
LeopardSeal: Detecting Call Interception via
Audio Rogue Base Stations

Christian Peeters, Tyler Tucker, Anushri Jain, Kevin Butler, Patrick Traynor
University of Florida

{cpeeters, tylertucker1, ajain1, butler, traynor}@ufl.edu

ABSTRACT
Audio Rogue Base Stations (ARBSs) allow an adversary to
intercept cellular calls. These devices represent a substantial
escalation in the threat posed by traditional rogue base sta-
tions, which only collect device identity information. This
paper presents the first technique for detecting call eaves-
dropping via an ARBS. Our system, which we call Leop-
ardSeal, uses distance bounding over the call audio channel
to determine whether or not extra wireless hops (and there-
fore increased audio delay) that are characteristic of ARBSs
are present during a call. We implement a proof of con-
cept ARBS using open-source guides and perform a mea-
surement study across the United States. We demonstrate
the ability to detect all attacks (with zero false positives) due
to a statistically significant difference in round trip times be-
tween benign and attack call audio (i.e., t-test: p ≪ 0.01)
due to the large cost of additional wireless hops. Through
this effort, we demonstrate the ability to robustly detect these
eavesdropping devices.

1 Introduction
In cellular networks, IMSI Catchers allow an adversary
to surreptitiously intercept device identifiers. These de-
vices have allowed both law enforcement [1, 2] and un-
known actors [3] to perform both presence testing and
track user movement (potentially in real-time). Whether
through exploiting weaknesses in older but still-deployed
cellular standards, performing downgrade attacks from
more secure standards, or even acquiring cryptographic
keys directly from the network provider, these devices
remain a substantial threat even with modern network
standards [4].

While there has been substantial research on detect-
ing IMSI Catchers, no attention has been given to the
more capable Audio Rogue Base Stations (ARBSs). While
both classes of devices are capable of capturing user
identifiers known as International Mobile Subscriber Iden-
tities (IMSIs), ARBSs are also capable of intercepting
and eavesdropping on-call audio. As such, this ability to
wiretap arbitrarily represents a substantial increase in
the potential threats to users. These extremely capable
devices are already available for sale [5].

In this paper, we defend call confidentiality in the
face of this more capable adversary with LeopardSeal. 1

Our approach takes advantage of a simple observation:
an ARBS adds two extra wireless hops to every au-
dio round trip, and the cost of this retransmission adds
measurable delay to calls. Therefore, we create a distance-
bounding solution for measuring RTT, which will be
substantially increased in the presence of an ARBS. In
so doing, we make the following contributions:

• Detection of Call Interception by ARBSs: No current
security mechanisms can determine whether a call is
being eavesdropped upon in real-time. Creating such
a detector is crucial in both unauthorized and autho-
rized wiretapping incidents. Specifically, whereas the
former is illegal, a crucial property of the latter is that
it must be undetectable.

• Identify Audio Artifact of ARBSs: We identify a
fixed increase in Mouth-to-Ear delay, caused by ex-
pensive transcoding costs related to having an addi-
tional wireless hop in each direction, as a signal of the
presence of such devices. LeopardSeal was designed
specifically to detect small changes in call path in-
dicative of interceptions via an ARBS, which other
applications of acoustic distance bounding have been
unable to achieve [6].

• Deploy, Bootstrap, and Measure: We implement and
deploy LeopardSeal, and discuss how our system can
be bootstrapped in the real world. We then conduct
testing in geographically diverse areas of the US to
show a consistent attack delay of ≈ 360 ms using
our constructed ARBS. We not only demonstrate the
ability to detect all attacks but show that attack and
benign traffic are distinct populations that are sepa-
rated by ≈15 standard deviations. We further vali-
date LeopardSeal’s abilities and show that changes to
our testbed do not impact detection accuracy.

The remainder of this paper is organized as follows:
Section 2 provides critical background information nec-
essary to understand these attacks and current defenses;
1Leopard seals are predators of stingrays, one common name
for commercial ARBSs.

1

Section 3 states our hypothesis; Section 4 details our
threat model; Section 5 formally defines the audio-based
distance bounding protocol that the LeopardSeal sys-
tem uses; Section 6 presents the implementation of the
LeopardSeal system and the experiments designed to
evaluate it; Section 7 details the results of our exper-
iments; Section 8 discusses related information; Sec-
tion 9 highlights and contextualizes related research;
and Section 10 offers concluding remarks.

2 Background
Cellular interceptor devices, which include IMSI Catch-
ers and ARBSs, have been a longstanding problem in
mobile telecommunications. These devices can be de-
fined as malicious hardware capable of communicating
on cellular frequencies as legitimate network entities to
end devices or cellular networks. Though the ease of op-
erating a cellular interceptor has decreased with the en-
hanced security practices of modern cellular standards,
these devices have adapted and remain effective [7, 8, 4].
In this section, we explore the different types of cellular
interceptor devices, how they can potentially exploit all
generations of cellular network technologies, and discuss
their impact on users.

2.1 Cellular Interceptor Devices
Cellular interceptor devices masquerade as a legitimate
base station to establish a connection with end devices.
The exact capabilities of these devices can vary based on
the network technology and vulnerabilities they exploit.
Cellular interceptors can be broken up into two separate
groups: ARBSs and IMSI-catchers. 2

2.1.1 Audio Rogue Base Stations
ARBSs convince end devices that they are a legitimate
cellular base station and capture all communication along
a call path. While both types of cellular interceptor
attempt to convince end devices they are a legitimate
network entity, ARBSs possess the ability to store and
forward cellular traffic between end devices and a legiti-
mate network including call audio, hence the name Au-
dio Rogue Base Station. In order to accomplish this, it
is necessary for an ARBS to either complete or avoid the
authentication process between an end device and the
cellular network it wishes to communicate with. Fur-
ther details on this process are provided later in this
section.

The impact an ARBS has on cellular network traffic
is shown in Figure 1. A traditional call path can be seen
in Figure 1(a). In this scenario, an end device connects
to a local base station which forwards data through the

2IMSI-Catchers and ARBSs are sometimes called Rogue
Base Stations (RBSs). To avoid confusion, we use only
IMSI-Catchers and ARBSs and clearly define attack capa-
bilities in this section.

(b) Call path through ARBS

(a) Traditional call path

PSTN

ARBS

PSTN

Target
End Device

Target
End Device

Remote
End Device

Remote
End Device

Figure 1: This network diagram compares a standard
call via the telephony network to one intercepted by an
ARBS.

core cellular network (PSTN) to the base station near-
est to the intended recipient, who receives it on a second
end device. Conversely, an ARBS attack is pictured in
Figure 1(b), which begins when a target end device,
instead, connects to an ARBS. The ARBS advertises
itself as a part of the local network and transmits at
a high power to entice nearby phones to favor it over
other towers. The ARBS also establishes a connection
to a legitimate base station in the role of an end device,
pretending to be the target user. The ARBS then for-
wards all cellular network activity between the target
end device and the legitimate network. As a result, end
devices can provide the malicious base station with sen-
sitive information including call audio, SMS messages,
cellular data, and location information [4].

ARBSs were long dismissed by network providers due
to the cost. However, these devices can now be con-
structed for as little as $1000 [9]. ARBSs are also fre-
quently used by law enforcement and government en-
tities [10, 11, 2]. Commercial ARBSs (e.g., Stingrays)
are sold only under special agreements and are not avail-
able to the general public. However, information about
them has surfaced over time and has shown that they
are capable of operating in both 2G and modern 3G/4G
networks [12].

2.1.2 IMSI-Catchers

The second group of cellular interceptors, commonly
referred to as “IMSI-Catchers” [13] complete their at-
tack prior to authenticating with end devices. IMSI-
Catchers obtain unique and static International Mobile
Subscriber Identity (IMSI) values for cellular end de-
vices by exploiting vulnerabilities in the various authen-
tication protocols across all generations of cellular tech-
nologies. This has been accomplished via techniques
such as forcing end devices to expose their IMSI val-
ues prior to authentication or via vulnerabilities in the
handover process [14, 15]. While IMSI-Catchers are an
ongoing security concern, they are not the focus of this
research.

