
HallMonitor: A Framework for Identifying Network
Policy Violations in Software

Daniel Olszewski
University of Florida
dolszewski@ufl.edu

Weidong Zhu
University of Florida
weidong.zhu@ufl.edu

Sandeep Sathyanarayana
University of Florida

ssathyanarayana@ufl.edu

Kevin Butler
University of Florida

butler@ufl.edu

Patrick Traynor
University of Florida

traynor@ufl.edu

Abstract—Debloating helps to remove unused and poten-
tially vulnerable code from software. While such techniques
are becoming more mature and practical, they focus on the
features that are unwanted by users, and not on a wealth of
functionality that is disallowed by administrative policy. For
instance, while an administrator may use a firewall to block
certain types of traffic, hosts readily interact with such traffic
when the firewall is bypassed (e.g., via an encrypted tunnel).
In this paper, we present HALLMONITOR, a tool that helps
trim software functionality based on the violations of network
policy. HALLMONITOR translates violations expressed in firewall
and intrusion detection system rules (specifically, iptables and
Snort) into parameters for detecting the implementation of such
functions in source code spread amongst clients. We demonstrate
the power of this approach first by removing echo functionality
from ICMP, showing the ability to remove functions that enable
higher-level attacks (e.g., network mapping). We then use network
filtering rules to tag 14 out of 16 CVEs in Curl and Nginx
(based on ground-truth from patches) to show the efficacy of
our approach. In doing so, we demonstrate that network policy
can be used to guide the removal not simply of code that users
may not want, but instead of features that they are not allowed
to use.

I. INTRODUCTION

Commodity software comes packed full of features to
best serve a wide set of potential clients, especially with the
prominence of work-from-home scenarios. The difficulty with
supporting such expansive functionality is not only that it
requires additional storage and memory, but that it potentially
increases the attack surface of mobile and dynamic networks.
These unwanted features have commonly become known as
software bloat.

The research community has recently invested significant
effort in attempting to debloat software. Debloating looks for
features such as dead code [1], [2], [3] or unused functions [4],
[5], [6], [7], potentially reducing both the memory footprint
and the number of exploitable vulnerabilities in client pro-
grams. These techniques have been driven primarily by users,
whether through their explicit (and expert) configuration of
debloating tools or via measurement of their actions. As such,
these efforts generally do not consider the removal of functions
that may violate policies within the larger administrative
domain. As a trivial example, a domain administrator may
enact a network filtering rule to prevent ICMP mapping of
their network. However, hosts within that network would still
respond to ICMP echo requests sent via a compromised host
or unmonitored network tunnel. As such, an administrator may

wish to additionally prevent network violations like this (and
any other they already describe as filtering rules) at the hosts
themselves.

In this paper, we present HALLMONITOR, a tool for remov-
ing the administrative domain policy violations from software
based on network filtering rules. Specifically, we translate
iptables and Snort configurations, which are both widely used
by network administrators, into parameters through which
HALLMONITOR searches software codebases for such vi-
olations. We then use two metrics: semantic intersection,
which considers the summation of parameters in the candidate
function to determine the likelihood of violation, and inter-
analysis which estimate the ease of removal by combining
paths through violations and affected variables throughout the
paths. After walking through ICMP echo as an example, we
then demonstrate the effectiveness of our approach in both
Curl and Nginx, using code changes in CVEs as indicators of
ground-truth.

We note that the problem we tackle is fundamentally
different from that of debloating. Whereas debloating focuses
on removing features a user does not use or need, our efforts
look to tag and remove functions they are not allowed to use.
As such, we make the following contributions:

• Identify violations of network rules in source code:
We develop a method to translate between network fil-
tering rules (i.e., iptables and Snort) and functions in
source code that violate those rules/make the endpoint
vulnerable. This approach makes policy portable, which
is important as users are increasingly operating outside of
traditional work environments (e.g., work from home).

• Develop metrics for measuring the viability of function
removal: After identifying the candidate violations, we
perform analysis on the resulting call graph and the
control flow graph to evaluate the effect of the violated
functions. Therefore, we can demonstrate the removal
viability and the correctness of the violations.

• Demonstrate performance against real-world viola-
tions: We use 16 CVEs for both Curl and Nginx as
ground truth (each containing software patch code) for
determining how well HALLMONITOR locates violations
in mature codebases. In each case, HALLMONITOR finds
7 of 8 vulnerabilities, demonstrating that our approach
rapidly and accurately finds violations using tools systems
administrators already possess.

