central devices in 41.5 sec-
onds, giving an average of 5.19 seconds of detection time per
device. This average is comparable to our overall performance
average of 5.12 seconds, proving that our detection time is
not significantly affected when the amount of local Bluetooth
traffic increases. This result also proves that our attack remains
accurate when in the presence of several connections, as it
found all possible connections in the isolated environment of
the Faraday cage.

We note that previous inquiry-based methods for Bluetooth
tracking [21]–[23] would fail to detect any devices in this situ-
ation. By default, all of the devices we tested against remained
in Non-Discoverable mode when not actively searching for
new connections. This means that we did not have to change
any settings to tailor to our attack, allowing us to conclude
that such an environment is representative of a public area.

4) Automatic Vulnerability Exploitation: As our attack au-
tomatically detects and establishes connections to foreign de-
vices, we aimed to investigate RQ4 to find out if we could use
the established connection for more than just receiving LMP
messages. Any vulnerability that does not require knowledge
of cryptographic keys could be executed after connection
establishment, such as the BlueFrag vulnerability (CVE 2020-
022) in Android devices [41]. We selected a Google Pixel
which had not been updated to patch this vulnerability as
our target device. We treated the Pixel as an unknown device
by using no other information than could be recovered by
our attack. Our attack recovered the name (“Pixel”), the
manufacturer (“Qualcomm”), the device type (“Smart Phone”),
the Bluetooth version (“4.2”), and the OUI (“Google, Inc.”),
allowing us to identify the device as a Pixel. Note that while
a combination of the manufacturer, device type, Bluetooth
version, and OUI are often sufficient in identifying a device
(e.g., a smartphone made by Apple is an iPhone), the model
name is often found in the device name by default (e.g.,
“Pixel” or “Steve’s iPhone”). In short, the LMP messages
reveal the model of the device on the other side of the
connection, meaning we can determine which vulnerabilities
the device may have without notifying the owner.

For BlueFrag to be successful, the entire Bluetooth address
must be known a priori, an assumption that is often untrue
in attack scenarios. Using the Bluetooth address and device
information we recovered with our attack, we were able to
identify our target device as a Google Pixel and exploit the
BlueFrag vulnerability to trigger a remote denial of service
(DOS) attack. To avoid programming the entire BlueFrag
protocol into the Ubertooth firmware, we traded out the
Ubertooth for a conventional USB Bluetooth dongle5 which
uses the BlueZ Bluetooth stack for Linux [42]. We passed
the recovered MAC address into a BlueFrag script [43] which
carried out the DOS attack, prompting an error message on the
Pixel and forcing the Bluetooth program to restart. Every step

5The Ubertooth could be programmed to carry out the attack itself, but we
believe that carrying out the attack on a conventional Bluetooth device was
sufficient to support our claim.

of this process could be automated, giving us an automatic
vulnerability exploiter that requires no previous knowledge of
the victim device.

D. Public Testing

After gaining approval for a public experiment by the
appropriate parties mentioned in our ethics statement, we
worked with the faculty within our department to have an
official notice of our experiment sent out to an email list
containing all personnel with desk space in or keycard access
to our building. We chose to conduct the public experiment
over two days to (1) maximize the number of devices we
could find within our building and (2) provide ourselves with
an official second day of experiments in case we faced troubles
on the first day. On the first day, our setup ran for three hours
on a Friday afternoon. We then ran the setup for six hours
the following Monday during peak work hours to try to find
as many devices as possible before our allotted approved time
expired.

1) Comparison to Previous Methods: To address RQ5,
we used a generic Bluetooth chip to perform inquiries for
Discoverable devices while our setup was active. In total, we
found 23 named Bluetooth devices in our building throughout
the two days of testing. With an overwhelming majority of
personnel in our building electing to work from home due to
COVID concerns, we expected a relatively small number of
devices to be transmitting within the building. Out of those
23 devices, our attack was able to find 7 devices that the
inquiry process missed, accounting for about a third of the
total devices found.

While we cannot make statistically-significant claims based
on these results, they do show that previous inquiry-based
methods to location tracking via Bluetooth [21]–[23] miss a
major portion of the actual devices in an area. To produce
significant statistics on this metric, the scope of our experiment
would have to be widened to include a public space with
much greater foot traffic to reach hundreds or thousands of
devices. We considered such a study but found that properly
informing all participants to align with our ethics statement
was not practical in our timeframe given the need to explain
the details of the study to every individual participant.

