Examining Cryptography and Randomness Failures in
Open-Source Cellular Cores

K. Virgil English
kvenglis@ncsu.edu
North Carolina State University
Raleigh, NC, USA

Nathaniel Bennett
bennet.n@ufl.edu
University of Florida
Gainesville, Florida, USA

Seaver Thorn
swthorn@ncsu.edu
North Carolina State University
Raleigh, NC, USA

Kevin R.B. Butler William Enck Patrick Traynor
butler@ufl.edu whenck@ncsu.edu traynor@ufl.edu
University of Florida North Carolina State University University of Florida

Gainesville, Florida, USA

ABSTRACT

Industry is increasingly adopting private 5G networks to securely
manage their wireless devices in retail, manufacturing, natural
resources, and healthcare. As with most technology sectors, open-
source software is well poised to form the foundation of deploy-
ments, whether it is deployed directly or as part of well-maintained
proprietary offerings. This paper seeks to examine the use of cryp-
tography and secure randomness in open-source cellular cores. We
design a set of 13 CodeQL static program analysis rules for cores
written in both C/C++ and Go and apply them to 7 open-source cel-
lular cores implementing 4G and 5G functionality. We identify two
significant security vulnerabilities, including predictable generation
of TMSIs and improper verification of TLS certificates, with each
vulnerability affecting multiple cores. In identifying these flaws, we
hope to correct implementations to fix downstream deployments
and derivative proprietary projects.

CCS CONCEPTS

« Security and privacy — Cryptography; Mobile and wireless
security.

KEYWORDS

cellular core security, cryptography misuse, static analysis

ACM Reference Format:

K. Virgil English, Nathaniel Bennett, Seaver Thorn, Kevin R.B. Butler, William
Enck, and Patrick Traynor. 2024. Examining Cryptography and Randomness
Failures in Open-Source Cellular Cores. In Proceedings of the Fourteenth
ACM Conference on Data and Application Security and Privacy (CODASPY
"24), June 19-21, 2024, Porto, Portugal. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3626232.3653259

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY °24, June 19-21, 2024, Porto, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0421-5/24/06...$15.00
https://doi.org/10.1145/3626232.3653259

Raleigh, NC, USA

Gainesville, Florida, USA
1 INTRODUCTION

Cellular networks are the world’s most important communication
system. More people globally access the Internet from mobile de-
vices than from laptop or desktop computers, and the ubiquity
of cellular connectivity is a crucial reason why. The importance
of cellular infrastructure is not limited to public networks; inter-
est in deploying private 5G networks is high in sectors as varied
as retail, manufacturing, natural resources, and healthcare. Assur-
ing the security of cellular communication is a multi-faceted chal-
lenge requiring protection of information over the air from devices
equipped with cellular hardware, to the radio access networks that
receive the transmitted signal and forward it to the cellular core
network. However, much of the previous research has considered
over-the-air cryptographic ciphers [17, 18, 51, 54, 58, 60], while
other aspects of cellular security have primarily been addressed in
telecommunication standards.

Perhaps owing to the traditional opacity of cellular infrastruc-
ture, relatively little research has to date considered the security
of cellular cores [11, 22], particularly with regards to information
protection through cryptography. However, the rise of open-source
cores provides an opportunity for insight into how information is
secured in these implementations.

Industry commonly adopts open-source implementations, either
directly as a solution or by wrapping core functionality into a well-
maintained proprietary offering. Cellular is no exception. Private
network deployments [1, 2] have begun increasing adoption of
open-source cellular cores. Telecommunication provider interest
is also evident through their sponsorship of several open-source
celluar core projects [26, 27, 38, 43]. As with many technologies,
the full extent to which open-source cellular cores propagate into
real-world deployments may never fully be knowable. However,
by identifying and fixing flaws in open-source cellular cores, these
downstream projects and deployments will benefit.

This paper seeks to examine the use of cryptography and secure
randomness in open-source cellular cores. Cryptography misuse
has been extensively studied in other domains (e.g., Android [23,
24, 36, 55]). Use of insecure random number generators has also
been studied for decades [14, 29, 34]. However, cellular systems are
unique. First, unlike client software implementing custom protocols,
cellular systems must implement 3GPP cellular standards in order to
interoperate. However, they may still exist within legacy code and
be exploited using downgrade attacks. Second, the 3GPP cellular

https://doi.org/10.1145/3626232.3653259
https://doi.org/10.1145/3626232.3653259

standards necessitate unique cryptographic values and primitives
(e.g., RAND, CK, and RES). Based on our own investigation, we also
found that open-source cellular cores commonly provide their own
cryptography implementations. Therefore, existing library-specific
detection patterns will not work. Third, these systems use secure
randomness for celluar-specific functionality. For example, Tempo-
rary Mobile Subscriber Identities (TMSIs) provide privacy for users
in the wireless portion of a cellular network.

In this paper, we create CELLCRYPT, which wraps CodeQL queries
customized for cellular core implementations and processes the
results. We perform a literature survey to define 13 rules to de-
tect cryptography and secure randomness flaws in cellular core
implementations. Our rules cover three categories: (1) insecure
algorithms, (2) insecure use of randomness, and (3) insecure TLS
configuration. We used our rules to analyze seven open-source cel-
lular cores covering both LTE (4G) and 5G networks: free5GC [27],
SD-Core [26], Open5GS [38], OpenAirInterface (OAI) CN5G [43],
OAI EPC [44], NextEPC [33], and srsRAN [56]. After running CELL-
CrYPT on these cores, we manually reviewed results.

Our application of CELLCRYPT on the seven open-source cellular
cores led to the discovery of two significant vulnerability findings.
First, we found that the TMSIs generated in OAI-5G, OAI-LTE with
Magma, and free5GC can lead to linkability attacks. We demonstrate
an attacker can accurately link TMSI; of a subscriber to a newly
generated TMSI, of the same subscriber, allowing an attacker to
track UEs over time. Second, we find that certificate and hostname
verification is disabled in OAI-LTE with Magma, OAI-5G, free5GC,
and SD-Core even when the cores are configured by an operator to
use TLS. This leaves communication between cellular core network
functions (NFs) exposed to on-path attacks.

In addition to these key findings, CELLCRYPT identified other
potential vulnerabilities. First, we found that SD-Core exposes an
HTTP interface that signs OAuth tokens using a key encoded as a
constant string. This code was removed from free5GC after the code
was forked by SD-Core. Second, we found the OAI implementation
pins a library dependency to a version with a known CVE that
produces predictable IV values. OAI maintainers and derivative
projects should use source composition analysis (SCA) tools to dis-
cover and remediate this vulnerability. Finally, we found that nearly
all of the cores reference SHA1 and MD5 hash algorithms for back-
wards compatibility. We strongly encourage the 3GPP to deprecate
MD5 and SHA1 as they are widly considered to be insecure.

In summary, we make the following contributions in this paper:

o We define 13 misuse heuristics for cellular cryptography and
secure randomness. We survey prior work on cryptography
misuse and define a set of misuse heuristics specific to cellu-
lar applications. Some traditional heuristics we adapt for the
cellular domain, e.g., key randomization takes into account
5G NF communication. Other heuristics are cellular-specific,
checking for AKA variables like RAND. We encode our rules
in CodeQL to generically cover both Go and C/C++ cores.

o We study seven cellular core implementations. Until recently,
nearly all cellular core implementations have been propri-
etary and difficult to obtain for study. This is one of the first
papers to study the code in cellular core implementations.

Table 1: Cores Analyzed and Supported Cellular Generations

Cellular Core ‘ Language Version

Free5GC [27] Go 5G
SD-Core [26] Go LTE, 5G
Open5GS [38] C LTE, 5G
OAI-5G [43] Ci+ 5G
OAL-LTE [44] Cr+ LTE
NextEPC [33] C LTE
srsRAN [56] C++ LTE

o We identify two significant security vulnerabilities, each af-
fecting multiple cores. We found that OAI-5G, free5GC, and
OAI-LTE with Magma generate preditable TMSI values and
that OAI-LTE with Magma, OAI-5G, free5GC, and SD-Core
do not properly verify TLS certificates when TLS is enabled.

The remainder of this paper proceeds as follows. Section 2 pro-
vides a brief history of cryptograpy flaws in cellular networks and
motivates the need for dataflow analysis to accomplish our goal.
Section 3 defines our rules. Section 4 describes our CodeQL rule
encoding. Section 5 discusses results. Section 6 overviews related
work. Section 7 concludes.

Responsible Disclosure: Vulnerabilities were found and con-
firmed in results shortly before submission. Responsible disclosure
to affected parties is currently ongoing.

Availability: The source code for CellCrypt can be accessed at
https://github.com/wspr-ncsu/cellcrypt.

2 BACKGROUND AND MOTIVATION

Cryptography and randomness vulnerabilities are not new topics
for cellular systems. We begin with a brief history of flaws and
motivate the need for dataflow analysis via a small experiment.

2.1 Vulnerabilities in Cellular Cryptography

Cellular technologies have struggled with cryptography vulnera-
bilities since 2G. Multiple cryptographic weaknesses in 2G GSM
algorithms allowed attackers to easily break ciphers [50, 58]. COMP1-
28, the cipher used for 2G GSM authentication and encryption, can
be trivially broken [50, 58]. 3G replaced COMP128 with KASUMI and
SNOW3G, and SNOW3G is still in use with certain 4G LTE and 5G algo-
rithms. While 3G’s cryptography is not as trivially exploitable as 2G,
KASUMI has theoretical vulnerabilities, and MILENAGE side-channels
on SIM cards allow for key extraction.