It is critical for readers to recognize that network-based mitiga-

2022 IEEE Conference on Communications and Network Security (CNS)

978-1-6654-6255-6/22/$31.00 ©2022 IEEE 245

20
22

 IE
EE

 C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

ns
 a

nd
 N

et
w

or
k

Se
cu

rit
y

(C
N

S)
 |

 9
78

-1
-6

65
4-

62
55

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CN

S5
61

14
.2

02
2.

99
47

24
3

Authorized licensed use limited to: University of Florida. Downloaded on July 03,2024 at 19:36:31 UTC from IEEE Xplore. Restrictions apply.

tions alone have limited impact. Specifically, while these tech-
niques are indeed valuable, firewalls and other middleboxes are
often circumvented in practice (e.g., via encrypted tunnels),
allowing for malicious payloads to reach vulnerable hosts.
Moreover, we note that the changing nature of work, which
is increasingly mobile and conducted outside of traditional
offices, means that an increasing number of networked assets
will operate beyond the protection of such network appliances.
HALLMONITOR works as a complementary defense for net-
work administrators to provide an in-depth defense in the wake
of these challenges. Fundamentally, we seek to solve problems
raised by Ioannidis et al. [8], who remark on the challenges
of enforcing policy at endpoints given the ease with which
unauthorized entry points to the network can be created. While
their approach relies on enforcing firewall policies on the host
through complicated IPsec mechanisms, our approach allows
administrators to remove potentially-malicious functionality
directly from endpoint code.

The remainder of our paper is organized as follows:
Section II provides a background; Section III outlines our
definitions and design of HALLMONITOR; Section IV shows a
case study of HALLMONITOR performing on CVEs; Section V
discusses the results and their significance; Section VI contains
plans for future work and the limitations of HALLMONITOR;
Section VII discusses the related work; Section VIII concludes
our paper.

II. BACKGROUND

Software debloating seeks to remove unnecessary code,
whether it is dead code in the sense of unused libraries or
if it is dead in a specified user configuration (e.g., debug for
an application in production). The secondary focus of these
approaches is on reducing the attack surface of an application.
Most recent work focuses on removing code that is never
used during runtime (e.g., third-party libraries unnecessarily
imported [2], [1]), code that would only be used on the process
starting (e.g., web servers binding to a socket [9]), and code
that does not meet a user-defined set of required functional-
ities [4]. Other approaches use machine learning to interact
with binaries and identify when code can be removed [7].
These methods for removal focus on allowed functionality
within the application to motivate the removal of code. We base
HALLMONITOR on disallowed processes within the network
(e.g., a firewall blocking an ICMP packet) to motivate which
code to remove. Figure 1 shows a high-level comparison of our
process and debloating. Mapping network activity to a host’s or
client’s applications is a challenging problem in and of itself,
as there is no centralized place to pull packet governance in
a network [10], further exacerbated by remote work. Thus,
considering endpoints in the source code provides network
administrators a complementary defense in the face of these
challenges.

Many current debloating techniques require extensive
knowledge of both the application used for debloating and the
system that is debloated. This varies from requiring user input
on each function’s necessity within the source code to scripting
the required functionality. As pointed out by Qian et al. [4],
the problem of debloating based on user input is an open and
difficult problem. Thus, optimization is based on heuristics.

User Application Network
Filters

(1)

(3)

(2)

Traditional
Debloating HallMonitor

Fig. 1: Traditional Debloating techniques consider how a user
interacts with the application. We consider how the application
interacts with the network (i.e., what will the network block
from the application). We can see that (1) the user gives some
input to the application. (2) the application sends information
through the network, but the network filters block it. (3) the
application informs the user. HALLMONITOR takes what the
network filter rules block to identify source code that would
allow this to happen.

For identifying code, traditional debloating techniques focus
on whitelisting functions and anything not whitelisted (i.e.,
functionality the user does not use) is considered for removal.
We focus on identifying code that violates network policies for
removal and thus, fundamentally change the problem. While
recent work [5], [11], [4], [12] seeks to either automatically
reduce code size or require easier user interaction, we propose
HALLMONITOR to find policy violations in the source code.
Primarily, HALLMONITOR outputs targeted and meaningful
violation analysis by employing tools already in use (e.g.,
firewalls).