2) Personally-Identifying Information: Finally, we explore
RQ6 by manually analyzing the device names we gathered
during our public tests. This field often contains the name of
the device owner in some way. However, to our knowledge,
no study has been conducted to determine how common this
occurrence is. From our case study of 23 total devices, we
recovered 7 owner first names: 2 from Discoverable devices
and 5 from Non-Discoverable devices, accounting for about a
third of devices in total. While only 12.5% of Discoverable
devices contained a name, 62.5% of Non-Discoverable devices
contained a name in our case study. Interestingly, one device
appeared to be renamed to the owner’s first and last name. This
result displays the potential of this attack to reveal the identity
of people in a local area, something that previous passive
approaches [6], [7], [24], [25] cannot offer. We note that while

10



the device name can be changed arbitrarily, this practice does
not seem to be common in our case study. Similar to our
result for RQ5, a large-scale test in a public area would yield
strong statistics for this question. Once again, we did not aim
to contradict our ethics statement for such results.

E. Validation

Throughout the development of our attack, we used the
Ellisys Bluetooth Explorer [44] to validate the structure of
each of our messages. The Explorer is a solution for over-
the-air protocol debugging with 2.4 GHz technologies and
can monitor all Bluetooth channels concurrently to capture
all Bluetooth traffic. We used this monitor to capture the
pairing behavior of several different combinations of Bluetooth
devices. This allowed us to check for the traditional ordering
and timing of LMP messages, which in turn allowed us
to rapidly implement our protocol in our custom Ubertooth
firmware to mimic the behavior of standard Bluetooth devices.

VII. DISCUSSION

A. Use Cases

The Blue’s Clues attack has both defensive and offensive
uses. For instance, the attack could be used to monitor sensitive
areas. Locations such as banks and government buildings may
wish to monitor and detect all devices, particularly hidden
ones. The additional information that our attack recovers
would assist in identifying whether the unknown device should
be flagged in a manner similar to our suggestion for flagging
the spy camera in our evaluation. Similarly, ordinary busi-
nesses could deploy our attack to log information throughout
the day. Any time theft is committed at the business, the
business could immediately reference system logs to look for
any devices detected around the time of the crime. If any
personally identifiable information was recovered, business
owners can report it to the authorities to aid in an investigation.

Conversely, a similar strategy might be adopted in an
offensive manner, such as an abusive partner tracking the
location of their partner by monitoring their home and/or
other locations for a Bluetooth address recovered through
our methods. This approach, therefore, allows for a major
invasion of privacy. With significant attention being given
to abusive tracking via Bluetooth Low Energy tags [45]–
[47], our attack demonstrates that Bluetooth Classic is also
a potentially dangerous tool for abusers that needs to be
addressed. Also, in a malicious setting, the discovery of hidden
Bluetooth devices creates a new attack vector. Because our
attack recovers a device’s manufacturer, type, and Bluetooth
version, we were able to demonstrate this by running the
BlueFrag attack [41] (which was previously only effective
against devices in Discoverable mode). Such an attack is
similar to the BlueBorne vulnerability [10], which used WiFi
to recover MAC addresses of nearby devices and relied on the
Bluetooth MAC address being either identical or similar to the
MAC address used in WiFi to establish a Bluetooth connection
to the device and execute code. While we only demonstrated
an example for one CVE, we believe that any vulnerability

that can be executed pre-authentication in Bluetooth can be
enhanced to work against Non-Discoverable devices by using
our attack.

B. Implications For Standard Writing

Our work contains an important lesson for all standards.
Adversaries may eventually gain capabilities beyond anything
possible at the time the standard is written, making it in-
credibly difficult to guarantee security in the long term. This
is exemplified by our work exploiting technology that was
not available or even considered when the original standard
was written two decades ago. One method for combatting this
limitation would be an explicit list of assumptions under which
the standard provides security.

Along with these explicit assumptions, standard writers
could take the evolving nature of technology into account
by building flexibility into the standard, thus allowing the
standard to evolve in turn. This could include the ability
to slot in new cryptographic protocols or allow room for
additional authentication protocols. By writing standards with
this evolution in mind, writers can potentially observe changes
to their initial assumptions before those changes become
problematic.

MAC address randomization has been implemented in the
newer Bluetooth Low Energy standard [31], as well as in WiFi
networks [48]. Standards designers are therefore implementing
these lessons learned into newer technologies but can make
an additional impact by retrofitting them into existing tech-
nologies. We hope that our work enables this approach for
Bluetooth Classic.