The 3G and 4G LTE Authentication and Key Agreement (AKA)
protocols allow linkability attacks [18, 50]. In 4G, weaknesses in
symmetric key mechanisms allow the RAND and AUTN values to be
collected [18]. Previous generations also had known IMSI leakage
problems, which caused the IMSI to be replaced by the SUCI in
5G [18, 50]. Research has also discovered theoretical weaknesses in
the AKA [16, 21].

Problems with the implementations of cellular systems were
the cause of several of the above vulnerabilites. Cryptographic
side-channels from leaky MILENAGE and COMP128 implementations
allowed key extraction [40]. Insecure manufacturer baseband imple-
mentations allowed for heap overflows in many devices [30]. Flaws
in state machines resulted in acceptance of illegitimate base stations

https://github.com/wspr-ncsu/cellcrypt

Table 2: Number of results using dataflow analysis vs. grep

xe
) \\X\O\! < ’6(\6
o P (\5 A \(\X\\& R o
R\ ¥ N >
® (3‘\6 AT e

Cellular Core +°

freesGC[27] | 3 | 427 97 1 -
SD-Core [26] | 34 | 871 454 1 -
Open5GS [38] | 17 | 228 53 - 32
OAI-5G [43] 37 147 241 - 93
OAI-LTE [44] | 10 | 467 58 - 42
NextEPC [33] | 17 | 57 31 - 24
srsRan [56] 7 169 119 - 77

for connection [46, 50]. However, these insecure implementation
flaws are found on the user equipment connecting to the network,
rather than the network software itself. Historically, the software
in the cellular network has been proprietary with access to even
binaries being extremely difficult to obtain.

2.2 Need for Dataflow Analysis

The design of LTE and 5G systems makes simple code checks diffi-
cult. In addition to having domain-specific algorithms and variables,
many traditional algorithms are implemented directly rather than
using well known libraries. Direct implementation can be attributed
to reducing dependence on external libraries and patching the code
for cellular compatibility. Unfortunately, the direct implementa-
tions often have custom names that complicate simple searches.
Cellular-specific values such as RAND, IK, and CK also make searching
for variables and function arguments difficult.

As discussed in Section 4, we use dataflow analysis to identify
cryptography vulnerabilities in cellular core implementations. At
a high level, rather than try to manually identify every potential
function target, we look for matching function signatures and filter
by their source library or header. We hypothesize that such an
approach will allow us to identify dataflows in all cores without
adapting the tool for each core. A question that stems from our
hypothesis is whether it is useful in detecting misuse compared to
manually searching the code.

We conducted a small experiment to demonstrate the need for
dataflow analysis to detect cryptography misuse in our target cellu-
lar core implementations. As will be described in Sections 3 and 4,
our Rule R-5 identifies when RAND values are improperly random-
ized prior to use. Our experiment compares the number of results
when using grep for several regular expressions to the number of
unique dataflow sinks identified by our dataflow analysis. The num-
ber of sinks represents the number of code locations that a security
analyst needs to investigate.

Table 2 shows the number results of our grep verses dataflow
analysis experiment. The rand pattern represents a simple search for
any variable, function, or other string that might be related to ran-
domness. The .+(.*rand.x) and uint8_t\h+rand patterns represent
matching Rule R-5 function signatures for sinks, with the latter pat-
tern being more specific for C/C++ cores. The rand\h+\\[\\1byte
pattern provides a similar pattern for Go cores. The table clearly
shows the benefits of dataflow analysis over grepping for both the
rand and .+(.*rand.*) patterns. The rand\h+\\[\\1byte pattern is

too strict and misses many cases. The uint8_t\h+rand pattern re-
sults in a similar order of magnitude, but still produces significantly
more results. Finally, in addition to reducing the number of code
locations requiring inspection, dataflow analysis aids a security
analyst with the corresponding sources and path information to
drastically simplify manual confirmation.

3 RULES

The goal of this paper is to identify cryptography misuse in open-
source cellular cores. Detection of cryptography misuse in software
is a relatively-well studied topic, and therefore we conducted a
literature review to identify a set of 13 rules appropriate for our
target implementations. Specifically, we use six primary sources to
derive our rules [12, 19, 23, 39, 47, 48].

Table 3 lists our 13 rules along with a brief description and
associated analysis type. "A" or algorithm rules focus on the use
of cryptography primitives. "R" or randomness rules check for
insufficient randomness. "TLS" rules refer to TLS misconfigurations.
We now describe the motivation for each rule. We discuss how we
encode each rule into a program analysis check in Section 4.

3.1 Insecure Algorithms

We defined three rules that consider the use of insecure crypto-
graphic algorithms. While the 3GPP specifications define which
algorithms are allowed, we wanted to identify insecure algorithms
used for nonstandard purposes or that may remain in legacy code.

A-1 (Insecure Symmetric Algorithms): No insecure symmetric
algorithms, as found by NIST or the community, may be used in the
code base. Insecure symmetric algorithms include DES, RC4, Cast5,
and TEA. Target algorithms are derived both from literature [12,
19, 39, 47, 48] and NIST standards [15]. With NIST, we include
algorithms that are being sunset.

A-2 (Insecure Hash Algorithms): No insecure or collision-prone
hash algorithms, as found by NIST or the community, may be used
in the code base. Examples of such algorithms are MD5 and SHA-1.
These algorithms are derived from the same sources as A-1.

A-3 (Insecure Asymmetric Algorithm Use): No insecure use of
asymmetric algorithms. In this context, insecure use is defined by
block size. Sources define having less than a 2048 bit block size for
traditional algorithms (e.g., RSA) or less than 224 bits for an elliptic
curve as insecure [12, 15, 19, 39, 47, 48].

3.2 Insecure Use of Randomness

We defined six rules that consider the use of randomness within
the cellular cores. Rule R-6 considers the source of randomness and
how it is used for the dataflow sinks defined in Rules R-1 to R-5.

R-1 (IV Values are Unique): All IV values are securely randomly
generated and none are reused. No constant IV values are used,
and all generated IV values should use a cryptographically secure
PRNG. Insecure IVs make it easier for attackers to predict future
values. Well-known attacks have taken advantage of predictable IVs,
such as the infamous BEAST attack [49]. Some literature sources
only specify IVs must not be constant [23]. Others add they must be
randomized [12, 19] and one qualifies the randomness as secure [39].
We defined our rule to meet the most stringent requirement.

Table 3: Analysis Rules Directing Dataflow and Code Analysis

ID Name Rule Check Type
A-1 Insecure Symmetric Algorithms No insecure symmetric algorithms, as found by NIST or the community, may be used in the code base Code Syntax
A-2 Insecure Hash Algorithms No insecure or collision-prone hash algorithms, as found by NIST or the community, may be used in the code base ~ Code Syntax
A-3 Insecure Asymmetric Algorithms No insecure use of asymmetric algorithms Code Syntax
R-1 Vs values are unique AlL1IV values are securely randomly generated and none are reused Dataflow
R-2 Nonces are Random All non-IV nonces are random and unique Dataflow
R-3 Salts are unique Salt values are random and unique when used Dataflow
R-4 Keys are unique All non-network keys are unique and when generated use a secure PRNG Dataflow
R-5 Random Challenge Values Unique RAND challenge values are unique and generated using a secure PRNG Dataflow
R-6 Cryptographic Randomization Insecure randomness is not used for situations requiring secure randomness Dataflow
TLS-1 Secure TLS Cipher Suites No insecure cipher suites are allowed by TLS Code Syntax
TLS-2 Certificate Verification Does not accept all certificates or otherwise disable certificate checks Code Syntax
TLS-3 HostName Verification Does not allow all hostnames or disable hostname verification Code Syntax
TLS-4 Proper TLS Version No TLS version below 1.2 is used Both

R-2 (Nonces are Random): All non-IV nonces are random and
unique. While IVs can be considered nonces, not all nonces are
IVs. We have an additional rule for these nonce values. Many uses
of nonce values do not require secure randomization. However,
these values should still be pseudo-random and unique to prevent
replay and other attacks. Our literature sources imply this rule by
requiring no constant or predictable values [12, 19, 47].

R-3 (Salts are unique): Salt values are random and unique when
used. Passwords are not common within a cellular core, and thus
salt values are not commonly used. However, some of the open-
source cores come with consoles or user front-ends for management.
Passwords for these front-ends should use random and unique
salts [12, 19, 39, 47, 48]. Note this rule does not check for proper
storage of passwords or other password-based rules present in our
reference literature. These challenges are out-of-scope for our work.

R-4 (Unique Keys): All non-network keys are unique and when
generated use a secure PRNG As mentioned in Section 2, there is one
primary key source in cellular AKA from which all other keys are
derived. While key derivation occurs at all stages, key generation
is not common within the core. Key randomization does not occur
during derivation. Therefore this rule focuses on the use of hard-
coded keys and the improper reuse of derived keys. Many sources
also specify rules around key derivation and PBKDFv2 [12, 47, 48].
The KDF in the cores is unique to cellular. It does not require the
same cryptographic checks as PBKDFv2 (e.g., iteration count) [6].