2

2.2 Network Interception
An adversary can intercept a cellular network commu-
nication in many different ways, but the fundamental
concepts of the attack remain the same. Cellular inter-
ceptor devices exploit known vulnerabilities in the au-
thentication process between end devices and cellular
networks. This idea holds true for all cellular network
technology generations and has shown to be problem-
atic regardless of the enhanced security features pro-
vided by modern networks [16, 17, 18, 19, 8].

Achieving the goal of appearing as a legitimate base
station to both end devices and networks varies depend-
ing on the generation of cellular network technology for
which the attack is conducted. In 2G cellular networks,
this is a trivial task, as only one-way authentication is
used, allowing any device capable of broadcasting on
2G frequencies to act as a base station. This vulnera-
bility led to the introduction of the AKA protocol in 3G
networks to provide mutual authentication between end
devices and a serving cellular network. 4G and 5G net-
works make use of extensions of the 3G AKA protocol,
with the main difference being the use of a key hierar-
chy for improved key management within the network
core [20, 21].

The introduction of the AKA protocol with modern
cellular networks increased the difficulty of performing
an ARBS attack. However, one of the most frequently
used strategies to defeat this is to avoid the AKA pro-
tocols entirely. In what is commonly referred to as a
“Step-Down Attack”[22, 23], an ARBS can force devices
in an area to fall back to 2G networks by jamming the
control channel frequencies of newer network protocols.
End devices commonly provide backward compatibility
with legacy generations in their baseband processors.
This allows users to have cellular access when modern
cellular service is not available. By forcing connection
establishment via 2G, an ARBS can avoid the AKA
protocol entirely.

Despite the eventual sunset of 2G networks, ARBSs
will remain an issue. An ARBS can gain access to
AKA authentication vectors through various methods
depending on network technology and prerequisite abil-
ities an adversary might have. An outside attacker com-
promising the network core has previously been demon-
strated in the past [24, 25], and in some cases has re-
sulted in the installation of malware within the net-
work itself. If an adversary can acquire authentication
vectors by these or similar means, they can complete
AKA protocols using an ARBS. Moreover, an attack
via an ARBS is likely to happen at the nearest tower,
which can provide an adversary with all necessary keys.
The challenge of obtaining network resources can also
be overcome with the help of insider access.

In addition to compromises by malicious attackers,
authentication keys may also be obtained by law en-

forcement and government entities in cooperation with
the providers. This idea has been confirmed in the past
where government groups and law enforcement will get
a court-issued warrant to access cellular data to which
the cellular providers need to provide access to pro-
tected network resources [1, 25, 26]. With access to
authentication vectors being provided by the network,
law enforcement and government entities can complete
the AKA protocols. The impacts of this work on lawful
use cases of cellular interceptors are discussed in Sec-
tion 8.

3 Hypothesis
By adding an additional wireless hop to the path a call
travels, there will be a measurable and significant in-
crease in the round trip time (RTT) of the call audio.
This increase in time is due to multiple components in-
troduced by the addition of an ARBS, which together,
result in a significant impact on RTT. Therefore, we
can detect the presence of a rogue base station using
prerequisite knowledge of the expected RTT for an ap-
proximate distance.

Similar to traditional IP-based Internet, cellular net-
works are subject to numerous forms of delay that all
contribute to the overall time it takes to send and re-
ceive data packets. However, cellular networks actively
manipulate packets and their contents (e.g., latency in-
duced by codecs and digital-to-analog conversions). The
concept of delay in regards to call audio is referred to
as “Mouth-to-Ear Delay” [27], and more specifically, is
the delay in call audio between when one party speaks
and the other party hears it.

To convey the fundamental differences in latency be-
tween IP-based internet and cellular networks, we refer
to the ITU G.114 standard guidelines, and the associ-
ated “E-Model” transmission rating algorithms. This
shows that a one-way delay of 400ms is deemed satis-
factory in regards to cellular networks, in contrast to
traditional IP-based internet where 100ms would nega-
tively impact a connection.

4 Security Model
The goal of LeopardSeal is to detect the presence of an
additional wireless hop indicative of ARBS interception.
We discuss attack assumptions and capabilities of an
adversary using an ARBS.

4.1 Scope of LeopardSeal
LeopardSeal identifies the presence of ARBSs after a
connection is already established to an end device. As
such, LeopardSeal specifically addresses ARBSs and does
not address attacks conducted with IMSI-Catchers.

Law enforcement and government agencies can legally
obtain access to telecommunications resources to per-
form a lawful interception of calls and other data. The

3

methods by which lawful interceptions are executed can
vary. Some of which, referred to as “traditional wire-
taps”, allow interception from within the network core
through CALEA interfaces [28] and are designed to be
undetectable [29]. This approach avoids the addition of
the wireless hop and consequently avoids detection by
LeopardSeal. Such an approach, however, requires in-
sider access by telecommunications providers and is not
accessible to the general public [25].

Additionally, legal wiretapping requires judicial ap-
proval in the United States whereas laws on fake base
stations are inconsistent based on location and often
unclear [30, 31]. LeopardSeal is therefore capable of de-
tecting lawful interception via the use of ARBSs (e.g.,
mounted on the top of an SUV with no wired connection
to a network) but does not defend against traditional
(i.e., no-hop) lawful interception via wiretaps.

Law enforcement would choose the former case when
eavesdropping on traffic from previously unknown de-
vices at a specific location, for example during a protest
or large public event [30]. In this setting, the ARBS
would be mobile, relying on an additional wireless hop
to deliver victim traffic to a legitimate tower. This
makes the ARBS vulnerable to LeopardSeal detection.
With a reported 75 law enforcement agencies across 27
U.S. states using fake base stations [32], this technique
appears to be widely used.

4.2 Adversarial Capabilities
Even though currently deployed networks have stronger
authentication mechanisms, they remain vulnerable to
both downgrade attacks and the use of null ciphers [33,
34]. Further, law enforcement may request access to au-
thentication tokens from the network during “exigent”
or “exceptional” circumstances [30], allowing them to
bypass security mechanisms that may be in place. Con-
sequently, all currently deployed networks are vulnera-
ble to a range of adversaries.

The adversary forwards all cellular traffic between a
target device and a legitimate network. Calls that pass
through the ARBS are unencrypted and thus, in ad-
dition to storing a copy of all messages, an adversary
may also manipulate them. This includes fabricating,
modifying, or dropping the audio used in LeopardSeal
through the voice channel. This also may include in-
jecting noise or additional sounds.

The adversary controls the ARBS, but would likely
not be able to easily determine the location of the other
remote end device prior to the call. However, in the
event of a targeted attack on a specific call, an adversary
could have acquired a remote end device’s approximate
location information. This could have been done via
technical means such as phishing, or simply just guess-
ing based on area code or having prerequisite knowl-
edge. Consequently, we must assume that an adversary

knows the expected latency for every call to account for
targeted attacks.

We assume end devices are trustworthy and not com-
promised with any malware that could potentially in-
terfere with detection. Compromising an end device al-
lows an attacker to accomplish everything possible with
a rogue base station and more.

Finally, we assume that the adversary operates on the
same cellular network as the local end device. By as-
suming this worst-case scenario, there will be minimal
variations in the added call path by the ARBS and,
in turn, the added RTT. In practice, this will not al-
ways hold and the latency added by the ARBS could
be greater due to network delays.

5 LeopardSeal Protocol
In this section, we construct a distance bounding-inspired
protocol that reflects our adversarial model. We then
describe how our LeopardSeal protocol builds on prior
work in distance bounding, and detail its construction.
Finally, we analyze the performance and security guar-
antees against common distance bounding attacks.

5.1 Prior Work in Distance Bounding
Distance bounding protocols allow parties to determine
a tight upper bound on the distance between one an-
other by observing the travel time of messages. At a
high level, a prover and a verifier rapidly exchange bits
as challenges and responses while measuring the RTT
of those messages.

