
Brittle Features of Device Authentication
Washington Garcia

w.garcia@ufl.edu
University of Florida

Gainesville, Florida, USA

Animesh Chhotaray
chho58@ufl.edu

University of Florida
Gainesville, Florida, USA

Joseph I. Choi
choijoseph007@ufl.edu
University of Florida

Gainesville, Florida, USA

Suman Kalyan Adari
sadari@ufl.edu

University of Florida
Gainesville, Florida, USA

Kevin R.B. Butler
butler@ufl.edu

University of Florida
Gainesville, Florida, USA

Somesh Jha
jha@cs.wisc.edu

University of Wisconsin-Madison
Madison, Wisconsin, USA

ABSTRACT

Authenticating a networked device relies on identifying its unique
characteristics. Recent device fingerprinting proposals demonstrate
that device activity, such as network traffic, can be used to extract
features which identify devices using machine learning (ML). How-
ever, there has been little work examining how adversarial machine
learning can compromise these schemes. In this work, we show
two efficient attacks against three ML-based device authentication
(MDA) systems. One of the attacks is an adaptation of an existing
gradient-estimation-based attack to the MDA setting; the second
uses a fuzzing-based approach. We find that the MDA systems use
brittle features for device identification and hence, can be reliably
fooled with only 30 to 80 failed authentication attempts. However,
selecting features that are robust against adversarial attack is chal-
lenging, as indicators such as information gain are not reflective
of the features that adversaries most profitably attack. We demon-
strate that it is possible to defend MDA systems which rely on
neural networks, and in the general case, offer targeted advice for
designing more robust MDA systems.

CCS CONCEPTS

• Security andprivacy→Authentication; •Computingmethod-

ologies→Machine learning approaches.

KEYWORDS

device fingerprinting, device authentication, adversarial machine
learning, traffic analysis

ACM Reference Format:

Washington Garcia, Animesh Chhotaray, Joseph I. Choi, Suman Kalyan
Adari, Kevin R.B. Butler, and Somesh Jha. 2021. Brittle Features of Device
Authentication. In Proceedings of the Eleventh ACM Conference on Data and
Application Security and Privacy (CODASPY ’21), April 26–28, 2021, Virtual
Event, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3422337.3447842

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CODASPY ’21, April 26–28, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8143-7/21/04. . . $15.00
https://doi.org/10.1145/3422337.3447842

1 INTRODUCTION

Authentication is a classically difficult systems security problem,
but is integral to the establishment of identity and ultimately trust
in computer networks. In the era of the Internet of Things, which
has seen an explosion in the number of wireless communication-
aware devices, the problem of device authentication has become
increasingly urgent. In these environments, it is advantageous to
identify devices without extra modifications to their storage or
communication requirements. Thus, methods adapted to leverage
characteristics of the devices have been a focus of recent research
(e.g., identifying a device based on the characteristics of its network
traffic alone [12]). To facilitate this goal, machine learning (ML) has
become a means of establishing a device’s identity [4, 11, 40].

In an ML-based device authentication (MDA) system, an underly-
ing ML model maps a set of device signatures to a set of credentials.
However, there has been little consideration to date for the robust-
ness of the underlying models in device authentication settings,
particularly against iteratively-crafted adversarial samples. Due to
different requirements and threat models, the device fingerprinting
literature contains many implementations and signature extraction
methods that span the hardware and software stack. Likewise, there
is not yet a unified standard for performing attestation of network
devices using signatures. Our goal is to investigate the feasibility
of model-based device fingerprinting as a medium for performing
the device authentication task.

The field of adversarial machine learning (AML) has uncovered
several milestone attacks against state-of-the-art ML models [18, 37,
38]. A limitation of these proposed attacks is the context in which
they are built; their explicit goal is breaking classification tasks,
rather than authentication tasks. There are two key differences:
1. Information returned from an authentication system is

limited. In authentication tasks, class-level information is limited,
and feedback from the model is essentially non-existent apart from
the final authentication decision. During authentication, a user may
attest by providing a credential-signature pair, but the authenti-
cation method’s response is always either 𝑌𝐸𝑆 or 𝑁𝑂 . This is a
much harder and more realistic case than assuming the system
will return annotated labels–artifacts that are typically available in
classification tasks [38].
2. Target information is secret and hidden. In prior ML attacks
against binary classification models, an adversary may perturb
the correctly-classified features of a known victim, and force it to
be mislabeled [13], or generate new samples based on an already
known set of victim samples [34]. However, in systems that use

https://doi.org/10.1145/3422337.3447842
https://doi.org/10.1145/3422337.3447842
https://doi.org/10.1145/3422337.3447842

physical properties of the target for authentication, the adversary
will not have access to the victim’s signatures. Hence, the adver-
sary is restricted to work with their own known signatures, which
are incorrectly classified by an MDA system, when coupled with
the victim’s credentials. Very recently, this task has seen notable
success in the biometric authentication setting, where model-based
biometric authentication was fooled using random inputs [49].

In this paper, we examine and empirically test three MDA sys-
tems enabled by device fingerprinting schemes, which were pub-
lished in the academic security literature. We develop an untargeted
exploratory attack against these MDA systems, bootstrapping a sim-
ple sample crafting process through techniques inspired by program
fuzzing. In addition, we adapt a complex zeroth-order optimization
(ZOO) attack by Chen et al. [6], denoted Zoo, to the device authenti-
cation context. Interestingly, we find that device authentication can
be easily fooled regardless of the attack complexity. We later use
explainable AI (XAI) feature attribution techniques (i.e., approxima-
tion of the decision boundaries) and Local Intrinsic Dimensionality
(LID) to investigate causes related to the adversarial subspace of
each model [29, 41]. Our formal framework, coupled with the post-
mortem analyses, enables new design considerations that target
three main areas of weakness in MDA systems: the signature gen-
eration algorithm (SigGen), the parameterization function (Train),
and authentication heuristics (Auth). We adapt the randomized
smoothing technique proposed by Cohen et al. [10] as a potential
mitigation for neural network-based MDA systems, and find that
it offers an encouraging direction for preventing masquerading
attacks against potential MDA systems.

Our specific contributions follow:

(1) We develop the first empirical evaluation of device authen-
tication methods in the context of semantically accurate,
restricted query AML-style attacks and present a formal
setting for them.

(2) We develop a comprehensive feature attribution analysis of
successful adversarial samples from each attack, by looking
at the interaction between subsets of device features and
their influence on attack success. Particularly, we find that
at most five features are needed for successful adversaries,
even in the random fuzzing attack.

(3) We show that previous intuitions and assumptions in the
model-based device fingerprinting literature do not align
with the capabilities, goals, and postmortem artifacts of a
restrictive query AML adversary. Notably, an authenticator’s
false positive rate can be degraded to between 24% and 67%,
depending on the fingerprinting domain and query budget.

(4) Given the three proposed areas of weakness, we improve
an existing MDA system by modifying two of them: Train
and Auth. Likewise, we empirically illustrate that such an
approach is viable for improving the false positive rate of
the MDA system to just 1%.

2 BACKGROUND

We provide a brief overview of the enabling techniques behind
device authentication, namely device fingerprinting, and adversarial
machine learning.

2.1 Device Fingerprinting

Device authentication can be considered a general term for attesting
a computational device’s identity against some known signature.
Device authentication is primarily enabled by device fingerprinting
techniques. The exact method of extracting a device’s fingerprint
can vary, but the common goal is to create unique, attestable sig-
natures that can be stored in a database and later queried for com-
parison. The most direct method of creating a device fingerprint is
to leverage the physical manufacturing imperfections exhibited by
hardware (i.e., process variation) to distinguish between devices.
Bates et al. used USB enumerations between the USB controller
hardware and the device operating system to accurately distinguish
between devices of same make and model [4]. For wireless devices,
techniques have leveraged process variation to accurately identify
wireless sensor nodes [12], commodity devices [25, 28, 40], and
radio network transmitters [32].

In terms of applications, device fingerprinting has become an
enabling technology in the secure Internet of Things (IoT) literature.
Although useful for device type identification and network-level
access control [31], it has also enabled services such as quarantin-
ing [33] and watermarking [17]. Unfortunately, these applications
are undermined if an adversary can reliably fool the underlying
fingerprinting technique.

2.2 Adversarial Machine Learning

Most attacks against device fingerprinting tasks have been framed
in terms of traditional, network-based adversaries, as categorized by
Mamdouh, Elrukhsi, and Khattab [30]. Adversarial machine learn-
ing has shown that models such as artificial neural networks [46]
and tree-based classifiers [27] are vulnerable to straightforward
attacks.

For the authentication task, the adversary’s goal is similar to
mounting an attack within a limited query model, a setting that
has been investigated by Dang et al. under the binary classification
task [13]. However, attacks against authentication are particularly
challenging given the lack of labeled information returned; this
setting is analogous to the restricted query model where no coun-
terexample is provided, as discussed by Angluin [2]. Several prior
works have investigated techniques for fooling biometric authen-
tication using the top-𝑘 scores from the system [43], or relying
on complete knowledge about the victim [34]. Although similar,
these works have not considered the restricted-query binary decision
setting. This setting is much more realistic, as the adversary has
no knowledge about the victim, and must interact with the authen-
tication system to know if they are successful. A tangential result
in fooling authentication systems is the work by Hitaj et al. [23],
which uses generativemodels to guess string-based passwords. Con-
trary to their work, our method targets the signatures emitted by
hardware, and leverages design faults of model-based fingerprint-
ing techniques, rather than the low entropy of human-generated
passwords.

