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Abstract—Our research discovers how the rolling shutter and
movable lens structures widely found in smartphone cameras
modulate structure-borne sounds onto camera images, creating
a point-of-view (POV) optical-acoustic side channel for acoustic
eavesdropping. The movement of smartphone camera hardware
leaks acoustic information because images unwittingly modulate
ambient sound as imperceptible distortions. Our experiments find
that the side channel is further amplified by intrinsic behaviors
of Complementary Metal-oxide–Semiconductor (CMOS) rolling
shutters and movable lenses such as in Optical Image Stabi-
lization (OIS) and Auto Focus (AF). Our paper characterizes
the limits of acoustic information leakage caused by structure-
borne sound that perturbs the POV of smartphone cameras.
In contrast with traditional optical-acoustic eavesdropping on
vibrating objects, this side channel requires no line of sight
and no object within the camera’s field of view (images of
a ceiling suffice). Our experiments test the limits of this side
channel with a novel signal processing pipeline that extracts
and recognizes the leaked acoustic information. Our evaluation
with 10 smartphones on a spoken digit dataset reports 80.66%,
91.28%, and 99.67% accuracies on recognizing 10 spoken digits,
20 speakers, and 2 genders respectively. We further systematically
discuss the possible defense strategies and implementations. By
modeling, measuring, and demonstrating the limits of acoustic
eavesdropping from smartphone camera image streams, our
contributions explain the physics-based causality and possible
ways to reduce the threat on current and future devices.

I. INTRODUCTION

Smartphone and Internet of Things (IoT) cameras are in-
creasingly omnipresent near sensitive conversations even in
private spaces. Our work introduces the problem of how to pre-
vent the extraction of acoustic information that is unwittingly
modulated onto image streams from smartphone cameras.
We center our analysis on a discovered point-of-view (POV)
optical-acoustic side channel that leverages unmodified smart-
phone camera hardware to recover acoustic information from
compromised image streams. The side channel requires access
to an image stream from a smartphone camera whose lens
is near the eavesdropped acoustic source emitting structure-
borne sound waves. The key technical challenge is how to
characterize the limit of partial acoustic information leakage
from humanly imperceptible image distortions, which is made
possible by nearly universal movable lens hardware and CMOS
rolling shutters that are sensitive to camera vibrations.

Fig. 1: Illustration of the POV optical-acoustic side channel
when a camera is recording a ceiling or floor. Adversaries
can eavesdrop structure-borne sounds emitted by electronic
speakers by extracting acoustic signals from artifacts of lens
movement and rolling shutter patterns in smartphone cameras
that depend on POV rather than objects in the field of view.

The most related body of research on optical-acoustic
side channels involves recording videos of vibrating objects
within the field of view with specialized, high-frame rate
cameras [18], [29], [68], [69], [71]. However, innovations
in privacy-aware camera systems and software can actively
detect and hide sensitive objects in camera images to prevent
such direct data leakage [28], [59], [64]. In contrast, our
work explores the optical-acoustic side channel intrinsic to
existing smartphone camera hardware itself, eliminating the
need for objects in the field of view or line of sight: an image
stream of a ceiling suffices (Figure 1). That is, we extract
acoustic information from the vibratory behavior of the built-in
camera—rather than the behavior of a vibrating object within
the field of view of a specially mounted camera.

Our threat model and approach build upon previous research
that used smartphone motion sensors for acoustic eavesdrop-
ping [19]–[21], [24], [39], [52], where structure-borne sound
emitted by electronic speakers vibrates motion sensors and also
leaks acoustic information. However, cameras do not directly
encode acoustics like motion sensors. Instead, our work must
demodulate acoustic information unwittingly encoded within
image stream artifacts. Assessing the limits of information
recovery with this optical-acoustic side channel thus poses
the challenge of designing a signal processing pipeline that
optimizes (1) the acoustic signal extraction from images and



(2) the effective utilization of extracted signals. To tackle the
first challenge, we characterize the side channel’s signal path
and model the rolling shutter pattern formation under sound
wave motions as a signal modulation process. Our modeling
reveals the limits of recoverable signal posed by factors such as
imaging exposure time that can be optimized. It also reveals
the theoretical signal extraction process, which guides us to
design a diffusion registration-based extraction algorithm that
rapidly and robustly recovers sound signals. Our recovered
signals1 with mainstream smartphones preserve over 600 Hz
bandwidth of speech spectrum.

To tackle the second challenge, we observe that the ex-
tracted band-limited signals are complex transformations of
the original sound and thus difficult for humans to recognize
directly. In order to fully utilize the information embedded in
the extracted signals, we design a classification model based on
the HuBERT Large transformer [33]. Our extensive evaluation
with 10 smartphones on a widely used spoken digit dataset
[22] suggests that this optical-acoustic side channel powered
by our signal processing pipeline allows adversaries to recover
acoustic information from the surroundings. Specifically, we
observed 80.66% accuracy on speaker-independent 10-digit
recognition, 91.28% accuracy on recognizing 20 speakers,
and 99.67% on gender recognition when a Google Pixel 3
phone was placed beside a speaker on a desk. In addition
to classification, we also used NIST-SNR and Short-Time
Objective Intelligibility (STOI) metrics to measure the quality
and intelligibility of recovered speech signals, and observed
scores up to 28 dB and 0.53, respectively. We further evaluated
this side channel’s robustness with various speaker volumes
and speaker-phone distances as well as its applicability in dif-
ferent structure-borne propagation scenarios, including when
the phone and speaker are placed on different desks or in
different rooms.

Finally, we systematically investigate the possible defenses
from the standpoints of user-based countermeasures and future
camera design improvement respectively. For the latter, we
propose corresponding hardware modifications to mitigate the
two enabling factors of this attack, namely rolling shutter and
movable lens. To summarize, the goal of this work is to model,
measure, and demonstrate the capability of the POV optical-
acoustic side channel on smartphone cameras and help defend
against the threat on current and future camera devices. Our
main contributions are summarized as follows:

∙ We identify and model smartphone camera characteristics
that enable acoustic information to leak into camera
images through an optical-acoustic side channel. This
POV optical-acoustic side channel unwittingly modulates
ambient sound into image streams.

∙ We design a signal processing pipeline to characterize the
limit of this side channel in several attack scenarios and
evaluate it with 10 smartphones on a spoken digit dataset.
It achieves 80.66%, 91.28%, and 99.67% accuracies on

1Sample audio and additional materials can be found on our project website
https://sideeyeattack.github.io/Website/
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Fig. 2: (a) CMOS rolling shutter camera’s row-wise sampling
architecture with a 4×4 sensor pixel array. (b) The sequential
readout of rows for two consecutive frames with exposure time
𝑇𝑒 and row readout duration 𝑇𝑟.

digit, speaker, and gender recognition respectively with a
Google Pixel 3 placed beside a speaker on a desk. .

∙ We systematically analyze the possible defenses by inves-
tigating both user-based countermeasures such as adding
dampening to phones, and camera design improvements
that aim to address problems caused by rolling shutter
and movable lens respectively. Our results indicate that
mitigating lens movement is the most effective approach
and combining multiple defenses can further reduce attack
performance to the random-guess range.

II. BACKGROUND

A. Rolling Shutter Cameras
Rolling shutter cameras, which feature a row-wise sampling

architecture (Figure 2 (a)), dominate the market of portable
electronics including smartphones. Row-wise sampling over-
laps the exposure of one row with the read-out of subsequent
rows (Figure 2 (b)). An address generator controls this process
by generating row-reset (RST) and row-select (SEL) signals
that start the exposure and read-out of each row respectively.
The interval between the two signals is the exposure time
𝑇𝑒. The duration of each row’s read-out is denoted as 𝑇𝑟.
The row-wise sampling architecture comes at the cost of
additional image distortions when the optical paths change
while imaging a scene. The optical paths can change when
a relative movement happens between the scene, the lens,
and the pixel array. The rolling shutter distortions are thus
a function of optical path variations.

B. Movable Lens
While the CMOS photo-sensitive pixel array is mounted

on printed circuit boards (PCB) and rigidly connected to the
camera body, the lens in most modern CMOS cameras is
flexibly connected to the camera body by suspension structures
using springs and specialized wires [50]. Such suspension
structures allow relative movement between the lens and the
pixel array, as shown in Figure 3. The movable lens is an
essential component of cameras’ optical image stabilization
(OIS) and auto-focus (AF) systems and is almost ubiquitous
in hand-held camera devices including smartphone cameras.

https://sideeyeattack.github.io/Website/


Optical Image Stabilization: OIS is an image stabiliza-
tion method for mitigating tremor-caused motion blurs (Ap-
pendix A). Most OIS systems allow for 2D movements of
the lens that are parallel to the pixel array plane, resulting in
translational transformation of images. We only consider 2-
DoF OIS movements and term such movements as XY-axes
movements. OIS lens stroke is on the order of 100 µm [47].

Auto-focus: Most AF systems support 1-DoF movements
of the lens on the axis that is perpendicular to the pixel array
plane, which we term as Z-axis movements. Such movements
can induce zooming effects that can be viewed as scaling
transformations of the 2D image. AF lens stroke is also on
the order of 100 µm [31].

Sound Propagation. This work investigates the conse-
quences of movable lenses vibrated by structure-borne sound
waves. Sound waves can propagate both through the air by
inducing movements of air molecules, and through structures
by inducing mechanical deformations in them. Structure-
borne propagation can often transmit much higher sound
energy than air-borne propagation [27]. In 2018, Anand et al.
systematically analyzed the response of smartphone motion
sensors to air-borne and structure-borne sound waves [19].
Their experiments show that structure-borne sound generated
by electronic speakers causes stronger vibrations of the sensors
and thus enables more feasible eavesdropping with motion
sensors. Building upon their results, our work explores how
structure-borne sounds can affect smartphone cameras.