R-5 (Secure RAND Challenge Values): RAND challenge values
are unique and generated using a secure PRNG. 3GPP TS 33.501 de-
scribes a single source of randomness used in coordination with a
subscribers secret key to begin the AKA process [6]. This source of
randomness, aptly named RAND, is the only source of cryptographic
randomness in a fresh authentication. RAND should be randomly gen-
erated by the core and shared with the UE. The four values used for
mutual authentication, RES*, XRES™, HRES*, and HXRES™ are derived
using this RAND. Additionally, all session keys are derived from RAND,
K, and OP, with OP being a constant value [6]. The standards specify
RAND must be generated using a PRNG and be unpredictable [4, 5].

R-6 (Cryptographic Randomness): Insecure randomness is not
used for situations requiring secure randomness. Previous rules con-
cerned the proper use of primitives, including both randomization
and uniqueness. This rule focuses on the use of insecure random-
ness for cryptographic inputs. We define two categories off insecure

randomness. The first is predictable seeding of a randomness source.
An example would be seeding randomness with the current time.
Second is the use of insecure randomness in any of our previous
sinks. This encompasses flows directly from randomness sources to
sinks, rather than using proper randomness as a barrier. We discuss
this further in Section 4.3.

3.3 Insecure TLS Configuration

We defined four rules considering the configuration of TLS within
the cellular cores. Developers historically misconfigure TLS in im-
plementations, even when the default use is secure [24].

TLS-1 (Secure TLS Cipher Suites): No insecure cipher suites are
allowed by TLS. This rule extends A-1 and A-2 to their acceptance in
TLS communications. One of these ciphers may be allowed without
being explicitly mentioned in the code. Therefore A-1 and A-2 would
not catch the misuse. CryptoGo [39] and Ami et al. [12] explicitly
mention insecure ciphers in TLS. The rest have rules regarding the
insecure use of TLS and insecure algorithms, which can be taken
together to derive this rule [19, 23, 47, 48].

TLS-2 (Certificate Verification): TLS certificate verification is not
disabled or set to accept all. Certificate verification ensures the au-
thenticity and integrity of a certificate. This process includes check-
ing a certificate’s expiration date, verifying the certificate chain
to the root, and ensuring the certificate has not been revoked. If
these checks are successful, then the certificate is valid for any host.
Ami et al. [12], Rahman et al. [48], Piccolboni et al. [47], and Li et
al. [39] all mention proper certificate verification. MITRE mentions
certificate verification as CWE-295 [41], and OWASP [45] discusses
multiple vulnerabilities linked to improper verification.

TLS-3 (Hostname Verification): TLS certificates are checked to
ensure a matching hostname. Our literature sources and justification
for TLS-3 are the same as TLS-2. Hostname verification checks
extend certificate verification to whether the certificate matches
the host to which the client is attempting to connect. Without
hostname verification, a malicious attacker could present a valid
certificate issued for a different host, leading to an on-path attack.
In fact, MITRE has CWE-297 [42] under CWE-295 [41].

TLS-4 (Proper TLS Version): Only TLS 1.2 or higher is accepted.
TLS-4 is derived from the 3GPP cellular standards, which explicitly
state TLS 1.2 or higher must be used when HTTPS is used within
the core [6].

4 CELLCRYPT

CELLCRYPT is an analysis tool built to study cryptography misuse
in celluar cores. Specifically, CELLCRYPT wraps CodeQL queries
customized for cellular core implementations and processes the
results. We built CELLCRYPT on top of CodeQL, because it provides
a declarative language for analysis across multiple programming
languages, including both Go and C++, which are used by our target
codebases. Figure 1 provides an overview of CELLCRYPT and our
analysis methodology.

As shown in Figure 1, we considered seven open-source cores.
CodeQL databases are extracted from this dataset and provided to
CELLCRYPT (Section 4.1). A combination of 3GPP standards and
extracted function metadata is used to encode the rules defined
in Section 3. These encoded rules are provided to CELLCRYPT as
custom CodeQL queries (Sections 4.2 and 4.3). Finally, CELLCRYPT
uses a combination of automated processing and a manual filtering
methodology to refine the results (Section 4.4).

4.1 Database Extraction

CodeQL performs its analysis on extracted databases. These databases
contain all program information including the control flow graph
(CFG), dataflow graph (DFG), and abstract syntax tree (AST). To cre-
ate a database, CodeQL must observe the compilation process (for
compiled languages) or execution of source code (for interpreted
languages). All of the cores in our dataset are written in compiled
languages. Therefore, CodeQL compiles the cores to extract the
databases. CELLCRYPT uses Docker to perform the CodeQL compi-
lation. A CodeQL Docker container wraps the core and executes
it’s build process. Build errors must be manually corrected.

Go-based cores require additional preparation prior to building,
as indicated with the blue icons in Figure 1. CodeQL does not exam-
ine imported package source code when analyzing a Go program.
Therefore data and control flow is not extended through these pack-
ages unless CodeQL is explicitly configured with mapping rules.
As each package requires a mapping class, the volume of imported
packages in our cores makes this approach infeasible.

Instead, we wrote the CorePrep script that automatically includes
the code for all dependencies in the analyzed source code. CorePrep
begins by performing a local download of imported packages using
the go mod vendor command and subsequently removes the go.mod
and go. sum files. CorePrep then goes through each Go file and uses
perl regex to change all external imports to local imports. Once all
imports are changed, the go.mod and go. sum files are regenerated.
A CodeQL database extracted from prepared cores now includes
source code and flows for the imported libraries.

4.2 Sources, Sinks, and Barriers

CodeQL supports both inter- and intra-procedural dataflow analysis
and taint tracking. We use a combination of these flows for our
analysis. Every CodeQL dataflow query has the three traditional
node definitions: sources, sinks, and barriers. Sources and sinks
mark the introduction and target points for the analysis. Barriers are
dataflow nodes which flow must not move through to be positive.
CodeQL uses these barriers to identify flows to exclude from results.

Sources: Dataflow and taint source definitions for all relevant rules
across both languages follow the same logic. CELLCRYPT defines

1int ogs_aes_setup_enc(uint32_t *rk, const uint8_t =xkey, int

keybits);

2 int ogs_aes_setup_dec(uint32_t *rk, const uint8_t xkey, int
keybits);

3

4 void ogs_aes_encrypt(const uint32_t *rk, int nrounds,

5 const uint8_t plaintext[16], uint8_t ciphertext[16]);

6 void ogs_aes_decrypt(const uint32_t *rk, int nrounds,

7 const uint8_t ciphertext[16], uint8_t plaintext[161);

Listing 1: Signatures for Custom AES in Open5GS

sources as an assignment to any variable of the same type as the
corresponding sink. For instance, for a sink type ByteArray, the
corresponding source is usually an assignment to a variable with
type ByteArray. Exceptions are discussed with their relevant rules
in Section 4.3. We identified instances where a variable of a different
type (e.g., a string) is populated with a cryptographic value prior
to being assigned to an already defined source. Randomization or
constant value assignment can occur prior to these re-assignments.
To account for such instances, CELLCRYPT finds the initialization
of any variable with intra-procedural flow to a defined source.

Sinks: CELLCRYPT dataflow and taint analyses generally use API
calls to cryptography functions as sinks. Cryptography implementa-
tions vary greatly between the cores, from the language base library
to completely custom implementations. For example, Open5GS has
its own cryptography implementation with unique function sig-
natures. Listing 1 shows function signatures for AES in Open5GS.
The cores also use a range of external libraries.

For the cores written in Go (i.e., free5GC and SD-Core), CELL-
CryPT uses the built-in and common base libraries to identify most
cryptography sinks. Cellular-specific algorithms are not present in
the base libraries, so are identified from the code base. We first went
through the Go library documentation, marking specific arguments
to relevant API calls as sinks. We then used CodeQL to extract
all function signatures, their call locations, and their library from
the cellular core implementations. From this metadata we marked
cellular-specific sinks not present in the base library. The marked
functions and arguments are encoded in CodeQL as sink classes.

For cores written in C/C++, sink identification was significantly
more difficult. Instead of marking sinks by function, CELLCRYPT
filters functions by headers. After extracting the same metadata as
with Go, we used CodeQL to extract file information for all imported
headers. We then examined and cross-referenced headers with
function metadata to determine cryptography headers. A header
was marked as a cryptography header if it contains at least one
function signature appearing to perform a cryptography operation.
We marked all functions in these header files as a sink. While this
broader definition of a sink results in a larger number of results, it
is less time consuming to filter the results than manually annotate
every function in the core implementation.

Finally, we define our CodeQL rules to mark arguments to calls as
sinks rather than function parameters. Doing so causes the CodeQL
results to identify a taint sink each time a cryptography function is
called, rather than one taint sink for each cryptography function.
As such, the count of unique sinks and source/sink pairs are useful
metrics for our analysis (see Section 5).

Barriers: CodeQL uses barriers to exclude “good” flows from the
results. These barriers change based on rule (see Section 4.3). Our

0SS Cellular
Cores

=)

AN
</>

Rule Creation

"l = Automated Processes

SD-Core | < />

-

3GPP
Standards

free5GC

Function
Metadata

NextEPC

QL Database Extraction

OpensGS

OAILTE

-~

>

&

Docker Builds

N
</>

Code

OAI 5G Preparation

SRSRan

CellCrypt
\
Custom
i Ly {11]

Manual Filtering

d"]

Filter
Configuration

Figure 1: Overview of Analysis Methodology Using CELLCRYPT

two primary types of barriers are (a) value reassignment and (b)
secure randomization. Value reassignment barriers are any assign-
ment statements not preserving the previous data. Sources of secure
randomization are identified during our sink identification process.
A call to one of these functions is considered a barrier.