C. Limitations

Although our attack offers significant improvements over
previous solutions, there are still limitations to its capabilities.
First, we must be able to capture at least one packet to recover
the device address, which means that a device must be actively
transmitting for us to detect it. We cannot therefore “ping” for
Non-Discoverable devices. This is a limitation shared by all
Bluetooth sniffing systems [6], [7] and does not represent a
significant issue, as avoiding detection by not using the radio
is not a feasible mitigation strategy. A strong adversary can
sniff all Bluetooth packets, as mentioned in Section III, to
speed up our discovery process by quickly narrowing down
address possibilities. However, a connection can be established
by brute-forcing all 256 possibilities for the UAP address space
after capturing a single packet.

We are also limited to detecting the central device of any
connection, as that is the only address used for all active con-
nections. This means that in a piconet with multiple peripheral
devices connected to a single central device, all packets will
contain the LAP of only the central device. While this does
prevent us from detecting all peripherals, the central device is
usually the most important to discover. It is often the device
most likely to contain personally identifying information, and
it is the best target for any vulnerability exploitation. Further-
more, if the central device is compromised, the entire piconet

11



is compromised. We note here though that if a traditionally
peripheral device (e.g., headphones or a speaker) is powered
on and attempts to connect to a traditionally central device
(e.g., a smartphone or laptop) in range of our setup, we can
receive its address. This occurs because any device creating a
connection automatically becomes the central device and must
perform a role switch with the other device to assume its role
as a peripheral device. In the case of headphones connecting
to a smartphone, our attack would first capture the address of
the headphones, then capture the address of the smartphone
after the roles had been switched between the two devices.

While our attack achieved an average discovery time of
around five seconds, this time is still not fast enough to
discover devices in moving cars or other fast modes of trans-
portation. The attack could not, therefore, be used to gather
information on people traveling along highways or in trains
without the use of high-gain antennas. Passive approaches
can perform quickly enough to handle these situations, but
the paging process takes too long on average for our attack
to break Non-Discoverable mode under these circumstances.
However, our attack can succeed in all other circumstances
where devices are not moving at high speeds, including
walking or running pedestrians. Note that since our attack
contains a passive step, we can perform just as well in fast
settings as other work [6], [7], but cannot improve on them
without a longer time window.

Finally, we are limited to the Bluetooth Classic protocol,
which does not include Bluetooth Low Energy (BLE). BLE,
an increasingly popular technology for embedded applications
such as asset trackers [1], uses a different addressing scheme.
This protocol uses temporary identifiers in lieu of permanent
identifiers, which make it incompatible with our attack. How-
ever, Bluetooth Classic is still a widespread technology [32],
particularly in personal computing devices, meaning our attack
is still relevant to the modern wireless ecosystem.

D. Mitigation

1) Proposals: With 4 billion shipments of Bluetooth de-
vices reported in 2020 and a projected 6.4 billion shipments
in 2025 [1], patching vulnerabilities at scale is a monumental
task. The first step in our attack is demodulating ID packets
to recover the LAP as well as error-checking codes that
give us information we can use to narrow down the UAP.
Preventing this capability would imply removing these IDs
from generic Bluetooth packets. However, incorporating IDs
into Bluetooth packets is a fundamental design choice of
the Bluetooth Classic protocol, so making a major change
there would immediately prevent all backward compatibility
with existing Bluetooth versions. Purely passive approaches,
therefore, will remain a threat against Bluetooth Classic. The
newer Bluetooth Low Energy (BLE) standard implements a
temporary identifier in place of a static address to solve this
problem.

The active stage of our attack can be partially mitigated
through two countermeasures: (1) address validation and (2)
pre-authentication role-switch prevention. For the first coun-