III. THREAT MODEL

A. Problem Formulation
We characterize the threat of POV acoustic information

leakage into smartphone cameras through structure-borne
sound propagation. The sound generated by a sound source
in the vicinity of a camera propagates to the camera and
vibrates it, inducing rolling shutter effects in the camera image
stream. The rolling shutter pattern thus becomes a function
of the acoustic signal. The objective of an adversary is to
learn the reverse mapping from the rolling shutter pattern
to the privacy-sensitive information in the acoustic signal.
Formally, we define the eavesdropping attack that an adversary
 launches as a function 𝑓:

𝑓 ∶
{

𝑃𝑣(𝑆𝑙(𝑡),𝔼), 𝔼
}

⟶ 𝑙, 𝑙 ∈ 𝕃

where 𝑆𝑙(𝑡) is the continuous-time acoustic signal generated
by the sound source; 𝑙, 𝑙 ∈ 𝕃 are the true and estimated
information label of the acoustic signal; 𝕃 is the set of all
possible information labels and is reasonably assumed to be
finite; 𝔼,𝔼 are the sets of environmental factors that are
present during the attack (e.g., phone-speaker distance) and
that are controlled or known by the adversary respectively, and
have 𝔼 ⊇ 𝔼; 𝑃𝑣(⋅) denotes the projection from the acoustic
signal to the videos containing the rolling shutter pattern. To
measure the threat, we define the advantage of an adversary
over random-guess adversaries as a probability margin

𝐀𝐝𝐯 = ℙ
[

𝑓(𝑃𝑣(𝑆𝑙(𝑡),𝔼), 𝔼) − 𝑙 < 𝜖
]

− 1
|𝕃|

(1)
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Fig. 3: The movable lens structure widely exists in smartphone
cameras with optical image stabilization (OIS) and auto-focus
(AF). When sound waves move the camera lens suspended on
the springs, the optical path changes and creates an optical-
acoustic side channel.

where 𝜖 is an arbitrarily small number. A successful attack
is defined as 𝐀𝐝𝐯 > 0. Although 𝐀𝐝𝐯 is a theoretical
value that requires knowing the probability distributions and
functions in Equation 1 to calculate, we can estimate this value
by obtaining classification accuracies on datasets with equally
likely labels as the ones in Section VI.

Targeted Information Recovery. We focus on recovering
information from human speech signals broadcast by electronic
speakers, as this is one of the most widely investigated threat
models validated by previous research [19], [39]. In particular,
our study investigates the feasibility and limit of recover-
ing acoustic information from smartphone cameras without
requiring microphone access. To better assess the limit, we
allow the adversary to utilize state-of-the-art signal processing
and machine learning techniques. We discuss three types
of information recovery with increasing difficulty, namely
(1) inferring the human speaker’s gender, (2) inferring the
speaker’s identity, and (3) inferring the speech contents.

Adversary Characteristics. We consider an adversary in
the form of a malicious app on the smartphone that has access
to the camera but cannot access audio input from microphones
(see Section III-B for the possible scenarios). In common
mobile platforms including Android and iOS, the app will
have full control over the camera imaging parameters such
as focus and exposure controls once the camera access is
granted. An adversary can change these parameters for optimal
acoustic signal recovery based on their knowledge of the signal
modulation process. We assume the adversary captures a video
with the victim’s camera while the acoustic signal is being
broadcast. We also assume the adversary can acquire speech
samples of the target human speakers beforehand to learn
the reverse mapping to the targeted functions of the original
speech signals and they can perform this learning process
offline in a lab environment, which have been the standard
assumptions in related side-channel research [20], [21], [39].

B. Attack Scenario
Sounds broadcast by an electronic speaker can reach

a smartphone’s camera through structure-borne propagation
when there exists a propagation path consisting of a single
structure or a system of structures such as tables, floors,
and even human body. Such a structure-borne model has



been frequently used in previous works [19], [39], [62] of
smartphone acoustic eavesdropping. Similar to previous works
of motion sensor side channels, the malicious app eavesdrops
on acoustic information under the general user expectation that
no information can be stolen through sound when smartphone
microphone access is disabled. Although camera access is
usually regarded as being on the same privacy level as
microphone access, users aware of the risk of acoustic leakage
through microphones are still likely to grant camera access to
apps until they realize the existence of the optical-acoustic
side channel. We believe this can happen in three major
situations. (1) The malicious app requests only camera access
without microphone usage in the first place. Apps can disguise
themselves as hardware information checking utilities (e.g.,
the widely used "AIDA64" app [5]) or silent video recording
apps that do not record any audio. (2) The malicious app
requests both camera and microphone access but a cautious
user only grants camera access. We found that filming apps
(e.g., the "Open Camera" [14] and "Mideo" [13]) often simply
record without audio when microphone access is not granted.
(3) The malicious app requests and is granted both camera
and microphone access, but a user physically disables the
microphone input by using external gadgets such as the Mic-
lock microphone blocker [12]. Additionally, malicious apps
can record videos stealthily without camera preview or in
the background as has been done by existing apps like the
"Background Video Recorder" on the Google Play Store [7]
and "SP Camera" on the Apple App Store [16].

IV. OPTICAL-ACOUSTIC SIDE CHANNEL

In this section, we seek to answer three key questions
regarding the feasibility of the side channel: (1) Why does
such a side channel happen? (2) What are the factors deciding
the channel’s capability? (3) How can adversaries extract high-
quality signals from the channel?

A. Signal Path Causality
Mechanical Subpath. When the electronic speaker on a

table plays audio with total kinetic energy 𝐸𝑠, part of the
kinetic energy it generates 𝑘0𝐸𝑠 propagates to the body of
the phone in the form of structure-borne sound waves and
vibrates the smartphone body. Specifically, longitude waves
mainly cause XY-axes motions of the smartphone body while
transverse and bending waves mainly cause Z-axis motions
[27]. The smartphone body and the camera body, including
the sensor pixel array, are rigidly connected and thus have the
same motion amplitude and velocity. Viewing them as a single
unit separated from the camera lens, we denote the kinetic
energy causing vibrations of this unit as 𝐸𝑝. We can approxi-
mately model this unit’s motions on the table as a spring-mass
system [58] with a spring constant 𝑐𝑝 and motion amplitude
𝐴𝑝. The camera lens is connected to the camera body through
springs and can thus be regarded as a second spring-mass
system. A portion of 𝐸𝑝, denoted as 𝑘1𝐸𝑝, is converted to its
elastic potential energy by stretching/compressing the springs.
Denote the effective spring constant of the lens suspension
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Fig. 4: The movable lens structure acts as a signal amplifier
when structure-borne sound vibrates the smartphone camera.
The dotted and solid lines represent the light ray projected
before and after vibration. (Left) Without moving lenses, the
rolling shutter pattern induces negligible pixel displacements.
(Right) When lenses move, pixel displacements get amplified.

system as 𝑐𝑙 and the relative motion amplitude between the
lens and the smartphone-camera unit as 𝐴𝑙 (𝐴𝑙 < 𝐴𝑝), we
then have 𝑘0𝐸𝑠 =𝐸𝑝 =

1
2
𝑐𝑝𝐴

2
𝑝 =

1
𝑘1

1
2
𝑐𝑙𝐴

2
𝑙 (2)

Note that 𝑘0 and 𝑘1 are frequency-dependent and reflect
the physical properties of the mechanical system consisting
of the speaker, the table, and the phone. In other words, 𝐴𝑝
and 𝐴𝑙 can be expanded along the frequency axis to represent
the frequency response (transfer function) of the mechanical
subpath. Such frequency response is hard to model but can be
measured in an end-to-end manner (Section IV-D).

Optical & Electronic Subpaths. The movements of the
smartphone body and the lens change the optical paths in
different ways. Figure 4 shows a simplified model of how the
two types of movements on the X-axis affect the light ray
from a still point source to the sensor pixel array. In Figure
4 (a), the smartphone-camera body unit moves by 𝐴𝑝 while
there exists no relative movement between it and the lens.
With a focal length of 𝑓 (on the order of 5 mm2) and a
camera-scene distance of 𝑑, the light ray projection point on
the pixel array shifts by 𝑓

𝑑𝐴𝑝. In Figure 4 (b), only the lens
is moving by 𝐴𝑙 while the smartphone-camera unit stays still.
In this case, the projection point shifts by (1 + 𝑓

𝑑 )𝐴𝑙. The
optical projections are then sampled by the photo-sensitive
pixel array and converted to digital signals, with the shifts of
the projection point converted to pixel displacements in the
images. Denote the general pixel displacement as 𝐷𝑖, the two
types of movements will then result in pixel displacements of
𝐷𝑖𝑝 =

𝑓
𝑑
𝐴𝑝
𝐻 𝑃 and 𝐷𝑖𝑙 = (1 + 𝑓

𝑑 )
𝐴𝑙
𝐻 𝑃 , where 𝐻 and 𝑃 are the

physical sizes and pixel resolution of the sensor pixel array on
the X-axis respectively.

The interesting question arises as to whether 𝐷𝑖𝑝 or 𝐷𝑖𝑙
is the main enabling factor of this side channel. Note that
𝑓
𝑑 is very small since the camera-scene distance is usually
larger than 10 cm. In light of this, we hypothesize 𝐷𝑖𝑙 is
the dominant factor assuming 𝐴𝑝 and 𝐴𝑙, which cannot be

2The commonly claimed focal lengths on the order of 20 mm are the values
converted to the equivalent of a full-frame camera sensor instead of the true
physical values.



Fig. 5: The simulated rolling shutter images under a 500 Hz
sound wave and the extracted signals with diffusion-based
image registration. (a) The original scene. (b, c) The scenes
with X and Z-axis motions respectively. (b/c1,2) The X and Y-
direction displacement fields. (b/c3,4) The time domain signals
computed from displacement fields with column-wise chan-
nels. (b/c5,6) The corresponding frequency domain signals.

measured directly, are on the same order of magnitude. We
then verify our hypothesis experimentally by recording videos
while preventing and allowing lens movements using a magnet.
Figure 4 shows the significantly higher pixel displacement
magnitudes when the lens is free to move under a 200 Hz
sound wave. With a small distance 𝑑 of 10 cm, we observed
𝐷𝑖𝑝 < 1𝑝𝑥 and 𝐷𝑖𝑙 ≈ 8𝑝𝑥, which translates to 𝐴𝑝 < 63 µm
and 𝐴𝑙 ≈ 22 µm. We thus ascertain that the lens movement
is the main cause of the noticeable pixel displacements in
the images. In other words, the movable lenses act as motion
signal amplifiers compared to those cameras that can only
move with the smartphone body. In light of this finding, we
model the displacement as a function of the lens movement
as

𝐷𝑖 ≈ 𝐷𝑖𝑙 = (1 +
𝑓
𝑑
)
𝐴𝑙
𝐻

𝑃 (3)

B. Rolling Shutter Modulation
As pointed out in Section II-B, multi-DoF motions of the

lens will mainly cause translation and scaling 2D transforma-
tions in the image domain. With a rolling shutter, transforma-
tions caused by multiple motions will be combined into one
image frame because of the row-wise sampling scheme, and
consequently produce wobble patterns that can be viewed as
the outcome of modulating vibration signals onto the image

rows. Furthermore, motion blurs exist due to the finite (namely,
not infinitely small) exposure time of each row. For example,
Figure 5 (b) and (c) show the simulated rolling shutter image
(250 × 250) with an exposure time of 1 ms when 500 Hz
sinusoidal motion signals on the X and Z axis are modulated
onto the image in Figure 5 (a) respectively. In light of these
observations, we model the limits of acoustic signal recovery.