Many distance bounding protocols offer various per-
formance and security guarantees. Typically, these pro-
tocols are designed with the intent to be used for ap-
plications where a Prover and a Verifier are at a line-
of-sight distance from one another [35, 36], and in some
cases as close as physically touching [37]. Often, the
messaging latency in these protocols is defined by phys-
ical constraints, such as the time needed for a wireless
signal to propagate over a relatively short distance, al-
lowing traditional distance bounding algorithms to pro-
vide centimeter-level accuracy.

Unlike traditional distance bounding, our attack sce-
nario is on a much larger scale with a higher degree of
variability in the messaging path, due to the multi-hop
nature of this setting. Our approach is analogous to
a secure version of ping designed for cellular networks.
In a cellular network call, the number of hops between
end devices is variable depending on network conditions.
The network path information is not made available to
end devices and there are no tools to obtain it. The
LeopardSeal protocol that we develop must account for
this variability while also providing an upper bound on
RTT such that attacks are accurately identified.

We prioritize the ability to be resistant to imperson-
ation fraud and mafia fraud over distance fraud and ter-

4

rorist fraud since they do not apply to our threat model.
Taking this into consideration, we look to well-known
distance bounding protocols to use as a foundation for
LeopardSeal. There are many possible options, and in
order to find a construction that best meets our needs
we specify several criteria that we look for in a protocol:

• G1: Minimize Bits Exchanged - Because the RTT
values in LeopardSeal are much larger than those as-
sumed by traditional distance bounding, the number
of bits exchanged during the protocol greatly impacts
the overall time for completion.

• G2: Resilience to Impersonation and Mafia Fraud
- These attacks are possible under our adversarial
model, so we prioritize protocols that are more ef-
fective against them.

• G3: Minimize Computation - It is imperative that our
protocol is lightweight and could be run on an array
of hardware. Many distance bounding protocols use
techniques to improve security at a performance cost.
This is largely due to a second slow phase after the
challenge and response phase, which adds additional
post-processing after exchanging data.

We looked to academic surveys on distance bounding
protocols that compare security and performance [38],
as well as studies on protocol verification [39] to ensure
our protocol would have no known vulnerabilities.

This analysis showed that the ideal base protocol for
LeopardSeal is the revised version of KA2 [40]. KA2 was
designed for RFID applications, building on the Hancke
and Kuhn (HK) protocol [41].

After carefully evaluating numerous distance bound-
ing protocols, we found that the KA2 protocol best
meets goals G1, G2, and G3. By expanding the al-
phabet, the revised KA2 protocol can further improve
the resistance to mafia fraud.3 Moreover, having an ex-
panded alphabet allows us to reduce the number of bits
sent. KA2 is also round-independent and does not have
a second slow phase.

5.2 LeopardSeal Protocol Definition
Figure 2 provides a diagram of our LeopardSeal pro-
tocol for two participating end devices. These devices
are referred to as a prover P and a verifier V . The
entities can be associated respectively with the target
end device and the remote end device that we refer to
throughout the paper. The LeopardSeal protocol we
describe is a version of the KA2 protocol that is modi-
fied to work via the audio channel of calls. Additionally,

3Though KA2 does have slightly weaker security than HK
in regards to distance fraud in some cases, this is a benefi-
cial trade-off due to the irrelevance of distance fraud in our
threat model.

Verifier (V)
(secret K)

Prover (P)
(secret K)

m = 4
H = h(K, Na, Nb)

T = H1 || H2 || … || Hn

v0 = Hn+1 || Hn+2 || … || H2n

v1 = H2n+1 || H2n+2 || … || H3n

v2 = H3n+1 || H3n+2 || … || H4n

v3 = H4n+1 || H4n+2 || … || H5n

D = H(m+2)n+1 … H(m+2)n+d || … || H(m+2)n+ (n-1)d+1 … H(m+2)n+nd

Phase 1: Secret Establishment and preemptive calculations

Phase 2: Fast Bit Exchange (from i to n)

Phase 3: Reconciliation

Na

Nb

Ci = {Pick Si ∈{0, m-1}
Si , if Ti = 1
Di , if Ti = 0

Decode (DTMFC)

If Ti = 1, then
Ri = vi

j, if Ci = i

If Ti = 0, then

{Ri =

vi
0, if Ci = Di

random, if Ci ≠ Di

DTMFR = Ri + Ri+1

tstart = Start Clock DTMFC

DTMFR

tend = Stop Clock
tn = tstart - tend

Decode (DTMFR)
tavg = ∑ tn / n

Figure 2: The LeopardSeal Protocol is a modified ver-
sion of the KA2 distance bounding protocol that is ap-
plied to audio transmitted through telephony networks,
encoding challenges as DTMF tones.

our modification allows P to have more control of the
protocol results.

KA2 offers variability in regards to m, the size of
individual challenges. The authors of KA2 suggest a
value of four for m, which is what we choose as well.
Analogous to the KA2 protocol, LeopardSeal consists
of three stages: secret establishment and preemptive
calculations, fast bit exchange, and reconciliation. The
first phase of the protocol requires P and V to establish
a shared resource K. The method by which this hap-
pens can vary, however, we suggest that TLS should be
used if available. If no IP-based communication is pos-
sible, an alternative option is to use a system of secure
key establishment via the audio channel of a call, such
as Authloop [42]. We leave the final decision up to an
entity deploying LeopardSeal.

5

Number
of

Rounds

Number of
Challenges

(n)

Impersonation
Fraud

Success Rate

Mafia
Fraud

Success Rate

Execution
Time
(s)

1 2 6.25% 19.14% 2.82
2 4 0.39% 3.66% 5.64
4 8 1.53E-03% 0.13% 11.28
8 16 2.33E-08% 1.80E-04% 22.56
16 32 5.42E-18% 3.25E-10% 45.12

Table 1: This table provides the measures of perfor-
mance and security for the LeopardSeal protocol when
the size in bits of each individual challenge m = 4.

The LeopardSeal protocol implements the KA2 al-
gorithm over an audio channel, so data must be ex-
hanged in-band. To achieve this, we employ DTMF
tones, which are standard in-band signals that oper-
ate as base 16 values. Note that in Figure 2, all mes-
sages that are exchanged between V and P after key
and nonce establishment are DTMF messages. We pro-
vide a more in-depth discussion on the KA2 protocol in
our anonymously-hosted appendix.4

Once both P and V have K, they each select a nonce
(NP and NV respectively) and exchange them via the
same channel used to establish K. Once NP and NV

have been exchanged, P and V generate a sequence of
bits H of length (2 + m)n, where n is the number of
challenges to be sent, using a pseudorandom function
(a MAC or hash algorithm) given K, NP , and NV as
inputs. For our case ofm = 4, H is then divided into six
separate sequences of length n each: pre-defined m-ary
challenges D, random binary values T , and four binary
sequences v0, v1, v2, and v3. Once these sequences are
generated, the first stage of the protocol is complete.

5.3 Protocol Performance
In addition to the selection of the m value, there are
other design considerations for LeopardSeal that need to
be determined for real-world deployment. The n value
is the number of challenges and responses used in the
fast bit exchange phase. The number of challenges and
responses is a trade-off between performance and secu-
rity, so the authors of KA2 provide the success proba-
bility of fraud given n and m [40]. The value of n can
be adjusted to meet the security and performance needs
of a deploying system, and the following describes how
n impacts LeopardSeal.

The security offered by LeoardSeal is identical to that
of KA2. In regards to an adversary attempting Imper-
sonation Fraud on the LeopardSeal protocol, they would
need to correctly guess all challenges. This yields a suc-
cess probability of (1/4)n when m = 4. If an adversary
instead attempts mafia fraud, the success probability
is subject to the balance of bit values in the random
sequence T calculated during the second phase of the
protocol. As a result, the probability ranges between
4
https://osf.io/v24rd?view_only=96d434c48d2249899eadd53c7f6fab0a

the best-case scenario of (7/16)n and a worst-case of
(3/4)n.