The most similar work to ours is by Zhao et al. [49], who attack
biometric authentication systems in the binary decision setting
using randomly generated inputs. In contrast to their approach, our
analysis is performed in the device authentication setting, using
a plausible fuzzing-based attack and a gradient estimation attack.

For comparison, we discuss the result of random inputs on MDA
systems and visualize the drawbacks of such an approach in Sec-
tion 6.1.2 and Section 7. In addition, our analysis is grounded in
approximations of the model’s decision boundary (XAI) and the
model’s adversarial subspace (LID). Notably, LID helps us to quan-
tify the acceptance region effect defined by Zhao et al. [49].

3 SECURITY MODEL OF AN MDA SYSTEM

In a non-adversarial setting, an MDA system involves several prin-
cipals: an authentication server and multiple (honest) client devices.
An MDA system operates in two phases.

(1) Device registration. Each device 𝑑 is assumed to possess
a unique device identification string id𝑑 . Also, there exists
some pre-defined mechanism that an authentication server
can use to collect a set 𝑌 of data from device 𝑑 and generate
a signature sig𝑑 , a string encoding of 𝑌 .
During device registration, the authentication server uses
its device interface to collect a set 𝑇 of (id, sig) pairs for
all devices. We refer to the sig𝑑 that is used during device
registration as the representative signature of the device 𝑑 .
The set𝑇 constitutes the training data for the underlying ML
model of the MDA system. The registration phase terminates
when the training (testing and validation) of the ML model
stops.

(2) Device authentication. We assume that only devices that
are registered with the authentication server can query it
for authentication. In the device authentication phase, the
server uses the pre-defined mechanism to collect a (poten-
tially different) set of data from the querying device 𝑑 , and
generates a new signature sig∗

𝑑
. The trained ML model pro-

cesses the (id𝑑 , sig∗
𝑑
) pair to output a prediction vector. Given

the prediction vector and the (id𝑑 , sig∗
𝑑
) pair as inputs, the

MDA system uses some deterministic checks against certain
threshold values to accept/reject the device.

Let us explain the working of an MDA system in a wireless
network setting. Here, the network hosts (e.g., computers) act as
clients to be authenticated, which can communicate directly with a
dedicated authentication server. The clients wish to use resources
on the network. As a preliminary challenge step, a host sends traffic
over the wireless network to the dedicated server. The server uses
this traffic to detect intrinsic timing data. It can process this timing
data to generate a succinct fingerprint of the wireless network host.
Radhakrishnan et al. show that this method is feasible using inter-
arrival times of network packets, which enable identification and
authentication of network hosts [40]. During device registration, an
authentication server collects representative (host id, timing data)
pairs of each host. It uses the collected data to train an underlying
ML model. When a registered network device comes online again
after some time, it generates a new set of traffic as part of the
challenge, which emits a new signature. The trained ML model
processes the new timing signature and outputs a prediction. The
MDA system processes the prediction, along with the claimed host
id, using a hand-crafted heuristic. It returns 𝑌𝐸𝑆 if it is a match,
and 𝑁𝑂 otherwise.

3.1 Formalizing an MDA system

Fix integer 𝑡 denoting the maximum number of times that any
device interacts with the authentication server. Fix sets I and S to
denote the set of all (string encodings of) valid device identifiers,
and the set of all (string encodings of) valid signatures, respectively,
for any given MDA system. Let 𝑛 = |I | denote the number of
elements in set I. Fix C as the set of functions that encode the
mapping I × S → R𝑛 . We define an MDA system 𝐴𝑆 over sets
(I,S, C) as a tuple of algorithms (SigGen, Train,Auth) with the
following syntax.
SigGen: The randomized signature generation algorithm SigGen :
I → S𝑡 takes a device-identification string 𝑖𝑑 ∈ I and returns
a list 𝐿 = (sig1, sig2, . . . , sig𝑡) of device signatures, where ∀𝑖 ∈
[1, 𝑡], sig𝑖 ∈ S. We assume that 𝐿[1] = sig1 is the representative
signature of the device and is used by 𝐴𝑆 for registration; when
𝑗 > 1, 𝐿[𝑗] is the signature that will be used by 𝐴𝑆 to authenticate
the device in its 𝑗-th attempt.
Train: The randomized model training algorithm Train : (I ×
S)𝑛 → C takes a tuple of (id, sig) pairs of training data and returns
a trained model 𝐶 ∈ C. The model 𝐶 takes (id, sig) as inputs and
returns a prediction vector 𝑃 , where each element 𝑃îd in 𝑃 denotes
the prediction/confidence value that id = îd. Since an MDA system
registers all devices in the registration phase, we insist Train to
take 𝑛 tuples as input.
Auth: The deterministic device authentication algorithm Auth : I×
S×C → {0, 1} takes a (id, sig) pair and a trained model𝐶 as inputs
and returns a binary decision: 0 indicating “fail” and 1 indicating
“pass.” The authentication server uses Auth to authenticate any
device (id, sig) using𝐶 and certain decision heuristics (that are part
of the description of Auth). Note that𝐶 will always be a fixed input
to the Auth algorithm.

ML models seldom have 100% accuracy. Therefore, we define 𝛿-
correctness of an MDA system (as opposed to absolute correctness).
In words, a 𝛿-correct 𝐴𝑆 is one whose Auth algorithm outputs one
for valid (id, sig) pair with probability at least (1 − 𝛿). Natural
examples1 of 𝐴𝑆 are (id, sig) pairs (where sig ∉ SigGen(id)) for
which Auth outputs one with probability at least (1−𝛿). In practice,
𝛿-correctness can be described using the standard definitions of
accuracy, precision, and recall.

3.2 Threat model

In the adversarial setting, an adversary knows the underlying
signature-generation algorithm of an MDA system 𝐴𝑆 and gets
only decision-level access to Auth(·, ·,𝐶), where𝐶 denotes a trained
model. It is given no other information. Such an adversary is re-
ferred to as an untargeted exploratory (UE) adversary by Biggio
et al. [5]. Informally, the security goal of 𝐴𝑆 is to prevent UE ad-
versaries 𝐴 from fooling 𝐴𝑆 by making Auth(·, ·,𝐶) output one for
some id of an honest user, and some arbitrary signature that the
adversary generates (from its own signature).

A standard assumption is that an adversary owns one of the
devices that is registered with the (trusted) authentication server.
Let id𝐴 be the device identifier and 𝐿𝐴 = SigGen(id𝐴) be the list
of signatures of the device that 𝐴 owns. Given only decision-level

1Hendrycks et al. [22] refer to such inputs as natural adversarial examples.

SampleGen

VictimScan

AL

…

Auth(id,)

YES
Found

query id I \ {id }ϵ A

sig 1
A

sig 2
A

sig n
A

AD

…

sig 1
A

sig 2
A

sig σA

All NO

NO / YES

~

~

~

sigi≤σ
A

~
sigi≤σ

A
~ sig*

Figure 1: Visual description of the attack framework. Ad-

versary 𝐴 uses SampleGen to generate (multiple) adversar-

ial samples s̃ig𝑖≤𝜎𝐴 ∈ S and store them in a set D𝐴. It uses

VictimScan to scan and select a victim device (id), and then

pairs the device with a signature (sig∗) fromD𝐴 to fool Auth.

access to Auth, we say 𝐴 breaks the security of 𝐴𝑆 or fools 𝐴𝑆 if
and only if 𝐴 outputs an (îd, ˆsig) pair and Auth(îd, ˆsig) returns one,
where îd ∈ I \ {id𝐴} and ˆsig ∈ S. In terms of the vocabulary from
recent work [43], when𝐴 fools𝐴𝑆 , it is said to perform a successful
dodging attack against 𝐴𝑆 . The robustness of an 𝐴𝑆 against an UE
adversary 𝐴 is defined as the probability with which 𝐴 fails to fool
𝐴𝑆 . The failure rate of 𝐴𝑆 can be succinctly described in terms of
the false acceptance rate, or false positive rate.

4 FOOLING MDA SYSTEMS

Our central hypothesis is as follows: MDA systems can be reliably
fooled due to the mis-characterization of adversarial capabilities.
From a design standpoint, MDA systems should have built-in robust-
ness against UE adversaries which can provide perturbed samples
to the underlying fingerprinting technique. As noted previously
in Section 2, recent work in device fingerprinting has not consid-
ered an adversarial machine learning style of attack, which can
iteratively modify a sample based on the system’s feedback.2 We
describe a framework for such attacks in the following text.

4.1 Attack Framework

Let id𝐴 denote the identifier of the device that the adversary con-
trols. Let 𝐿𝐴 = SigGen(id𝐴), and Perturb be some randomized proce-
dure for generating a perturbed signature from an input signature.
At a very high level, untargeted-exploratory attacks comprise two
algorithms: SampleGen and VictimScan. The SampleGen algorithm
takes as input the list 𝐿𝐴 of device signatures and returns a set
of adversarial samples D𝐴 := {s̃ig𝑖𝐴 : 𝑖 ∈ [0, 𝜎], s̃ig𝑖𝐴 ∈ S}. The
VictimScan algorithm is responsible for scanning the set of known
device identifiers to find an (id𝑣, sig∗) pair that fools 𝐴𝑆 . The be-
havior of VictimScan can vary based on the implementation, as it
determines how potential victims are sampled from the known set
of device identifiers. The hyperparameter 𝜎 acts as an upper bound
on the number of attempts. Here, sig∗ is sampled from D𝐴; id𝑣 is
sampled from I \ {id𝐴}. Both algorithms get decision-level access

2Due to the need for feedback, our attack framework does not directly translate to
device fingerprinting systems deployed only for reconnaissance or risk assessment
purposes. The analysis of these settings is an interesting direction for future work.