1) Imaging Process: We can model the imaging process
of each row in a frame as a linear process where the final
(row) image is the summation of different views that are
2D transformations of the original/initial view within the
exposure time. The summation is actually the accumulation
of photons on the CMOS imaging sensors. Consider frames
of size 𝑀 rows, 𝑁 columns, and the simplest case where
the motion only results in a uni-axis translation transforma-
tion on the column direction (𝑋 axis). We denote the 𝑖-
th row of the initial view as a column vector 𝑟(𝑖), and the
matrix formed by all the possible translated views of 𝑟(𝑖) as
𝑅𝑖 =

[

... 𝑟𝑗−1(𝑖) 𝑟𝑗(𝑖) 𝑟𝑗+1(𝑖) ...
]

. Theoretically, 𝑅𝑖 has
an infinite number of columns as the translation is spatially
continuous. Considering a more practical discretized model,
we let 𝑗 correspond to the displacement value in pixels in the
image domain. For example, 𝑟−3(𝑖) denotes the view shifted to
the reverse direction along the 𝑋-axis by 3 pixels. Allowing
negative indexing to 𝑅𝑖 for convenience and discretizing the
continuous physical time with small steps of 𝛿, the formation
of the 𝑖-th row in the 𝑘-th image frame, which is denoted as
𝑟̃(𝑘, 𝑖), can then be expressed as the summation of different
columns of 𝑅𝑖:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟̃(𝑘, 𝑖) =
∑

𝑛≤𝑛𝑒𝑛𝑑𝑘,𝑖

𝑛=𝑛𝑠𝑡𝑎𝑟𝑡𝑘,𝑖
𝑅𝑖[∶, 𝑠(𝑛𝛿)]

𝑛𝑠𝑡𝑎𝑟𝑡𝑘,𝑖 =
𝑇 𝑘
𝑓 +(𝑖−1)𝑇𝑟

𝛿

𝑛𝑒𝑛𝑑𝑘,𝑖 =
𝑇 𝑘
𝑓 +(𝑖−1)𝑇𝑟+𝑇𝑒

𝛿

(4)

where 𝑇 𝑘
𝑓 denotes the imaging start time of the frame and

𝑠(𝑛𝛿) denotes the discrete motion signal with amplitude 𝐷𝑖
(Eq. 3) in the image domain. Equation 4 shows how rolling
shutter exposure modulates the signal onto the images’ rows.
The objective of the adversary is to recover 𝑠(𝑛𝛿) from 𝑟̃(𝑘, 𝑖).

2) Limits of Recovery: With the modeling above, we can
compute the characteristics of the recoverable signals.

Captured Signal. Signals in time intervals [𝑛𝑒𝑛𝑑𝑘,𝑀𝛿, 𝑛𝑠𝑡𝑎𝑟𝑡𝑘+1,1𝛿],
i.e., the gap between different frames, cannot be recovered
since no camera exposure happens then. We term this portion
as the “lost signal” and the remaining portion as the “captured
signal”. We can calculate the percentage of the captured signal

𝜂𝑐𝑎𝑝 = 𝑓𝑣𝑀𝑇𝑟 (5)

where 𝑓𝑣 is the video frame rate. Higher 𝜂𝑐𝑎𝑝 means the
adversary can recover more information from images.

Sample Rate & Bandwidth. For the captured signal,
although the adversary wants to infer all the transformed views
and thus recover all signals in time intervals [𝑛𝑠𝑡𝑎𝑟𝑡𝑘,𝑖 𝛿, 𝑛𝑒𝑛𝑑𝑘,𝑖 𝛿],
it is impossible to know the order of these views’ appearance
because the photons from all the views are summed in the



exposure time and the loss of order information is irreversible.
Without the order information, the adversary can only refor-
mulate Equation 4 as

{𝑟̃(𝑘, 𝑖) = 𝑅𝑖𝑥(𝑖)

𝑥(𝑖)𝑗 =
∑

𝑛≤𝑛𝑒𝑛𝑑𝑘,𝑖

𝑛=𝑛𝑠𝑡𝑎𝑟𝑡𝑘,𝑖
 {𝑠(𝑛𝛿) == 𝑗} (6)

where 𝑥(𝑖) is a coefficient column vector whose 𝑗-th entry 𝑥(𝑖)𝑗
represents how many times the translated view 𝑟𝑗(𝑖) appeared
within the exposure time;  {⋅} is the indicator function.
Theoretically, with the measurable final image 𝑟̃(𝑘, 𝑖) and the
matrix 𝑅𝑖 that can be approximately constructed using a still
frame, 𝑥(𝑖) can be computed by solving the linear system in
Equation 6. To recover a 1D motion signal that is a function
of 𝑠(𝑛𝛿), the adversary can estimate a synthetic motion data
point 𝑎(𝑖) from 𝑥(𝑖) by taking the weighted average of 𝑗 with
respect to 𝑥(𝑖):

𝑎(𝑖) =
∑

𝑗 𝑗 × 𝑥(𝑖)𝑗
∑

𝑗 𝑥(𝑖)𝑗
= 1

𝑇𝑒∕𝛿

𝑛≤𝑛𝑒𝑛𝑑𝑘,𝑖
∑

𝑛=𝑛𝑠𝑡𝑎𝑟𝑡𝑘,𝑖

𝑠(𝑛𝛿) (7)

The adversary-measurable signal 𝑎(𝑖) thus embeds the infor-
mation of the original motion signal.

Based on Equations 4 and 7, we can conclude that the
measurable signals extracted from the rolling shutter patterns
have an effective sample rate of 1∕𝑇𝑟. Equation 7 also shows
that the sampling process from a motion-blurred image acts as
a moving mean filter whose frequency response is determined
by the exposure time 𝑇𝑒.

C. Motion Extraction Algorithm

Directly using Equation 7 for signal extraction faces three
real-world challenges: (1) Solving the linear system of Equa-
tion 6 is computation-intensive. (2) The size of 𝑅𝑖 increases
exponentially as the motion’s DoF increases. (3) Equation 6
is mostly underdetermined. We thus designed a motion signal
extraction algorithm based on diffusion-based image registra-
tion [55], [60]. It takes in a reference image 𝐼𝑟𝑒𝑓 and a moving
image 𝐼𝑚𝑜𝑣 of size 𝑀×𝑁 (number of rows and columns, e.g.,
1080 × 1920), and outputs 2D displacement fields (matrices)
for X and Y-direction displacements respectively, i.e., 𝐷𝑀×𝑁

𝑋
and 𝐷𝑀×𝑁

𝑌 . Figure 5 shows the raw displacement fields for
(b) and (c). We further apply column-wise averaging to the
matrices to reduce data dimensionality as well as the impact
of random noise in the imaging process, which improves
signal robustness. We assign columns to different groups and
take group-wise averages on the X and Y displacement fields
respectively. We empirically choose the number of groups 𝑛𝑔
to be the nearest integer to 2𝑁∕𝑀 to balance the robustness
and the details we want to preserve. After averaging, we reduce
𝐷𝑋 and 𝐷𝑌 to 4𝑁∕𝑀 1D signals of length 𝑀 (number
of rows), and we term each 1D signal as a channel. Let
𝑑𝑖𝑟 ∈ {𝑋, 𝑌 } and 𝑎𝑖 denote the averaging column vector with
its 𝑗−th entry denoted as 𝑎𝑖𝑗 , the channels are then formally
defined as

{

𝐶 𝑖
𝑑𝑖𝑟 = 𝐷𝑑𝑖𝑟 ⋅ 𝑎𝑖, 𝑖 = 1, 2,… , 𝑛𝑔

𝑎𝑖𝑗 =
𝑁
𝑛𝑔

{ 𝑛𝑔

𝑁 (𝑖 − 1) < 𝑗 ≤ 𝑛𝑔
𝑁 𝑖

}

For the 250×250 images in Figure 5, the 4 channels and their
spectrums are shown in (b3-6) and (c3-6). When dealing with
a video, i.e., a sequence of images, we use the first frame as
𝐼𝑟𝑒𝑓 , and concatenate consecutive frames’ channels to get the
channel signals of the video. We use the same notation 𝐶 𝑖

𝑑𝑖𝑟
to denote a video’s channels.

D. Feasibility & Attack Characterization
Camera Scene. Most smartphones have both front and

rear cameras. Although some smartphone manufacturers such
as Vivo have started to equip their front cameras with OIS
[4], we focus on rear cameras in this work since more of
them are equipped with OIS and AF. The rear camera has a
certain scene while imaging. The scene can affect information
recovery because their structures, textures, and distance from
the camera can modify the characteristics of the light rays
entering the camera. The scene changes with the smartphone’s
placement and location. As depicted in Figure 1, a phone on a
table with an upward-facing rear camera often records a scene
of the ceiling ("Ceiling Scene"); a downward-facing camera
on a non-opaque surface such as a glass table often records a
scene of the floor ("Floor Scene"). For simplicity we assume
there are no moving objects in the scene.

For our preliminary analysis, we use a test setup with a
KRK Rokit 4 speaker and a Google Pixel 2 phone held by
a flexible glass platform on a table with the phone’s rear
camera facing downwards to simulate a Floor Scene. We use
a customized video recording app that acts as the malicious
app (see Appendix A for detail) to record in MP4 format.
We first discuss the choice of adversary-controllable camera
parameters and then discuss the environmental factors in order
to characterize the envelope of the adversary’s capability.

Camera Control Parameters. The frequency response of
the side channel is determined by both the mechanical subpath
and the camera control parameters of the malicious app that
can be optimized by the adversary. We estimate the frequency
response by conducting a frequency sweep test where we
play the audio of a chirp from 50 to 650 Hz. We then
aim to find the optimum response for our Google Pixel 2.
Figure 9 (a) shows the best response where the maximum
recovered chirp frequency is about 600 Hz. Specifically, we
optimize the control parameters in the following ways whose
detailed reasoning and implementation can be found in Ap-
pendix A: (1) Disable auto-exposure and reduce the exposure
time (Section IV-B). (2) Disable optical and electronic image
stabilization (OIS and EIS) and auto-focus (AF). (3) Minimize
video codec compression. (4) Maximize pixel resolution. (5)
Choose appropriate frame rates for each phone. Figure 9 (b-
f) also show the responses when optimum settings are not
achieved.