We model the completion time of LeopardSeal with
respect to the number of rounds with the equation:

tc = 2n(tnd + tdtmf + tp)

where tnd is the one-way network delay, tdtmf is stan-
dard DTMF length of 90ms, and tp is the standard
pause time following a DTMF tone of 65ms [43]. In our
atypical distance bounding setting, we will observe a sig-
nificant decrease in performance as n increases. Though
one-way network time can vary, especially in the case of
an ARBS attack, for performance analysis we assume
a worst-case scenario according to the E-Model [27] of
a 550ms one-way network delay. Under these assump-
tions, we provide Table 1 that contains performance and
adversarial success values for varying n.

We acknowledge that the times provided in the table
can seem long when compared to network protocols,
but it is in line with other published work on telephony
security (e.g., PinDr0p [44]). LeopardSeal is intended
to be run once nearby a location before arrival and once
after arriving at that location to compare results, which
we further explain in the next section.

6 Implementation
To test our hypothesis, we observe this attack and com-
pare measurements of mouth-to-ear delay to that of le-
gitimate calls in various scenarios. This section provides
an overview of the implementation of the three compo-
nents necessary to perform our experiments: the tar-
get end device (i.e., the Prover), the remote end device
(i.e., the Verifier), and the ARBS. Figure 3 provides an
overview of the construction of each device. We then
detail our testing methodology.

6.1 ARBS Implementation
The first step to conducting our experiments was to ac-
quire an ARBS. However, these devices are only sold to
law enforcement and government agencies under nondis-
closure agreements. To the best of our knowledge, no
published work in this space has been able to acquire
such a device [45].

Because of the difficulty of obtaining these devices,
there are many tutorials online that describe how to
build a GSM ARBS using commodity hardware. We
determined that the most practical and fair way to do
this was to assemble our own GSM ARBS using pub-
licly available guides, while also taking into account the
typical RTT associated with cellular network hardware
outlined in the standards.

We took careful steps to assure that we did not un-
fairly bias device performance when constructing our
ARBS. Specifically, we followed open-source guides for

6

Laptop

GoIP bladeRF

Teensy

Cellular Radio

Target ARBS Core

Teensy

Cellular Radio

Remote

Figure 3: High-level diagram of our ARBS and loop-
back device implementation.

creating ARBSs, which include suggestions for hard-
ware and software [46, 47, 48, 49]. Based on these guides
and our experience in this space, we configured these
devices to minimize processing and latency overhead as
much as possible.

Finally, we validated our construction against the lit-
erature on telecommunication latency. Standards and
studies on the mouth-to-ear delay suggest that call la-
tency is primarily introduced by wireless uplinks and
downlinks [27, 50, 51], which is doubled when connected
to an ARBS. These standards anticipate approximately
190ms of delay for both an uplink and downlink in
one direction and is doubled when considering RTT.
As such, approximately 380ms of additional round trip
delay is to be expected based on these references. An
ARBS with this performance, regardless of whether it is
law enforcement-grade or an open-source project would
therefore be representative of what the standards expect
and allow.

Our ARBS consists of three main components: a
software-defined radio (SDR) to act as our GSM base
station, a cellular gateway to connect to a legitimate
base station, and a host device to bridge them. We
chose the bladeRF x40 [52] as our SDR because it is
the only SDR currently supported by YateBTS [53], the
most popular open-source GSM software. We only per-
mitted connections from our test sysmocom SIM cards [54]
to prevent any unintended device connections.

To bridge calls from the bladeRF into a legitimate
provider network, we created a local SIP connection
from YateBTS to a SIP server hosted directly on our
cellular gateway, a GOIP-1 device [55]. The GOIP-1
is advertised online [49] as an “IMSI-Catcher”.5 The
host/bridge runs on a Dell Precision laptop running
Ubuntu 18.04 LTS to support YateBTS.

5As stated in Section 2, the term “IMSI Catcher” is an am-
biguous term that here represents an ARBS because it in-
tercepts call audio.

San Francisco, CA

Boston, MA

St. Louis, MO

Daytona Beach, FL
Orlando, FL

Figure 4: Geographical locations of remote end devices
while our ARBS remained at a fixed located in the
Southeastern United States.

6.2 End Device Construction
We chose to assemble our own cellular end devices to
measure RTT for call audio. This allowed us to di-
rectly interface with call audio, which is not possible
with standard mobile devices. Additionally, building
our own hardware provided us with the ability to verify
the connection to our ARBS and allowed us to automate
the process of collecting RTT data.

Each device consists of a Teensy development board
interfaced with 3G cellular modules and Mint Mobile
(MVNO of T-Mobile) SIM cards. We validated that our
results are not dependent on this network by performing
cross-MNO tests, which can be found in Section 7.

Once a remote end device receives a call, it automat-
ically begins sampling the audio in line and retrans-
mitting that audio through the microphone line. This
process is consistent for all tests, making the small sam-
pling delay equivalent for every sample we read. We
also note that the internal hardware delays do not im-
pact our ability to accurately measure RTT. The only
requirement is that the delay is consistent and in the
order of several GSM audio frames.

Our target end device also uses a Teensy ARMM7 de-
velopment board with the same 3G cellular module. In
short, the target device initiates the call to a remote end
device. Once the call is established, the target trans-
mits an audio tone during a call and measures the time
taken from the beginning of that tone to the moment it
receives it back. To detect these audio tones, we use an
analog-to-digital converter which looks for a deviation
in the voltage on the audio input, indicative of audio on
the line. We also use techniques such as noise filtering
and manual inspection to avoid false-positive audio.

6.3 Test Methodology
6.3.1 Initial Tests and Local Distance Consistency

We performed initial experiments to confirm that our
target and remote end devices can obtain a consistent
measure of RTT. We then performed the same tests, but

7

Figure 5: Violin plot comparing RTT measurements of
calls within our lab to calls made to a location five miles
away. We observe distinct groupings for each path with
strong similarities between the two nearby locations.

this time with the target end device connected to our
ARBS. We measured the RTT for 20 calls along each
call path and compared the two sets to see if the RTT
had increased and if it was consistent across multiple
calls.

Our next step was to see how small changes in dis-
tance impact the RTT for legitimate calls and calls con-
nected to our ARBS. To do this, we moved one of the
remote end devices to another location five miles from
our lab. We measured 30 phone calls over 2 days for
both call path cases. We then compared the legitimate
and ARBS-connected calls for each location. We com-
pared both benign and attack call RTTs, and tested for
a statistically significant difference.

6.3.2 Long Distance Detection

For the next set of experiments, we sent remote end
devices across The United States. At each location, we
conducted a series of tests over two days. Each RTT
sampling test consisted of 100 phone calls, in an effort
to capture network behavior at a certain time of day.
During each call, our target end device in our lab sends
10 tones to a remote end device and records the RTT of
each tone. If the target correctly measures 10 samples,
it will take the average and save the result. If any issues
arise, the program will discard the incomplete test and
immediately redial the remote end device.

We then sent remote devices to multiple locations
around the United States via the US Postal Service.
Figure 4 shows the locations of these devices. We strate-
gically these locations as they represent a diverse set of
points throughout the continental United States.

7 Experimental Results
Across all of our experiments, we frequently perform
a standard two-sided t-test which results in two met-
rics: a t-score and a p-score. These allow us to evaluate
the distinction between two RTT data sets. Before per-
forming these calculations, we ensured that our data
was normally distribution using the Shapiro-Wilk test.

7.1 Initial Tests & Local Distance Consistency
We begin by evaluating the results of our initial RTT
measurements when the end devices and the ARBS are
all within our lab. The average time of the 20 legiti-
mate call RTT samples was 507 ms, while the average
for calls connected to our ARBS was 885 ms. These re-
sults suggest a clear distinction in RTT when the target
end device is connected to the ARBS. We then eval-
uated these measurements with a standard two-sided
t-test, which produced t = 50 and p ≪ 0.01. These
values strongly support the idea that the two groups of
RTTs from each call path are highly self-correlated and
negligibly correlated with each other.