4.3 Encoding Rules

CELLCRYPT uses two types of rules: code syntax checks and dataflow
queries. The type of each rule is indicated in Table 3. Rules are en-
coded for two languages, Go and C++. Each rule is encoded as a
set of CodeQL queries. Encoding logic remains similar between
languages and check types. For the dataflow analysis, the only dif-
ference between the cores is the sources, sinks, barriers for dataflow
analysis. The TLS rules also follow different logic between the two
languages. For each rule we give a description of it’s encoding and
any specifics in Go and C/C++.

4.3.1 Insecure Algorithms. Rules A-1 to A3 are encoded as static
checks, which are discussed next.

A-1 (Insecure Symmetric Algorithms): A-1 checks for outdated
or insecure symmetric key algorithms, and is encoded as a static
check. We compiled a list of outdated or insecure algorithms from
NIST standards [15]. From this list, we selected algorithms based on
temporal and practical traits. In other words, based on recentness
of the algorithm and how likely they are to be used. Likelihood of
use is based on their incorporation into the Go base library. Specifi-
cally, we look for the following algorithms: XTEA, Cast5, DES, RC4,
Blowfish, and TEA. Go separates cryptographic libraries by algo-
rithm. For the Go code bases, CELLCRYPT looks for any imports of
the identified libraries. With C/C++ code bases, CELLCRYPT checks
cryptography headers for references to insecure algorithms.

A-2 (Insecure Hash Algorithms): Hash algorithms with known
collisions violate A-2. To select which algorithms to encode for, we
again checked NIST standards [15]. We select SHA1, MD5, MD4,
and RIPEMD to be targets for A-2. For A-2 CELLCRYPT follows the
same check logic as A-1.

A-3 (Insecure Asymmetric Algorithms): A-3 is dependent on
block size rather than cipher. CELLCRYPT attempts to resolve the
value of arguments in asymmetric API calls. Go only specifies block
size in a call to the Generatekey() method. CELLCRYPT checks for
any calls to GenerateKey() with a value less than 256 (i.e., 2048/8, as
values are in bytes not bits). CELLCRYPT also checks for the import

of crypto/dsa, as DSA is an outdated algorithm. Go does not have
built-in support for elliptic curve lower than 233 bits.

For C/C++ CELLCRYPT checks for function signatures indicating
an int parameter and a byte array parameter. Byte array parameters
can take the form of both byte and uint8_t arrays. Functions from
a cryptography header are marked as sinks. CELLCRYPT checks
identified int arguments for values less than 256 (i.e., 2048/8).

4.3.2 Insecure Algorithms. Encodings for Rules R-1 to R-6 (i.e., the
randommness rules) are encoded as dataflow analyses.

R-1 (IV Values are Unique): Starting with R-1, both encodings for
Go and encodings for C/C++ begin to follow a pattern. For Go, we
identified the third argument of NewCTR,NewCFBEncrypter,NewCBCE-
ncrypter, and NewOFB as sinks. C/C++ IV sinks are determined by
function signature and header. CELLCRYPT marks any calls to func-
tions originating from a cryptography header with an IV parameter
as sinks. Sources for both Go and C/C++ follow the logic discussed
in Section 4.2. CELLCRYPT uses two definitions of barriers, (1) calls
to CSPRNG functions and (2) non-constant value reassignments.

R-2 (Nonces are Random): For R-2, we identified the Seal () func-
tion as a sink in Go. Seal() encrypts and signs a passed buffer.
C/C++ sinks are identified in the same manner as R-1, but with a
nonce function signature. Sources follow the logic in Section 4.2.
Unlike the other rules, R-2 only has assignments as barriers. Nonces
require uniqueness but not secure randomness.

R-3 (Salts are unique): Both R-4 and R-5 follow the same logic as
R-1 for Go and C/C++. CELLCRYPT uses function calls with a salt
function signature as sinks. For Go these primarily were password
or key derivation functions, such as Key in crypto/pbkdf2. In C++
these were filtered by header, as with previous encodings.

R-4 (Keys are unique): Key randomization is difficult to check in
the context of a cellular core. The key is pulled from the subscriber
database. Further keys are derived from this key, which are sent
between microservices. CELLCRYPT can not just check for flows
without randomness, as in R-1, R-4, and R-5. All key flows would
be marked positive.

5G uses a RESTful microservice structure in the core. Service
endpoints are identified in the 3GPP standards. Some cores im-
plement endpoints directly from the standards, usually through
generation. Other cores contain custom implementations. CELL-
CryPT automatically identifies these endpoints and excludes flows
containing them. For Go, CELLCRYPT extracts endpoints from Route

objects. CELLCRYPT follows event listener state machines to identify
endpoints. CELLCRYPT performs the same data flow logic as R-1 for
both Go and C/C++.

R-5 (Random Challenge Values Unique): As mentioned in Sec-
tion 2.1, 3GPP standards specify that RAND must be generated using
a PRNG and be unpredictable [4, 5]. As RAND is a cellular-specific
value used in cellular specific algorithms, we encode this rule with
explicit sinks. Specifically, we locate the key and challenge deriva-
tion functions in each core and encode them as sinks. Barriers are
secure PRNGs and value reassignments. RAND is also sent to the UE.
Similar to R-3 we exclude network endpoints from our sources.

R-6 (Cryptographic Randomness): R-6 has two distinct encod-
ings. One encoding takes bad randomness sources and finds dataflow
to previously defined sinks. Examples of bad randomness are rand()
in libc and mpz_urandomb() in GNU MP. Both rand() and mpz_uran-
domb() are known to be predictable [20, 28]. CELLCRYPT identifies
flows from these functions to sinks for rules R-1 to R-5. A static
check for bad PRNG seeds is the second encoding. CELLCRYPT iden-
tifies explicit bad seeds such as srand(time (NULL)), first by checking
for calls to time(), then known seed functions for default values.

4.3.3 Insecure TLS Configuration. TLS rules (i.e., TLS-1 to TLS-4)
are encoded as a combination of static checks and dataflow analyses.

TLS-1 (Secure TLS Cipher Suites): TLS in Go uses a Configura-
tion struct. CELLCRYPT locates Configuration structs and checks
for values that violate TLS rules. Improper values are then used
as sources with flow to functions from crypto/tls. Improper val-
ues for TLS-1 are cipher flags containing insecure algorithms (e.g.,
TLS_RSA_WITH_RC4_128_SHA). C++ TLS libraries commonly use
flags for configuration. CELLCRYPT checks for flags violating TLS-1.

TLS-2 and TLS-3 (Certificate / HostName Verification): In Go,
hostname and certificate verification are disabled if the InsecureSk-
ipVerify boolean is set to true. In line with TLS-1, CELLCRYPT uses
InsecureSkipVerify fields set to true as sources. Sinks are then any
operations from the crypto/tls library.

TLS-2 and TLS-3 for C++ is difficult. OpenSSL, GnuTLS, and Curl
are the common TLS libraries in our dataset. These libraries use set
flags to configure hostname and certificate verification. OpenSSL
flags include SSL_VERIFY_NONE, which disables checks. GnuTLS flags
include GNUTLS_VERIFY_DISABLE_CA_SIGN along with GNUTLS_VERIFY-
_DISABLE_CRL_CHECKS, and GnuTLS specific version flags. As 5G NFs
are both clients and servers, CURL_OPTS flags are identified as well.
Speciﬁcally CURLOPT_SSL_VERIFYPEER and CURLOPT_SSL_VERIFYHOST
flags set with a false (0) value. We performed a simple code search
to locate instances of these flags.

TLS-4 (Proper TLS Version): CELLCRYPT checks the MinVersion
field in Go TLS configuration objects for a value other than Versio-
nTLS12 or VersionTLS13. Violating values are set as sources for data
flow to crypto/tls sinks.

OpenSSL, GNU MP, and Curl version configurations are searched
for in C++ cores. TLS-4 in C++ is our only rule where a true pos-
itive is a negative result. To achieve TLS-4, OpenSSL and CURL
must disable prior versions. Thus, CELLCRYPT checks for this dis-
able procedure and provide a result stating "Invalid TLS versions
disabled" if all are detected. CELLCRYPT checks for calls to SSL_-
CTX_set_min_proto_version with TLS1_2_VERSION), which disables

TLS1.0 and TLS1.1 in OpenSSL. CELLCRYPT also checks for calls
to all OpenSSL flags from prior versions required to disable the
proper TLS versions. These flags are SSL_OP_NO_SSL*, SSL_OP_NO_-
TLSv1, and SSL_OP_NO_SSLv1_1. GNU MP has multiple methods of
setting version. The suggested method uses configuration fields dis-
abling specific versions. We checked configuration files of positive
results to determine if (GNUTLS) flags for TLS version are set.

4.4 Refining Results

CELLCRYPT processes analysis output automatically. However, due
to the diverse nature of our code bases and limitations of CodeQL,
we needed to perform some manual filtering of the results for bad
sources and sinks. This filtering is core-specific, but filtering for
each core followed the same rigorous algorithmic process. At a
high level, the process proceeded as follows: (1) automated result
processing, (2) filter bad sources, (3) filter bad sinks, (4) remove
same-file flows, (5) examine remaining source/sink pairs.

