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ABSTRACT

Eye-tracking is a critical source of information for understanding

human behavior and developing future mixed-reality technology.

Eye-tracking enables applications that classify user activity or pre-

dict user intent. However, eye-tracking datasets collected during

common virtual reality tasks have also been shown to enable unique

user identification, which creates a privacy risk. In this paper, we

focus on the problem of user re-identification from eye-tracking

features. We adapt standardized privacy definitions of 𝑘-anonymity

and plausible deniability to protect datasets of eye-tracking features,

and evaluate performance against re-identification by a standard

biometric identification model on seven VR datasets. Our results

demonstrate that re-identification goes down to chance levels for

the privatized datasets, even as utility is preserved to levels higher

than 72% accuracy in document type classification.
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1 INTRODUCTION

Re-identification attacks in literature have been extensively ex-

plored for social networks [Narayanan and Shmatikov 2009], loca-

tion data [Primault et al. 2018], and medical data [El Emam et al.

2011]. Real-world re-identification attacks have been demonstrated

to learn the medical prescriptions of a politician [Sweeney 2002] or

reveal the Netflix preferences of half of a million users [Narayanan

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ETRA ’22, June 8ś11, 2022, Seattle, WA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9252-5/22/06. . . $15.00
https://doi.org/10.1145/3517031.3529618

and Shmatikov 2009]. As a result of the Netflix dataset attack, a

woman sued the company over the risk that her leaked viewing

patterns would reveal her sexual orientation to her family [Singel

2009]. There are an increasing number of algorithms that can au-

thenticate a user based on eye movement data [George and Routray

2016; Lohr et al. 2021; Schröder et al. 2020; Sluganovic et al. 2018].

Numerous datasets of eye-tracking data for virtual reality (VR) ap-

plications are publicly available [David-John et al. 2021a; Emery

et al. 2021; Hu et al. 2021; Sitzmann et al. 2018; Steil et al. 2019;

Xu et al. 2018]. Taken together, this means that re-identification

attacks using eye movements are not only plausible, but imminent.

Do people care? Surveys by Adams et al. [2018] and Steil et

al. [2019] have established that both users and developers have

privacy concerns over VR and eye-tracking data collection and how

they are applied to make inferences about the user. For example, VR

developers have cited that they are aware of privacy concerns for

users and share their sentiments; however, most developers are not

privacy experts and there is a lack of standards for how to address

topics like ethics or privacy issues. For users, survey participants

have indicated that they would be willing to accept beneficial VR

applications that collect eye-tracking data if they are sharing the

data with trusted governmental health agencies or with a university

for research purposes. The same users also responded that they

would not share their data publicly or with private services, unless

there were constraints in place for how the data was being used.

Is regulation the answer? Privacy laws in certain regions are

designed to protect traditional biometric identifiers, such as iris

patterns and face scans [Heller 2020]. However, legal scholars have

pointed out that privacy laws rarely hold up in court, and would

not apply to behavioral data streams due to ambiguous wording

over what is considered a biometric [Roberg-Perez 2016]. A lack of

enforceable privacy laws and data release standards implies that

VR platforms could store or sell identities through eye-tracking

and behavioral data captured alongside demographics, which are

typically used for personalized ads on the web [Datta et al. 2015].

Scope and contributions. In this paper we propose two novel adap-

tions of privacy mechanisms to achieve 𝑘-anonymity and plausible

deniability (PD) guarantees for datasets of eye-tracking features.

We compared our mechanisms against the previously established

Exponential mechanism for DP. We found that our 𝑘-same-select

sequence approach defended against re-identification and achieved

superior utility in document type recognition (≥72%).

2 RELATED WORK

Mechanisms that achieve formal privacy guarantees have been

explored for protecting eye-tracking data against re-identification

attacks for gaze samples [Li et al. 2020] and for features extracted
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Table 1: Privacy mechanisms for eye-tracking data with formal privacy guarantees. Shaded rows indicate our mechanisms.