After determining that the ARBS had a significant
impact on RTT, we moved the location of the remote
end device to a test site location five miles away and
again collected 40 RTT samples. The results of this ex-
periment are shown in Figure 5 alongside the measure-
ments taken within our lab. In this case, the average
times for both paths were within 30 ms of those of the
original set of tests. The results of both tests exhibit a
statistically significant difference between the legitimate
and ARBS-intercepted calls.

7.2 Long Distance Detection
After establishing consistency within a local area, we
decided to vary the location of the remote end device
throughout the United States. For each location, we
collected 200 RTT samples over two days, where half
were legitimate calls and half were ARBS-intercepted.

Overall, we observe similar results for RTT and dif-
ference of means at each location. All of our calls go
through the same ARBS, so the difference of means,
or amount of delay added by the ARBS path, is similar
for all locations: St. Louis (366 ms), San Francisco (374
ms), and Boston (381 ms). These values align well with
our target value of 380 ms mentioned in Section 6. Due
to these similarities, we achieve p ≪ 0.01 for all test
locations. These results allow us to reject the null hy-
pothesis associated with the t-test. Finally, we calculate
that the average RTT for ARBS paths is 15 standard de-
viations away from the average RTT for direct paths for
these three locations. We offer a visual representation of
our statistical analysis as a probability density function
in Figure 6. This plot shows us the distribution of the
data at each location, with two clear groups of curves
which represent the direct and ARBS paths. The peaks

8

Figure 6: Probability Density Function for tests in our local area, St. Louis, San Francisco, and Boston. The
left cluster represents the direct calls for each location while the right cluster represents the ARBS-intercepted
calls. We observe a consistent delay of ∼380 ms between normal and attack results for each location (e.g., San
Francisco Normal: 1093 ms; San Francisco Attack: 705 ms). While we only show these 4 locations for clarity, we
have performed tests in a total of 15 cities throughout the United States, all of which produce this consistent delay.

of each curve appear in the same order for both paths,
suggesting again that the ARBS adds a near-constant
delay to the RTT of audio signals. Moreover, the differ-
ence between attack and non-attack traffic is exactly as
predicted by the standards documents’ characterization
of additional wireless hops [27, 50, 51].

7.3 LTE Experiments
While the majority of our experiments use 2G and 3G
networks, we ran additional experiments in LTE for
completeness. We constructed a new loopback device
that uses an LTE module, then ran tests against it
within our local area. We did not observe significant
changes in RTT when comparing these results to ex-
isting local results that we previously collected. Our
direct results were 515 ms and 466 ms while our ARBS
results were 898 ms and 840 ms for 3G and LTE, re-
spectively. These results are about 50 ms apart for
each path, which is significantly less than our measured
ARBS delay. This means that LTE RTT is generally in-
distinguishable from 2G/3G RTT. We share our results
in Figure 7.

7.4 Time Consistency
Analogous to IP networks, cellular networks are also
subject to changes due to diurnal patterns. Specifically,
delays in traditional IP networks can vary greatly de-
pending on the time of day and other various network
conditions. This phenomenon could have a significant
impact on the RTT of call audio and requires additional
experimentation. While this effect should not be true in
voice calls (variation occurs in call establishment time,
but should not vary once the call is connected), we ana-
lyzed 200 measurements from our results in Boston. We

Figure 7: Plots of our local experiments using 3G and
LTE in our loopback devices. We observe that results
for direct and ARBS paths are very similar.

then looked at the standard deviation of the measured
RTT for both legitimate and ARBS-connected calls over
the entirety of the time we collected data.

We split the entirety of the data from our Boston
RTT measurements into three categories: Before 10:00
AM, 10:00 AM - 4:00 PM, and After 4:00 PM. Figure
8(a) shows the distribution of RTT values from each
of these categories as a Violin plot. The peaks of each
plot stay very consistent for each category representing
the different times of day, suggesting that results remain
consistent regardless of when calls were made. We chose
these times of day to represent the typical morning, core
workday, and evening timeframes.

This small difference in RTT allows us to retain the

9

Figure 8: Violin plots showing the effect that different times of day and different years can have on RTT measure-
ments. We observe that neither factor significantly impacts our results, suggesting that LeopardSeal can provide
consistent measurements.

Figure 9: Violin plot showing the difference between
experiments using one MNO (T-Mobile) and two dif-
ferent MNOs (T-Mobile and AT&T). We observe cross-
carrier delay is significantly less than ARBS delay.

clear distinction between direct and ARBS paths for
each time. We can conclude from these results that
LeopardSeal will be effective at identifying calls inter-
cepted by an ARBS, regardless of the time of day.

We ran an additional experiment in San Francisco
10 months after our first experiment. We observed no
discernable difference between the two sets of measure-
ments, as the average direct and ARBS delays were 706
ms and 1093 ms for 2021, and 700 ms and 1029 ms for
2022. This shows us that our detection technique is ro-
bust across long timeframes, in this case around a year
apart. Figure 8(b) contains the associated plot for San
Francisco.

7.5 Cellular Gateway Evaluation
As mentioned in Section 6, part of the reason for con-
structing our own ARBS was the legal difficulty of ac-
cessing and using law enforcement-grade technology. How-
ever, despite our inability to obtain and use such a de-
vice, we wanted to verify the ability of LeopardSeal to
work against other hardware. To verify that higher-end
gateways would not impact our ability to detect ARBSs,
we acquired a Dinstar UC2000-VG ($2000), which is
considerably more expensive than the GoIP ($100) used
in our other experiments.

Using the UC2000-VG, we collected RTT measure-
ments for 20 calls between the two end devices located
in our lab over 24 hours. We then compared those RTT
measurements with the original measurements we took
in our lab using the GoIP. We found the average RTT
differed by only approximately 25ms, the size of a single
audio frame. This difference likely can be contributed
to variations in network conditions. As such, this addi-
tional experiment further confirms our hypothesis that
the wireless hops are the source of delay.

7.6 Cross-MNO Experiments
We acquired a TracFone SIM using the AT&T network
to run experiments between different MNOs, as crossing
an SS7 node does incur an additional delay to the audio
channel. We ran tests on adjacent days with the same
loopback device, running Mint Mobile (T-Mobile), then
TracFone (AT&T). Figure 9 contains the results of our
experiments. We observe an increase in RTT in this
scenario, although the added delay is also significantly
below that of an ARBS path. Our average cross-MNO
delay is 168 ms, which is less than half of the average 380
ms delta that exists in the presence of an ARBS. Most

10

critically, the difference between direct and ARBS paths
in both setups remains consistent at approximately 360
ms, which is highlighted in Figure 9. Direct path data
for the cross-MNO case remains disjoint from the ARBS
data for the single carrier case, so we can still assign
a minimum threshold for ARBS detection despite the
increase in RTT from communication between separate
carriers.

8 Discussion
LeopardSeal requires additional steps to achieve real-
world deployment, as do artifacts in all research pa-
pers. The most important step in reaching widespread
deployment of LeopardSeal is the support of OEMs.
LeopardSeal is intended to be run as part of the default
calling application. This is largely due to third-party
apps being restricted from having access to call audio
for both iOS and Android devices. This also enables
user adoption of LeopardSeal, which is commonly a hur-
dle for any new technology. Aside from integration into
mobile operating systems, other real-world deployment
considerations need to be made as well.

8.1 Impacts on Law Enforcement
The implications of this research have the potential to
have an impact on the lawful use of ARBSs by law
enforcement and government groups with a warrant.
Though the intent of this work is to allow users to de-
tect if they are being unlawfully spied on by unsanc-
tioned ARBSs, the system could be used by criminal
suspects to determine if they are under surveillance by
law enforcement. This is an unintended consequence of
LeopardSeal, however, we believe that this offers a silver
lining regarding the lawful use of rogue base stations.

We first note that traditional wiretapping typically
occurs in phone switches in compliance with CALEA [28].
The advantage of this approach is that it is undetectable,
and can be used to capture call audio and metadata
(depending on the warrant) regardless of the location
of the surveilled target. That said, incidents such as
the January 6th attack on the US Capital may make
it necessary to intercept threats as they emerge. What
is critical is that standards and laws dictate that such
interception should still be undetectable [56, 29].