termeasure, the Bluetooth chip can use the Host Controller
Interface (HCI) feature of Bluetooth Classic to pass the MAC
address of the device attempting a connection with it to the
host, which can keep track of previously paired MAC ad-
dresses. Alternatively, the Bluetooth chip itself could employ a
small array of saved MAC addresses that it searches whenever
a device attempts to connect to it. If the new MAC address
is contained in that list, the host can tell the baseband chip
to continue with the pairing process. If the MAC address is
unrecognized, and the device is not nor has recently been
in Discoverable mode, the chip should immediately cease
communication with the foreign device. Here we make the
observation that the only time a Bluetooth device should
expect a pairing procedure from a new device is when it is in
(or perhaps, has recently been in) Discoverable mode. This ap-
proach is particularly necessary for devices without traditional
interfaces (e.g., headphones lack their own screens), without
which authentication is generally not possible. While this does
not prevent a passive adversary from sniffing a portion of the
Bluetooth address, it does prevent an active adversary from
querying the device for information, or in the case of devices
with no authentication, delivering arbitrary packets (e.g., loud
noises to headphones). An adversary could only defeat this
mitigation strategy by masquerading as another device that
they knew a victim device had previously communicated with.
This would require that the adversary observe an FHS packet
from a device connecting to the victim device, as well as the
LAP and UAP of the victim device. The adversary, therefore,
would have to observe either the beginning of a connection
or a connection before and after a role switch to recover all
of this information, assuming they employ a system that does
not have any packet loss.

Although this does add some processing overhead to the
Bluetooth implementation, it is small enough so as not to
affect the protocol. This is similar to the mitigation for the
Heartbleed vulnerability [49], which also required the addition
of a comparison operation. In that case, the comparison was
fast enough that it was undetectable over the network. Our
evaluation shows that our mitigation likewise is undetectable
by other devices, and only adds a slight overhead on the local
device.

Our second proposed countermeasure is rejecting the LMP
Role Switch message when it appears before authentication
occurs. Rejecting this message would allow the device to retain
its NAP and device type information. This prevents our attack
from gathering the full Bluetooth MAC address (a permanent
and unique identifier), the host manufacturer (e.g., Apple or
Google), and the device type (e.g., smartphone). Lacking this
information limits our attack as a means of location tracking,
and prevents us from quickly determining the device model,
which we use in our automatic vulnerability exploit experi-
ment. Recent work has taken advantage of overly-permissive
pre-authentication role switching in Bluetooth Classic for other
purposes [26], [27], further proving the need for this change.

Finally, users may wish to limit the use of personally
identifiable information such as device names. Many devices

12



including iPhones name devices after the user (e.g., Steve’s
iPhone) by default. Our IRB-approved test confirmed that this
practice was common and demonstrated that a surprising 78%
of phones in the building had the user’s first name as part
of the device name. We note that while our study is small
due to COVID conditions, we believe that it is a reasonable
approximation for common user behavior in the larger public.
That said, we recognize that it is not entirely practical to
remove use names from device identifiers, as many users want
to be able to easily identify their phones.

2) Evaluation: We identified address validation as our most
effective countermeasure because it prevents any information
from being leaked to an unknown device and therefore chose
to evaluate this option. To verify that our address validation
proposal is valid, we implemented the necessary fix to our
open-source Ubertooth firmware [39], which is written in C.
The Uberooth uses an LPC175x ARM Cortex-M3 microcon-
troller [50] running at 50 MHz. We first created a standard
array of size 2626 to act as our small database of saved MAC
addresses. We added an entry to the array representing the
MAC address of one of our test devices (iPhone 12) and
encapsulated the function call to establish a connection with a
conditional statement. This statement only allows that function
to be called under two conditions: (1) if the MAC address
of the device attempting to establish a connection with the
Ubertooth matches an entry in our small database or (2) if the
device is currently Discoverable. If neither of those conditions
is true, communication simply ceases between the two devices.
For reference, we provide pseudocode for this process in
Algorithm 1 which exhibits all three possible conditions.

Algorithm 1 Address Validation Countermeasure
1: if MAC ∈ Database then
2: Accept LMP Transaction
3: else if MAC ̸∈ Database and Discoverable then
4: Accept LMP Transaction
5: else
6: Reject LMP Transaction
7: end if

We used a separate Bluetooth device (Huawei Nexus 6P)
to act as our attacker and paged the Ubertooth from that
device. The Ubertooth saw that the MAC address of the Nexus
was not in its database and refused the connection. When we
performed the same paging procedure with the iPhone, the
Ubertooth matched the iPhone’s MAC address to the entry
that we made in our database and allowed the connection to
continue.