Mechanism Guarantee Data Type Input to Mechanism Adaption to Eye Tracking

Kal𝜖ido [Li et al. 2020] 𝜖,𝑤, 𝑟 -DP Gaze

Samples

Window of𝑤 gaze

positions, current ROI

radius 𝑟

Adapt spatial DP mechanism [Andrés et al. 2013]

to incorporate a sequence [Kellaris et al. 2014] of

gaze positions relative to dynamic ROIs in scene

Gaussian [Liu et al.

2019]

𝜖, 𝛿-DP Saliency

Maps

User fixation map Adapt DP noise mechanism [Dwork 2006] to

protect fixation counts over image pixels

Exponential-DP [Steil

et al. 2019]

𝜖-DP Statistical

Features

Gaze features extracted

over window of time 𝑡

Adapt DP Noise mechanism [Dwork et al. 2014]

applied to features independently

DCFPA [Bozkir et al.

2021]

𝜖-DP Statistical

Features

Gaze features extracted

over window of time 𝑡

Adapt Fourier DP mechanism [Rastogi and Nath

2010] to include difference and chunking of sliding

windows over time

𝑘-same-select

sequence (ours)

𝑘-anonymity Statistical

Features

Gaze features extracted

over window of time 𝑡

Randomly group features and apply

𝑘-same-select [Gross et al. 2005] over a sequence

Task-based

Marginals (ours)

𝑘,𝛾-PD Statistical

Features

Gaze features extracted

over window of time 𝑡

Apply Marginals Generative Model and PD

test [Bindschaedler et al. 2017] to each task

from gaze data [Bozkir et al. 2021; Steil et al. 2019]. The un-shaded

rows in Table 1 lists existing mechanisms that achieve formal pri-

vacy guarantees for eye-tracking data, type of input data, and how

they were adapted to eye-tracking. The only formal privacy guar-

antee that has been explored is differential privacy (DP). While DP

is popular in the privacy community due to the robust definition,

there is an inevitable trade-off between increased DP privacy and

lower data utility [Kifer and Machanavajjhala 2011].

We consider protecting eye-tracking datasets against re-identification

attacks through alternative privacy guarantees. First, we explored

𝑘-anonymity to provide intuitive protection in that individual data

cannot be distinguished from 𝑘-1 others. By adapting 𝑘-same-

select [Gross et al. 2005], an upper bound on attack success is

established while retaining utility. However, this approach releases

𝑘 copies of the same data values. From an eye-tracking perspective,

releasing duplicate data is not a satisfying solution. We shifted to

considering PD, which extends a similar intuition for synthetic data.

Synthetic data retains utility by reproducing characteristics of the

original data. We explored guarantees specific to re-identification,

and found superior utility with 𝑘-anonymity and that synthetic

data has promise for preserving privacy in eye-tracking datasets.

The presented mechanisms are intended to be applied to datasets

prior to their release. In contrast, for real-time systems, methods

such as a privacy-preservingAPI and real-time perturbations [David-

John et al. 2021a; Li et al. 2020] will enable platforms to share sam-

ples, features and gaze-based metrics with third-party applications.

3 METHODOLOGY

We conducted an evaluation of re-identification attacks on eye-

tracking features and apply privacy mechanisms to protect identity.

This section describes the protocol for re-identification attacks,

privacy mechanisms for processing features, datasets included in

the evaluation, and the approach used for biometric classification.

3.1 Threat Model

We assume that an adversary has access to a public eye-tracking

dataset. The adversary trains an identification model to take eye-

tracking feature vectors as input and output the associated identity.

Given new eye-tracking data, from playing a VR game for example,

the adversary can use the trained model to guess at the identity of

the player. The re-identification attack is successful if the correct

identity is returned.

3.2 Proposed Solution

We propose two privacy mechanisms that can be applied to the

eye tracking dataset prior to releasing it for public use. Thus, the

adversary will train their model on privatized datasets. We assume

that the adversary acquires un-privatized, i.e., raw data for the

purposes of the re-identification attack, which is considered the

test set. The privacy mechanisms are successful if they reduce the

the rate of re-identification to below chance levels.