Algorithm 1 QuickFuzz, our fuzzing-based implementation of
SampleGen for adversarial sample-crafting.
Input: 𝐿𝐴 , a set of initial samples owned by𝐴. 𝜎 , an arbitrary upper
bound on number of adversarial samples to create, and algorithm
Auth, an interface available for querying 𝐴𝑆 .
Output: Set of adversarial samples, D𝐴 .
D𝐴 ← ∅
𝑅 ← YES
𝜐 ← 0 ▷ (Distortion parameter)
while | D𝐴 |< 𝜎 do

sig← random_sample(𝐿𝐴)
▷ (Loop until we meet sufficient distortion for a 𝑁𝑂 result.)
while 𝑅 = YES do

increment(𝜐)
s̃ig𝑖𝐴 ← Perturb(sig, 𝜐)
𝑅 ← Auth(id𝐴, s̃ig𝑖𝐴)

end while

append(D𝐴, s̃ig𝑖𝐴)
end while

return D𝐴

to Auth. See Figure 1 for a visual description of the described attack
framework.

In this work, we explore two instances of SampleGen: a new al-
gorithm,QuickFuzz and Zeroth-Order Optimization (Zoo) [6]. We
keep VictimScan fixed for simplicity, and describe it in the context
of attack scenarios in Section 5.2. Our selection is motivated by
the need for two distinct sample generators that can empirically
characterize 𝐴 within our framework.

4.1.1 QuickFuzz. We describeQuickFuzz in detail in Algorithm 1.
The intuition behind the design ofQuickFuzz is to perform a dis-
crete, uniform random walk through the signature space, using
the provided input signature as a starting point. This approach is
inspired by program-fuzzing attacks in the systems literature. In
the outer loop of Algorithm 1, SampleGen generates several adver-
sarial samples using the adversary’s own list of signatures as a
seed; in the inner loop, it invokes a generic Perturb subroutine that
can be tuned for specific fingerprinting domains. The effective goal
of the inner loop is to reach a 𝑁𝑂 result, which signals that the
adversary has crossed their own decision boundary, and potentially
entered another user’s decision space. Thus QuickFuzz assumes
the MDA system acts as a one-vs-rest classifier internally. In our
implementation, Perturb offsets a small, random subset of attributes
in sig, each by an amount 𝛿 that follows a uniform distribution, i.e.,
𝛿 ∼ U(𝑎, 𝑏) for lower bound 𝑎 and upper bound 𝑏. In practice, 𝑏
is an evaluation of 𝑓 (𝜐), an upper bound function controlled by
parameter 𝜐 in Algorithm 1. In each iteration of the inner loop, the
upper bound increases by a function of 𝜐, thus, acting as a search
step-size parameter. The step-size is a trade-off between granularity
of the search through signature space and number of queries made
to Auth. For any attribute value 𝑥𝑖 ∈ sig𝐴 of the associated pair
(id𝐴, sig𝐴), the perturbed attribute value 𝑥𝑖 + 𝛿 is clipped so that
the resulting pair (id𝐴, s̃ig𝐴) is still in the domain of 𝐶 .

In practice, 𝑎 and 𝑓 (𝜐) are initiated by experimenting with the
adversary’s own signatures, since the adversary simply notes how
many queries it takes to achieve a 𝑁𝑂 result. The function 𝑓 (𝜐)
can be defined separately for each fingerprinting domain, as each
may rely on different ranges of feature attribute values. These are
provided in subsequent sections.

4.1.2 Zoo. Given only query access to a function, Zeroth Order
Optimization (ZOO) is a method for performing optimization of
that function [35]. Recently, Chen et al. [7] demonstrated attacks
on ML models using ZOO. Unlike transfer-based attacks which
approximate the victim model with a separate substitute model, a
ZOO attack approximates the victim model’s gradient directions
through a series of specially-crafted queries. Most zeroth-order
attacks can leverage probabilities returned from the model, which
are known as score-level attacks. HopSkipJumpAttack [6], which is
the variant we use in our experiments, only requires the top-1 label
prediction from the model to be successful. This variant of ZOO
attack is known as a decision-level attack, since it only requires the
model decision to approximate the best gradient direction. Thus,
it is compatible with our hard-label authentication threat model.
Specifically, we leverage the untargeted version presented by Chen
et al. to act as a walk through the signature space, guided by the ap-
proximated gradient information. We denote the HopSkipJumpAt-
tack in our discussion as Zoo. We use the Cleverhans adversarial
machine learning library [36] as the reference implementation of
HopSkipJumpAttack. This implementation was originally for image
classification adversaries; we modify it to operate over the domain
of Auth instead.

In our experiments, for simplicity, VictimScan will select the vic-
tim devices in a deterministic fashion. With the default Cleverhans
hyperparameters, Zoo requires several thousand queries to find
𝑌𝐸𝑆 samples. Likewise, it is necessary to empirically tune the hy-
perparameters over many queries. Due to the complexity of Zoo
and different authentication system characteristics, it took between
500 to 3000 queries to initialize hyperparameters that made Zoo
competitive. This is a downside of using gradient estimation tech-
niques for the authentication setting. We do not count these queries
in later tallies in order to make the comparison with QuickFuzz
consistent.

4.2 Metrics

We define two metrics to help us explain the effectiveness of the
QuickFuzz and Zoo attacks against an MDA system that is defined
over sets (I,S, C).

4.2.1 False-positive rate. First let us define a run as a process where
each user in the system attempts to attack every other user, one user
at a time. We define the false-positive rate 𝛼 of a run as 𝛼 = 𝑟

𝑛2−𝑛 ,
where 𝑟 ≤ (𝑛2−𝑛), denotes the number of successful attacks across
all attacks in the run. Intuitively, this is equivalent to taking the
average of an 𝑛 × 𝑛 adversary-victim Boolean matrix (1 denotes
successful attack, and 0 for failure), but ignoring the diagonal values.
In our experiments, we average 𝛼 over three runs. In each run, we
swap a (fresh) victim’s device with the adversary’s device and run
the attack. This effectively gives us the average efficiency of an
attack.

4.2.2 Distortion. Fix some sig𝑗 ∈ S, and some randomized Perturb
procedure. Let sig∗

𝑗
= Perturb(sig𝑗). We define the distortion 𝜖 𝑗 of

the 𝑗-th sample pair (sig𝑗 , sig∗
𝑗
) as 𝜖 𝑗 = (| |sig𝑗 − sig∗

𝑗
| |2)/| |sig𝑗 | |2.

We also define the average distortion 𝜖 across multiple (say, 𝑝) runs
of Perturb as 𝜖 = (∑𝑝

𝑖=1 𝜖 𝑗)/𝑝 .

5 SETUP

Our experiments are motivated by the following two research ques-
tions related to the central hypothesis:

(1) What properties of anMDA system𝐴𝑆 are “exploitable” by an
adversary in our attack framework? In particular, do SigGen,
Train and Auth — algorithms that define 𝐴𝑆 — expose attack
surfaces that an adversary can access?

(2) To what extent are these properties exploitable? For example,
how many queries suffice to fool 𝐴𝑆?

We answer these two questions by attacking three systems: USB-
Fingerprinting [4], GTID [40], and WDTF [11]. Each of these three
systems provide fingerprinting facilities that can form the founda-
tion of an MDA system. Notably, every system has been recently
published at academic security venues. We selected these three
systems as: (a) each tackles a significantly different fingerprinting
domain, (b) the description of each system was clearly specified,
and (c) raw data was available for all three systems, in contrast to
deployed authentication systems which use inaccessible models
and data.

5.1 Target MDA systems

We explain each MDA system by describing its three component
algorithms: SigGen, Train andAuth. Specific implementation details
are available in Section A.1 of the Appendix.

5.1.1 USB-Fingerprinting [4]. In this MDA system (denoted USB-F),
SigGen uses specific USB-enumeration timings of a computer under
test to generate device signatures. The Train algorithm trains the
underlying MLmodel (Random Forest) in a target vs. outlier fashion.
It creates a new model for every device that registers on the system,
and balances outlier classes with respect to every possible device in
the system. Train also performs over-sampling (with replacement)
until the number of target samples matches the number of outlier
samples. The Auth algorithm uses majority voting over multiple
signatures to make a pass/fail decision.

5.1.2 GTID [40]. In this MDA system, SigGen uses inter-arrival
times of network (TCP) packets to generate device signatures, for
both device authentication and device-type authentication. The
Train algorithm uses Artificial Neural Networks (ANNs) as the
underlying ML model. It uses an ensemble approach by training
one ANN for device identification, and another ANN for device-
type identification. Although tested as a fingerprinting technique,
GTID is advertised by the authors as a potential authentication
system [40]. Thus, we defined Auth as follows. A device passes
authentication only if the GTID heuristics (Algorithm 1 from Rad-
hakrishnan et al. [40]) output a predicted device ID and device type
that matches the user’s claimed device id and device type.

5.1.3 WDTF [11]. In this MDA system, SigGen uses probe-request
traffic of IEEE 802.11 wireless devices to generate device signatures.

System 𝛿 ∼ U(𝑎, 𝑓 (𝜐))
GTID 𝛿 ∼ U(0, 2 × (𝜐 + 1))
USB-F 𝛿 ∼ U(10−25, 10−20+𝜐)
WDTF 𝛿 ∼ U(10−19, 10−17+𝜐)

Table 1: Lower and upper bounds of the uniform distribution

used byQuickFuzz’s Perturb implementation, as described

in Section 4.1.1.

The authors use a customized statistical model based on some dis-
tance function 𝜅 (that is parameterized using the representative
device signature of all devices) to instantiate Train. The Auth al-
gorithm uses 𝜅 to compute a list of distance-values between the
signature of the device under test and the representative signature
of all registered devices. If none of the distance values are less
than some pre-determined threshold value, then Auth returns 0;
otherwise, it returns 1.