Configuration Factors. Variations of configuration factors
can also affect the recoverable signals. We discuss the impact



Fig. 6: The relationship between signal amplitudes (normal-
ized) and different factors. (a) Amplitude increases approxi-
mately linearly with video resolution. (b) Amplitude increases
approximately exponentially with speaker volume. (c) Am-
plitude remains approximately constant as the camera-scene
distance changes due to the movable lens structure.

of three main factors: sound pressure, distance from the scene,
and phone orientation.

(1) Sound pressure level. Louder sounds induce larger signal
amplitudes, i.e., 𝐷𝑖 in Equation 3, by increasing 𝐸𝑝 and
thus 𝐴𝑝. Figure 6 (b) shows that discernible signals appear
when the SPL is larger than 60 dB. The signal amplitude
increases exponentially as the SPL increases until the lens
motion approaches the stroke limit of the suspension system
around 90 dB. Such an exponential relationship agrees with
our modeling in Section IV-A since the SPL is a logarithmic
function of 𝐸𝑝 and 𝐷𝑖 ∝

√

𝐸𝑝. It suggests the attack might
be relatively sensitive to changes in volumes. We will conduct
further evaluations in Section VI-B.

(2) Camera-scene distance. According to Equation 3, the
camera-scene distance 𝑑 has progressively smaller impacts on
𝐷𝑖 as it increases. Figure 6 (c) shows that the signal amplitude
is approximately constant when the distance between the
smartphone camera and the object in the scene is larger than
30 cm. Considering that both Ceiling and Floor Scenes often
have distances much larger than 30 cm, Figure 6 (c) suggests
this factor has a relatively small impact on the attack capability.

(3) Phone orientation. The orientation (on the XY-plane) of
the phone with respect to the sound source changes the lens
motion’s directionality. We empirically evaluate how orienta-
tion can affect the attack by testing different orientations. We
find that phone orientation has a relatively small impact on the
extractable acoustic information since most cameras’ movable
lenses have at least 3 DoF. The lens motions in all directions
can thus be effectively captured.

(4) Other factors. Besides the three factors above, other
factors such as the phone-speaker distance affect the recovered
signal in less quantifiable ways due to the lack of descriptive
mathematical models. We will evaluate the impact of these
factors in typical settings in Section VI-B.

V. LEARNING THE FUNCTIONS OF SPEECH

Figure 7 (a) and (b) show the original and recovered speech
signals of a human speaking “one”, “seven”, and “nine”. While
we could detect clear tones and their dynamics with more
than doubled recoverable frequency range compared to that

(a)

(b)

(a) (b)

Fig. 7: The waveform and spectrogram of spoken digits “zero”,
“seven”, and “nine”. (a) The original signals. (b) The recovered
signals from a 3.2s video with optimized camera parameters.

of smartphone motion sensor side channels reported so far
(about 250 Hz maximum) [21], the recovered speech audio is
still challenging for humans to recognize directly. We believe
the reason is that the maximum bandwidth of 600 Hz often
only captures the fundamental frequency (𝐹0) of vowels and
voiced consonants while losing the second and third formants
(𝐹0, 𝐹1); signals from unvoiced consonants (>2 kHz) such as
“f”, “s”, “k” will also be completely missing [23], [65]. It
has been shown that an audio channel with a 1kHz bandwidth
could only allow single-word recognition rates of less than
20% by humans [43]. Furthermore, Figure 9 shows certain
low frequencies such as 200 Hz can generate higher frequency
distortions that can contaminate the true high-frequency sig-
nals. This suggests a human hearing system-based attack 𝑓
is not likely to succeed. We also found existing machine-
based Speech-to-Text engines such as Google Cloud [9], IBM
Watson [10], and Apple voice assistant [11] unable to detect
speech in the recovered signals. The observation motivated
us to construct a more specialized 𝑓 for estimating the
information recovery limits.

A. Signal Processing Pipeline
As shown in Figure 8, our 𝑓 is a signal processing pipeline

that consists of the following three stages.
(1) Signal extraction. The stage implements the extraction

algorithm shown in Section IV-C. It accepts videos collected
by the malicious app and outputs 2𝑛𝑔 (8 in the case of 1080p
videos) channels of 1D signals.

(2) Pre-processing. It performs noise reduction, liveness
detection, trimming, low-pass filtering, and normalization of
the channels. As shown in Figure 9, the extracted signals
contain non-trivial but spectral-static noise caused by different
imaging and image registration noise. We thus first apply a
background noise reduction step using the spectral-subtraction
noise removal method in [44], [45]. We then conduct a
channel-wise amplitude-based liveness detection that deter-
mines the start and end index of the contained speech signals.
Afterward, we average the start and end indices of the channels
and trim them to remove the parts without speech signals. We
further apply a digital low pass filter with a cutoff frequency of
4kHz to get rid of the remaining high-frequency disturbances
caused by camera imaging noise. Finally, we normalize the
channels and pass them to the next stage.
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Fig. 8: Our signal processing pipeline exploits the optical-acoustic side channel on smartphone cameras. The signal extraction
stage extracts sound-induced signals from the videos recorded on smartphones. The pre-processing stage cleans up the signals
and feeds them into the classification model, where the gender, speaker, and speech content are recognized.

(3) Classification. Our classification stage implements a
classification model that builds upon the Hidden-unit Bidirec-
tional Encoder Representations from Transformers (HuBERT)
large [33], which is introduced next.

B. Classification Model
Our HuBERT-based classification model utilizes the advan-

tages of transfer learning, waveform input, and state-of-the-art
performance1. The model consists of three major components:
CNN encoder, transformer, and classifier. To adopt the original
HuBERT for our purpose, we change the model by (1) modify-
ing the CNN encoder to allow multiple waveform channels, (2)
changing the transformer dropout probability, and (3) adding
a classification layer to allow HuBERT to be used for spoken
digit classification. We implement all of these changes while
preserving as much of HuBERT’s pre-training as possible to
leverage the benefit of transfer learning. Preserving the pre-
trained weights is particularly important for the CNN encoder
because it helps avoid the vanishing gradient problem that
commonly occurs when training deep neural networks [56].
We use the weights of the first layer for each channel of
our input signal 𝐶1

𝑋 , ..., 𝐶
𝑛𝑔
𝑌 and change the original dropout

probability of 0.1 to 0.05 to better regularize the model for
our task. We then designed and added our classifier to process
the output of the transformer. The classifier averages the non-
masked discovered hidden units and outputs label scores for
each classification task. In our classification tasks, gender,
digit, and speaker output 1, 10, and 20 scores respectively,
which are used to obtain the likelihood of each label and thus
the final predicted class.

The CNN encoder contains 7 CNN layers, each outputting
512 channels. The first CNN layer inputs a single channel
while the remaining layers input 512 channels. Since our
input signal, 𝐶1

𝑋 , ...𝐶
𝑛𝑔
𝑋 , 𝐶1

𝑌 , ..., 𝐶
𝑛𝑔
𝑌 , consists of multiple wave-

forms, the CNN encoder is modified accordingly, using all
the input channels to discover utterances 𝑌1, 𝑌2, ..., 𝑌𝑚. The
transformer contains 24 blocks, an embedding size of 1024,
and 16 attention heads, which amounts to 317 million trainable
parameters. The generated hidden units output by the model
can be used for a variety of speech recognition tasks. In
the case of classification, the final classifier layer averages
the non-masked discovered hidden units 𝑍1, 𝑍2, ..., 𝑍𝑚 and
outputs label scores for each classification task. We use cross
entropy as the objective function for our binary and multi-
class classification tasks during training. In hyperparameter
tuning, we discovered that the initial learning rate of 1e-4

and a scheduler decaying it every 4 epochs by a factor of 0.8
delivers optimal results.

VI. EVALUATION

To gauge the general capability of the optical-acoustic side
channel, we carry out evaluations on a spoken digit dataset
used in previous work of smartphone motion sensors acoustic
side channel [21]. We first evaluate the structure-borne side
channel’s performance in shared-surface and different-surface
scenarios separately using a Google Pixel 2 to investigate
the impact of different structures and structure organizations,
and then compare the performance between different phone
models. For evaluation metrics, we provide both common
speech audio quality metrics including NIST-SNR and Short-
Time Objective Intelligibility (STOI), and accuracies of our
specialized classification model. The former measures how
good the extracted audio signals are and are used in major
previous works of acoustic recovery & eavesdropping [29],
[36], [40]–[42]. The latter measures how well information
labels are extracted from audio signals to quantify the limits
of information recovery. We found the two systems of metrics
generally agree with each other as we observed correlation
scores of 0.72 and 0.80 between our model’s digit classifi-
cation accuracies and NIST-SNR and STOI respectively with
our evaluation data.

A. Evaluation Setup
Dataset & Classification Tasks. The dataset is a subset of

the AudioMNIST dataset3 [22] and contains 10,000 samples
of signal-digit utterances (digit 0-9) from 10 males and 10
females. We perform three classification tasks, namely speaker
gender recognition, speaker identity recognition, and speaker-
independent digit recognition. These three tasks correspond
to the three levels of information recovery in Section III with
|𝕃| = 2, 20, 10 respectively. Since all data labels for each task
are equally likely in the dataset, the classification accuracies
then serve as a statistical indication of 𝐀𝐝𝐯.

Experimental Setup & Data Collection. As our baseline
setup, we place the smartphones and a KRK Classic 5 speaker
side by side on a glass desk (Floor Scene), as shown in
Figure 11 (a). The speaker volume measures 85 dB SPL at
1 m [53]. The impact of smaller volumes including normal
conversation volumes will be discussed in Section VI-B. For
each evaluation case, we collect the whole 10k samples in
our dataset using Python automation. We randomize the order

3https://github.com/soerenab/AudioMNIST



of collected samples to avoid biased results due to unknown
temporal factors. All phones use an exposure time of 1 ms.

Training & Classification Metric. To train the HuBERT
large model for classification, we randomly split the 10k-
sample dataset into training, validation, and test sets with
70%, 15%, and 15% splits, respectively. For each device or
scenario evaluation, we train 3 HuBERT large models, one
for each classification task. We trained all the models from
the original pre-trained HuBERT large to allow for better
comparison and used the same test set for final evaluations
of all the models, where we report classification accuracies
on the test set. The validation set is used for hyperparameter
tuning and final model selection. During training, the model
with the highest Receiver Operating Characteristic Area Under
Curve (ROC-AUC) score is selected as the final model.