We evaluated the total time taken by our countermeasure
by determining the amount of elapsed clock cycles from
the beginning of searching the database to the end of the
conditional statement. We inserted the correct MAC address at
the very end of the array to ensure that we were evaluating a

6Bluetooth Classic only allows for up to 262 devices in a piconet (7 active
and 255 on standby) [31], so we believe that a small database size of 262 is
reasonable.

worst-case scenario. In all 50 of our tests, we recorded exactly
2659 clock cycles to perform the MAC address check on the
Ubertooth, which equates to 50.18 µs. To ensure this value
did not slow down the protocol, we recorded the time taken
between a device receiving an FHS packet (which includes the
MAC address) and its acknowledgment ID packet using our
Ellisys Bluetooth Explorer [44]. For reference, this process
is outlined in Figure 3 as the final two steps in Paging
Procedure. Over eight runs, each with different devices, we
observed an average of 625.28 µs with an extremely tight
standard deviation of 0.63 µs. This means that our fix can be
evaluated significantly faster than is necessary to keep up with
the Bluetooth protocol. Performing the search before sending
the acknowledgment packet also prevents the attacker from
confirming the device UAP on top of preventing leakage of
LMP information and the full MAC address.

If the search cannot be performed before the acknowl-
edgment must be sent, a device could simply perform it
before it must respond to the first LMP request, which will
be the first message it receives after the paging procedure
ends. This would not guard the UAP, but would still protect
against leakage of LMP information and the full MAC address.
We observed an average time between receiving the FHS
packet and the first LMP request of 15.31 ms over eight runs
with different devices. These tests produced a large standard
deviation of 22.16 ms, which suggests that the time between
the end of the paging procedure and the beginning of LMP
transactions is not strictly set by the Bluetooth standard.
Nevertheless, our evaluation time of 50.18 µs is significantly
faster than even the smallest time difference we observed from
these tests (3.75 ms). Finally, we note that observing an exact
number of clock cycles over repeated tests for an embedded
device such as the Ubertooth is not surprising because the
Ubertooth is only performing a single task during that period.

E. Disclosure

Around the time of submission, we disclosed the vulner-
ability to the Bluetooth SIG. They have confirmed that our
method is a means of identifying the full Bluetooth Address of
a BR/EDR radio that is Connectable but Non-Discoverable. As
such, they are interested in providing mitigation for existing
devices as our process is faster than any previously known
approach for discovering Non-Discoverable devices. They
discussed a mitigation strategy that has a device set its name
to an empty string when in Non-Discoverable mode to limit
data leakage. This, however, would not prevent the recovery
of the Bluetooth address, nor the device’s type, manufacturer,
version, etc. Our mitigation technique, as outlined in Sec-
tion VII-D, would prevent the disclosure of all this information
without impacting the functioning of the Bluetooth protocol.
We have reserved CVE number CVE-2022-24695 for our
disclosure. The representative from the SIG has indicated that
they intend to continue to investigate the issue internally;
however, as we are not a member company, we will not be
able to see any additional potential mitigations until they are
publicly released.

13



VIII. RELATED WORK

Bluetooth has undergone thorough security analyses over
the past 20 years, ranging from cryptanalysis to practical over-
the-air attacks. Early work targeted vulnerabilities in the cryp-
tography of the standard, specifically the E0 stream cipher and
Bluetooth PIN [9], [11]–[17]. Location leaks in Bluetooth’s
Discoverable mode were first discussed by Jakobsson et al.
in the early 2000s [9]. In this work, the authors revealed that
a specific Bluetooth device, and therefore the device owner,
could be tracked using a network of Bluetooth devices that
perform the standard inquiry process to reveal nearby con-
nectable Bluetooth devices in Discoverable mode. This idea
was evaluated in different settings spanning from shopping
malls [22] to entire cities [21], [23]. Both a distributed network
of Bluetooth sensors [21], [22] and a single sensor mounted
on a moving vehicle [23] were used in these studies, which
all found success in tracking individuals. Such an approach is
thrawted by Bluetooth’s Non-Discoverable mode, as it relies
on devices that respond to inquiry requests.