3.3 Privacy Mechanisms

In this section, we contribute two privacy mechanisms, one that

satisfies 𝑘-anonymity and one that satisfies plausible deniability.

We provide pseudocode for ease of re-implementation and publicly

release code for 𝑘-same-select sequence.1 Both mechanisms are

adaptations of prior work to consider eye-tracking features. For

completeness, we provide pseudocode for our implementation of

the DP-oriented mechanism defined by Steil et al. [2019].

𝑘-same-select sequence. The𝑘-same family of mechanisms [Gross

et al. 2005; Newton et al. 2005] accomplish 𝑘-anonymity by first

splitting individual data into groups of size 𝑘 . Each group is av-

eraged to produce a value which is then released 𝑘 times in the

released dataset. This enforces the upper bound on re-identification

probabilities, as 𝑘 of the identities from the original dataset will

have equal contribution to the privatized data.

The implementation of 𝑘-same depends on the format of data

being released. For example, 𝑘-same can be applied directly to

face images by clustering and releasing averages [Newton et al.

2005]. For eye-tracking, the computed feature vectors are grouped

and averaged to satisfy 𝑘-anonymity. We adapted the 𝑘-same-select

mechanism by separately processing the sequence of feature vectors

generated for each task in the dataset. Lines of code in black indicate

1https://doi.org/10.5281/zenodo.6463849
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the original 𝑘-same-select method and blue indicates our adapted

steps. The data from all individuals are processed sequentially, i.e.,

the first feature vector of all individuals viewing a specific stimulus

within a given task are randomly placed into groups of size 𝑘 to

compute average values for release. The mechanism assumes that

there is data from at least 𝑘 individuals available for grouping.

The same groupings of individuals are used for each stimulus to

achieve 𝑘-anonymity across the entire sequence of feature vectors.

The adapted sequence mechanism is generalized by processing

feature vectors in sequence; however, there is no guarantee that

each individual had the same number of feature vectors per stimulus.

Data are padded to repeat the last feature vector in the sequence

for individuals with less features.

1: procedure 𝑘-same-select seqence(k, feature_data: structure index-

ing data by identity and task)

2: for𝑚 = 1 to 𝑛𝑢𝑚_𝑡𝑎𝑠𝑘 do ⊲ Process features from each task

3: 𝑐𝑢𝑟𝑟_𝑑𝑎𝑡𝑎 ← 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑎𝑡𝑎 [𝑚]

4: 𝐺 ← Randomize 𝑁 individuals into 𝐻 groups of size 𝑘

5: for 𝑖 = 1 to 𝑛𝑢𝑚_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟𝑠 do ⊲ Loop over seq.

6: 𝑐𝑢𝑟𝑟_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← 𝑐𝑢𝑟𝑟_𝑑𝑎𝑡𝑎 [𝑖, :]

7: 𝑎𝑣𝑔_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← 𝑎𝑣𝑔_𝑔𝑟𝑜𝑢𝑝𝑠 (𝑐𝑢𝑟𝑟_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠,𝐺)

8: 𝑐𝑢𝑟𝑟_𝑑𝑎𝑡𝑎 [𝑖, :] ← 𝑎𝑣𝑔_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠

9: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑎𝑡𝑎 [𝑚] ← 𝑐𝑢𝑟𝑟_𝑑𝑎𝑡𝑎 ⊲ Update task𝑚 features
return 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑎𝑡𝑎

Task-based Marginals Model (PD). Plausible deniability (PD) is

not a condition of a privacy mechanism, but instead a privacy cri-

terion that is checked before data is released [Bindschaedler et al.