Without legal access to law enforcement-grade ARBSs,
we can not characterize such devices. However, the
techniques and hardware they use are not dissimilar to
ours, so we have no reason to believe that they would
be undetectable. Such devices should therefore be eval-
uated by appropriate authorities using LeopardSeal.

8.2 Real World Deployment
While deploying LeopardSeal on current mobile phones
has challenges, a more challenging issue is in determin-
ing how to deploy the remote end device. A caller may

not know the location of a potential callee (e.g., another
mobile phone user), or may not wish to call them until
they believe that their call is not being surveilled.

Many options would work in this space. A user could
potentially use another number under their control (e.g.,
work or home phones) and implement the remote/echo
service there. Alternatively, phone numbers mapping
to web services/automated voice response (AVR) sys-
tems could also be employed. In a relatively straight-
forward fashion, traditional services such as Time-by-
Telephone [57]6 could easily serve in this role.

Our previous experiments demonstrate that attack
and benign traffic are easily differentiable based on the
delay added by an ARBS. However, this information
alone is insufficient to instruct users on how they might
actually use LeopardSeal to determine whether or not
their calls are currently being surveilled. That is, given
the timing output from LeopardSeal, a user needs more
than just a single RTT in order to determine the pres-
ence of an ARBS.

The answer to this problem is bootstrapping or hav-
ing a LeopardSeal measurement from a location be-
lieved to be safe. One may select such a location by
context: for instance, before attending a protest, a po-
tential target may collect a bootstrap value at their
home a few miles away from their future location. A
natural question then arises, “What range is appropri-
ate for collecting a bootstrap value?”

Our experiments in Section 7 offer a starting point.
Specifically, as shown in Figure 5, RTT times between
physically close locations in the same town are extremely
similar. A user would therefore need only to move one
base station away from the ARBS (i.e., out of range).
Unfortunately, the problem remains that a user would
already need to know that they are under surveillance in
order to move away and take their bootstrap measure-
ment. Accordingly, it would be useful to understand
how far away from a location where monitoring is sus-
pected a target can bootstrap.

We perform one final experiment to attempt to quan-
tify this answer. We mailed our remote device to Day-
tona Beach, Florida. This location is approximately 55
miles away from our previous measurements in Orlando,
Florida. Twenty samples from each location, half be-
nign and half attack, show that RTT values for both lo-
cations are highly similar. A t-test of the benign and at-
tack datasets further confirms the visual intuition, with
p = 0.9 and p = 0.8, respectively, thereby supporting
the null hypothesis that these samples are drawn from
the same population. As ARBS attacks are highly lo-
calized (single microcell range of ≈ 1 mile), an area of
approximately 9, 500mi2 (π× 55mi2) provides sufficient
space to bootstrap safely. We believe that results be-
gin to degrade much beyond this point. As shown by

6“At the tone, the time will be:”

11

Peeters et al., [6], who use a different acoustic distance
bounding technique to detect SS7 rerouting attacks, dis-
tances of approximately 200 miles yield significantly dif-
ferent RTT times. As such, we do not recommend using
bootstrapping distances beyond the above experiment.

9 Related Work
Cellular network security research has produced several
approaches to defending against cellular interceptor de-
vices. While varied, we can categorize all of these ap-
proaches as app-based, sensor-based, or network-based
according to a recent study by Park et al. [58].

App-based solutions perform detection directly from
the end device. Brenninkmeijer [59] and Park et al. [60]
conducted studies on popular app-based solutions for
Android phones in 2016 and 2017, respectively. Both
studies concluded that all applications were easily cir-
cumvented and suggested that app developers seek di-
rect access to the phone’s baseband processor to strengthen
their defense, which is not easily implemented. Li et
al. [61] created an application called FBSRadar which
used crowdsourced information to detect cellular inter-
ceptor devices. While their system is highly effective,
it only works against rogue base stations that send out
spam SMS messages.

Sensor-based solutions use dedicated hardware to learn
about the local network and detect anomalies. Dabrowski
et al. [62] identified metrics such as cell ID, base station
capabilities, evidence of jamming, lack of proper en-
cryption, and more as useful in determining if a base
station is a malicious device. A few years later, Ney et
al. [63] created a crowdsourced network of cellular in-
terceptor device detectors called Seaglass by installing
cellular transceivers on ride-sharing cars to map net-
work topology. Seaglass detects anomalies by looking at
broadcast information, location inconsistency, and de-
ployment lifetime of each active base station. Zhuang
et al. [64] propose an alternative approach using RF
fingerprinting techniques to identify base stations. This
approach alone, however, is not sufficient in detecting an
ARBS due to the principle of relying on a short deploy-
ment lifetime being indicative of ARBSs. Many legiti-
mate circumstances may result in a base station having
a short deployment lifetime, such as the deployment of
mobile microcells at sporting events. As a result, many
of these sensor-based solutions produce false positives.

Network-based solutions rely on existing infrastruc-
ture to detect cellular interception devices, thus placing
detection on network operators. In 2015, Do et al. [65]
proposed a machine learning solution that would detect
anomalies through network behavior and returned as
Steig et al. [66] with a non-ML solution that relies on
measurement reports from end devices. This provides a
list of all nearby base stations to the connected base sta-
tion, in an attempt to identify any unfamiliar entities.

Dabrowski et al. [67] conducted a similar study, con-
cluding that invalid LAC codes transmitted by phones,
a database of ciphers used by each phone, and trans-
mission delays in control messages are strong indicators
in detecting an ARBS. These solutions, however, would
introduce significant changes to the network core.

At the core of this work is the application of distance-
bounding protocols that determine deviations in call
paths by measuring the RTT of exchanged messages.
These have been applied to the telephony network core,
as well as wireless communication such as UWB and
GPS [6, 68, 69, 70].

LeopardSeal is most closely related to Sonar by Peeters
et al. [6], which addressed call rerouting via SS7 with
the use of distance bounding. However, there are nu-
merous aspects of the two systems that differ, including
the impact on RTT being fundamentally different be-
tween the two attack scenarios. The delay introduced
by ARBSs is less reliant on call path distance than SS7
redirections and focuses on the addition of a wireless
hop nearby end devices. Unlike Sonar, LeopardSeal is
able to detect small deviations in a call path. Sonar
explicitly notes this scenario as a limitation.

In addition to the differences in the fundamentals of
the attacks, the capabilities of the two systems also dif-
fer. Sonar implements a modified version of the Hancke
and Kuhn protocol [41], which is a fundamental dis-
tance bounding protocol. This protocol selection ad-
dresses only distance fraud and disregards other com-
mon distance bounding attacks. In Section 5, we dis-
cussed the careful selection of the distance bounding
protocol proposed by Kim and Avoine [40], which pro-
vides additional security benefits and has been proven
secure. This allows LeopardSeal to defend against a
more active attacker, unlike Sonar.

10 Conclusion
Audio rogue base stations allow adversaries to eaves-
drop on calls. However, the additional wireless hops
that incur delays from encryption, transcoding and re-
transmission create measurable differences in the delay
experienced by surveilled calls. In this paper, we de-
velop the LeopardSeal protocol as a means of detecting
this delay. LeopardSeal uses a secure distance bounding
algorithm that we tailor for use in the voice channel. We
test our protocol on devices located throughout the con-
tinental United States. Our experiments not only vali-
date our hypothesis but also provide guidance on how
such a system can be practically deployed. Whether an
adversary exploits 2G connectivity, downgrade attacks
or the compromise of network credentials, we demon-
strate that such attacks can be robustly detected.