We provide the function 𝑓 (𝜐) used in each QuickFuzz attack of
the three systems in Table 1. These values were found empirically
with knowledge of 𝑆𝑢𝑝 (SigGen), using between 5 to 20 queries to
find a reasonable step-size before achieving 𝑁𝑂 from Auth. These
queries do not have to be performed by the adversary in a single
session, so they are not included in later query tallies.

5.2 Attack Scenarios

Each of the described systems are evaluated under different attack
scenarios — described using SampleGen andVictimScan— to answer
our core research questions. Each scenario uses the metrics from
Section 4.2. Note that SampleGen gets 𝐿𝐴 = SigGen(id𝐴) as input
and returns the adversarial-sample setD𝐴 . Regardless of the attack
scenario, we always measure against the same unseen test set to
give a fair comparison. In addition to our metrics, we rely on the
notion of accuracy and recall defined by the scikit-learn library,3
and calculate them in attack scenarios by including any found
adversarial samples (with replacement) into the test set during
evaluation.

5.2.1 Baseline. In the baseline case, SampleGen initializesD𝐴 with
all signatures sig𝐴 in the list 𝐿𝐴 . Likewise, Perturb is simply an
identity function. The VictimScan fixes an arbitrary setV ⊆ I of
victim devices, and queries Auth by sampling (with replacement) id
fromV and sig from D𝐴 . In our evaluations, the baseline case will
be used to establish the lower bound on the system’s robustness.

5.2.2 Random. Let min(𝐿𝐴),max(𝐿𝐴) ∈ R denote the minimum
andmaximum signature values in𝐿𝐴 . Let𝑚 be some positive integer.
In the random test case, SampleGen samples𝑚 signatures uniformly
at random from the range min(𝐿𝐴), max(𝐿𝐴) and stores them in
set D𝐴 . The VictimScan algorithm is same as that of the baseline
case. Although random samples may fool the underlying model,
they can be easily detected by the MDA system using adversarial
training [46]. As we show in later sections, the random strategy is
also not viable for maximizing 𝛼 .

3https://scikit-learn.org/stable/modules/model_evaluation.html

5.2.3 Greedy and exploratory. In both the greedy and exploratory
cases: the SampleGen algorithm can be instantiated with either
QuickFuzz or Zoo; the VictimScan algorithm is the same as that of
the baseline case. The difference between greedy and exploratory
cases is that in the latter, the number of queries that the adversary
can make to Auth is bounded by a pre-determined threshold value
that is less than the total number 𝑁 of possible queries. (𝑁 =

|D| × |I|). On the other hand, in the greedy case, the adversary is
allowed to make 𝑁 queries to Auth. Moreover, in the exploratory
case, we are interested in computing the number of victim devices
that the adversary can masquerade. Hence, the adversary tries other
victim devices until it exhausts its query budget. That means, even
when its first query to Auth is successful, it continues attempting to
masquerade other victim devices. In the greedy case, the adversary
stops as soon as Auth returns one.

5.3 Attack post-mortem

In this section, we discuss three metrics that will be useful to carry
out a post-mortem analysis of any attack that is captured by our
attack framework. We allow the post-mortem analyst to have full
access to all three algorithms — SigGen, Train, and Auth — that
define an MDA system.

5.3.1 Local Intrinsic Dimensionality — exploiting expected dimen-

sionality of SigGen. The authors of each fingerprinting system apply
expert knowledge of their respective domains to design classifiers
that can overcome the variance of emitted signatures. However,
they do not consider the curse of dimensionality, which states
that as dimensionality of a data set increases, the effectiveness of
distance-based measurements (generally) decreases. The intrinsic
dimensionality (ID) of a data set quantifies the relationship between
the dimensionality of a data set and the effect on distance-based
measurements [24]. This notion extends to the local continuous
intrinsic dimension (LCID) around a point in the set using nearest-
neighbor distances. An approximation of the LCID value is known
as the Local Intrinsic Dimensionality (LID). Recently, Amsaleg et
al. showed that LID values can be used to explain successful adver-
sarial attacks against ML models [1]. More precisely, they showed
that as LID increases, the amount of perturbation needed to move
into an adversarial region decreases. In our post-mortem analysis,
we study the unperturbed signature samples and the adversarial
samples that are generated using different instances (QuickFuzz
and Zoo) of SigGen. At a high level, LID quantifies the adversarial
subspace within each model. This is analogous to the acceptance
region effect showcased by Zhao et al. in biometric authentication
systems [49].

5.3.2 Feature Attribution — exploiting attack surface of Train. Given
the heterogeneity of the underlying ML models that the MDA sys-
tems use, we must abstract away much of the model-specific behav-
ior already covered in the literature [18, 27, 46]. Although the MDA
systems seem incomparable on the surface, they share the common
assumption that devices are unique due to hardware-manufacturing
imperfections. These imperfections are thought to be captured by
the signature-generation algorithm, SigGen.

Our analysis of features of the (id, sig) pairs is enabled by recent
work in the Explainable AI (XAI) literature [15, 20, 41]. The main

https://scikit-learn.org/stable/modules/model_evaluation.html

advantage of leveraging XAI is homogenizing the discussion be-
tween heterogeneous methods and data, by not biasing analysis
towards any particular model architecture’s “naive” explainability
(i.e., decision trees and hand-crafted heuristics). This motivates
our use of Local Interpretable Model-agnostic Explanations (LIME),
an XAI technique proposed by Ribeiro, Singh, and Guestrin [41].
LIME is a good match for our setting as: (a) it is model agnostic
(only requires score-level access to the trained model) and (b) it can
generate explanations on a per-adversarial sample basis.

Given an ML model, LIME generates a linear approximation of
the model and allows computation of attribution scores for each
feature in the original model. In the MDA setting, we use the adver-
sarial signatures – generated by QuickFuzz and Zoo – as inputs
to LIME to get a linear approximation of the trained MDA system’s
model (i.e., the output of Train). Based on the attribution scores
that LIME outputs, we analyze the features that make an MDA
system susceptible to AML-style attacks. It is worth noting that
recent works have attempted to subvert the explanation ability of
XAI methods, namely back-propagation-based interpreters [14, 48]
and LIME [44]. In our setting, the post-mortem analysis uses LIME
honestly.

6 RESULTS

We organize our discussion using the research questions posed in
Section 5 as a road map.

6.1 Attack Effectiveness

We examine the effect of SampleGen instantiations combined with
the defined strategies.

6.1.1 Performance Impact. In Tables 2, 3, and 4, we compare against
the published results, our baseline, and attack scenarios for USB-F,
GTID, and WDTF, respectively. For USB-F in Table 2, we find that
our implementation exceeds the published results in the regular
device identification scenario described by Bates et al. [4]. When un-
der the Random attack described in Section 5.2.2, the system admits
no adversaries (89% accuracy, 0% recall). However, the accuracy and
recall diminish reliably as any given instance of 𝐴 expands their
search. A greedy adversary manages to reduce accuracy down to
80% using QuickFuzz, lower than the 93% with Zoo. However, as
the query budget is relaxed, Zoo ultimately overtakesQuickFuzz
in terms of accuracy. In the worst case, the 500-query adversary
with Zoo will reduce accuracy to 59% and recall to 52%. This con-
trasts with the case of GTID in Table 3, asQuickFuzz is generally
more successful regardless of query budget. We note that our im-
plementation of GTID had very close performance to the published
result of 99% accuracy, with only some false negatives (83% recall
versus published 94% recall). We observed that during successful
attacks, the device id ANN was sufficiently confident in adversarial
samples to bypass the UNKNOWN path of Algorithm 1 from Rad-
hakrishnan et al. [40]. On the surface, this appears to reflect similar
vulnerabilities in multi-modal biometric authentication [26, 42]. Es-
sentially, the adversary instance 𝐴 can exploit failure modes of the
Auth algorithm within the GTID MDA system. Interestingly, Zoo is
more successful in all adversarial cases of WDTF in Table 4. In fact,
accuracy for WDTF fell to 25%, accompanied by a recall score of
0% in the worst case. Even the greedy adversary case is successful

Accuracy Recall
Bates et al. [4] 94-99% -

QuickFuzz ZOO
Accuracy Recall Accuracy Recall

Our Baseline 100%±0% 100%±0% 100%±0% 100%±0%
Random 89%±0% 0%±0% 89%±0% 0%±0%
Greedy 𝐴 80%±2% 0%±0% 93%±2% 56%±9%

Exp. 𝐴, 𝑝 = 100 80%±2% 0%±0% 92%±2% 52%±10%
Exp. 𝐴, 𝑝 = 300 70%±2% 0%±0% 63%±3% 52%±19%
Exp. 𝐴, 𝑝 = 500 68%±4% 0%±0% 59%±2% 52%±14%

Table 2: Performance comparison of USB-F scenarios. Mea-

surements are averaged over three runs.

Accuracy Recall
Radhakrishnan et al. [40] 99% 94%

QuickFuzz ZOO
Accuracy Recall Accuracy Recall

Our Baseline 98%±1% 83%±7% 98%±1% 83%±7%
Random 87%±0% 7%±0% 87%±0% 7%±0%
Greedy 𝐴 86%±0% 0%±0% 90%±1% 0%±0%

Exp. 𝐴, 𝑝 = 100 82%±1% 0%±0% 93%±0% 0%±0%
Exp. 𝐴, 𝑝 = 300 71%±1% 0%±0% 89%±0% 0%±0%
Exp. 𝐴, 𝑝 = 500 70%±2% 0%±0% 88%±0% 0%±0%

Table 3: Performance comparison of GTID scenarios. Mea-

surements are averaged over three runs.