III. DESIGN AND IMPLEMENTATION

We seek to identify functions that would not be allowed
by a network filter and thus are violations of policy that
extend the attack surface. To find the lines of code, we take
the network filter’s rules and extract semantic meaning (i.e.,
create search terms from the rules that indicate associated
functionality within the source code). We further identify the
correctness of the found functions by analyzing the cover of
the call graph and using the semantic intersection, Isem. An
overview of our process can be seen in Figure 2. We will refer
to the network filter rules as R, generated search parameters
as S, and the code we are analyzing as C. Thus, our goal is
to:

1) Generate S from R.
2) Use S to find the set of violation functions, F , in C.
3) Build the call graph, G, and control flow graph CFG

from C.
4) Determine the ease of removal for F by analyzing the

number of paths in G and CFG.

We present our working definitions and the formal framework
of HALLMONITOR in Section III-A and Section III-B. Next,
we show how HALLMONITOR constructs the callgraph and
analyzes the code in Section III-C, Section III-D, and Sec-
tion III-E. Finally, we go through a detailed example of how
HALLMONITOR operates on icmp.c in Section III-F.

2022 IEEE Conference on Communications and Network Security (CNS)

246
Authorized licensed use limited to: University of Florida. Downloaded on July 03,2024 at 19:36:31 UTC from IEEE Xplore. Restrictions apply.

Search
parameter

generation from
network filters

s’
s’’
s’’’

Search Parameters

Identify violations in
the source code

from search
parameters

f’
f’’
f’’’

Functions for Removal

Call graph and
CFG generation

f’
f’’
f’’’

Output

f’
f’’’

Functions for Removal

Viable functions
for removal

Network
Filters

Network Filters
Source Code

Source
Code

Source
Code

(1) (2) (3)

Evaluate the
viability of cutting

with call graph
and CFG

(4)

Call graph CFG

f’
f’’
f’’’Functions for

Removal

Fig. 2: The overview of our process. We take in network filters and the source code to analyze. (1) Generate search parameters
from the network filters. (2) Identify violations in the source code using the search parameters. (3) Generate the call graph and
control flow graph (CFG) with source code. (4) Analyze the viability of removal based on the call graph and CFG.

A. Working Defintions

In this section, we define all of the working definitions we
use. Network Filter Rules: R is a set of rules. Each rule,
r, blocks functionality within the network. Our primary mo-
tivation is that the disallowed functionality directly correlates
to features in the application. Thus, R points to redundant
features at the application level.

Arguments: Each r contains arguments. We define these
individual elements as a, and they specify the behavior of
r. Each a provides our framework for generating semantic
meaning. They are syntactically denoted by an argument flag
(e.g., “-p” in iptables is a protocol flag).

Search Parameters: Sr is a set of strings. Each s ∈ Sr is
generated from each r in R. S contains the semantic meaning
of R (i.e., an r that blocks SSH generates semantic meaning
that can be referenced in the source code). This semantic
meaning is derived from arguments, a in r.

Sensitivity: Since there are multiple search parameters per
rule, not all search parameters in a given rule will trigger
during analysis. Thus, we specify a sensitivity parameter,
σ ∈ Z , that dictates how many times a function must trigger
the search parameters. If a function triggers more than σ search
parameters, we add this funciton to F . A higher σ will result
in less output whereas a lower σ will result in more output.

Violations: F is the set of functions in the application, C,
we are analyzing that is not allowed by the network. Thus,
allowing a violation of network policy. Each f in F is a
function and is contained in the call graph of C.

Call Graph: The call graph, G, is the graph of functions that
denote call order and function dependency.

Control Flow Graph: The control flow graph, CFG, repre-
sents the paths that a program could be traversed during the
execution.

Entry: The function that is the root of the call graph, G, is
the Entry. We define e as the Entry into the call graph.

Parent Set: The Parent Set of f is the set of functions that
directly call f .

Child: The function that f directly calls is the Child of f .

parseArgument(): We pull the semantic information, s′, from
each argument, a, in each rule, r. We filter s′ into the complete
semantic information s. For example, if s′ is “HTTP”, then to

Algorithm 1 Identify Lines of Code as Violations.
1: procedure IDENTIFYVIOLATIONS(C,R,σ)
2: S = []
3: F = []
4: // Parse R
5: for each rule r in R do
6: for each flag f in r do
7: s = f.parseArgument()
8: if s is Port or Address then
9: s = lookup(s)

10: end if
11: S[r].append(s)
12: end for
13: end for
14: // Depth-search C
15: for each file f in C do
16: for each line of code c in f do
17: for r in R do
18: if c contains more than σ parameters from S[r] then
19: F.append(c)
20: end if
21: end for
22: end for
23: end for
24: return F
25: end procedure

get all of the semantic information out, we would filter s′ into
s =[“hypertext”, “transfer”, “protocol”].

lookup(): R is built over ports and IP addresses. To get
semantic meaning from them, we perform a look-up of which
protocol is built over the port or what the hostname for the IP
address is.