12

11 References

[1] K. Zetter, “How Cops Can Secretly Track Your
Phone,”The Intercept, 2020. [Online]. Available:
https://theintercept.com/2020/07/31/protests-
surveillance-stingrays-dirtboxes-phone-tracking/

[2] J. Fenton, “Key Evidence in City Murder Case
Tossed Due to Stingray Use,”The Baltimore Sun,
2016. [Online]. Available:
https://www.baltimoresun.com/news/crime/bs-
md-ci-stingray-murder-evidence-suppressed-
20160425-story.html

[3] L. H. Newman, “DC’s Stingray Mess Won’t Get
Cleaned Up,”Wired, 2018. [Online]. Available:
https://www.wired.com/story/dcs-stingray-dhs-
surveillance/

[4] Y. Nasser, “Gotta Catch ’Em All: Understanding
How IMSI-Catchers Exploit Cell Networks,”
Electronic Frontier Foundation, 2019. [Online].
Available: https://www.eff.org/wp/gotta-catch-
em-all-understanding-how-imsi-catchers-exploit-
cell-networks

[5] “Xcell. 4G (LTE) Direct Interception System
(Without Downgrading to 3G or 2G),” 2021.
[Online]. Available: https:
//www.discoverytelecom.eu/catalog/5438.html

[6] C. Peeters, H. Abdullah, N. Scaife, J. Bowers,
P. Traynor, B. Reaves, and K. Butler, “Sonar:
Detecting SS7 Redirection Attacks with
Audio-Based Distance Bounding,” in Proceedings
of the IEEE Symposium on Security and Privacy,
2018.

[7] R. Borgaonkar, L. Hirschi, S. Park, and A. Shaik,
“New Privacy Threat on 3G, 4G, and Upcoming
5G AKA Protocols,” Proceedings on Privacy
Enhancing Technologies, vol. 2019, no. 3, pp.
108–127, 2019.

[8] R. Chirgwin, “Now You, Too, Can Snoop on
Mobe Users from 3G to 5G with a Raspberry Pi
and =C1,100 of Gizmos,” 2018. [Online]. Available:
https:
//www.theregister.com/2018/12/05/mobile users
can be tracked with cheap kit aka protocol/

[9] “How to Build Your Own Rogue GSM BTS for
Fun and Profit,” 2016. [Online]. Available:
https://www.evilsocket.net/2016/03/31/How-To-
Build-Your-Own-Rogue-GSM-BTS-For-Fun-And-
Profit/

[10] T. Jackman, “Police Use of ‘StingRay’ Cellphone
Tracker Requires Search Warrant, Appeals Court
Rules,” 2017. [Online]. Available:
https://www.washingtonpost.com/news/true-
crime/wp/2017/09/21/police-use-of-stingray-
cellphone-tracker-requires-search-warrant-
appeals-court-rules/

[11] E. Kelly, “Bipartisan Bill Seeks Warrants for
Police Use of ’Stingray’ Cell Trackers,” 2017.
[Online]. Available: https://www.usatoday.com/
story/news/politics/onpolitics/2017/02/15/
bipartisan-bill-seeks-warrants-police-use-stingray-
cell-trackers/97954214/

[12] S. Biddle, “Long-Secret Stingray Manuals Detail
How Police Can Spy on Phones,”The Intercept,
2016. [Online]. Available:
https://theintercept.com/2016/09/12/long-secret-
stingray-manuals-detail-how-police-can-spy-on-
phones/

[13] D. Strobel, “IMSI catcher,”Chair for
Communication Security, Ruhr-Universität
Bochum, 2007.

[14] Z. Whittaker, “New 5G Flaws Can Track Phone
Locations and Spoof Emergency Alerts,”Tech
Crunch, 2019. [Online]. Available:
https://techcrunch.com/2019/11/12/5g-flaws-
locations-spoof-alerts/

[15] C. Quintin, “The 5G Protocol May Still Be
Vulnerable to IMSI Catchers,” Electronic Frontier
Foundation, 2019. [Online]. Available:
https://www.eff.org/deeplinks/2019/01/5g-
protocol-may-still-be-vulnerable-imsi-catchers

[16] C. Cremers and M. Dehnel-Wild,
“Component-Based Formal Analysis of 5G-AKA:
Channel Assumptions and Session Confusion,” in
Proceedings of the ISOC Network and Distributed
System Security (NDSS) Symposium, 2019.

[17] M. Dehnel-Wild and C. Cremers, “Security
Vulnerability in 5G-AKA Draft,”Department of
Computer Science, University of Oxford, Tech.
Rep, pp. 14–37, 2018.

[18] M. A. Javed and S. khan Niazi, “5G Security
Artifacts (DoS/DDoS and Authentication),” in
Proceedings of the International Conference on
Communication Technologies (ComTech), 2019.

[19] R. Piqueras Jover and V. Marojevic, “Security
and Protocol Exploit Analysis of the 5G
Specifications,” IEEE Access, vol. 7, pp.
24 956–24 963, 2019.

[20] “A Comparative Introduction to 4G and 5G
Authentication,” Informed Insights by CableLabs,
2019. [Online]. Available: https:
//www.cablelabs.com/insights/a-comparative-
introduction-to-4g-and-5g-authentication

[21] E. Southern, A. Ouda, and A. Shami, “Securing
USIM-Based Mobile Communications from
Interoperation of SIM-Based Communications,”
The International Journal for Information
Security Research (IJISR), vol. 3, pp. 313–324,
2013.

[22] U. Meyer and S. Wetzel, “A Man-in-the-Middle
Attack on UMTS,” in Proceedings of the ACM

13

Workshop on Wireless Security (WiSec), 2004.
[23] Z. Whittaker, “Security Flaw Shows 3G, 4G LTE

Networks are Just as Prone to Stingray Phone
Tracking,” 2017. [Online]. Available:
https://www.zdnet.com/article/stingray-security-
flaw-cell-networks-phone-tracking-surveillance/

[24] S. Mavoungou, G. Kaddoum, M. Taha, and
G. Matar, “Survey on Threats and Attacks on
Mobile Networks,” IEEE Access, vol. 4, pp.
4543–4572, 2016.

[25] V. Prevelakis and D. Spinellis, “The Athens
Affair,” IEEE Spectrum, 2007. [Online]. Available:
https://spectrum.ieee.org/telecom/security/the-
athens-affair

[26] K. Kirkpatrick, “Who Has Access to Your
Smartphone Data?” Communications of the
ACM, vol. 63, no. 10, pp. 15–17, 2020.

[27] “One-Way Transmission Time,” International
Telecommunications Union (ITU), Tech. Rep.
G.114, 2003.

[28] M. Sherr, E. Cronin, S. Clark, and M. Blaze,
“Signaling Vulnerabilities in Wiretapping
Systems,” in Proceedings of the IEEE Symposium
on Security and Privacy, 2005.

[29] “Lawful Interception (LI); Concepts of
Interception in a Generic Network Architecture,”
European Telecommunications Standards
Institute (ETSI), Tech. Rep. ETSI TR 101 943
V2.2.1, 2006.

[30] T. McMillan, “A Secretive Technology Could Be
Bad News For Capitol Rioters,”
https://thedebrief.org/a-secretive-technology-
could-be-bad-news-for-capitol-rioters/, 2021.

[31] A. Hougen, “How to Block StingRay Surveillance
in 2022 in 2G, 3G, 4G & 5G Networks,”
Cloudwards, 2022. [Online]. Available:
https://www.cloudwards.net/how-to-block-
stingray-surveillance/

[32] A. C. L. Union, “Stingray Tracking Devices:
Who’s Got Them?”
https://www.aclu.org/issues/privacy-
technology/surveillance-technologies/stingray-
tracking-devices-whos-got-them.

[33] R. P. Jover, “Exploring LTE Security with
Open-Source Tools, Testing Protocol Exploits and
Analyzing Their Potential Impact on 5G
Networks,” 2018.

[34] D. J. H. Rupprecht, “Enhancing the Security of
4G and 5G Mobile Networks on Protocol Layer
Two,”Dissertation, Ruhr Universitat Bochum,
2016.

[35] Y.-J. Tu and S. Piramuthu, “On Addressing
RFID/NFC-Based Relay Attacks: An Overview,”
Decision Support Systems, vol. 129, 2020.