QuickFuzz ZOO
Accuracy Recall Accuracy Recall

Our Baseline 100%±0% 100%±0% 100%±0% 100%±0%
Random 77%±3% 83%±12% 77%±3% 83%±12%
Greedy 𝐴 69%±0% 0%±0% 56%±0% 0%±0%

Exp. 𝐴, 𝑝 = 100 67%±6% 0%±0% 56%±0% 0%±0%
Exp. 𝐴, 𝑝 = 300 62%±0% 0%±0% 29%±6% 0%±0%
Exp. 𝐴, 𝑝 = 500 62%±0% 0%±0% 25%±0% 0%±0%

Table 4: Performance comparison of WDTF scenarios. Mea-

surements are averaged over three runs.

against WDTF, with an accuracy of 69%. Despite the three MDA
systems relying on different pattern recognition techniques, each
was susceptible to the tested SampleGen instances.

6.1.2 Attack Distribution &Queries. We delve further by examin-
ing the spread of damage to the MDA systems when under attack.
This is visualized for each system in Figures 2, 3, and 4. The ac-
cess matrices allow us to make high level observations about the
SampleGen instances. The top and bottom rows of the access ma-
trices correspond to theQuickFuzz and Zoo SampleGen instances,
respectively. Each access matrix represents the average over three
random seeds of running an attack scenario, where each adversary

0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6
7
8

A
dv

er
sa

ry
,A

i

Baseline

0 1 2 3 4 5 6 7 8

Random

0 1 2 3 4 5 6 7 8

Greedy A

0 1 2 3 4 5 6 7 8

Exploratory A

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

q̄ = 0±0
α = 0%

q̄ = 0±0
α = 0%

q̄ = 74±37
α = 10%

q̄ = 100±0
α = 10%

q̄ = 300±0
α = 22%

q̄ = 500±0
α = 24%

0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6
7
8

A
dv

er
sa

ry
,A

i

Baseline

0 1 2 3 4 5 6 7 8

Random

0 1 2 3 4 5 6 7 8

Greedy A

0 1 2 3 4 5 6 7 8

Exploratory A

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0% 33% 66% 100%

q̄ = 0±0
α = 0%

q̄ = 0±0
α = 0%

q̄ = 81±1
α = 3%

q̄ = 100±0
α = 3%

q̄ = 300±0
α = 36%

q̄ = 500±0
α = 40%

Figure 2: Accessmatrices for USB-F users, averaged over three

random seeds forQuickFuzz (top) and Zoo (bottom).

instance with identifier id𝐴 occupies a row, and each column repre-
sents attempts on victim id𝑣 . Color intensity corresponds to success
rate.

Notably, some victims tend to be more susceptible than others,
and likewise, some adversaries tend to be stronger than others. This
behavior differs depending on the exact attack used. For instance,
QuickFuzz on USB-F in Figure 2 allowed increasingly higher access
to victims zero, three, and seven as queries were increased. This be-
havior amplifies with Zoo, allowing increased access to additional
victims two, four, and six. False positive rate 𝛿 is notably higher
using Zoo, peaking at 40% in the worst case, despite requiring
more queries thanQuickFuzz. A similar pattern can be observed
with the random attack on GTID, shown in Figure 3. Victim two
is more susceptible to the random attack than any other princi-
pal. Unlike with USB-F, QuickFuzz was generally more successful
against GTID, even requiring less queries, and spreading the attack
impact more evenly. Even with 100 queries, the QuickFuzz attack
manages to fool GTID with a 𝛿 of 12%. Zoo manages to outperform
QuickFuzz when used on WDTF, as shown in Figure 4. WDTF is
the most susceptible system, reaching a 𝛿 of 67% in the worst case.
Overall, tests of the two attacks against the three systems show that
a trade-off exists between number of queries and success. The more
complex Zoo attack is not necessarily more successful in every
case, as it sometimes requires more queries or fails to find failure
modes of the MDA system.

6.2 Feature Attribution Analysis

As described in Section 5.3, we aggregate positive feature attribution
weights across every victim in each attack scenario, to visualize the
features that weremost important in influencing a decision. For ease
of comparison and visualization, we select up to eight victims and
their perturbed samples from the Exploratory 𝐴 scenario (𝑝 = 300),
and query LIME to return only the top-eight features attributing to
decisions.

0 2 4 6 8 10 12

0
2
4
6
8

10
12

A
dv

er
sa

ry
,A

i

Baseline

0 2 4 6 8 10 12

Random

0 2 4 6 8 10 12

Greedy A

0 2 4 6 8 10 12

Exploratory A

0 2 4 6 8 10 12 0 2 4 6 8 10 12

q̄ = 0±0
α = 1%

q̄ = 4±0
α = 7%

q̄ = 66±30
α = 7%

q̄ = 100±0
α = 12%

q̄ = 300±0
α = 23%

q̄ = 500±0
α = 24%

0 2 4 6 8 10 12

0
2
4
6
8

10
12

A
dv

er
sa

ry
,A

i

Baseline

0 2 4 6 8 10 12

Random

0 2 4 6 8 10 12

Greedy A

0 2 4 6 8 10 12

Exploratory A

0 2 4 6 8 10 12 0 2 4 6 8 10 12

0% 33% 66% 100%

q̄ = 0±0
α = 1%

q̄ = 4±0
α = 7%

q̄ = 121±9
α = 3%

q̄ = 100±0
α = 0%

q̄ = 300±0
α = 4%

q̄ = 500±0
α = 6%

Figure 3: Access matrices for GTID users, averaged over three

random seeds forQuickFuzz (top) and Zoo (bottom).

0 1 2 3

0

1

2

3

A
dv

er
sa

ry
,A

i

Baseline

0 1 2 3

Random

0 1 2 3

Greedy A

0 1 2 3

Exploratory A

0 1 2 3 0 1 2 3

q̄ = 0±0
α = 0%

q̄ = 8±5
α = 25%

q̄ = 64±0
α = 8%

q̄ = 100±0
α = 11%

q̄ = 300±0
α = 17%

q̄ = 500±0
α = 17%

0 1 2 3

0

1

2

3

A
dv

er
sa

ry
,A

i

Baseline

0 1 2 3

Random

0 1 2 3

Greedy A

0 1 2 3

Exploratory A

0 1 2 3 0 1 2 3

0% 33% 66% 100%

q̄ = 0±0
α = 0%

q̄ = 8±5
α = 25%

q̄ = 75±0
α = 25%

q̄ = 100±0
α = 25%

q̄ = 300±0
α = 61%

q̄ = 500±0
α = 67%

Figure 4: Access matrices for WDTF users, averaged over

three random seeds forQuickFuzz (top) and Zoo (bottom).

6.2.1 USB-F. Figure 5 shows feature attribution weights for up to
eight victims under the USB-F method withQuickFuzz on top, and
Zoo on the bottom. We see that the attribution weights returned by
LIME vary based on the attack. Samples generated withQuickFuzz
offered lower weights compared Zoo. In the case of Zoo, we can
make some high level observation. Mainly, any arbitrary adver-
sarial sample only relied on a handful of features, according to
LIME. For example, victim ‘vatta’ was subverted with feature sub-
set {𝑥12, 𝑥18, 𝑥23, 𝑥24}. In fact, this pattern is not unique to ‘vatta.’
Adversarial samples needed no more than five of the features to
align with the victim to be successful. Of interest is that features

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Signature Feature, xi ∈ sig

0.000

0.005

0.010

0.015

0.020

0.025

0.030

A
ttr

ib
ut

io
n

W
ei

gh
t

septica
mia
spirulina
whoa
camilla

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Signature Feature, xi ∈ sig

0.000

0.005

0.010

0.015

0.020

0.025

0.030

A
ttr

ib
ut

io
n

W
ei

gh
t

mia
vatta
ortega
iota
whoa
spirulina
camilla
septica

Figure 5: USB-F feature attribution weights for victims across

29 features with QuickFuzz (top) and Zoo (bottom).

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Signature Feature, xi ∈ sig

0.0000

0.0001

0.0002

0.0003

A
ttr

ib
ut

io
n

W
ei

gh
t DevIP1, iPad

DevIT2, iPhone3G
DevNP1, NokiaPhone
DevIT1, iPhone3G
DevIF1, iPhone4G
DevIF2, iPhone4G
DevIP3, iPad
DevNP2, NokiaPhone

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Signature Feature, xi ∈ sig

0.0000

0.0001

0.0002

0.0003

A
ttr

ib
ut

io
n

W
ei

gh
t DevIT1, iPhone3G

DevIP1, iPad
DevIF1, iPhone4G
DevIT2, iPhone3G
DevIF2, iPhone4G

Figure 6: GTID feature attribution weights for victims across

300 features with QuickFuzz (top) and Zoo (bottom).

{𝑥26, 𝑥27, 𝑥28} were never used. Since attacked features vary be-
tween victims, it is not clear that domain knowledge would help
secure the model.