Note the filtering process results in a reusable configuration.
Subsequent runs of CELLCRYPT do not require manual filtering
unless a core is added. This allows for modification of encodings
without performing the entire filtering process again. Each filtering
step is described below.

Step 1: Automated Result Processing: First, CELLCRYPT com-
piles results into JSON format and organizes them by rule per core.
CELLCRYPT converts the raw output to JSON format with CodeQL
utilities. Next, CELLCRYPT organizes the JSON outputs by core. Raw
CodeQL output is a single large JSON object of source/sink pairs
and their locations. CELLCRYPT determines the rule type (static
check or data flow). Results are then organized by unique source,
unique sink, and unique source/sink tuples for each rule. Counts for
each, as well as total raw results, are also collected. Duplicates are
removed by maintaining a list of seen source/sink pairs. Location
information is the primary heuristic for this processing. Finally,
CELLCRYPT places the raw results, processed results, and counts
into a dataclass and converts to a JSON object. These JSON objects
are compiled into a single file and output as processed results.

Step 2: Manually filter bad sources: Each processed result has
a list of individual source and sinks. Some sources and sinks were
incorrectly identified. We implemented a regex filter and manually
go through each result. External libraries, network sources, and
non-crypto sources are removed. Granularity of the filter is based
on cross-referencing results. Generic filters, such as metrics.c, are
identified in multiple cores with manual search. Network sources
are filtered at a relative path granularity. Test files are also filtered
with a broad r’ /tests{@,13}.%’ filter. This is applied to both sources
and sinks. Results indicating cryptography (e.g., oai-hss/src/hss_r-
el14/hsssec/src/kdf . c) are assumed correct without examination.

Step 3: Manually filter bad sinks: Filters for test files and external
libraries are added. Next, each sink is examined for relevance to
cryptography. Sinks are filtered on a relative path granularity. Files
indicating network operations are examined first. Hashmap and
string operations are located next. Results indicating cryptography
are assumed correct in-line with the source filtering process.

Step 4: Manually filter same-file flows: All remaining source/sink
tuples are examined for same-file flows. If five or more tuples are
in the same file and source/sink tuples are different pairings of the

Table 4: CELLCRYPT findings across Open-Source Cellular Cores—X indicates Vulnerabilities

Finding ‘ Rule free5GC SD-Core Open5GS OAI-5G OAI-LTE NextEPC srsRAN
Predictable Randomness R-6 X X - X X - X
Disabled Certificate Validation | TLS-2, TLS-3 X X - X X - -
Constant Unused Signing Key R-4 Fixed in v3.2.1 X - - - - -
Deprecated Algorithms A-2 SHA1, MD5 - SHA1, MD5 SHA1, MD5 SHA1,MD5 SHA1, MD5 MD5
CVE-2022-46397 R-1 - - - X - - -

same locations, the file is added to the same-file filter. While the
cores all implement cryptography differently, common file names
are found across cores. If same-file flow is indicated in a common
file name in 3 or more cores, a file stem granularity filter is added.
Otherwise filters are relative paths.

Step 5: Examine remaining source/sink pairs: Results for the
core are reprocessed by Step 1 with the filters applied. Remaining
results are examined by source/sink tuple. The source is checked
for relevancy and missed randomization. Sinks are checked for rele-
vancy. If both are found correct, the dataflow is followed manually
to confirm the result.

5 RESULTS

Table 4 shows all findings uncovered by CELLCRYPT. We identify
two key findings that are common across multiple independent
cores, suggesting systematic issues in correctly implementing cer-
tain security requirements:

o Generated TMSIs in OAI-5G, free5GC and OAI-LTE with
Magma are predictable which can enable linkability attacks.
We demonstrate an attacker can accurately link a subscriber’s
TMSI to a newly generated TMSI, of the same subscriber,
allowing an attacker to track UEs over time.

o Certificate and hostname verification cannot be enabled in
OAI LTE/5G, free5GC, and SD-Core even when the cores
are configured by an operator to mandate TLS. This leaves
communication between NFs exposed to on-path attacks.

These findings and their impact is discussed in Section 5.3. CELL-
CryPT also finds several implementation-specific vulnerabilities
highlighted in Section 5.5.

5.1 Dataset

Our analysis covers seven open-source implementations of cel-
lular cores (1) Free5GC v3.0.2 (R15); (2) SD-Core v1.3.0 (R15); (3)
Open5GS v2.5.6 (R15); (4) OpenAirInterface CN5G v1.4.0 (R14), (5)
OpenAirInterface EPC v1.2.0 (R16) using Magma’s MME; (6) Nex-
tEPC v1.0.1; and (7) srsRAN v23.04.1. OAI-LTE uses Magma’s MME,
so results for both are included in OAI-LTE with Magma. Most of
these implementations are written in C/C++. Free5GC and SD-Core
are written in Go. Each code base presents unique cryptographic
considerations. For example, Open5GS implements cryptographic
algorithms directly while others rely on standard libraries.

5.2 Data Characteristics

CeLLCRYPT analyzes all projects with our encoded rules in CodeQL
described in Section 4.3. We ran our analysis in a VM allocated
24 logical processors of an AMD EPYC 7302P 16-core processor
and 128GB of memory, running Ubuntu 22.04. For a fresh run,

CeLLCRYPT averaged 0.6 hours and used 71GiB of RAM to analyze 8
million lines of code in C++ and Go across 7 code bases. Subsequent
runs averaged 0.25 hours and 41GiB of RAM. Performance increase
is a result of CodeQL caching behavior.

Table 5 shows result characteristics. The table compares raw Cod-
eQL output (R) to final results after our filtering process discussed
in Section 4.4. As indicated, all R-* rules are provided as counts of
ungiue source/sink tuples. For Go cores (i.e., free5GC and SD-Core)
this count is the same as total results. Go is an SSA language, so
each flow has its own variables. In C/C++ cores source/sink tuples
reduce redundant findings. CodeQL, as a query language, returns
all result combinations which match the provided filters. This can
result in multiple flows between the same source/sink pairs, e.g.,
around a boolean if statement.

Our filters achieved an 86.39% average refinement from raw
output. R-4, keys are unique, showed the most overall reduction.
We can attribute this to two factors. First, cryptographic functions
outside of our rule set were identified e.g., CMAC. Second, network
activity from the UE and other non-NF sources had to be filtered as
well as outgoing network operations.

The next largest reduction occurred with R-1. Same-file flows
between utility functions within code bases contributed to the
disparity. For instance, 186 same-file flows in the Open5GS Zuc
implementation were filtered. The least reduction occurs in TLS
rules. This is expected due to their static check nature. For data flow,
our cellular-specific rule R-5 fared the best. This is also expected,
as cellular-specific variables are unlikely to be used elsewhere.

TLS-4 is shown as a pass/fail result. As mentioned in Section 4.3
TLS versions must be explicitly disabled. A true result indicates
the presence of correct disabling flags. Results include checking of
configuration files after GNUTLS is detected.

5.3 TMSI Linkability Attack

The goal of a Temporary Mobile Subscriber Identities (TMSIs) linka-
bility attack is to associate several distinct TMSI identities over time
to one particular subscriber, thereby nullifying the intended privacy
guarantees offered by the TMSI. A TMSI is a temporary identifier
of a subscriber assigned by the network to support identity con-
cealment. TMSIs are required to be unpredictable by the 3GPP.
Using cryptographically insecure randomness or predictable seeds
allows attackers to predict the TMSI. The ability to predict TMSI
assignments is sufficient information for widespread, long-term
linkability attacks against all subscribers served by an MME/AMF!,
contingent on the TMSI reallocation strategy of the implementation.
First, we describe the CELLCRYPT findings and how an attacker can

! An MME/AMEF is responsible for managing mobile devices over large geographic
areas (i.e., thousands of square miles)

Table 5: (R)aw and (F)iltered CELLCRYPT Results

free5GC SD-Core Open5GS OAI-5G OAI-LTE NextEPC srsRAN
R F R F R F R F R F R F R F
A-1 0 0 0 0 0 0 4 0 4 0 0 0 1 0
A-2 4 4 0 0 9 0 0 0 0 0 0 0 1 1
A-3 0 0 0 0 66 40 9 4 57 25 10 9 31 30
R-1* | 1586 106 | 918 87 140 2 152 103 | 642 14 124 1 | 108 5
R-2* | 289 16 35 16 105 42 26 6 1014 9 39 4 66 30
R-3* 0 0 80 0 0 0 0 0 822 0 0 0 0 0
R-4* | 2350 23 | 1017 161 | 2351 33 | 335 8 6363 19 | 1165 17 | 221 113
R-5* 4 3 4 2 55 27 | 201 14 63 63 39 4 48 22
R-6* 6 6 0 0 0 0 6 6 3 3 0 0 5 3
TLS-1 0 0 0 0 5 0 0 0 4 0 5 0 0 0
TLS-2 36 36 43 43 1 1 12 12 1 1 0 0 0 0
TLS-3 36 36 43 43 1 1 12 12 1 1 0 0 0 0
TLS-4" X X - X X - -
Total | 4297 226 | 2140 352 | 2733 146 | 757 165 | 8974 135 | 1382 35 | 481 204
Reduction 94.74% 83.55% 94.66% 78.20% 98.50% 97.47% 57.59%

* Reported by Source/Sink Pairs; | TLS-4 is pass/fail, X indicates failure

use predictable randomness to predict TMSIs. Then, we describe
the steps an attacker would take to achieve a full end-to-end attack.