2017]. Any number of approaches can be applied to generate data

that satisfies PD. A generative model takes a raw feature vector

as input and PD establishes that at least 𝑘 − 1 other inputs from

the original dataset could have plausibly generated the output syn-

thetic feature. A parameter 𝛾 is used to control how close relative

probabilities must be to be considered plausible, and 𝑘 controls

the number of features from the original dataset that have to pass

the privacy test before synthetic data can be released. The formal

definition and steps to implement the privacy test are detailed in

the Supplementary Material.

To achieve PD we applied the Marginals approach with publicly

available code [Bindschaedler et al. 2017].2 Marginals builds a dis-

tribution of discrete values for each feature column and releases

synthetic data by randomly sampling each feature independently.

The learned feature distributions are representative of each task.

Resulting distributions are used to synthesize data by task and re-

tain utility. We adapted this approach by binning each continuous

feature into 𝐵 = 30 discrete buckets over the range of values (blue

lines of code).

The generated synthetic feature vectors consist of discrete values

corresponding to buckets that cover the range of feature values. We

sample values between the minimum and maximum value range

from the corresponding bucket from a random uniform distribution

to map synthetic data back into continuous feature values. The

synthetic dataset is stratified to contain the same number of feature

vectors from each individual for each task as the original dataset.

The PD guarantee differs from 𝑘-anonymity, in that PD guarantees

𝑘 −1 other features from the original dataset could have generated

2https://vbinds.ch/node/69

the synthetic output, while 𝑘-anonymity guarantees that 𝑘−1 other

individuals could have generated a sequence of output features.

1: procedure Task-based Marginals Model(k, 𝛾 , B, num_samples, fea-

ture_data: structure indexing data by identity and task)

2: 𝑏𝑖𝑛_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑎𝑡𝑎 ← 𝐵𝑖𝑛𝐷𝑎𝑡𝑎 (𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑎𝑡𝑎, 𝐵)

3: for𝑚 = 1 to 𝑛𝑢𝑚_𝑡𝑎𝑠𝑘 do ⊲ Process features from each task

4: 𝑀 ← 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑠𝐷𝑖𝑠𝑡 (𝑏𝑖𝑛_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑎𝑡𝑎 [𝑚])

5: 𝑠𝑦𝑛𝑡ℎ_𝑑𝑎𝑡𝑎 ← 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑀,𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

6: 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑑𝑎𝑡𝑎 ← 𝑃𝑟𝑖𝑣𝑎𝑐𝑦𝑇𝑒𝑠𝑡 (𝑠𝑦𝑛𝑡ℎ_𝑑𝑎𝑡𝑎)

7: 𝑏𝑖𝑛_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑎𝑡𝑎 [𝑚] ← 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑑𝑎𝑡𝑎 ⊲ Update task𝑚

8: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑎𝑡𝑎 ← 𝐵𝑖𝑛𝑇𝑜𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 (𝑏𝑖𝑛_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑎𝑡𝑎)

return 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑎𝑡𝑎

Exponential-DP Mechanism. The Exponential-DP noise mecha-

nism was proven to be 𝜖-DP by Steil et al. [2019] and applies to each

individual feature in the feature set.3 Exponential noise is sampled

independently for each feature vector and depends on the range

of each feature and the task duration. The first step in applying

Exponential-DP is to compute the range 𝛿𝑖 for each feature 𝑖 as the

maximum value minus the minimum value. The maximum number

of feature vectors 𝑡𝑚𝑎𝑥 from any individual during viewing is used

for padding the data from other individuals. The last feature vector

recorded for an individual is repeated to ensure that each individ-

ual has 𝑡𝑚𝑎𝑥 total feature vectors. For each feature a value 𝑦 is

sampled from an Exponential distribution with a scale of 1
𝜆
, where

𝜆 =
𝜖

2·𝑡𝑚𝑎𝑥 ·𝛿𝑖
. The additive noise is then computed as 𝑟 = ±

𝑙𝑜𝑔𝑒 (𝑦)
𝜆 ·𝑡𝑚𝑎𝑥

and the positive or negative sign is randomly assigned. Values of 𝑟

are computed for every feature from the task, and are added to the

original data to produce noisy feature vectors to release.