6.2.2 GTID. The feature attribution for GTID across victims is
shown in Figure 6. In either case, we notice that attributions across
victims is clustered relatively close to the center. Since each at-
tack had similar scaling of attribution weights, we can now see
that specific features vary between attacks. For example with Zoo,
‘DevIT2, iPhone3G’ was subverted with features in the center of
the signature, while features in the periphery were used with
QuickFuzz. This behavior is seen with other victims, notably ‘De-
vIT1, iPhone3G’ and ‘DevIF2, iPhone4G’. Some overlap occurs with
‘DevIF1, iPhone4G’ as features were selected towards the center.
Radhakrishnan et al. select the start and end points of the signature
histogram to fit the peak of tested traffic (see Footnote 3 [40]). It
is possible that the model attends disproportionately to the cen-
tral peak of a typical signature, rather than the periphery. Apart
from this spatial correlation between original sample and feature
attributions, there is little relation between the perturbed features
and the packet arrival-time semantics. Likewise, only a handful of
features are chosen in either attack, as shown prior with USB-F. We

0 5 10 15 20 25

25 USB-F signatures, QuickFuzz

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

L
ID

sc
or

e

normal
adv

0 5 10 15 20 25

25 USB-F signatures, ZOO

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

L
ID

sc
or

e

Figure 7: Approximation of LID over 25 randomly chosen

samples from USB-F forQuickFuzz and Zoo.

0 10 20 30 40

40 GTID signatures, QuickFuzz

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

L
ID

sc
or

e

normal
adv

0 10 20 30 40

40 GTID signatures, ZOO

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

L
ID

sc
or

e

Figure 8: Approximation of LID over 40 randomly chosen

samples from GTID usingQuickFuzz and Zoo .

conclude that the detection of these brittle features during design
would be non-obvious.

6.2.3 WDTF. Feature attribution weights for the four victims un-
der WDTF were very similar to USB-F and GTID, and are omitted
for brevity. We observed that the adversary only needs a handful of
important features for the attack to succeed. This was true regard-
less of the considered victim. Likewise, features also varied between
each attack, so connection back to domain semantics would not be
helpful.

6.3 Local Intrinsic Dimensionality (LID)

In the previous section we saw that component-wise feature anal-
ysis is difficult, as each instance of SampleGen exploited different
features. We abstract away features and instead focus on analyzing
the adversarial subspace of inputs to each MDA, as described in Sec-
tion 5.3. Figures 7 and 8 show the LID values of randomly selected
normal (blue) and adversarial (red) SampleGen signatures from the
USB-F and GTID MDA systems, respectively. For brevity, we omit
results from WDTF, as they mirrored those of GTID. As in the anal-
ysis performed by Ma et al. [29], we use min-max normalization to
obtain LID scores in the range [0.0, 1.0].

Our results are consistent with the findings of Ma et al., which is
that adversarial regions in the signature space can be characterized
by equal, or higher, LID scores than normal data regions. This
effect is primarily noticeable with QuickFuzz for both USB-F and
GTID, and Zoo on GTID. We interpret this as follows. Although
expert knowledge can arrive at intuitive features that are useful for
classification, they contain a (local) intrinsic dimensionality that
increases as points move away from the original SigGen output

QuickFuzz ZOO
USB-F 169%±529% 8.36%±7.68%
GTID 255%±474% 66.3%±81.1%
WDTF 2.30%±2.29% 93.8%±53.4%

Table 5: Average distortion 𝜖 induced by each SampleGen

instance of QuickFuzz and Zoo.

space. It suffices to move in random directions to find local sub-
manifolds with high complexity, as evidenced by the success of
QuickFuzz. Zoo on USB-F had mixed results, with LID fluctuating
between normal and adversarial levels, while Zoo on GTID behaves
as expected. One possible explanation is that Zoo unintentionally
crafts samples with lower LID during gradient approximation.

6.4 Attack Distortion Characteristics

We empirically evaluate the average distortion induced by each
SampleGen instance ofQuickFuzz and Zoo in Table 5. Generally,
the QuickFuzz instances produced high values of 𝜖 with high vari-
ability. Zoo tends to have lower distortion on USB-F and GTID with
lower variation, but increases with WDTF. We interpret this as a
by-product of the methods. WDTF exhibited high false-positives
to random samples earlier in Section 6.1, whereas USB-F did not.
We essentially have two extreme cases of robustness to random
uniform noise, with USB-F responding positively, GTID performing
moderately, and WDTF responding negatively. In this sense, a ran-
dom walk should induce more noise with USB-F than the guided
search of Zoo. WDTF only requires 2.30% distortion on average
with random walk, but needs 93.8% with Zoo. This indicates our
SampleGen algorithms cover two distinct strategies. The strategy
to choose depends on the data Train was instantiated with.

7 MITIGATIONS

Our analysis of MDA adversaries in the previous section poses
an interesting challenge. Although XAI can tell us which features
are brittle, the exact features tend to vary between instances of
SampleGen. Abstracting away features and focusing on the adver-
sarial manifold enables the use of LID. Although encouraging, LID
was more stable with Zoo than with QuickFuzz. Thus we attempt
to protect an existing MDA system without relying on knowledge
of the domain or assumptions of the underlying manifold. In this
section, we rely on state-of-the-art results obtained by randomized
smoothing [10]. Cohen et al. show that randomized smoothing
can efficiently certify robustness given a fixed parameter 𝜎 which
bounds the size of distortion an adversary induces.

We examine the effect of the two SampleGen instances when
Train is modified according to the randomized smoothing tech-
nique. Notably, this defense is viewed as modifying Train’s output,
due to training with Gaussian data augmentation. We apply the
randomized smoothing technique to GTID to obtain the smooth-

GTIDMDA system. In practice, we remove the heuristics proposed
by the original authors of GTID in favor of those presented by
Cohen et al. due to effects noted in Section 6.1.1. In this instance,
randomized smoothing necessitates modification of Auth, although
it may not be necessary in all cases.

0 2 4 6 8 10 12

0
2
4
6
8

10
12

A
dv

er
sa

ry
,A

i

Baseline

0 2 4 6 8 10 12

Greedy A

Victimq̄ = 0±0
α = 0%

q̄ = 56±7
α = 1%

0 2 4 6 8 10 12

0
2
4
6
8

10
12

A
dv

er
sa

ry
,A

i

Baseline

0 2 4 6 8 10 12

Greedy A

Victimq̄ = 0±0
α = 0%

q̄ = 0±0
α = 0%

0% 33% 66% 100%

Figure 9: Access matrices for smooth-GTID over three ran-

dom seeds withQuickFuzz (left) and ZOO (right), for 𝜎 = 0.5.

0 1 2 3 4 5 6 7

8 smooth-GTID signatures

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

L
ID

sc
or

e

normal
adv

Figure 10: Approximation of Local Intrinsic Dimensionality

(LID) over samples from smooth-GTID (with 𝜎 = 0.5) using
QuickFuzz instance of SampleGen.

Based on guidance from the work by Cohen et al. [10], we se-
lect 𝜎 = 0.5 for the main experiment, shown for each instance of
SampleGen in Figure 9. Experimentally, we observed similar results
regardless of the choice of 𝜎 . The randomized smoothing nulli-
fies any false positives from the Zoo instance, despite losing some
coverage in the form of false negatives. With the QuickFuzz in-
stance, some false positives are admitted, although they are rare
compared to the prior cases in Section 6.1. We interpret the suc-
cess of QuickFuzz as a symptom of decreased accuracy, due to the
noisy instantiation of Train, and the neural network’s lack of ca-
pacity for such noise. We can infer that choosing a more expressive
model is the key to truly certifying GTID. Given the removal of
the original GTID heuristics, we can further conclude that existing
domain-specific heuristics have little to offer in terms of adversarial
robustness.

With the smooth-GTID system, we revisit our original post-
mortem analysis using LID, albeit using only the QuickFuzz instance
of SampleGen, as smooth-GTID thwarts the Zoo attack. The LID
scores for the smooth-GTID attack signatures is shown in Figure 10.
Amain takeaway is that LID scores are either similar to their normal
counterparts, or very high. When comparing against Figure 8, there
is no visible trend in terms of maximum or minimum LID scores.
We do note that signatures with high ‘normal’ LID score had a high
‘adv’ LID score, and vice versa for low scoring signatures.

Due to the small sample size, it is difficult to make general claims,
but these initial results could suggest that the signature space in-
hibits high LID as a result of the randomized smoothing mechanism,
at the expense of raising the baseline LID score of normal samples.

8 DISCUSSION

From our experiments, we uncover attack surfaces in the algorithms
of our formalized MDA system. Each algorithm can be exploited
due to different assumptions that are made during design of an
MDA system.

In Section 6.2, we saw thatQuickFuzz and Zoo only needed a
handful of features to fool the MDA systems under test. Since 𝐴
is essentially blind, SampleGen allows advancing blindly in input
space, through selective fuzzing in the case of QuickFuzz, or with
guided heuristics as in Zoo, until a correct combination of brittle
features is met. LID analysis in Section 6.3 shows that sub-manifolds
exist in the signature space with high complexity. Since signatures
are the output of SigGen, we can infer that design of SigGen is to
blame. This may explain why the adversary does not need many
queries. In this sense, we notice some similarity to single-pixel
attacks in the image domain [45]. However, we also consider the
following. Although all features may contribute towards a learning
task, the Train algorithm conditions the model to attend to certain
features. As described by Goodfellow et al. [19], an adversary needs
to only find the feature values which the model aligns most with.
Despite being less data-driven, MDA systems are equally vulnerable
to this phenomenon.

Apart from SigGen and Train, we showed that previously pro-
posed heuristics for designing Auth are not secure. Although the
decision process can benefit from hand-crafted features, they do
not imply robustness against adversaries. The feature attribution
analysis showed that target features vary between victims, and even
between attacks. Thus, it is not practical to use domain-specific
heuristics for defending models. Instead, one must consider under-
lying properties of adversarial samples. LID is an encouraging first
step, as it can abstract away knowledge of specific features. We
took this abstraction further, and showed that designers of MDA
systems can essentially ignore domain knowledge, by applying
end-to-end style defenses such as randomized smoothing. However,
such techniques rely on sufficiently expressive models. We sum-
marize by recommending designers focus on applying end-to-end
style defenses, which shifts the security challenge to one of model
selection, rather than heuristics crafting.