Jakobsson et. al. also considered passive attacks against
Bluetooth’s Non-Discoverable mode by suggesting an attack
in which an adversary intercepts an ID packet containing
a Bluetooth Channel Access Code (CAC) used after the
establishment of a piconet. However, this attack was not
demonstrated to be practical until the BlueSniff work in
2007 [7]. From Jakobsson’s attack, Wong et al. [18] suggested
that Bluetooth adapt pseudonyms similar to GSM TMSIs to
prevent leakage of permanent Bluetooth addresses to passive
adversaries. They also mention that the location privacy of a
peripheral device can be compromised by an external device
that captures a paging message addressing that device. A few
years later, the BlueSniff work by Spill et al. [7] provided the
first open-source Bluetooth sniffer code gr-bluetooth in GNU
Radio. They used this technology to eavesdrop on several
neighboring Bluetooth channels, developing a technique for
de-whitening Bluetooth packets to recover the LAP and revers-
ing HEC and CRC generation algorithms to recover the UAP.
These achievements paved the road for practical Bluetooth
security research, while also revealing weaknesses in location
privacy with the Non-Discoverable mode while in the presence
of a sniffer device. Furthermore, they suggest a method of
determining the NAP of a device by consulting the OUI
list [33] of MAC addresses, which can quickly narrow down
the list of potential NAPs. This was the first practical proposal
for recovering the entire Bluetooth MAC address. That same
year, efforts were underway to recover the Bluetooth address
of devices that were not transmitting through a brute force
attack. While the naive approach would theoretically take 1.4
years of continuous transmission on a single radio to recover
the LAP, such an attack could be reduced to 7 days with
79 radios, one for each Bluetooth channel [8]. This effort
was further refined by Cross et el., [5], who used a more
efficient method to brute force the address in less than 24
hours, given 79 radios. While this approach is theoretically
sound, it does assume an exaggerated threat model. Moreover,

recent approaches to recovering the Bluetooth MAC address
are significantly more performant.

Our work benefits primarily from the wideband Bluetooth
skimming performed by Cominelli et al. [6]. In that work, the
authors use the information in a de-whitened header to narrow
the possible UAPs down from 255 to 2. The LAP and small set
of UAPs worked as an identifier that was stable and could be
tracked over time. Although it is statistically likely that this
identifier is unique, two devices could have the same UAP
and LAP, but differ in NAP, preventing [6] from definitively
tracking a single device. We build on their methods with an
active component that affords us the capabilities of all previous
attacks on both Discoverable and Non-Discoverable devices.
Additionally, we can consider our approach as a door for
exploiting vulnerabilities or injecting packets into Bluetooth
devices which lack mutual authentication (e.g., playing music
on a speaker).

IX. CONCLUSION

In this work, we present Blue’s Clues, the first complete
break of the Non-Discoverable mode of Bluetooth Classic.
Our attack uses a two-step process for device discovery by
first recovering a portion of the Bluetooth MAC address,
then using the address fragment to establish a connection
to the corresponding device. During the connection, we can
query any Non-Discoverable device for information that is
normally shared freely by Discoverable devices. Our attack
shows how this information can be used to track individuals or
expose a device to exploits that traditionally target systems in
Discoverable mode. We implemented our attack on consumer
hardware, using open-source host code and device firmware to
carry out all processes. By testing the attack on a wide variety
of devices, we showed that all Bluetooth Classic standard-
compliant devices are vulnerable.

Additionally, we demonstrated the impact of our attack
through experiments both in private and public settings, ex-
hibiting the benefits of our attack compared to past work
in Bluetooth location tracking. Namely, Blue’s Clues both
finds devices that inquiry-based methods miss and recov-
ers personally-identifying information on device owners that
passive approaches cannot produce. Finally, we propose and
evaluate mitigation methods for defending against our attack
by rejecting connections from unknown addresses when the
device has not recently been in Discoverable mode, rejecting
pre-authentication role switches, and removing personally-
identifying information from device names.

ACKNOWLEDGMENTS

We would like to express our gratitude to our sponsors for
enabling this research. This work was supported by the US
National Science Foundation grant CNS-1815883, the Office
of Naval Research grant ONR-OTA N00014-20-1-2205, and
the Air Force Research Laboratory award AFRL FA8650-19-
1-1741.

14



REFERENCES

[1] “Bluetooth Market Update,” https://www.bluetooth.com/bluetooth-
resources/2021-bmu/, 2021.

[2] “Bluetooth Core Specification 1.0B,” Bluetooth SIG, Tech. Rep., 1999.
[3] J. Padgette, J. Bahr, M. Batra, M. Holtmann, R. Smithbey, L. Chen, and

K. Scarfone, “Guide to Bluetooth Security,” NIST, Tech. Rep. 800-121
Rev 2, 2017.

[4] “Security Tip (ST05-015) Understanding Bluetooth Technology,”
https://www.cisa.gov/tips/st05-015, 2021.

[5] D. Cross, J. Hoeckle, M. Lavine, J. Rubin, and K. Snow, “Detecting Non-
Discoverable Bluetooth Devices,” in Proceedings of the International
Conference on Critical Infrastructure Protection, 2007.