NIST-SNR and STOI. NIST-SNR [2] (referred to as SNR
hereafter) measures the speech-to-noise ratio by calculating
the logarithmic ratio between the estimated speech signal
power and the noise power. A higher SNR score indicates
better signal quality. STOI [54] is a widely used intelligibility
metric. A higher STOI score indicates the speech audio is
more comprehensible to humans. For all evaluation cases,
we measure the SNR and STOI over the 1536-sample test
set to make it comparable to the classification accuracies
reported. We also utilize SNR and STOI to measure signal
quality in certain test cases that do not present a unique
evaluation dimension by using a 100-sample signal testing
subset consisting of 100 speech samples randomly sampled
from the test set. In comparison to a full evaluation case,
using the signal testing subset allows us to assess signal
quality in a large number of different test cases in an efficient
way. According to the sample size selection guideline from
NIST [1], a sample size of 100 allows us to estimate the change
in the average SNR and STOI scores with a 99% confidence
level at a resolution of 0.5 times the standard deviation of the
test set population’s scores. With all the evaluation data we
collected, this gives us a resolution of about 1.6 for SNR and
0.1 for STOI.

B. Shared-surface Scenarios
Shared-surface scenarios include the phones and speakers

on the same surface, usually a table. In different scenarios,
the quality of the recovered signals varies with configuration
changes as shown in Section IV-D. We first study the impact
of camera scenes and speaker volumes individually, and then
investigate several representative scenarios that incorporate
different combinations of the key factors of surface structure
and phone-speaker distance.

Camera Scene. Table I shows the classification results
under three scenes as shown in Figure 10. The first scene
(Floor Scene 1) is with a downward-facing camera on the
glass desk imaging the floor covered by a carpet. The second
scene (Floor Scene 2) uses the same table and downward-
facing camera but contains a different carpet on the floor. The
third scene (Ceiling Scene) is with the camera upward-facing
on the same table imaging the ceiling. Floor Scene 1 produces

TABLE I: Performance In Shared-surface Scenarios

Scenario Case Avg.
SNR

Avg.
STOI

G
(%)

S
(%)

D
(%)

Scene
Floor Scene 1 18 0.51 99.87 91.02 79.69
Floor Scene 2 13 0.48 99.54 83.85 70.05
Ceiling Scene 9 0.38 99.87 86.27 67.64

Volume

85 dB 18 0.51 99.87 91.02 79.69
75 dB 11 0.44 99.80 89.13 76.95
65 dB 4 0.18 98.83 76.11 68.16
55 dB 2.4 0.13 80.27 34.77 27.67
45 dB 2.3 0.15 54.49 8.92 13.28
35 dB 2.3 0.14 54.23 6.84 15.95

Glass
Desk,

Distance,
Volume

10 cm, 85 dB 9 0.38 99.87 86.27 67.64
10 cm, 65 dB 1.9 0.25 81.25 37.17 32.03
110 cm, 85 dB 9.3 0.35 99.74 84.24 64.13
110 cm, 65 dB 1.8 0.32 81.12 36 31.12

Wooden
Desk,

Distance,
Volume

10 cm, 85 dB 4.4 0.19 98.37 73.11 57.55
10 cm, 65 dB 1.8 0.25 60.29 13.22 17.25
130 cm, 85 dB 5.2 0.22 99.48 83.59 69.53
130 cm, 65 dB 1.8 0.21 75.2 30.08 28.26

Wooden
CR TBL,
Distance,
Volume

10 cm, 85 dB 8.8 0.33 99.02 79.82 66.6
10 cm, 65 dB 2.4 0.19 76.76 42.58 32.49
200 cm, 65 dB 2.3 0.19 70.75 33.53 26.43
300 cm, 65 dB 2.6 0.19 83.2 41.86 30.99

TBL - Table, CR - Conference room, G - Gender, S - Speaker, D - Digit

TABLE II: Performance With Different Speaker Devices

Speaker Device Avg.
SNR

Avg.
STOI

Gender
(%)

Speaker
(%)

Digit
(%)

KRK Classic 5 18 0.51 99.87 91.02 79.69
Logitech Z213 18 0.44 99.09 88.8 77.67
Laptop G9-593 3.3 0.12 94.92 57.03 36.78
Samsung S20+ 6.4 0.15 89.00 53.91 32.36

the highest accuracies in all three classification tasks, which
we believe is due to the following reasons. First, the carpet
in Floor Scene 1 has a lighter color than the carpet in Floor
Scene 2, enabling more photons to be reflected and enter the
camera and thus increasing the signal-to-noise ratio. Second,
the image scene of Floor Scene 1 has larger contrast than that
of the Ceiling Scene due to the more abundant textures of the
carpet compared to the ceiling.

Volume. Different speaker volumes represent different daily
scenarios. Figure 6 (b) shows that the speaker volume has a
strong impact on the signal amplitude. We found, however,
the sharp decrease in signal amplitude does not lead to a
proportional decrease in the classification accuracies. Table
I shows the result with 4 typical conversation volumes and 2
whisper/background volumes: 85, 75, 65, 55, 45, and 35 dB of-
ten represent shouting, loud conversation, normal conversation,
quiet conversation, whisper, and background noise respectively
[8]. The results indicate that for volumes of 55 dB and
above, the 𝑓 designed still has a significant advantage over
a random-guess adversary, demonstrating the side channel’s
effectiveness in quiet conversation volumes. The accuracies
appear to be in the random-guess range at 45 and 35 dB.

Surfaces Structure and Phone-speaker Distance. Besides
the glass desk, we evaluated a wooden desk in the same office
and a 3m-long wooden conference room table. The Ceiling



Scene was used for this set of evaluations. Table I shows
the results with two different distances on the wooden and
glass desks at 85 and 65 dB. The first distance is 10 cm
and represents the scenario of placing the phone right beside
the speaker; the other distance is the maximum achievable
distance on each table (110 and 130 cm) by placing the phone
on one edge and the speaker on the other edge, as shown in
Figure 11. With the glass desk, a 3% decrease was observed
for digit recognition when the distance increases from 10 cm
to 110 cm. For the wooden table, the accuracies increased
when the distance increased from 10 cm to 130 cm. Although
this may seem counterintuitive at first, a closer look at the
desks’ mechanical structures suggests it is due to the smaller
effective thickness on the edge of the table (Appendix B).
At 65 dB, the glass and wooden desks show larger drops in
accuracies than those in the volume experiments, which we
believe is due to the ceiling scene having a more uniform color
spectrum compared to Floor Scene 1, making smaller vibration
amplitudes a more significant factor on classifier performance.

To further evaluate the side channel’s robustness with larger
phone-speaker distances, we conducted experiments with a
3m-long wooden conference room table. As shown in Table
I, the classifiers’ accuracies remain larger than random-guess
accuracies, indicating the side channel’s effectiveness at dis-
tances larger than 100 cm at normal conversation volumes.

Speaker Device. To uncover the potential impact of speaker
devices on the side channel, we tested 4 different speaker
devices including two standalone speakers (KRK Classic 5 and
Logitech Z213), a laptop speaker (Acer Laptop G9-593), and a
smartphone speaker (Samsung S20+). Table II shows that all
4 speaker devices allow for performance better than a random-
guess adversary. We found even smaller internal speakers
of portable devices including the laptop speaker vibrating
a nearby phone’s camera and the Samsung S20+’s speaker
vibrating its own onboard camera could induce discernible
signals. The variation in accuracies over the 4 devices is
mainly due to the different maximum output volumes they
can achieve; while the KRK Classic 5 and the Logitech Z213
speakers can output 85 and 75 dB respectively, the Laptop G9-
593 and Samsung S20+ speakers are limited to 60 dB output.

Additional Objects on Surface. Thus far, most experiments
were conducted with the speaker and the phone as the only
objects present on the surface. Theoretically, the presence of
additional objects on the surfaces propagating sound waves
will only have a small impact on the side channel because
structure-borne sound vibrates the entire structures which are
often much heavier than the objects on the surfaces. To further
investigate this factor, we conducted experiments with a daily
occurring scenario of a cluttered desk with a varying set of
common objects placed on the desk including a speaker, a
laptop, a monitor, and a printer (Figure 12). Despite the slight
change in SNR and STOI scores (Table VI), full evaluations
of the least and most cluttered scenarios reported similar
classification accuracies: the least cluttered scenario achieved
94.86%, 70.44%, and 50.98% for gender, speaker, and digit

TABLE III: Performance In Different-surface Scenarios

Scenario Avg.
SNR

Avg.
STOI

G
(%)

S
(%)

D
(%)

Monitor Stand 85 dB 11 0.45 99.09 80.53 60.42
Monitor Stand 65 dB 2.6 0.09 84.05 42.32 32.1

Two Desks 85 dB 2.6 0.08 75.72 19.6 14.26
Two Rooms 85 dB 2.3 0.06 66.93 15.17 15.17
Shirt Pocket 85 dB 2.5 0.19 95.9 66.37 45.7
Bag Pocket 85 dB 4.1 0.23 93.1 40.1 55.34

G - Gender, S - Speaker, D - Digit
TABLE IV: Performance With Different Smartphone Models

Device Avg.
SNR

Avg.
STOI

Gender
(%)

Speaker
(%)

Digit
(%)

Pixel 1 18 0.46 99.61 81.84 69.53
Pixel 2 18 0.51 99.87 91.02 79.69
Pixel 3 17 0.49 99.67 91.28 80.66
Pixel 5 22 0.49 99.48 84.51 70.25

Samsung S7 21 0.49 99.54 82.94 66.08
Samsung S8+ 17 0.45 99.61 79.30 57.29

Samsung S20+ 22 0.49 99.80 83.92 61.07
iPhone 7 28 0.53 99.87 85.09 65.23

iPhone 8+ 26 0.50 99.41 81.64 66.67
iPhone 12 Pro 28 0.52 99.22 76.56 62.30

classification accuracy respectively while the most cluttered
desk scenario achieved 91.41%, 69.27%, and 56.25%. The
results suggest cluttered surfaces with heavy objects allow for
similar side channel performance.

C. Different-surface Scenarios
We evaluated several different-surface scenarios (Figure 13)

including (1) the speaker on the desk and the phone on the
desk’s monitor stand; (2) the speaker on the floor and the
phone in the pocket of a shirt and a backpack worn by a
mannequin; (3) the speaker and phone on different desks;
(4) the speaker and phone in separate rooms. Table VII
indicates the side channel’s performance over a random-guess
adversary in these scenarios. With the exception of monitor
stand experiments, we believe the decrease in performance
can be attributed to the fact that the same speaker energy 𝐸𝑠
now vibrates structures of much larger weight and stiffness
(in this case the concrete floor) as opposed to a wooden
floor structure [67] or wooden/glass surface (Appendix B).
This makes it more difficult to create oscillation of structures
with larger amplitudes to produce higher SNR. Additional
causes of performance degradation could be due to the contact
point between the desk, the mannequin’s foot, and the transfer
medium, i.e., the floor, moving relative to each other and
causing frictional losses of the vibration energy 𝐸𝑠 and thus
also result in a lower SNR.