1: procedure Exponential-DP(𝜖 , feature_data: structure indexing data

by identity and task)

2: 𝛿 ← 𝑅𝑎𝑛𝑔𝑒 (𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑎𝑡𝑎) ⊲ Max value minus min

3: for𝑚 = 1 to 𝑛𝑢𝑚_𝑠𝑡𝑖𝑚𝑢𝑙𝑖 do ⊲ Process features from each task

4: Compute 𝑡𝑚𝑎𝑥 for task𝑚 and pad individual data

5: 𝜆 ← 𝜖
2·𝑡𝑚𝑎𝑥 ·𝛿

⊲ 𝜆 computed using 𝛿 , and 𝑡𝑚𝑎𝑥 from task

6: 𝐸𝑥𝑝 ← 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝑠𝑐𝑎𝑙𝑒𝑠 =
1
𝜆 )

7: for 𝑖 = 1 to 𝑛𝑢𝑚_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟𝑠 do ⊲ Loop over seq.

8: 𝑦 ← 𝑆𝑎𝑚𝑝𝑙𝑒 (𝐸𝑥𝑝) ⊲ Sample Exponential distribution

9: 𝑟 ←
𝑙𝑜𝑔𝑒 (𝑦)
𝜆·𝑡𝑚𝑎𝑥

⊲ Compute additive noise value

10: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑎𝑡𝑎 [𝑚, 𝑖 ] ← 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑎𝑡𝑎 [𝑚, 𝑖 ] ± 𝑟
return 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑎𝑡𝑎

3.4 Datasets

We evaluate the above detailed privacy mechanisms on publicly

available VR datasets of eye-tracking features. The datasets vary

based on the number of individuals, amount of data available, task

being performed, and type of stimulus being viewed. Table 2 sum-

marizes the characteristics of datasets included in our evaluation.

3.5 Feature Sets

Six of the datasets listed in Table 2 release raw gaze sample data,

while MPIIDPEye included both raw samples and a set of pre-

computed sliding windows of gaze-based features [Bulling et al.

2010]. To maintain consistency with past results from MPIIDPEye,

we used their feature set in our analysis of this dataset. For all other

3Due to The Composition Theorem, Exponential-DP achieves a guarantee of 𝜖 times
the number of features. For consistency with [Steil et al. 2019], we reference 𝜖 as the
noise parameter for each feature, and not the composed guarantee.



ETRA ’22, June 8ś11, 2022, Seattle, WA, USA David-John, et al.

Table 2: Characteristics of VR eye-tracking datasets.

Dataset # Ppts. Chance Rate # Stim. Data Per Ppt. Stimuli Type Task

MPIIDPEye [Steil et al. 2019] 20 1/20 Ppts. = 5.0% 3 30 mins Documents VR Reading

ET-DK2 [David-John et al. 2021a] 18 1/18 Ppts. = 5.5% 50 21 mins 360◦ Images Free Viewing

VR-Saliency [Sitzmann et al. 2018] 130 1/130 Ppts. = 0.8% 8 4 mins 360◦ Images Free Viewing

360_em [Agtzidis et al. 2019b] 13 1/13 Ppts. = 7.7% 14 17 mins 360◦ Videos Free Viewing

VR-EyeTracking [Xu et al. 2018] 43 1/43 Ppts. = 2.3% 208 Avg: 88 mins 360◦ Videos Free Viewing

OpenEDS [Emery et al. 2021] 44 1/44 Ppts. = 2.3% 2 10 mins 3D Scene Free Exploration

EHTask [Hu et al. 2021] 30 1/30 Ppts. = 3.3% 15 30 mins 360◦ Videos Free Viewing, Search,

Saliency, Track
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Figure 1: Privacy evaluation for identification rate from eye-tracking features. Privatizing the dataset with our presented

mechanisms lowers all identification rates to chance for 𝑘 = 8 in 𝑘-same and Marginals, and 𝜖 = 2 for Exponential-DP. Chance

identification rates demonstrate that identity is protected within a group of individuals. The different datasets contain eye-

tracking data on tasks performed within a variety of VR environments (reading documents, 360◦ images, 360◦ videos, and 3D

rendered scenes). Chance rates (1/#Ppts.) vary for each dataset based on the number of identities, and are listed in Table 2.

datasets, we replicate the approach from David-John et al. [2021a]

and extract features from fixation and saccade events detected using

the I-S5T algorithm with default parameters [Agtzidis et al. 2019a].