[6] M. Cominelli, F. Gringoli, M. Lind, P. Patras, and G. Noubir,
“Even Black Cats Cannot Stay Hidden in the Dark: Full-band De-
Anonymization of Bluetooth Classic Devices,” in Proceedings of the
IEEE Symposium on Security and Privacy, 2020.

[7] D. Spill and A. Bittau, “BlueSniff: Eve Meets Alice and Bluetooth,”
in Proceedings of the USENIX Conference on Offensive Technologies
(WOOT), 2007.

[8] K. M. J. Haataja, “Three Practical Bluetooth Security Attacks Using
New Efficient Implementations of Security Analysis Tools,” in Pro-
ceedings of the IASTED International Conference on Communication,
Network and Information Security, 2007.

[9] M. Jakobsson and S. Wetzel, “Security Weaknesses in Bluetooth,” in
Proceedings of the Conference on Topics in Cryptology: The Cryptog-
rapher’s Track at RSA, 2001.

[10] B. Seri and G. Vishnepolsky, “BlueBorne,” Armis, Tech. Rep., 2017.
[11] M. Hermelin and K. Nyberg, “Correlation Properties of the Bluetooth

Combiner Generator,” in Proceedings of the International Conference
on Information Security and Cryptology (ICISC), 1999.

[12] Y. Lu and S. Vaudenay, “Cryptanalysis of Bluetooth Keystream Gen-
erator Two-Level E0,” in Proceedings of the International Conference
on the Theory and Application of Cryptology and Information Security
(ASIACRYPT), 2004.

[13] ——, “Faster Correlation Attack on Bluetooth Keystream Generator E0,”
in Proceedings of the International Cryptology Conference (CRYPTO),
2004.

[14] Y. Lu, W. Meier, and S. Vaudenay, “The Conditional Correlation Attack:
A Practical Attack on Bluetooth Encryption,” in Proceedings of the
International Cryptology Conference (CRYPTO), 2005.

[15] Y. Shaked and A. Wool, “Cracking the Bluetooth PIN,” in Proceedings
of the International Conference on Mobile Systems, Applications, and
Services (MobiSys), 2005.

[16] F.-L. Wong, F. Stajano, and J. Clulow, “Repairing the Bluetooth Pairing
Protocol,” in Security Protocols Workshop, 2005.

[17] Y. Shaked and A. Wool, “Cryptanalysis of the Bluetooth E0 Cipher
Using OBDD’s,” in Proceedings of the International Conference on
Information Security (ISC), 2006.

[18] F.-L. Wong and F. Stajano, “Location Privacy in Bluetooth,” in Proceed-
ings of the European Workshop on Security and Privacy in Ad-hoc and
Sensor Networks (ESAS), 2005.

[19] J. Dunning, “Taming the Blue Beast: A Survey of Bluetooth Based
Threats,” IEEE Security & Privacy, vol. 8, no. 2, pp. 20–27, 2010.

[20] S. S. Hassan, S. D. Bibon, M. S. Hossain, and M. Atiquzzaman,
“Security Threats in Bluetooth Technology,” in Proceedings of the IFIP
TC-11 International Information Security and Privacy Conference, 2018.

[21] M. Versichele, L. de Groote, M. Claeys Bouuaert, T. Neutens, I. Mo-
erman, and N. Van de Weghe, “Pattern Mining in Tourist Attraction
Visits Through Association Rule Learning on Bluetooth Tracking Data:
A Case Study of Ghent, Belgium,” Tourism Management, vol. 44, pp.
67–81, 2014.

[22] D. Oosterlinck, D. F. Benoit, P. Baecke, and N. V. de Weghe, “Bluetooth
Tracking of Humans in an Indoor Environment: An Application to
Shopping Mall Visits,” Applied Geography, vol. 78, pp. 55–65, 2017.

[23] M. Chernyshev, C. Valli, and M. Johnstone, “Revisiting Urban War
Nibbling: Mobile Passive Discovery of Classic Bluetooth Devices Using
Ubertooth One,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 7, pp. 1625–1636, 2017.

[24] B. Rodrigues, C. Halter, M. Franco, E. J. Scheid, C. Killer, and
B. Stiller, “BluePIL: A Bluetooth-Based PassIve Localization Method,”
in Proceedings of the IFIP/IEEE International Symposium on Integrated
Network Management (IM), 2021.