D. Different Smartphones
To evaluate the capability and robustness of our side channel

on different phones, we analyzed the classification accuracies
of 10 phones in the Floor Scene 1 setup. Table IV shows the
results from three smartphone families, namely the Google
Pixel, Samsung Galaxy, and Apple iPhone. We also show
the estimated recoverable frequency ranges, the rear camera



modules, and their key characteristics in Table IX. To measure
the key characteristics, we generate a 200 Hz tone for 3 sec-
onds. We then find 1∕𝑇𝑟 by changing it to align the recovered
signal with 200 Hz. With 1∕𝑇𝑟, we calculate 𝜂𝑐𝑎𝑝 according to
Equation 5. We further measure 𝜂𝑐𝑎𝑝 by dividing the length of
the recovered tone by 3 seconds. The measured and calculated
𝜂𝑐𝑎𝑝 match well with each other which shows the correctness of
our modeling. We used 30 fps for the Android phones because
that is what most Android manufacturers currently provide to
3rd party apps while iPhone used 60 fps.

As shown in Table IV, the Google Pixel phones generate
the highest accuracies for all three classification tasks. The
iPhones generate slightly better results than Samsung phones.
Samsung S8+ generated the worst accuracies. We notice the
videos of Samsung S8+ suffer from missing frames potentially
due to internal processing issues. We observe that 𝜂𝑐𝑎𝑝 has the
strongest correlation where lower 𝜂𝑐𝑎𝑝 provides the adversary
with less information and consequently lower accuracies. We
also notice that there exists a trend of newer camera modules
having lower 𝑇𝑟, i.e., higher rolling shutter frequency, and
thus lower 𝜂𝑐𝑎𝑝. The question of this trend being usable as
a mitigation technique is further analyzed in section VII. All
the phones we tested achieved at least 99.22%, 76.56%, and
61.07% accuracies on gender, speaker, and digit recognition
respectively. This suggests that the adversary is able to perform
successful side channel attacks with high 𝐀𝐝𝐯 (Section III)
on a large portion of phones available on the market at the
time of writing.

Multi-device Scalability. To investigate the feasibility of
cross-device attacks, we conducted four multi-device studies:
(1) with the most recent phones from the three phone families
(2) the four models of the Pixel family (3) the three models
of the Samsung family (4) the three models of the iPhone
family. As shown in Tables X, XI, XII, XIII, most cross-device
cases show advantages over a random-guess adversary, demon-
strating the existence of common information across different
phone models. It is worth noting that when the classification
model is trained on Pixel 5 and iPhone 12 Pro and tested on
Samsung S20+, the accuracies for gender and digit recognition
(highlighted in green in Table X) are higher than training on
S20+ itself. Similarities in recovered signals across different
models are determined by various sources, such as similar
image sensors, rolling shutter frequencies, and image signal
processing units (ISPs). For example, Samsung S7 and Pixel
1 have the same rolling shutter frequency and very similar
ISP and processor. In contrast to the IMX260 sensor used in
Samsung S7, the IMX378 sensor used in Pixel 1 does not
support OIS [15]. The results suggest our side channel has
the potential to be generalized for unseen devices, especially
when the adversary trains with data from smartphone models
with similar camera systems. The bolded numbers in Tables
X, XI, XII, XIII indicate there is often no accuracy loss in
testing on a specific phone when data from other phones are
added to the training set. When training on all three or four
phones and testing on a specific phone, the accuracies are
almost ubiquitously better than or similar to training on that

phone alone. This suggests our classification model is capable
of representing data distribution from multiple phone models
with minimal to no information loss.

VII. DEFENSE

This section analyzes immediate countermeasures that may
be carried out by users and more informed protections for
manufacturers that aim to secure future camera devices.

A. User-based Countermeasures
Lower-quality Cameras. Users can use lower-quality cam-

eras to limit information embedded in videos by reducing
video resolution and frame rate. However, these measures
cannot degrade eavesdropping performance without signifi-
cantly sacrificing overall video quality. Figure 6 (a) shows
that reducing video resolution from 1080 × 1920 to 480 × 640
reduces the signal amplitude by about 60%. However, Figure
6 (b) and Table I show that when the volume decreases by 10
dB, the signal amplitude decreases by about 75% which only
reduced digit classification accuracy from 79.69% to 76.95%.

Phones Away From Speakers. A straightforward yet effec-
tive approach for privacy-aware users is to place phones away
from electronic speakers. As shown in Table VII, removing
phones from the same surface as the speaker immediately
reduces attack performance.

Adding Dampening Materials. Another possible method
is to add vibration-isolation dampening materials between the
phone and the surface in the hope to lower 𝑘0 in Equation 2.
Using the evaluation baseline setup and Pixel 2, we tested
specialized vibration reduction mats made of visco-elastic
polyurethane [17] with varying degrees of hardness. Three
mats were used with common type OO durometers of 30, 50,
and 70 [6]. Our tests show the three materials produced similar
effects in mitigating our attack (Table VII). A classification
evaluation shows adding such dampening materials reduced
digit classification accuracies by 14.33% (Table V).

B. Camera Design Improvement
Fundamentally, the side channel arises because of movable

lenses that modulate smartphone motion onto video streams
and rolling shutters that increase the available sample rate of
adversarial signal recovery. We thus investigate the possible
ways to mitigate these two sub-problems from the perspective
of future camera designs.

1) Rolling Shutter Mitigation: Besides a plain approach of
replacing rolling shutters with global shutters, we identify two
methods to tackle the problem by increasing rolling shutter
frequencies or adding randomization.

Higher Rolling Shutter Frequency. As mentioned in
Section VI-D, we observed a trend of higher rolling shutter fre-
quencies in newer camera sensors. We believe this trend shows
camera designers’ intention to approximate global shutters,
which also led to lower attack performance as a byproduct.
It is thus worth investigating the effectiveness of utilizing this
trend as a defense. Basically, higher rolling shutter frequencies
reduce the amount of intra-frame motion signals captured



TABLE V: Effectiveness of Single and Combined Defenses

Defense Gender
(%)

Speaker
(%)

Digit
(%)

None (Baseline) 99.87 91.02 79.69
1 Rubber Mat Dampening 98.64 80.11 65.36

2 Higher RS Freq. (648 kHz) 93.29 62.89 48.89
3 Random-coded RS 98.18 76.56 60.22

1 + 2 75.65 43.88 33.14
1 + 3 72.66 46.03 37.63

4 Tough Spring/Lens Locking 65.23 16.73 16.67
2 + 4 53.91 8.66 16.73
3 + 4 54.36 8.46 13.93

by adversaries (Section IV-B). We generated model-based
predictions1 of the side channel adversary’s success with
increasing rolling shutter frequencies and used the evaluation
samples of Pixel 2 as the baseline.

Table VIII shows the tested 𝜂𝑐𝑎𝑝, the required rolling shutter
frequency, and the classification accuracies. The result sug-
gests that further increasing the sample rate does reduce classi-
fication accuracies, but the adversary still has a large advantage
over random-guess adversaries even if they can only recover
0.1% of the signals at 32,400 kHz. Furthermore, the accuracy
decay sees an asymptotic trend, suggesting a potential lower
bound of the accuracies even when the sample rate approaches
infinite. We believe this lower bound is posed by the inter-
frame information retained. In other words, adversaries may
recover a large amount of information even from a global
shutter camera just by measuring variations between frames.

Random-coded Rolling Shutter. If higher rolling shutter
frequencies cannot be achieved, another method is to scramble
the intra-frame signals by randomly mapping 𝑠(𝑛𝛿) to 𝑎(𝑖) in
Equation 7. Simply put, we can potentially randomize the order
of each row’s exposure and readout within each frame. This
method only has a small impact on video quality because
it only affects rolling shutter patterns in the videos which
are already considered as distortions. Our simulation shows
random-coded rolling shutter is able to produce defense ef-
fectiveness as good as increasing the rolling shutter frequency
from 34 to about 100 kHz for Pixel 2. We conjecture this
is because the intra-frame motion signals are only scrambled
instead of completely removed and our classification model is
able to utilize statistical information (e.g., max/min/mean) of
the scrambled signals.

To implement random-coded rolling shutters, the address
generator (Figure 2) needs to output randomly ordered instead
of sequential addresses. Existing research shows manufacturers
can already make the address generator output designated
control sequences by changing camera firmware [32], [51].
The remaining cost of implementation is for adding a random
number generator (RNG) that communicates with the address
generator. In fact, imaging sensors themselves are a good
source of entropy and have been already used in research and
industry for generating true random numbers [3], [38], [70].

2) Lens Movement Mitigation: Our experiments show that
addressing problems caused by rolling shutters alone cannot

eliminate the threats due to the upper bound of protection
effectiveness posed by the inter-frame motion information that
still resides in the videos. It appears that the main cause of
this side channel is the design flaw in existing smartphone
camera sensors that leaves the lens dangling and free to move
in the lens suspension system. Below, we propose two possible
methodologies in an attempt to mitigate this.

Tougher Springs. Our signal path modeling reveals that
increasing the elastic force of the lens suspension springs (𝑐𝑙 in
Equation 2) makes it more difficult for sound waves to vibrate
the lens. There are several possible modifications designers can
make to achieve this as suggested by the model of smartphone
camera lens voice coil motor (VCM) systems [26]:

⎧
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⎨

⎪

⎩

𝑆 = 𝑅
𝑉 2 ⋅

(

𝐹𝑒−𝑓fric −𝑥𝑐𝑙−𝑚𝑔
𝑚

)2

𝐹𝑒 = 𝑁𝑖𝑙𝑤𝐵𝑔 = 𝑁 𝑉 𝐴
𝜌𝐿 𝑙𝑤𝐵𝑔

𝑆 is the VCM’s sensitivity that designers want to optimize;
𝐹𝑒 is the electromagnetic actuation force; 𝑥 is the lens
displacement. To keep 𝑆 the same so that users do not
experience degradation in camera functionality and usability,
we identify the following straightforward ways to compensate
for the impact of higher 𝑐𝑙 along with their costs. (1) Increase
the number of coil windings 𝑁 , the coil length 𝑙𝑤, or coil
area 𝐴. This will increase the size of the camera modules.
(2) Increase the magnetic flux density 𝐵𝑔 by using better
permanent magnet materials. This will add to the budget.
Other parameters such as coil voltage 𝑉 and resistance 𝑅
may also be adjusted but can lead to higher camera power
consumption. While different camera products are subjected
to specific manufacturing constraints, we believe our analysis
above provides a starting point that designers can consider.