Predictable Seeds for PRNG Algorithms: OAI-5G, SD-Core,
Free5GC, and OAI-LTE with Magma (specifically the Magma MME)
use predictable seeds for PRNG algorithms. We identify multiple
sources of insecurely seeded PRNG across code bases. These inse-
cure sources are used to generate the RAND field and to generate
TMSIs. These predictable seeds are either timestamps or constant
values; Table 6 shows how the PRNGs are seeded for each core.
TMSIs are designed to be short-lived, such that actions or locations
visited by a subscriber cannot be associated with that particular
subscriber. The 3GPP standards for LTE and 5G state that TMSIs
should be unpredictable and random [7].

To accurately predict future TMSIs, an attacker must determine
when the cellular core’s MME/AMF component was initialized. The
attacker would first observe current TMSIs by passively sniffing
cellular radio traffic. The attacker would then brute-force the time
value within a reasonable window to see what initial seed would
produce the observed TMSI values.

Cryptographically-Insecure PRNG Algorithms: OAI-5G, free-
5GC, SD-Core, srsRAN, and Magma (in OAI-LTE) use cryptograph-
ically insecure PRNG algorithms for cryptography and privacy-
sensitive operations. This vulnerability can lead to predictable TMSI
and RAND values. Three PRNG algorithms are used across the four
affected cores: Mersenne Twister, glibc rand() (which uses Linear
Feedback Shift Register), and the Go math.rand function (which
uses a Lagged Fibonacci Generator) [14, 59]. Each of these algo-
rithms is known to be cryptographically insecure. The recovery of
a sufficient number of outputs (ranging from 30 to 620, algorithm
depending) will enable an attacker to construct the internal state of
the PRNG and predict all future outputs. As a consequence, TMSIs
can be predicted accurately.

Additionally, OAI-5G, free5GC, and srsRAN do not use PRNG
algorithms to generate TMSIs. Instead, TMSIs are assigned using
an incremented count, i.e., the TMSIs assigned are monotonically

((A))

Ug o

UE Association,

Old TMSI n+1 Link n+1 => n+3

1 . 1
1 ! 1
1 ! 1
1 . Receive TMSI 1
' ' y TMSIn
1 ' 1
' ! Iterate TMSI prediction
! ::l until n+1 reached |
1 UE Association . !
! ' TMSI n+1
! OldTMSIt | Link t => n+1 '
: l :
' . ! 1
' UE Association : 1
TMSI n+2
E oldTMSI U Clinku = 2 E n
1 ! 1
1 : 1
 Paging, Calls/Texts | '
: TV il X : (No New TMSI)
1 ! 1
1 ! 1
1 ! 1
1 UE Re-Association . !
: T : TMSI n+3
1 ! 1
1 ! 1
1 ' 1
1 ! 1

Figure 2: A wide-scale linkability attack made possible by
predictable TMSI allocation. 5G network shown; also appli-
cable to LTE.

increasing. This approach is the easiest for an attacker to predict. If
an attacker can connect a legitimate UE to the network and receive
a TMSI, that attacker can simply increment upwards from that
TMSI value to predict future values for other UEs.

Attack Description: To carry out a linkability attack, the attacker
must be able to deterministically map each old TMSI value of a
subscriber to the new TMSI value assigned whenever that subscriber
is provided a new TMSI by the network. Figure 2 shows the attack.

Table 6: Patterns in TMSI Generation & Reallocation

Cellular Core ‘ TMSI Generation Method Randomness Seed Messages that (Re-)Allocate TMSI Secure”
Free5GC [27] Monotonic Counter Constant RegistrationRequest, N1MsgNotify, CreateUEContext N
SD-Core [26] Go math.rand Timestamp (ns) RegistrationRequest, N1MsgNotify, CreateUEContext N
Open5GS [38] Static Pool (2048 TMSIs) /dev/urandom RegistrationRequest, SessionModification, Paging Y
OAI-5G [43] Monotonic Counter Constant SecurityModeComplete N
OAI-LTE[44] w/ Magma MME[3] libc rand() Timestamp (s) RegistrationRequest, IdentityResponse, AttachAccept N
NextEPC [33] | Static Pool (16,384 TMSIs) /dev/urandom First NAS Message from UE Y

* Secure in that TMSIs are unpredictable

First, the attacker begins eavesdropping on unciphered cellular
communications between UEs and the base stations associated
with the given AMF. The attacker can now monitor when TMSIs
expire over the network since they are sent in plaintext. TMSIs
mask several bits from the generated random value to ensure the
resulting TMSI is well-formed. Therefore, an attacker may not
easily observe them in an unbroken ordered sequence. However,
Argyros and Kiayias [14] demonstrated that internal state can still
be extracted from weak PRNG algorithms even when dealing with
non-consecutive, truncated outputs using off-the-shelf hardware.
As they have demonstrated the feasibility of such an attack, an
attacker can observe TMSI values assigned by an AMF/MME over
time to recover the internal state of the PRNG. Therefore, using
these insecure PRNG algorithms enables an attacker to reliably
predict future TMSI values just by observing present TMSIs.

Having broken the PRNG that the core uses to generate TMSIs,
the attacker still must guess which is the next TMSI to be used.
Therefore, the attacker associates a UE they control to obtain a new
TMSI from the network. Afterward, they can iterate through the
list of predicted TMSIs until they reach the value of their TMSI. The
attacker now knows that the next predicted TMSI will be the next
TMSI allocated when an association is observed. The attacker may
now chronologically order UE associations it observes by monitor-
ing unciphered cellular communications and extracting old TMSIs
within the association messages. Each subsequent association is
determined to be assigned the next predicted TMSI by the attacker,
so they map old TMSI values observed to newly predicted TMSI
values. A successful attacker can track the subscribers associated
to chains of TMSI values. Such TMSI linkability fundamentally vio-
lates core architectural assumptions of the cellular network, and
allows for real-time tracking of subscriber locations [37].

5.4 TLS Failures

CELLCRYPT additionally identified multiple failures in TLS verifica-
tion. Specifically, when initiating a TLS connection between two
NFs in the core, each party did not verify the identity or validity in
the TLS certificate. This generally results in insecure communica-
tion among NFs in the core network.

Disabled Certificate and Hostname Verification: free5GC, SD-
Core, OAI-4G, and OAI-5G do not verify TLS certificates or hostnames.
CeLLCRYPT finds TLS verification is not enforced in free5GC, SD-
Core, and OALI In all of these code bases, there is a configuration
setting to turn on TLS or HTTP2. Therefore, even when TLS is
configured, the code bases enforce it insecurely. This ensures that
confidentiality and integrity between each NF in the core is entirely
compromised regardless of configuration settings.

return innerHTTP2Client.Do(request)

1 innerHTTP2Client = &http.Client{

2 Transport: &http2.Transport{

3 TLSClientConfig: &tls.Config{
4 InsecureSkipVerify: true,
5

6 func CallAPI(...) (*http.Response, ...) {
7

8 if request.URL.Scheme == "https" {

9

0

Listing 2: The InsecureSkipVerify parameter in Go’s HTTP
library disables certificate validation.

1 static connection_t *connection_add(...) {

2 L.

3 if (client->scheme == OpenAPI_uri_scheme_https) {

4 if (client->insecure_skip_verify) {

5 curl_easy_setopt(conn->easy, CURLOPT_SSL_VERIFYPEER, 0);
6 curl_easy_setopt(conn->easy, CURLOPT_SSL_VERIFYHOST, 0);
7 }

8

Listing 3: In C++ code bases, disabling certificate and
hostname validation each required an adjustment to cURL
settings. Open5GS guards this setting with a configuration,
other code bases do not.

We find that in both Go and C++ code bases, hostname verifica-
tion, and certificate verification are disabled in all instances. In Go,
the InsecureSkipVerify option disables both certificate and host-
name verification. In C/C++ code bases, we identify two separate
calls to cURL options that disable certificate and hostname verifi-
cation individually. The code bases typically disable these options
in one code location, which disables hostname verification and
certificate validation in all HTTPS operations. In Figure 3 we show
Open5GS disabling certificate validation. Notably, Open5GS is the
most secure in this regard, as it contains a configuration option to
adequately enforce TLS certificate and hostname verification. Other
code bases have no such configuration option and do not validate
TLS certificates regardless of configuration.

It is worth noting that the 3GPP standardizes TLS as optional;
however, if enabled in free5GC, SD-Core, or OAl it is inherently inse-
cure. A provider intending to use TLS will be misled into believing
it is secure when configuring it. Additionally, various security-
sensitive parameters are passed over TLS, such as cryptographic
intermediaries in 5G-AKA. For example, the UDM sends the AUTN,
xres*, and K4ysr to the AUSF over the channel where TLS cer-
tificates are not verified. The KqysF is particularly important as
session keys for UEs are derived from this key. An attacker with
this key can perform session hijacking or an on-path attack.

5.5 Additional Findings

Constant Unused Signing Key: SD-Core contains unused non-
test code that is exposed via HTTP and signs an OAuth token with a
constant string. While unused, this code is exposed over an HTTP
API from the NRF. SD-Core is a fork of an earlier version of free5GC.
free5GC has removed this code upstream. We do not believe an
attacker can exploit this functionality. However, we highlight this
finding as an unexpected misuse of cryptography in the core.