9 RELATEDWORK

The progression of attacks in the Adversarial Machine Learning
(AML) space often focus on particular applications of machine
learning systems. Papernot et al. provide a recent survey of the
general deep learning attack landscape, including a high-level view
of different threat models and adversary goals [39]. Due to the
constrained, hard-label feedback of learning systems in-the-wild,
limited-information attacks are incredibly valuable, despite tend-
ing to be less powerful. However, such attacks are less prevalent
in the literature. Conceptually, the problem can be framed in the
restricted query model outlined by Angluin [2]. Biggio briefly con-
siders a concept learning attack against a signature authentication
system [5], although in the absence of counting adversarial queries.
These iterative attacks evolved into camouflage-style attacks which
intend to cloak the adversary in ‘fashionably’-crafted accessories
or clothing that can fool the authentication system [16, 43]. Re-
cent years have seen the state-of-the-art in limited information

attacks, which rely on zeroth-order optimization (ZOO) methods
to approximate the victim model’s gradient information [7]. The
most recent ZOO attacks rely only on the top-1 decision from the
victim model [6, 8, 9].

10 CONCLUSION

Although machine learning is a powerful tool for performing device
authentication, previous works failed to consider the susceptibil-
ity of such systems to AML-style attacks. We demonstrate new
restricted-query attacks against device authentication that are suc-
cessful regardless of the underlying machine learning model. With
the help of XAI techniques, we discover that the features used
in device authentication are often brittle, and selective perturba-
tion of certain features can be highly effective at breaking device
authentication systems.

ACKNOWLEDGMENTS

The authors would like to acknowledge Dave Tian and Scott Clouse
for their helpful comments on early revisions of the paper. This
workwas supported byAFOSR FA9550-19-1-0169, NSFCNS-1815883,
and NSF CNS-1562485.

REFERENCES

[1] L. Amsaleg, J. Bailey, D. Barbe, S. Erfani, M. E. Houle, V. Nguyen, and M.
Radovanović. 2017. The vulnerability of learning to adversarial perturbation
increases with intrinsic dimensionality. In 2017 IEEE Workshop on Information
Forensics and Security (WIFS). 1–6. https://doi.org/10.1109/WIFS.2017.8267651

[2] Dana Angluin. 1988. Queries and Concept Learning. Machine Learning 2, 4 (1988),
319–342. https://doi.org/10.1023/A:1022821128753 arXiv:arXiv:1011.1669v3

[3] Marco V. Barbera, Alessandro Epasto, AlessandroMei, Sokol Kosta, Vasile C. Perta,
and Julinda Stefa. 2013. CRAWDAD dataset sapienza/probe-requests (v. 2013-09-
10). Downloaded from https://crawdad.org/sapienza/probe-requests/20130910.
https://doi.org/10.15783/C76C7Z

[4] Adam Bates, Ryan Leonard, Hannah Pruse, Daniel Lowd, and Kevin R B Butler.
2014. Leveraging USB to Establish Host Identity Using Commodity Devices.
Proceedings of the Network and Distributed System Security (NDSS) Symposium.

[5] Battista Biggio, Giorgio Fumera, and Fabio Roli. 2014. Security Evaluation of
Pattern Classifiers under Attack. IEEE Transactions on Knowledge and Data
Engineering (TKDE) 26, 4 (April 2014), 984–996.

[6] Jianbo Chen, Michael I. Jordan, and Martin J. Wainwright. 2019. HopSkipJumpAt-
tack: A Query-Efficient Decision-Based Attack. (April 2019). arXiv:1904.02144
http://arxiv.org/abs/1904.02144

[7] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017.
ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Net-
works without Training Substitute Models. Proceedings of the 10th ACM Work-
shop on Artificial Intelligence and Security - AISec ’17 (2017), 15–26. https:
//doi.org/10.1145/3128572.3140448

[8] Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui
Hsieh. 2018. Query-Efficient Hard-label Black-box Attack:An Optimization-based
Approach. arXiv:1807.04457 [cs, stat] (July 2018). http://arxiv.org/abs/1807.04457
arXiv: 1807.04457.

[9] Minhao Cheng, Simranjit Singh, Patrick Chen, Pin-Yu Chen, Sijia Liu, and Cho-Jui
Hsieh. 2020. SIGN-OPT: A QUERY-EFFICIENT HARD-LABEL ADVERSARIAL
ATTACK. The International Conference on Learning Representations (ICLR) (2020),
16.

[10] Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter. 2019. Certified Adversarial
Robustness via Randomized Smoothing. arXiv:1902.02918 [cs, stat] (June 2019).
http://arxiv.org/abs/1902.02918 arXiv: 1902.02918.

[11] Asish Kumar Dalai, , and Sanjay Kumar Jena. 2017. WDTF: A Technique for
Wireless Device Type Fingerprinting. Wireless Personal Communications 97 (2017).
https://doi.org/10.1007/s11277-017-4652-y

[12] Boris Danev and Srdjan Capkun. 2009. Transient-based identification of wire-
less sensor nodes. IPSN ’09 Proceedings of the 2009 International Conference on
Information (2009), 25–36. https://doi.org/10.1145/1602165.1602170

[13] Hung Dang, Yue Huang, and Ee-Chien Chang. 2017. Evading Classifiers by
Morphing in the Dark. (2017). https://doi.org/10.1145/3133956.3133978

[14] Ann-Kathrin Dombrowski, Maximilian Alber, Christopher J. Anders, Marcel
Ackermann, Klaus-Robert Müller, and Pan Kessel. 2019. Explanations can be

https://doi.org/10.1109/WIFS.2017.8267651
https://doi.org/10.1023/A:1022821128753
https://arxiv.org/abs/arXiv:1011.1669v3
https://crawdad.org/sapienza/probe-requests/20130910
https://doi.org/10.15783/C76C7Z
https://arxiv.org/abs/1904.02144
http://arxiv.org/abs/1904.02144
https://doi.org/10.1145/3128572.3140448
https://doi.org/10.1145/3128572.3140448
http://arxiv.org/abs/1807.04457
http://arxiv.org/abs/1902.02918
https://doi.org/10.1007/s11277-017-4652-y
https://doi.org/10.1145/1602165.1602170
https://doi.org/10.1145/3133956.3133978

manipulated and geometry is to blame. arXiv:1906.07983 [cs, stat] (June 2019).
http://arxiv.org/abs/1906.07983 arXiv: 1906.07983.

[15] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon
Tran, and Aleksander Madry. 2019. Learning Perceptually-Aligned Represen-
tations via Adversarial Robustness. arXiv:1906.00945 [cs, stat] (June 2019).
http://arxiv.org/abs/1906.00945 arXiv: 1906.00945.

[16] Ranran Feng and Balakrishnan Prabhakaran. 2013. Facilitating Fashion Camou-
flage Art. In Proceedings of the 21st ACM International Conference on Multimedia
(MM ’13). 793–802. https://doi.org/10.1145/2502081.2502121

[17] Aidin Ferdowsi andWalid Saad. 2018. Deep Learning-Based DynamicWatermark-
ing for Secure Signal Authentication in the Internet of Things. IEEE International
Conference on Communications 2018-May (2018). https://doi.org/10.1109/ICC.
2018.8422728 arXiv:1711.01306

[18] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model Inversion
Attacks That Exploit Confidence Information and Basic Countermeasures. In
Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security (CCS). 12 pages.

[19] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In Proceedings of the International Conference
on Learning Representations (ICLR).

[20] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. 2018.
LEMNA: Explaining Deep Learning based Security Applications. In Proceedings
of the 25th ACM Conference on Computer and Communications Security (CCS’18).

[21] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. 2009. The WEKA Data Mining Software: An Update. SIGKDD
Explor. Newsl. 11, 1 (Nov. 2009), 10–18. https://doi.org/10.1145/1656274.1656278

[22] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song.
2019. Natural Adversarial Examples. (2019). arXiv:1907.07174

[23] Briland Hitaj, Paolo Gasti, Giuseppe Ateniese, and Fernando Perez-Cruz. 2019.
PassGAN: A Deep Learning Approach for Password Guessing. arXiv:1709.00440
[cs, stat] (Feb. 2019). http://arxiv.org/abs/1709.00440 arXiv: 1709.00440.

[24] Michael E. Houle. 2013. Dimensionality, Discriminability, Density and Distance
Distributions. In 2013 IEEE 13th International Conference on Data Mining Work-
shops. 468–473. https://doi.org/10.1109/ICDMW.2013.139

[25] Jingyu Hua, Hongyi Sun, Zhenyu Shen, Zhiyun Qian, and Sheng Zhong. 2018.
Accurate and Efficient Wireless Device Fingerprinting Using Channel State In-
formation. Proceedings - IEEE INFOCOM 2018-April (2018), 1700–1708. https:
//doi.org/10.1109/INFOCOM.2018.8485917

[26] P. A. Johnson, B. Tan, and S. Schuckers. 2010. Multimodal fusion vulnerability to
non-zero effort (spoof) imposters. In 2010 IEEE International Workshop on Infor-
mation Forensics and Security. 1–5. https://doi.org/10.1109/WIFS.2010.5711469

[27] Alex Kantchelian, J. D. Tygar, and Anthony D. Joseph. 2015. Evasion and Hard-
ening of Tree Ensemble Classifiers. (2015). arXiv:1509.07892 http://arxiv.org/
abs/1509.07892

[28] Tadayoshi Kohno, Andre Broido, and K. C. Claffy. 2005. Remote Physical Device
Fingerprinting. IEEE Transactions on Dependable and Secure Computing (TDSC) 2,
2 (April 2005), 93–108.