The features extracted from fixation and saccades events leverage

common statistics such as duration and amplitude, as well as the

velocity and acceleration of gaze during the event [George and

Routray 2016]. A feature set is generated for each type of event and

a separate classification model is trained for each feature set.

3.6 Biometric Classifier

A Radial Basis Function (RBF) network is used to classify identity

using feature vectors as input and is commonly used to identify

users from eye-tracking data [David-John et al. 2021a; George and

Routray 2016; Schröder et al. 2020]. An RBF network features a

single hidden layer of nodes consisting of activation functions.

The output of the activation functions is weighted to generate a

probability that input is from each target class. The predicted class

with the highest probability is considered the individual most likely

to have produced the input feature vector, which is then used for

biometric identification. Biometric identification relies on a set of

features from an unknown individual viewing at least one stimulus.

The feature vectors from all stimuli for an unknown individual are

classified by the network, and the output scores are used to predict

identity by averaging prediction scores.

As described in Section 3.5, the majority of datasets included

in our evaluation use features extracted from both fixation and

saccade events, requiring an RBF network trained independently on

both features [George and Routray 2016]. The output identification

scores are first averaged within each type of event, then a final

classification is made with a weighted average between fixation

and saccade scores. Aweight of 0.4 was applied to the fixation scores

with a weight of 0.6 for saccade scores, as saccade features provided

a slightly higher accuracy in user identification. For MPIIDPEye the

prediction scores from all inputs within a task are simply averaged

before classifying identity.

4 RESULTS

In this section, we present privacy and utility metrics to evaluate the

implemented privacy mechanisms from Section 3.3 for each dataset

listed in Table 2. We compared our proposed privacy mechanisms

with Exponential-DP as an established approach for DP. Section 4.1

presents identification rates for each privacy mechanism using a

biometric identification model trained on processed data and tested

on the original data. Section 4.2 presents utility results for document

type recognition on the MPIIDPEye dataset.

4.1 Biometric Identification

Re-identification risk for eye-tracking data is evaluated by split-

ting eye-tracking features into training sets processed by privacy

mechanisms and testing sets of unmodified data. Identification rates

higher than chance, which is one divided by the number of indi-

viduals in a dataset, indicate that there is risk of re-identification
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Figure 2: Utility evaluation for accuracy of document type classification with an SVM model. Privatizing the dataset with

our 𝑘-same mechanism retains the utility of the dataset for its intended application. In comparison, the Marginals Genera-

tive method does not retain utility above 53%, and the Exponential-DP mechanism rapidly leads to utility loss as we reach a

parameter range of 𝜖 ≤ 2, where MPIIDPEye identification rates fell below chance.

from released data. Figure 1 presents the identification rates for

each dataset and mechanism. The ET-DK2 dataset produced the

highest identification rate of all datasets with 100% identification

with the original data. All datasets produced identification rates

higher than chance prior to privacy mechanisms being applied.

When privacy mechanisms were applied, the identification rates

of all datasets dropped to chance. The Exponential-DP andMarginals

approaches degraded the identification rates to chance across all pa-

rameter values. The only exceptionwasMPIIDPEye for Exponential-

DP, which required a parameter value of 𝜖 = 2 for an identifi-

cation rate of 6%, compared to a chance rate of 5%. 𝑘-same also

reduces identification rates to chance, with a larger value of 𝑘

needed to bring ET-DK2 to chance (5.6%). Our results suggest that

privacy mechanisms protect against re-identification attacks on eye-

tracking features using a standard biometric identification model.