CVE-2022-46397: Vector Packet Processing (VPP) is a framework
for developing networks that provide features of switches and
routers [25]. OAI includes multiple versions of the User Plane Func-
tion (UPF) network function. The UPF creates an IPsec tunnel from
the UE to the Internet, and all normal user traffic travels through the
UPF. One of these UPF implementations uses VPP as the foundation.
In this UPF, they pin their dependency to a version with known
CVE-2022-46397. CELLCRYPT also discovered this CVE during anal-
ysis. Since all Internet traffic passes through the UPF from a UE,
this channel can handle highly sensitive information. Consequently,
predicting IV values allows an attacker to get one step closer to
reading sensitive user-plane traffic.

Deprecated Algorithms: Many code bases use insecure hash algo-
rithms; however, they are part of the 4G and 5G standard. MD5 and
SHA1 are algorithms in the IP Multimedia Subsystem (IMS) and
Session Initiation Protocol (SIP). SIP is responsible for initiating
and managing communications including VoLTE and VoNR. While
these hash algorithms are approved by the SIP and 3GPP standards,
they have long been known to be insecure. We understand the
reason for including these algorithms, especially for backward com-
patibility. However, we strongly encourage the 3GPP to deprecate
MD5 and SHAL1 as they are insecure.

6 RELATED WORK

Cryptography Misuse: Piccolboni et al. [47] proposed CryLogger
to detects cryptographic misuse in Android applications. Rahaman
et al. [48] also target Java applications with their tool CryptoGuard.
Brumley et al. [23] performed an empirical evaluation of misuse in
Android applications with their tool CryptoLint. None of our target
cores are Java-based, and therefore we could not use them for our
analysis. Li et al. [39] presents one of the first analysis tools with
an exhaustive ruleset for misuse in Go applications. Unfortunately,
their tool was not available for use.

Ami et al. [12] evaluate existing analysis tools to see what in-
stances of cryptographic misuse they fail to identify. Instead of an
analysis tool, they create a test bed that mutates instances of misuse
to see if tools properly flag them. Braga et al. [19] also perform an
evaluation of existing tools and create a list of rules to check.

Cellular Security: Prior work analyzed LTE security from both
attacker and defender viewpoints [17, 35, 46, 52]. Work on LTE
focuses on the radio access network (RAN). LTE is primarily pro-
prietary closed-source software running on specialized hardware.
Furthermore, the RAN is only a small part of the cellular network.

5G has seen comparatively less investigation. Multiple works
have studied 5G security [8-10, 50, 57]. Of particular relevance,
Basin et al. [16] and Cremers et al. [21] perform a protocol analysis

on the 5G AKA using Tamarin. They discover theoretical vulnerabil-
ities relating to key derivation and storage. Prior work has analyzed
security based solely on the 3GPP standards. Our work is one of
the first to look at code implementations.

TMSI Attacks: Prior work has discussed TMSI attacks and vulner-
abilities [13, 32, 53]. Hussain et al. [31] present a novel TMSI linka-
bility attack called ToRPEDO. They use the linkability from ToRPEDO
to enable deanonymization and IMSI brute force attacks. Rupprecht
et al. [53] also propose a TMSI linkability attack. Their attack al-
lows a passive adversary to link TMSIs to RNTIs, another identifier.
Linking these two identifiers allows the mapping of a device to its
radio session. Most of these works also discuss TSMI linkability
attacks can enable further attacks. For example, deanonymization
and IMST hijacking can all be enabled from TMSI linkability.

7 CONCLUSION

Open-source cellular cores are being deployed in private networks
as part of proprietary offerings. The significant engineering efforts
leading to their maturity will undoubtedly make them a foundation
for cellular ecosystems moving forward. To this end, this paper
has studied the use of cryptography and secure randomness in
open-source cellular cores. We designed a set of 13 CodeQL static
program analysis rules and studied 7 open-source celluar cores
written in both C/C++ and Go. In applying these rules to the open-
source cores, we identified two significant security vulnerabilities,
finding that multiple cores (1) predicably generate TMSIs and (2) im-
properly verify TLS certificates, even when TLS is enabled in the
software configuration settings. We also identified several addi-
tional findings, including an (unused) hard-coded cryptographic
key, a library dependency pinned to a version with a cryptography
flaw, and wide-spread use of MD5 and SHA1 for backwards compat-
ibility. We hope that our findings and framework will help secure
deployments of these open-source cores as well as downstream
proprietary projects that depend on them.

ACKNOWLEDGMENTS

This work is supported in part by NSF grants CNS-2054911, CNS-
2055014, CNS-1933208, and an NSF Graduate Research Fellowship.
Any findings and opinions expressed in this material are those of
the authors and do not necessarily reflect the views of the funding
agencies.

REFERENCES

[1] 2023. All-in-One. 5G. https://www.rakwireless.com/en-us/5g

[2] 2023. Firecell. https://firecell.io/

[3] 2023. Magma - Linux Foundation Project. https://magmacore.org/

[4] 3GPP. 2020. 3G security; Security architecture. Technical Specifica-
tion (TS) 33.102. https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationld=2262 Version 16.0.0.

[5] 3GPP. 2020. 3G security; Security architecture. ~ Technical Specifica-
tion (TS) 33.105. https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationld=2264 Version 16.0.0.

[6] 3GPP. 2020. Security architecture and procedures for 5G System (5GS). Technical
Specification (TS) 33.501. https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationld=3169 Version 15.4.0.

[7] 3GPP. 2023. Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS);
Stage 3. Technical Standard (TS) 24.301. https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationld=1072

[8] Ijaz Ahmad, Tanesh Kumar, Madhusanka Liyanage, Jude Okwuibe, Mika Ylianttila,
and Andrei Gurtov. 2017. 5G Security: Analysis of Threats and Solutions. In
Proceedings of the IEEE Conf. on Standards for Communications and Networking.

https://www.rakwireless.com/en-us/5g
https://firecell.io/
https://magmacore.org/
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2262
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2262
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2264
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2264
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1072
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1072

=

]

[10

[11]

[12

[13

[14]

[15

[16]

(17

(18]

[19]

[20
[21]

[22

[23]

[24

(31

[32

[33]
[34

Ijaz Ahmad, Tanesh Kumar, Madhusanka Liyanage, Jude Okwuibe, Mika Ylianttila,
and Andrei Gurtov. 2018. Overview of 5G Security Challenges and Solutions.
IEEE Communications Standards Magazine 2, 1 (2018).

Ijaz Ahmad, Madhusanka Liyanage, Shahriar Shahabuddin, Mika Ylianttila, and
Andrei Gurtov. 2018. Design Principles for 5G Security. A Comprehensive Guide
to 5G Security (2018).

Mujtahid Akon, Tianchang Yang, Yilu Dong, and Syed Rafiul Hussain. 2023.
Formal Analysis of Access Control Mechanism of 5G Core Network. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS). ACM.
Amit Seal Ami, Nathan Cooper, Kaushal Kafle, Kevin Moran, Denys Poshyvanyk,
and Adwait Nadkarni. 2013. Why Crypto-Detectors Fail: A Systematic Evalua-
tion of Cryptographic Misuse Detection Techniques. In Proceedings of the IEEE
Symposium on Security and Privacy (SP).

Myrto Arapinis, Loretta Ilaria Mancini, Eike Ritter, and Mark Ryan. 2014. Pri-
vacy through Pseudonymity in Mobile Telephony Systems. In Proceedings of the
Network and Distributed Systems Security Symposium (NDSS).

George Argyros and Aggelos Kiayias. 2012. PRNG: Pwning Random Number
Generators. In Proceedings of BlackHat.

Elaine Barker. 2020. Guideline for Using Cryptographic Standards in the Federal
Government: Cryptographic Mechanisms. Technical Report SP 800-175B Rev. 1.
National Institute of Standards and Technology.

David Basin, Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, Ralf Sasse, and
Vincent Stettler. 2018. A Formal Analysis of 5G Authentication. In Proceedings of
the ACM Conference on Computer and Communications Security (CCS).
Anastasios N Bikos and Nicolas Sklavos. 2012. LTE/SAE Security Issues on 4G
Wireless Networks. IEEE Security & Privacy 11, 2 (2012).

Ravishankar Borgaonkar, Lucca Hirshi, Shinjo Park, Altaf Shaik, Andrew Martin,
and Jean-Pierre Seifert. 2017. New Adventures in Spying 3G & 4G Users: Locate,
Track, Monitor. In Proceedings of Blackhat.

Alexandre Braga, Ricardo Dahab, Nuno Antunes, Nuno Laranjeiro, and Marco
Vieira. 2017. Practical Evaluation of Static Analysis Tools for Cryptography:
Benchmarking Method and Case Study. In Proceedings of the IEEE International
Symposium on Software Reliability Engineering (ISSRE).

cplusplus. 2023. rand. https://cplusplus.com/reference/cstdlib/rand/.

Cas Cremers and Martin Dehnel-Wild. 2019. Component-based Formal Analysis
of 5G-AKA: Channel Assumptions and Session Confusion. In Proceedings of the
Network and Distributed Systems Security Symposium (NDSS).

Filippo Dolente, Rosario Giuseppe Garroppo, and Michele Pagano. 2024. A
Vulnerability Assessment of Open-Source Implementations of Fifth-Generation
Core Network Functions. Future Internet 16 (2024).

Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.
2013. An Empirical Study of Cryptographic Misuse in Android Applications. In
Proceedings of the ACM Conf. on Computer and Communications Security (CCS).
Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgartner, Bernd
Freisleben, and Matthew Smith. 2012. Why Eve and Mallory Love Android:
An Analysis of Android SSL (in) Security. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS). ACM.

FD.io. 2023. What is the Vector Packet Processor (VPP) — The Vector Packet
Processor v24.02 documentation. https://s3-docs.fd.io/vpp/24.02/

Open Networking Foundation. 2023. SD-Core. https://opennetworking.org/sd-
core/.

free5GC Project. 2023. free5GC. https://www.free5gc.org/.

GnuTLS. 2023. 5.13 Random Number Functions. https://gmplib.org/manual/
Integer-Random-Numbers.

Zvi Gutterman, Benny Pinkas, and Tzachy Reinman. 2006. Analysis of the Linux
Random Number Generator. In Proceedings of the IEEE Symposium on Security
and Privacy (SP).

Grant Hernandez, Marius Muench, Dominik Maier, Alyssa Milburn, Shinjo Park,
Tobias Scharnowski, Tyler Tucker, Patrick Traynor, and Kevin Butler. 2022.
FIRMWIRE: Transparent Dynamic Analysis for Cellular Baseband Firmware. In
Proceedings of the Network and Distributed Systems Security Symposium (NDSS).
Syed Rafiul Hussain, Mitziu Echeverria, Omar Chowdhury, Ninghui Li, and Elisa
Bertino. 2019. Privacy Attacks to the 4G and 5G Cellular Paging Protocols Using
Side Channel Information. In Proceedings of the Network and Distributed Systems
Security Symposium (NDSS).

Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowdhury, and
Elisa Bertino. 2019. 5GReasoner: A Property-Directed Security and Privacy
Analysis Framework for 5G Cellular Network Protocol. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS). ACM.

NextEPC Inc. 2019. NextEPC. https://nextepc.com/.

John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. 1998. Cryptanalytic
Attacks on Pseudorandom Number Generators. In International Workshop on Fast

[35

[36

[41

[42]

[43

[44]

[45

=
&

(47

[48

[49]

[50

v
—

(52

[53

[54

[55]

[56]

[57

[58

[59

[60

Software Encryption. Springer.

Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim. 2018. Touching the Un-
touchables: Dynamic Security Analysis of the LTE Control Plane. In Proceedings
of the IEEE Symposium on Security and Privacy (SP).

Stefan Kriiger, Johannes Spath, Karim Ali, Eric Bodden, and Mira Mezini. 2019.

CrySL: An Extensible Approach to Validating the Correct Usage of Cryptographic
Apis. IEEE Transactions on Software Engineering 47, 11 (2019).

Denis Foo Kune, John Koelndorfer, Nicholas Hopper, and Yongdae Kim. 2012. Lo-
cation Leaks on the GSM Air Interface. Proceedings of the Network and Distributed
Systems Security Symposium (NDSS) (2012).

Sukchan Lee. 2023. Open5GS. https://open5gs.org/.

Wenging Li, Shijie Jia, Limin Liu, Fangyu Zheng, Yuan Ma, and Jinggiang Lin.
2022. CryptoGo: Automatic Detection of Go Cryptographic API Misuses. In
Proceedings of the Annual Computer Security Applications Conference (ACSAC).
Junrong Liu, Yu Yu, Francois-Xavier Standaert, Zheng Guo, Dawu Gu, Wei Sun,
Yijie Ge, and Xinjun Xie. 2015. Small Tweaks Do Not Help: Differential Power
Analysis of Milenage Implementations in 3G/4G USIM Cards. In Proceedings of
the European Symposium on Research in Computer Security (ESORICS). Springer.
MITRE. 2023. CWE-295: Improper Certificate Validation. https://cwe.mitre.org/
data/definitions/295.html.

MITRE. 2023. CWE-297: Improper Validation of Certificate with Host Mismatch.
https://cwe.mitre.org/data/definitions/297. html.

OpenAirInterface.org. 2023. OpenAirlnterface | 5G Software Alliance for
Democratising Wireless Innovation. https://openairinterface.org/.
OpenAirInterface.org. 2023. OpenAirInterface Software Alliance. https://github.
com/openairinterface.

OWASP. 2023. Testing for Weak SSL TLS Ciphers Insufficient Transport Layer Pro-
tection. https://owasp.org/www-project-web-security-testing- guide/stable/4-
Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/01-
Testing_for_Weak_Transport_Layer_Security.

Yongsuk Park and Taejoon Park. 2007. A Survey of Security Threats on 4G
Networks. In IEEE Globecom workshops.

Luca Piccolboni, Giuseppe Di Guglielmo, Luca P Carloni, and Simha Sethumad-
havan. 2021. Crylogger: Detecting Crypto Misuses Dynamically. In Proceedings
of the IEEE Symposium on Security and Privacy (SP).

Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz,
Murat Kantarcioglu, and Danfeng Yao. 2019. Cryptoguard: High Precision Detec-
tion of Cryptographic Vulnerabilities in Massive-Sized Java Projects. In Proceed-
ings of the ACM Conference on Computer and Communications Security (CCS).

J. Rizzo and T. Duong. 2011. Browser Exploit Against SSL/TLS. https://
packetstormsecurity.com/files/105499/Browser-Exploit- Against-SSL-TLS.html.
David Rupprecht, Adrian Dabrowski, Thorsten Holz, Edgar Weippl, and Christina
Popper. 2018. On Security Research Towards Future Mobile Network Generations.
IEEE Communications Surveys & Tutorials 20 (2018).

David Rupprecht, Kai Jansen, and Christina Ppper. 2016. Putting {LTE } Security
Functions to the Test: A Framework to Evaluate Implementation Correctness. In
Proceedings of the USENIX Workshop on Offensive Technologies (WOOT).

David Rupprecht, Katharina Kohls, Thorsten Holz, and Christina Pépper. 2019.
Breaking LTE on layer two. In Proceedings of the IEEE Symposium on Security and
Privacy (SP).

David Rupprecht, Katharina Kohls, Thorsten Holz, and Christina Pépper. 2019.
Breaking LTE on Layer Two. In Proceedings of the IEEE Symposium on Security
and Privacy (SP).

Sanjeev Saharan and Jitender Kumar. 2017. Exploiting GSM Vulnerabilities: An
Experimental Setup And Procedure To Map TMSI And Mobile Number. Interna-
tional Journal of Advanced Research in Computer Science 8, 5 (2017).

Shao Shuai, Dong Guowei, Guo Tao, Yang Tianchang, and Shi Chenjie. 2014.
Modelling Analysis and Auto-Detection of Cryptographic Misuse in Android
Applications. In Proceedings of the IEEE International Conference on Dependable,
Autonomic and Secure Computing (DASC).

srsRAN Project. 2023. srsRAN Project - Open Source RAN. https://www.srsran.
com/.

Yanbin Sun, Zhihong Tian, Mohan Li, Chunsheng Zhu, and Nadra Guizani. 2020.
Automated Attack and Defense Framework Toward 5G Security. IEEE Network
34, 5 (2020).

Patrick Traynor, Patrick McDaniel, and Thomas La Porta. 2008. Security for
Telecommunications Networks. Vol. 40. Springer Science & Business Media.
VulBusters. 2023. Exploring Go’s math/rand. https://medium.com/@vulbsters/
exploring-gos-math-rand-b4ef0e841591

David Wagner, Bruce Schneier, and John Kelsey. 1997. Cryptanalysis of the cellular
message encryption algorithm. In Proceedings of the International Cryptology
Conference (CRYPTO). Springer.

https://s3-docs.fd.io/vpp/24.02/
https://opennetworking.org/sd-core/
https://opennetworking.org/sd-core/
https://www.free5gc.org/
https://gmplib.org/manual/Integer-Random-Numbers
https://gmplib.org/manual/Integer-Random-Numbers
https://nextepc.com/
https://open5gs.org/
https://cwe.mitre.org/data/definitions/295.html
https://cwe.mitre.org/data/definitions/295.html
https://cwe.mitre.org/data/definitions/297.html
https://openairinterface.org/
https://github.com/openairinterface
https://github.com/openairinterface
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/01-Testing_for_Weak_Transport_Layer_Security
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/01-Testing_for_Weak_Transport_Layer_Security
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/01-Testing_for_Weak_Transport_Layer_Security
https://packetstormsecurity.com/files/105499/Browser-Exploit-Against-SSL-TLS.html
https://packetstormsecurity.com/files/105499/Browser-Exploit-Against-SSL-TLS.html
https://www.srsran.com/
https://www.srsran.com/
https://medium.com/@vulbsters/exploring-gos-math-rand-b4ef0e841591
https://medium.com/@vulbsters/exploring-gos-math-rand-b4ef0e841591

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Vulnerabilities in Cellular Cryptography
	2.2 Need for Dataflow Analysis

	3 Rules
	3.1 Insecure Algorithms
	3.2 Insecure Use of Randomness
	3.3 Insecure TLS Configuration

	4 CellCrypt
	4.1 Database Extraction
	4.2 Sources, Sinks, and Barriers
	4.3 Encoding Rules
	4.4 Refining Results

	5 Results
	5.1 Dataset
	5.2 Data Characteristics
	5.3 TMSI Linkability Attack
	5.4 TLS Failures
	5.5 Additional Findings

	6 Related Work
	7 Conclusion
	References