[29] Xingjun Ma, Bo Li, Yisen Wang, Sarah M. Erfani, Sudanthi Wijewickrema, Grant
Schoenebeck, Dawn Song, Michael E. Houle, and James Bailey. 2018. Characteriz-
ing Adversarial Subspaces Using Local Intrinsic Dimensionality. arXiv:1801.02613
[cs] (March 2018). http://arxiv.org/abs/1801.02613 arXiv: 1801.02613.

[30] Marwa Mamdouh, Mohamed A.I. Elrukhsi, and Ahmed Khattab. 2018. Securing
the Internet of Things and Wireless Sensor Networks via Machine Learning: A
Survey. 2018 International Conference on Computer and Applications, ICCA 2018
Section II (2018), 215–218. https://doi.org/10.1109/COMAPP.2018.8460440

[31] Yair Meidan, Michael Bohadana, Asaf Shabtai, Martin Ochoa, Nils Ole Tip-
penhauer, Juan Davis Guarnizo, and Yuval Elovici. 2017. Detection of Unau-
thorized IoT Devices Using Machine Learning Techniques. (2017). https:
//doi.org/10.1002/prot.21521 arXiv:1709.04647

[32] KevinMerchant, Shauna Revay, George Stantchev, and BryanNousain. 2018. Deep
Learning for RF Device Fingerprinting in Cognitive Communication Networks.
IEEE Journal on Selected Topics in Signal Processing 12, 1 (2018), 160–167. https:
//doi.org/10.1109/JSTSP.2018.2796446

[33] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, Tommaso Frassetto, N Asokan,
Ahmad Reza Sadeghi, and Sasu Tarkoma. 2017. IoT Sentinel: Automated Device-
Type Identification for Security Enforcement in IoT. In Proceedings - International
Conference on Distributed Computing Systems. 2511–2514. https://doi.org/10.
1109/ICDCS.2017.284 arXiv:1611.04880

[34] Shervin Minaee and Amirali Abdolrashidi. 2018. Finger-GAN: Generating Realis-
tic Fingerprint Images Using Connectivity Imposed GAN. arXiv:1812.10482 [cs]
(Dec. 2018). http://arxiv.org/abs/1812.10482 arXiv: 1812.10482.

[35] Yurii Nesterov and Vladimir Spokoiny. 2017. RandomGradient-FreeMinimization
of Convex Functions. Foundations of Computational Mathematics 17, 2 (April
2017), 527–566. https://doi.org/10.1007/s10208-015-9296-2

[36] Nicholas Papernot and contributors. 2019. Cleverhans. https://github.com/
tensorflow/cleverhans.

[37] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik,
and Ananthram Swami. 2017. Practical Black-Box Attacks Against Machine

Learning. In Proceedings of the 2017 ACM Asia Conference on Computer and
Communications Security (ASIACCS). 14 pages.

[38] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. 2016. The Limitations of Deep Learning in Adver-
sarial Settings. In Proceedings of the IEEE European Symposium on Security and
Privacy (Euro S&P). 372–387. https://doi.org/10.1109/EuroSP.2016.36

[39] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman. 2018. SoK: Security and
Privacy in Machine Learning. In 2018 IEEE European Symposium on Security and
Privacy (EuroS P). 399–414. https://doi.org/10.1109/EuroSP.2018.00035

[40] Sakthi Vignesh Radhakrishnan, A. Selcuk Uluagac, and Raheem Beyah. 2015.
GTID: A Technique for Physical Device and Device Type Fingerprinting. IEEE
Transactions on Dependable and Secure Computing 12, 5 (2015), 519–532. https:
//doi.org/10.1109/TDSC.2014.2369033

[41] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why Should I
Trust You?: Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD).

[42] Ricardo N. Rodrigues, Lee Luan Ling, and Venu Govindaraju. 2009. Robustness
of multimodal biometric fusion methods against spoof attacks. Journal of Visual
Languages & Computing 20, 3 (2009), 169 – 179. https://doi.org/10.1016/j.jvlc.
2009.01.010 ADVANCES IN MULTIMODAL BIOMETRIC SYSTEMS.

[43] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. 2016. Ac-
cessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[44] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju.
2019. How can we fool LIME and SHAP? Adversarial Attacks on Post hoc
Explanation Methods. (Nov. 2019). arXiv:1911.02508 http://arxiv.org/abs/1911.
02508

[45] Jiawei Su, Danilo Vasconcellos Vargas, and Sakurai Kouichi. 2017. One pixel
attack for fooling deep neural networks. (2017). arXiv:1710.08864 http://arxiv.
org/abs/1710.08864

[46] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.
In Porceedings of the International Conference on Learning Representations (ICLR).

[47] A. Selcuk Uluagac. 2014. CRAWDAD dataset gatech/fingerprinting (v. 2014-
06-09). Downloaded from https://crawdad.org/gatech/fingerprinting/20140609.
https://doi.org/10.15783/C78G67

[48] Xinyang Zhang, Ningfei Wang, Hua Shen, Shouling Ji, Xiapu Luo, and TingWang.
2019. Interpretable Deep Learning under Fire. https://arxiv.org/abs/1812.00891

[49] Benjamin Zi Hao Zhao, Hassan Jameel Asghar, and Mohamed Ali Kaafar. 2020.
On the Resilience of Biometric Authentication Systems against Random Inputs.
Proceedings 2020 Network and Distributed System Security Symposium (2020).
https://doi.org/10.14722/ndss.2020.24210 arXiv: 2001.04056.

A APPENDIX

A.1 Implementation Details

USB-Fingerprinting. We implemented Auth in Python using a
wrapper4 for Weka’s RandomForest classifier [21]. We used model
hyperparameters, Weka Java archive file, and trace data provided
by the authors. In order to generate the training data, we used the
trace data of nine computers of identical make and model.
GTID. We implemented GTID in Python using Tensorflow to com-
pile and train the ANNs. Train uses Adam optimizer and categorical
cross-entropy loss over 60 epochs to output the trained model 𝐶
for Auth to use. We processed the data for training the ANNs from
the author’s GTID dataset hosted on CRAWDAD [47]. For exper-
iments, we used the Iperf–TCP traffic of their isolatedTestBed set,
and mimicked the authors’ published hyperparameters.
WDTF. We implemented WDTF in Python using NumPy. We ob-
tained the training data from a collection of wireless probe requests
hosted on CRAWDAD (same data source as used in the original
work [3]). Note that we use WDTF primarily to compare MDA sys-
tems that use customized, statistical-distance-based model versus
systems that use traditional ML models.

4https://github.com/fracpete/python-weka-wrapper3

http://arxiv.org/abs/1906.07983
http://arxiv.org/abs/1906.00945
https://doi.org/10.1145/2502081.2502121
https://doi.org/10.1109/ICC.2018.8422728
https://doi.org/10.1109/ICC.2018.8422728
https://arxiv.org/abs/1711.01306
https://doi.org/10.1145/1656274.1656278
https://arxiv.org/abs/1907.07174
http://arxiv.org/abs/1709.00440
https://doi.org/10.1109/ICDMW.2013.139
https://doi.org/10.1109/INFOCOM.2018.8485917
https://doi.org/10.1109/INFOCOM.2018.8485917
https://doi.org/10.1109/WIFS.2010.5711469
https://arxiv.org/abs/1509.07892
http://arxiv.org/abs/1509.07892
http://arxiv.org/abs/1509.07892
http://arxiv.org/abs/1801.02613
https://doi.org/10.1109/COMAPP.2018.8460440
https://doi.org/10.1002/prot.21521
https://doi.org/10.1002/prot.21521
https://arxiv.org/abs/1709.04647
https://doi.org/10.1109/JSTSP.2018.2796446
https://doi.org/10.1109/JSTSP.2018.2796446
https://doi.org/10.1109/ICDCS.2017.284
https://doi.org/10.1109/ICDCS.2017.284
https://arxiv.org/abs/1611.04880
http://arxiv.org/abs/1812.10482
https://doi.org/10.1007/s10208-015-9296-2
https://github.com/tensorflow/cleverhans
https://github.com/tensorflow/cleverhans
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/EuroSP.2018.00035
https://doi.org/10.1109/TDSC.2014.2369033
https://doi.org/10.1109/TDSC.2014.2369033
https://doi.org/10.1016/j.jvlc.2009.01.010
https://doi.org/10.1016/j.jvlc.2009.01.010
https://arxiv.org/abs/1911.02508
http://arxiv.org/abs/1911.02508
http://arxiv.org/abs/1911.02508
https://arxiv.org/abs/1710.08864
http://arxiv.org/abs/1710.08864
http://arxiv.org/abs/1710.08864
https://crawdad.org/gatech/fingerprinting/20140609
https://doi.org/10.15783/C78G67
https://arxiv.org/abs/1812.00891
https://doi.org/10.14722/ndss.2020.24210
https://github.com/fracpete/python-weka-wrapper3

	Abstract
	1 Introduction
	2 Background
	2.1 Device Fingerprinting
	2.2 Adversarial Machine Learning

	3 Security model of an MDA system
	3.1 Formalizing an MDA system
	3.2 Threat model

	4 Fooling MDA systems
	4.1 Attack Framework
	4.2 Metrics

	5 Setup
	5.1 Target MDA systems
	5.2 Attack Scenarios
	5.3 Attack post-mortem

	6 Results
	6.1 Attack Effectiveness
	6.2 Feature Attribution Analysis
	6.3 Local Intrinsic Dimensionality (LID)
	6.4 Attack Distortion Characteristics

	7 Mitigations
	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Implementation Details