[25] Y. Wang, X. Yang, Y. Zhao, Y. Liu, and L. Cuthbert, “Bluetooth
Positioning Using RSSI and Triangulation Methods,” in Proceedings
of the IEEE Consumer Communications and Networking Conference
(CCNC), 2013.

[26] D. Antonioli, N. O. Tippenhauer, and K. B. Rasmussen, “The KNOB
is Broken: Exploiting Low Entropy in the Encryption Key Negotiation
Of Bluetooth BR/EDR,” in Proceedings of the USENIX Security Sym-
posium, 2019.

[27] D. Antonioli and N. O. Tippenhauer, “BIAS: Bluetooth Impersonation
AttackS,” in Proceedings of the IEEE Symposium on Security and
Privacy, 2020.

[28] T. Claburn, “Oh Cool, the Bluetooth 5.1 Specification
is Out. Nice. *Control-F* Master-Slave... 2,000 Results,”
https://www.theregister.com/2019/02/01/bluetooth updates tech/,
2019.

[29] E. Landau, “Tech Confronts Its Use of the Labels ‘Master’ and
‘Slave’,” https://www.wired.com/story/tech-confronts-use-labels-master-
slave/, 2020.

[30] C. McKenzie, “Master-Slave Terminology Alternatives You Can
Use Right Now,” https://www.theserverside.com/opinion/Master-slave-
terminology-alternatives-you-can-use-right-now, 2019.

[31] “Bluetooth Core Specification 5.2,” Bluetooth SIG, Tech. Rep., 2019.
[32] S. Karr, “Consumer Survey Highlights Necessity of Bluetooth

Technology,” https://www.bluetooth.com/blog/consumer-survey-
highlights-necessity-of-bluetooth-technology/, 2016.

[33] “IEEE SA - Registration Authority,” https://standards.ieee.org/products-
programs/regauth/, 2020.

[34] “Btsniffer,” https://github.com/bsnet/btsniffer, 2020.
[35] M. Huges, “What is Bluetooth 5? Learn about the Bit Paths Behind

the New BLE Standard,” https://www.allaboutcircuits.com/technical-
articles/long-distance-bluetooth-low-energy-bit-data-paths/, 2017.

[36] “USRP B210 USB Software Defined Radio (SDR),”
https://www.ettus.com/all-products/ub210-kit/, 2020.

[37] M. Ossmann, “Project Ubertooth: Discovering Bluetooth Devices,”
http://ubertooth.blogspot.com/2012/10/discovering-bluetooth-
devices.html, 2012.

[38] ——, “Ubertooth One,” https://greatscottgadgets.com/ubertoothone/,
2014.

[39] ——, “Ubertooth,” https://github.com/greatscottgadgets/ubertooth, 2020.
[40] “USRP Hardware Driver and USRP Man-

ual: Building and Installing UHD from source,”
https://files.ettus.com/manual/page build guide.html, 2020.

[41] J. Ruge, “BlueFrag,” https://insinuator.net/2020/04/cve-2020-0022-an-
android-8-0-9-0-bluetooth-zero-click-rce-bluefrag/.

[42] “BlueZ,” http://www.bluez.org/, 2000.
[43] “CVE-2020-0022,” https://github.com/Polo35/CVE-2020-0022, 2021.
[44] “Ellisys Bluetooth Explorer All-in-One Bluetooth® Analysis System,”

https://www.ellisys.com/products/bex400/, 2022.
[45] M. Chin, “AirTags are Dangerous — Here’s How Apple Could Fix

Them,” https://www.theverge.com/2022/3/1/22947917/airtags-privacy-
security-stalking-solutions, 2022.

[46] A. Li, “Google Looks to be Building Bluetooth Tracker Detec-
tion Directly into Android,” https://9to5google.com/2022/03/29/android-
bluetooth-tracker-detection/, 2022.

[47] K. Hill, “I Used Apple AirTags, Tiles and a GPS
Tracker to Watch My Husband’s Every Move,”
https://www.nytimes.com/2022/02/11/technology/airtags-gps-
surveillance.html, 2022.

[48] M. Burton, “What is Wi-Fi MAC Randomization and How Does it
Handle Privacy?” https://www.extremenetworks.com/extreme-networks-
blog/wi-fi-mac-randomization-privacy-and-collateral-damage/, 2020.

[49] “Heartbleed Bug,” https://heartbleed.com/, 2020.
[50] “LPC1700 Series,” http://www.nxp.com/pages/:MC 1403790745385.

15