4.2 Utility Evaluation

Releasing a privacy-preserving dataset that is useful relies on achiev-

ing a practical level of utility. We evaluated utility for each privacy

mechanism applied to the MPIIDPEye dataset to classify document

type being read using gaze features.

Steil et al. [2019] first evaluated MPIIDPEye using an SVMmodel

to classify document type as either Comic, Newspaper, or Textbook.

The SVM used an RBF kernel, bias parameter 𝐶 set to one, and

expressivity parameter 𝛾 set to one divided by the number of fea-

tures. The model was trained on data from each individual during

the first half of reading that was processed by the privacy mech-

anism, and tested on data from the second half. Figure 2 presents

feature-level model accuracy results for each mechanism. Each plot

demonstrates utility relative to the original data and chance rate of

guessing (33%). We observed that the Exponential-DP mechanism

reduced accuracy to chance, or near chance rates. For Exponential-

DP, accuracy started at 80% for 𝜖 = 100, and fell to chance at 𝜖 = 20.

For Marginals, a low level of utility was retained as accuracy re-

mained near 53% for all parameters. The 𝑘-same approach was

stable across parameter values, with slightly lower accuracy for

higher levels of 𝑘 . 𝑘-same across all parameters maintained perfor-

mance greater than 72%. This level of accuracy would be practical

for an assistive reading interface that needs to identify the correct

document type the majority of the time [Toyama et al. 2013].

5 CONCLUSION AND DISCUSSION

This paper addresses the open challenge of applying formal privacy

definitions to behavioral data streams. Our work is the first to adapt

the definitions of 𝑘-anonymity and PD to eye-tracking features.

The definition of 𝑘-anonymity is intuitive as the theoretical risk of

re-identification attacks are bounded above by 1
𝑘
. The 𝑘-same-select

sequence mechanism produced identification rates at chance while

preserving model accuracy of 72% for document type classification.

PD is a promising privacy criterion as it provides a clear interpre-

tation with respect to re-identification, similar to 𝑘-anonymity;

while using synthetic data to preserve privacy and retain utility. A

Marginals mechanism for PD retains slight utility with an accuracy

of 53% compared to a 33% guess rate. Deploying PD is computa-

tionally expensive, as a large-scale dataset of synthetic candidates

are first generated before applying the privacy test. It took less

than a minute to execute 𝑘-same and Exponential-DP, compared

to roughly 30 minutes to generate and test synthetic data. Both

𝑘-same and Marginals mechanisms retain stable utility across their

parameters, while the Exponential mechanism loses utility at the

level of privacy needed for chance rates of identification.

Implications. The presented adaptations offer alternatives to

DP, and demonstrate higher utility at chance rates for document

type recognition. We recommend using 𝑘-same-select sequence for

classification-based datasets to protect against re-identification as

it is computationally efficient with an intuitive privacy guarantee.

Limitations. Our identification results were limited to an RBF

network, although prior work explored random forest [Schröder

et al. 2020], SVM [Miller et al. 2020], k-NNs [Bozkir et al. 2021]

and deep network [Miller et al. 2021] models. In terms of DP, we

only evaluated the Exponential-DP mechanism, although an alter-

native formulation of DP exists for time-series in the frequency

domain [Bozkir et al. 2021]. While limitations impact the general-

ization of our empirical results, it does not impact the theoretical

framing and comparison of privacy definitions.
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Future Work. Our work provides motivation to adapt privacy

guarantees to VR behavioral data in the form eye tracking. It would

be useful to explore how well privacy methods preserve utility

for other classification-based applications, such as intent predic-

tion [David-John et al. 2021b]. Beyond exploring additional datasets

and utilities, the field of eye-tracking privacy would benefit from

further development of approaches related to PD. Such techniques

can achieve an intuitive definition of privacy while preserving

utility through synthetic data that appears real. Our proposed pri-

vacy mechanisms can also be applied to a breadth of mixed-reality

sensors, including head and hand tracking, EEG, and EMG data.
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