Lens Locking. We envision the ultimate solution to the
lens movement problem is to have a locking mechanism that
completely prevents lenses from moving when they are not
supposed to. Such a mechanism may be achieved by adding
controllable pillars around the lens. The pillars contract when
OIS and AF are enabled to make space for lens movement and
expand to fix the lens in place otherwise.

Simulation of Effectiveness. To demonstrate the potential
of these solutions, we simulated tougher springs and lens
locking by using an external magnet to prevent the lens from
moving in the same way as Section IV-A. The decreasing
attack accuracies are shown in Table V. The remaining non-
random classification accuracies are likely due to a combi-
nation of (1) the residual lens movements that the magnet
cannot completely remove, and (2) the tiny movements of
the smartphone body. Finally, combining multiple methods
of defense can further bring attack performance down to the
random-guess range as shown in Table V.

VIII. DISCUSSION & FUTURE WORK

Limitations. The main limitation of this side channel is
its dependence on a suitable mechanical path from the sound
source to the smartphone that allows strong structure-borne



sound wave propagation. It is worth noting that the require-
ment of having structure-borne propagation paths itself does
not pose more limitations than air-borne propagation since the
two types of propagation almost always coexist except in zero-
gravity environments [27]. Air-borne propagation does not
enable this side channel attack with present-day smartphone
cameras because the kinetic energy it transfers is insufficient
to vibrate the phone to such a level that discernible pixel
displacements can be generated. From Eq. 2, this means 𝐸𝑝
is too small due to a small 𝑘0 for air-borne propagation while
structure-borne propagation often has much larger 𝑘0. On the
other hand, the major limitations posed by structure-borne
propagation are two-fold.

First, the 𝑘0 of structures is more complex, less homoge-
neous, and thus harder to predict and model than that of air.
For example, different table materials produce different signal
quality as shown in Table I. Second, the 𝑘0 of structures can
also be smaller than what is needed to cause discernible signals
in videos in certain scenarios. For example, we found speech
from human speakers is not able to produce discernible signals
on phones held in their hands or placed in front of them on
a table. We believe this is because human body is generally
a bad mechanical wave transfer medium with its soft tissues
reducing 𝑘0.

Future Directions. We believe the high classification accu-
racies obtained in our evaluation and the related work using
motion sensors [21] suggest this optical-acoustic side channel
can support more diverse malicious applications by incorporat-
ing speech reconstruction functionality in the signal processing
pipeline. In addition, future research can also consider com-
bining signals from multiple cameras to combat the problem
of lower 𝜂𝑐𝑎𝑝. To achieve this, an advanced adversary needs
to address the challenge of building a recognition model that
can tolerate the randomness in the exposure time difference
between different cameras.

IX. RELATED WORK

Sound Recovery From Vibrating Objects In Videos. The
concept of recovering sound by analyzing vibrating objects in
video frames was first introduced by Akutsu et al. [18] in
2013 where they used high-speed cameras (over 6,000 fps)
to record the movements of a speaker’s face and neck. Davis
et al. [29] found it is possible to recover speech by aiming a
specialized high frame-rate camera at lightweight objects (e.g.,
plastic bags) vibrated by sound waves. Follow-up research
on this topic mainly focused on improving the efficiency of
sound recovery based on Davis’s technique using specialized
high frame-rate cameras [68], [69], [71]. Some works also
discussed the possibility of utilizing the rolling shutter effect
to emulate higher frame rates with common cameras, but
the discussions remain proof-of-concept in lab settings as it
requires a high-end camera on a tripod to focus precisely on
the lightweight objects at a very close distance [29], [30],
[48], [66]. In comparison, our work exploits the rolling shutter
artifacts caused by the movement of smartphone camera lenses
that are intrinsic to existing smartphone camera hardware

itself. This feature allows our optical-acoustic side channel
to work without any vibrating object in the camera’s field of
view and enabled us to evaluate a wide range of possible sound
recovery scenarios including when the speaker and camera are
in two different rooms (Section VI-B). Furthermore, previous
works’ recovered signal amplitude is proportional to the lens
focal length due to their need of objects in the video frames,
which poses the major limitation of requiring short camera-
object distance or expensive optics [29]. In comparison, our
work addresses this limitation by exploiting the movable lens
structure on smartphone cameras as a signal amplifier under
structure-borne sound.

Smartphone Motion Sensor Side Channels. In 2014,
Gyrophone [39] first proposed the idea of using gyroscopes
on smartphones for acoustic eavesdropping. They investigated
a structure-borne attack scenario where the smartphone and
electronic speaker are on a shared table surface. Following
works such as AccelEve [21], Spearphone [20], and [24]
proposed a structure-borne threat model of eavesdropping
audio played by the smartphone’s built-in electronic speakers
with accelerometers on the same phone, which is similar to
our same-phone scenario evaluated in Section VI-A.

Compared to motion sensor side channels, the optical-
acoustic side channel proposed in this work opens up a new
modality of smartphone acoustic eavesdropping since cameras
create an orthogonal space of threat models in cases where mo-
tion sensor data is not available or add to the total information
extracted when it coexists with motion sensors. Camera side
channels provide a high bandwidth while motion sensors often
have better sensitivity to vibrations. In addition to the shared
surface-coupling and phone body-coupling scenarios, our pa-
per further investigates new scenarios where smartphones are
on different surfaces than the speakers such as on a different
desk, in a shirt pocket, in a bag, or even in a different room. It
is worth pointing out that comparisons between these motion
sensor side channels’ results and our results may not provide
meaningful insights due to the large differences in their threat
models, algorithms, evaluation setups, etc.

Physical Acoustic Eavesdropping. Researchers also ex-
ploited other physical mechanisms for acoustic eavesdropping.
We refer the readers to the SoK paper by Walker et al. [61]
for a relatively comprehensive review. Lamphone [41] and the
little seal bug [42] use telescopes and optical sensors to sense
the optical changes caused by sound-induced object vibrations
remotely. Glowworm [40] finds that the LED light intensity
of electronic speakers leaks acoustic information and uses
telescopes and photodiodes to eavesdrop on it. Compared to
these works, our work does not require specialized devices and
light but uses smartphones in private spaces for eavesdropping.
LidarPhone [46] inherits the well-studied concept of sound
laser vibrometry but uses malware to exploit the lidar sensors
on robot vacuum cleaners for eavesdropping. Hard drive of
hearing [36] discovers that the read/write head of hard drives
can be turned into unintentional microphones for eavesdrop-
ping when the head is vibrated by loud sounds.

Camera-based Attacks. Poltergeist [34] by Ji et al. studied



the robustness problem of the camera OIS from an almost
complementary perspective to our work. They discovered that
adversaries can generate intentional ultrasounds to change
the gyroscope readings of OIS in similar ways as explored
in [49], [57] and thus cause controlled motion blurs in the
camera videos to attack computer vision-based autonomous
vehicles. They See Me Rollin’ by Köhler et al. [35] studied
laser-based optical injection attacks against CMOS cameras
in autonomous vehicles. They exploited the rolling shutter
mechanism of CMOS cameras to inject row-wise fine-grained
disruption patterns into camera videos that could hide up to
75% of objects perceived by state-of-the-art computer vision
object detectors. While their work studies how rolling shutters
can cause robustness and security problems to downstream
processing units when subjected to active optical injections,
our work investigates how to passively recover ambient acous-
tic information from rolling shutter cameras vibrated by sound.

X. CONCLUSION

In this work, we investigated the threat of point-of-view
acoustic signal eavesdropping from smartphone cameras’ im-
age streams. By investigating the rolling shutter and movable
lens architectures, we examined the side channel’s feasibility
and limits under different setups and scenarios. Our analysis
and experiments with 10 smartphones demonstrate how ma-
licious parties with knowledge of camera hardware structure
can extract fine-grained acoustic information from recorded
videos, achieving digit, speaker, and gender recognition. We
investigated user-based countermeasures and possible camera
design improvements that address the problems caused by
rolling shutters and movable lenses. Simulation results show
that different strategies can be combined to reduce attack
performance to the random-guess range.
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APPENDIX A
CAMERA HARDWARE & RECORDING APP

OIS, EIS, and AF. Both OIS and EIS try to eliminate
the image blurs caused by low-frequency human tremors (<20
Hz). OIS senses the human tremor with an internal gyroscope
in the camera module and directly moves the optical modules,
such as the lens, for compensation. Most tremor-caused mo-
tions result in approximately translational transformations of
images, which can be compensated by just 2D movements of
the lens that are parallel to the pixel array plane. The movable
lenses in many OIS systems are thus designed to have a degree
of freedom (DoF) of 2 [37], [47], [63]. EIS uses the gyroscope
of the phone itself and tries to correct image blurs by operating
in the software domain. The effects of leaving OIS and EIS
on when recovering a chirp is as shown in Figure 9 (b) and
(c). Similarly, AF introduces extra distortions when left on
because the sound-induced lens motions can change the focus
of the camera at which point AF tries to intervene.

Camera Control Parameters. Summarized as follows.
(1) Disable auto-exposure and reduce the exposure time

(Section IV-B). Practically, the adversary cannot arbitrarily
reduce the exposure time since that also reduces the amount of
light captured. Considering this trade-off and our observation
that higher frequencies are often limited by the mechanical
transfer function instead of the exposure time, we use a 1 ms
exposure time that generally strikes the best balance. Figure 9
(d) shows the recovered chirp under 10 ms as a comparison.

(2) Disable optical and electronic image stabilization (OIS
and EIS) and auto-focus (AF). When OIS, EIS, and AF are
left on, their control systems will cause extra distortions in the
images that do not reflect the true sound-induced lens motion
(see Appendix A for the details), as shown in Figure 9 (b), (c),
(e) respectively. A considerate adversary should thus disable
these functionalities when performing eavesdropping.

(3) Minimize video codec compression. The adversary
should avoid distortions introduced by the video codec by
disabling inter-frame compression, increasing the average bit
rate, etc. In comparison to Figure 9 (e), Figure 9 (f) shows the
chirp recovered with the smartphone’s stock camera app where
all parameters above including the codec are not optimized.
This represents what a naive adversary can recover without
the knowledge developed in Section IV-A and IV-B.