[36] T. Chothia, J. De Ruiter, and B. Smyth,

“Modelling and Analysis of a Hierarchy of
Distance Bounding Attacks,” in Proceedings of the
USENIX Security Symposium, 2018.

[37] S. Drimer and S. J. Murdoch, “Keep Your
Enemies Close: Distance Bounding Against
Smartcard Relay Attacks,” in Proceedings of the
USENIX Security Symposium, 2007.

[38] G. Avoine, M. A. Bingöl, I. Boureanu, S. Čapkun,
G. Hancke, S. Kardaş, C. H. Kim, C. Lauradoux,
B. Martin, J. Munilla et al., “Security of
Distance-Bounding: A Survey,”ACM Computing
Surveys (CSUR), vol. 51, no. 5, pp. 1–33, 2018.

[39] S. Mauw, Z. Smith, J. Toro-Pozo, and
R. Trujillo-Rasua, “Distance-Bounding Protocols:
Verification without Time and Location,” in
Proceedings of the IEEE Symposium on Security
and Privacy, 2018.

[40] Y.-S. Kim and S.-H. Kim, “RFID Distance
Bounding Protocol Using m-ary Challenges,” in
Proceedings of the International Conference on
Information and Communication Technology
Convergence (ICTC), 2011.

[41] G. P. Hancke and M. G. Kuhn, “An RFID
Distance Bounding Protocol,” in Proceedings of
the International Conference on Security and
Privacy for Emerging Areas in Communications
Networks (SecureComm), 2005.

[42] B. Reaves, L. Blue, and P. Traynor, “Authloop:
End-to-End Cryptographic Authentication for
Telephony Over Voice Channels,” in Proceedings
of the USENIX Security Symposium, 2016.

[43] “Specification of Dual Tone Multi-Frequency
(DTMF) Transmitters and Receivers; Part 2:
Transmitters,” European Telecommunications
Standards Institute (ETSI), Tech. Rep. ES 201
235-2, 2000.

[44] C. Amrutkar, Y. S. Kim, and P. Traynor,
“Detecting Mobile Malicious Webpages in Real
Time,” IEEE Transactions on Mobile Computing,
vol. 16, no. 8, pp. 2184–2197, 2016.

[45] (2021) Stingray Phone Tracker. [Online].
Available:
https://en.wikipedia.org/w/index.php?title=
Stingray phone tracker&oldid=1011185824

[46] G. Hernandez and T. Tucker, “Creating a Cellular
Testbed with YateBTS and srsLTE,” 2020.
[Online]. Available:
https://hernan.de/blog/creating-a-cellular-
testbed-with-yatebts-and-srslte/

[47] “Building Your Own Rouge GSM Basestation
with a BladeRF,” 2016. [Online]. Available:
https://www.rtl-sdr.com/building-your-own-
rogue-gsm-basestation-with-a-bladerf/

[48] A. V. Knight, “Hacking GSM: Building a Rogue
Base Station to Hack Cellular Devices,”

14

https://www.linkedin.com/pulse/hacking-gsm-
building-rogue-base-station-hack-cellular-alissa/,
2020.

[49] (2021) Best Price GoIP 1 Port IMSI Catcher, SIM
Server GSM Gateway with IMEI Change Low
Cost IMSI Catcher. [Online]. Available:
https://www.alibaba.com/product-detail/best-
price-goip-1-port-imsi 60559890007.html

[50] “End-to-End Quality of Service for Voice over 4G
Mobile Networks,” Telecommunication
Standardization Sector of ITU, Tech. Rep. ITU-T
G.1028, 2016.

[51] W. Jiang, K. Koguchi, and H. Schulzrinne, “QoS
Evaluation of VoIP End-Points,” in Proceedings of
the IEEE International Conference on
Communications, 2003.

[52] (2021) bladeRF x40. [Online]. Available:
https://www.nuand.com/product/bladerf-x40/

[53] (2021) YateBTS - LTE & GSM Mobile Network
Components for MNO & MVNO. [Online].
Available: https://yatebts.com/

[54] (2021) Sysmocom Site - sysmoUSIM-SJS1 SIM +
USIM Card (10-Pack). [Online]. Available: http:
//shop.sysmocom.de/products/sysmousim-sjs1

[55] (2021) Shenzhen Hybertone Technology Co., Ltd.
[Online]. Available: http://www.hybertone.com/
en/pro detail.asp?proid=10

[56] S. Rommer, P. Hedman, M. Olsson, L. Frid,
S. Sultana, and C. Mulligan, 5G Core Networks:
Powering Digitalization, 2019.

[57] U. S. N. Observatory. (2021) Telephone Time.
[Online]. Available: https://www.usno.navy.mil/
USNO/time/telephone-time

[58] S. Park, A. Shaik, R. Borgaonkar, and J.-P.
Seifert, “Anatomy of Commercial IMSI Catchers
and Detectors,” in Proceedings of the ACM
Workshop on Privacy in the Electronic Society
(WPES), 2019.

[59] B. Brenninkmeijer, “Catching
IMSI-Catcher-Catchers: An Effectiveness Review
of IMSI-Catcher-Catcher Applications,”Bachelor
Thesis, Radboud University (Nijmegen, The
Netherlands), 2016.

[60] S. Park, A. Shaik, R. Borgaonkar, A. Martin, and
J.-P. Seifert, “White-Stingray: Evaluating IMSI
Catchers Detection Applications,” in Proceedings
of the USENIX Workshop on Offensive
Technologies (WOOT), 2017.

[61] Z. Li, W. Wang, C. Wilson, J. J. Chen, C. Qian,

T. Jung, L. C. Zhang, K. Liu, X. Li, and Y. Liu,
“FBS-Radar: Uncovering Fake Base Stations at
Scale in the Wild,” in Proceedings of the ISOC
Network and Distributed System Security (NDSS)
Symposium, 2017.

[62] A. Dabrowski, N. Pianta, T. Klepp,
M. Mulazzani, and E. R. Weippl, “IMSI-Catch Me
If You Can: IMSI-Catcher-Catchers,” in
Proceedings of the Annual Computer Security
Applications Conference (ACSAC), 2014.

[63] P. Ney, I. Smith, G. Cadamuro, and T. Kohno,
“SeaGlass: Enabling City-Wide IMSI-Catcher
Detection,” pp. 39–56, 2017.

[64] Z. Zhuang, X. Ji, T. Zhang, J. Zhang, W. Xu,
Z. Li, and Y. Liu, “FBSleuth: Fake Base Station
Forensics via Radio Frequency Fingerprinting,” in
Proceedings of the Asia Conference on Computer
and Communications Security (ASIACCS), 2018.

[65] T. V. Do, H. T. Nguyen, N. Momchil, and V. T.
Do, “Detecting IMSI-Catcher Using Soft
Computing,” in Proceedings of the International
Conference on Soft Computing in Data Science
(SCDS), 2015.

[66] S. Steig, A. Aarnes, T. Van Do, and H. T.
Nguyen, “A Network Based IMSI Catcher
Detection,” in Proceedings of the International
Conference on IT Convergence and Security
(ICITCS), 2016.

[67] A. Dabrowski, G. Petzl, and E. R. Weippl, “The
Messenger Shoots Back: Network Operator Based
IMSI Catcher Detection,” in Proceedings of the
International Symposium on Research in Attacks,
Intrusions, and Defenses (RAID), 2016.

[68] J. Clulow, G. P. Hancke, M. G. Kuhn, and
T. Moore, “So Near and Yet So Far:
Distance-Bounding Attacks in Wireless
Networks,” in Proceedings of the European
Workshop on Security in Ad-hoc and Sensor
Networks (ESAS), 2006.

[69] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen,
and S. Capkun, “On the Requirements for
Successful GPS Spoofing Attacks,” in Proceedings
of the ACM Conference on Computer and
Communications Security, 2011.

[70] C. Cremers, K. B. Rasmussen, B. Schmidt, and
S. Capkun, “Distance Hijacking Attacks on
Distance Bounding Protocols,” in Proceedings of
the IEEE Symposium on Security and Privacy,
2012.

15