(4) Increase pixel resolution. Higher pixel resolution enables
the recovery of smaller-amplitude lens motions according to
Equation 4. From another perspective, pixel displacement
amplitude increases with the resolution given a constant-
amplitude lens motion. For example, Figure 6 shows the
measured amplitude of a 200 Hz signal under common video
resolutions where the signal amplitude sees an almost linear
increase with the number of columns/rows of the frames.

(5) Choose appropriate frame rates. When 𝑇𝑟 and 𝑇𝑒 remain
constant, increasing the frame rate increases the amount of
captured signal (as shown in Section IV-B). But when camera

(a) (b) (c)

(d) (e) (f)

Fig. 9: The recovered chirp signals (50-650 Hz in 7s) with
different camera control parameters and a 30 fps frame rate.
(a) Optimized parameters and 1 ms exposure time. (b) OIS is
left on. (c) EIS is left on. (d) 10 ms exposure time. (e) OIS,
EIS, AF are left on with 10 ms exposure time. (f) Recovered
with the phone stock camera app without any optimization.

Fig. 10: The three scenes evaluated.

Fig. 11: Setups of glass and wooden desks with the camera
facing the ceiling. From the left. (a) 10 cm phone-speaker
distance (b) 110 cm phone-speaker distance (c) 10 cm phone-
speaker distance (d) 130 cm phone-speaker distance.

sensors try to output unusually high frame rates (e.g., in the
slow motion mode), they tend to reduce 𝑇𝑟 to accommodate
the exposure of more frames. We found this can lead to the
same or even smaller amount of captured signal at the cost of
wasting extra computation resources. We use 30 and 60 fps
for Android and iOS devices respectively.

APPENDIX B
SIDE CHANNEL PERFORMANCE ANALYSIS

To help readers understand the different adversary perfor-
mances observed in various scenarios (Section VI), we provide
further analyses on how the propagation surface materials and
structures affect the performance of the side channel.



(a) (b) (c) (d)

Fig. 12: Setups for evaluating additional objects sequentially
added onto the desk between the phone and speaker. (a) Only
the phone and speaker are on the desk. (b) A laptop is added.
(c) A monitor is added. (d) A printer is added.

(a) (b) (c)

(d) (e) (f)

Fig. 13: Setups of different-surface scenarios. (a) The phone
is on the monitor stand. (b) The phone is in the pocket on a
mannequin. (c) The phone is in the pocket of a backpack. (d,
e) The phone and speaker are in two different rooms. (f) The
phone and speaker are on two different desks.

TABLE VI: Objects On The Glass Desk

Objects Volume
(dB)

Avg.
SNR

Avg.
STOI

Speaker 85 4 0.24
65 1.7 0.18

Speaker+Laptop 85 3.5 0.24
65 1.7 0.2

Speaker+Laptop
+Monitor

85 3.8 0.25
65 1.6 0.19

Speaker+Laptop
+Monitor+Printer

85 2.6 0.21
65 1.6 0.2

Energy Transformation. Since the law of conservation
of energy applies to the vibration energy 𝐸𝑠, any change

TABLE VII: Vibration Reduction Mats

Durometer Avg. SNR Avg. STOI
70 (OO) 12.43 0.46
50 (OO) 12.00 0.42
30 (OO) 11.47 0.44

TABLE VIII: Recognition Accuracy With Different 𝜂𝑐𝑎𝑝

𝜂𝐜𝐚𝐩 (%) Sample Rate
(kHz)

Gender
(%)

Speaker
(%)

Digit
(%)

95 34 99.87 91.02 79.69
50 65 99.54 80.86 59.77
10 324 95.51 68.55 50.59
5 648 93.29 62.89 48.89
1 3,240 86.78 48.37 41.21

0.5 6,480 86.85 43.88 38.87
0.1 32,400 83.20 42.25 38.54

in the experimental setup that leads to frictional losses will
degrade the performance of the side channel. For instance,
in the case of different surface experiments, the contact point
between the objects, such as backpack and mannequin, the
mannequin’s foot, and the floor, and desk and floor, will cause
frictional losses from 𝐸𝑠 which would otherwise be trans-
formed to kinetic energy that vibrates the target smartphone.
We believe this is why we observed generally worse adversary
performance in different-surface scenarios than shared-surface
scenarios.

Wooden Desk Phone-speaker Distance. Higher accuracies
were observed with larger phone-speaker distances on the
wooden desk (Section VI-B). The wooden desk has a metal
brace screwed underneath the desk’s structure. We believe
that this increases the effective thickness of the desk, which
increases the second moment of area of the desk by a cubic
factor [25]. The second moment of area is proportional to
the stiffness of the desk, which significantly decreases the
vibration-borne deflections. In addition, the material’s elastic
modulus is inversely proportional to the deflection of the struc-
ture and the elastic modulus of the metal brace is significantly
larger than wood, resulting in a further decrease in deflection.
When the phone is placed on one end of the desk and the
speaker on the other end, 𝐸𝑠 propagates through the section
with a larger effective thickness to the edge of the desk that
does not have this additional brace. This results in lower
stiffness at the edges, which leads to larger deflection and thus
larger phone camera lens movements.

Floor Propagation. When 𝐸𝑠 is applied to more complex
structures, such as wooden or concrete floors, the effective
stiffness 𝐾 of the structures is often much larger than glass
or wood used in desks, resulting in smaller surface deflection.
This decrease in structural deflection results in vibrations with
smaller amplitudes and smaller SNR, which degrade the side
channel performance (Section VI-C).



TABLE IX: Information of Different Smartphone Models Tested

Device Rear Cam.
Module

1/Tr

(kHz)
Max Chirp
Freq. (Hz)

Meas. η𝒄𝒂𝒑(%)
(Calc. η𝒄𝒂𝒑)(%)

OS
Version

Device
Released

Processor
SoC

ISP on
Processor SoC

Pixel 1 IMX378 45 600 72 (72) Android 10 Oct. 2016 Qualcomm 821 Spectra Dual ISPs
Pixel 2 IMX362 34 600 96 (95) Android 11 Oct. 2017 Qualcomm 835 Spectra 180
Pixel 3 IMX363 34 600 97 (95) Android 9 Oct. 2018 Qualcomm 845 Spectra 280
Pixel 5 IMX586 58 600 57 (56) Android 9 Sep. 2020 Qualcomm 765G Spectra 355

Samsung S7 IMX260 45 600 73 (72) Android 7 Mar. 2016 Qualcomm 820 Dual ISPs
Samsung S8+ IMX333 45 600 73 (72) Android 8 Apr. 2017 Qualcomm 835 Spectra 180

Samsung S20+ IMX555 58 650 56 (56) Android 11 Mar. 2020 Qualcomm 865 Spectra 480
iPhone 7 Unknown 92 600 72 (70) iOS 15.3 Sep. 2016 A10 Fusion chip Unknown

iPhone 8+ Unknown 92 650 72 (70) iOS 15.3 Sep. 2017 A11 Bionic chip Unknown
iPhone 12 Pro Unknown 160 600 42 (40) iOS 15.1 Oct. 2020 A14 Bionic chip Unknown

TABLE X: Multi-device Training and Testing: Cross-band

Trained
Tested Gender (%) Speaker (%) Digit (%)

Px5 S20+ 12 Pro Px5 S20+ 12 Pro Px5 S20+ 12 Pro
All Three Phones 99.48 99.89 99.67 85.42 83.92 83.59 69.66 70.31 71.74

Pixel 5, iPhone 12 Pro 99.54 99.87 99.54 84.24 79.04 81.64 61.98 62.83 61
Pixel 5 99.48 59.9 54.3 84.51 12.43 7.49 70.25 24.67 18.42

Samsung S20+ 62.24 99.8 74.15 5.21 83.92 9.51 23.44 61.07 17.45
iPhone 12 Pro 66.8 66.6 99.22 8.72 11.59 76.56 18.16 19.79 62.3

TABLE XI: Multi-device Training and Testing: Google Pixel Phones

Trained
Tested Gender (%) Speaker (%) Digit (%)

Px1 Px2 Px3 Px5 Px1 Px2 Px3 Px5 Px1 Px2 Px3 Px5
Px1, Px2, Px3, Px5 99.02 99.8 99.67 99.22 85.16 91.6 89.32 83.27 75.39 81.84 76.76 70.18

Px1, Px2, Px5 98.63 99.61 98.89 99.35 84.64 90.95 67.38 83.4 73.83 81.12 47.01 68.62
Px2, Px5 57.81 99.41 98.83 99.28 13.35 91.8 65.95 83.53 17.38 81.9 43.03 69.73

Px1 99.61 59.57 67.64 63.67 81.84 5.6 5.21 6.25 69.53 28.65 24.48 11.91
Px2 56.18 99.87 99.41 93.36 7.1 91.02 55.79 22.27 27.93 79.69 41.34 20.38
Px3 59.05 97.01 99.67 95.12 8.66 52.02 91.28 22.59 24.09 59.57 80.66 23.76
Px5 62.7 67.51 81.45 99.48 10.61 19.47 21.35 84.51 13.67 13.41 11.72 70.25

TABLE XII: Multi-device Training and Testing: Samsung Galaxy Phones

Trained
Tested Gender (%) Speaker (%) Digit (%)

S7 S8+ S20+ S7 S8+ S20+ S7 S8+ S20+
S7, S8+, S20+ 99.15 98.96 99.28 88.74 75.2 81.58 75.78 58.66 66.54

S7, S20+ 99.15 94.4 99.61 86.33 39.71 81.71 75.46 38.09 64.97
S7 99.54 93.95 57.88 82.94 32.94 5.21 66.08 31.38 10.87

S8+ 94.34 99.61 27.15 47.66 79.3 5.01 43.03 57.29 20.44
S20+ 50.26 49.8 99.8 5.4 4.3 83.92 10.87 12.24 61.07

TABLE XIII: Multi-device Training and Testing: Apple iPhones

Trained
Tested Gender (%) Speaker (%) Digit (%)

iP7 iP8+ iP12 Pro iP7 iP8+ iP12 Pro iP7 iP8+ iP12 Pro
iP7, iP8+, iP12 Pro 99.41 99.35 98.89 83.33 83.92 81.51 68.82 72.33 66.34

iP7, iP12 Pro 99.35 80.73 99.28 83.2 19.34 79.95 69.7 18.62 65.36
iP7 99.87 39.71 49.09 85.09 5.73 5.14 65.23 13.74 18.75

iP8+ 49.93 99.41 79.36 6.9 81.64 14.78 12.24 66.67 12.43
iP12 Pro 50.13 53.26 99.22 5.73 10.61 76.56 15.1 14.32 62.3
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