B. Identify Violations

Algorithm 1 outlines the process for generating the search
parameters and identifying violations within the code. First,
we take in the set of network filter rules, R, and begin
parsing them into the associated semantic search parameters.
For this, we convert the arguments, a, in each rule, r, to search
parameters. Then, if a is an IP address port, we convert a
into the name of the port or the hostname using the IANA
defined port names [13] (e.g., “-p 80” becomes “http”). Next,
we perform a depth-first search through each directory and file
to analyze the code. We consider each line of code separately,
except when a function or condition spans multiple lines.
In that case, each line is concatenated and then analyzed.
HALLMONITOR then iterates through each rule against that

2022 IEEE Conference on Communications and Network Security (CNS)

247
Authorized licensed use limited to: University of Florida. Downloaded on July 03,2024 at 19:36:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Call graph generation algorithm.
1: procedure CALLGRAPHGEN(F)
2: CallGraph = []
3: for each Func in F do
4: CallGraph = CallGraph.append(Func)
5: for each Element in CallGraph do
6: ParentSet = [functions that are calling Element]
7: CallGraph += ParentSet
8: end for
9: for each Element in CallGraph do

10: ChildSet = [functions that are called by Element]
11: for Each Child in ChildSet do
12: ParentsOfChild = [functions that are calling Child]
13: if ParentsOfChild in CallGraph then
14: CallGraph = CallGraph.append(Child)
15: end if
16: end for
17: end for
18: end for
19: Return CallGraph
20: end procedure

line of code, comparing each of the search parameters in each
r against the line of code. If there are more than σ instances,
we then consider this line of code as a candidate for violation.

C. Call Graph Generation

Functions from set F will be deemed as the entry points
for building the call graph. However, traditional strategies [14],
[9], [12] for building the call graph are started from the
beginning (i.e., entry function) of the workflow, whereas the
entry functions in set F could locate in the middle of the call
graph, meaning the entries could also be referenced by other
functions. Thus, we need to start the traversal by searching
both directions (i.e., called and referenced functions) starting
from functions in F . However, this traversal approach will lead
to two issues: (1) the functions that are called by F could be
used by functions useful for other modules and we cannot
include them in the call graph; (2) the functions calling F
could call other functions, which need to be included into the
call graph if they are not called by other modules.

Algorithm 2 shows the process to generate the call graph
based on the entry functions (F). We use CallGraph to record
the functions in our generated call graph and it is initialized
with an empty set. Thus, for entry functions, we first insert
them to the CallGraph. Then, we need to find out all the
functions (ParentSet) that call the entry function. Since the
functions in F are only served for the target functionality we
want to remove, the functions within ParentSet could be seen
as the ad-hoc functions for the target functionality. Therefore,
we append the ParentSet to the end of CallGraph and
continue the traversal of CallGraph until no functions call the
elements within the CallGraph. Then, we start the traversal
again to the CallGraph to find out all the functions (Child)
that are called by the CallGraph. However, some Child
functions are shared and called by other functions. Thus, we
cannot include those functions into CallGraph. Therefore, if
Child is only called by the functions within CallGraph, it
will be appended to the CallGraph. In the end, CallGraph
and the functions within it are only correlated with F . Thus, we
will perform viability analysis with the generated CallGraph.

D. Viability Assessment

Based on the analysis of network filter rules and source
code, we could get the function (viol function) where the
violation happened and the function (trigger function) that is
calling viol function. The goal of our work is to remove a
feature according to the violation and thus we need to demon-
strate the viability to achieve such a target. For this reason,
we evaluate the viability of cutting by analyzing the semantic
context from the source code. Since the removal of a specific
function, which could be used by other functions, can lead to
the failure of compilation and malfunction of other features, we
thus need to know the scope of the affected functions when we
want to mitigate based on the viol function. Furthermore, if we
cannot remove a feature by simply trimming some functions,
we must perform fine-grained analysis (e.g., manual analysis
by an engineer) to the source code and we need to discern the
workload for analyzing the source code to indicate the viability
of removal. Thus, we propose inter-analysis as a strategy to
identify the feasibility of removal.

Inter-analysis evaluates the correlation between the viol
function and other functions in the source code to demonstrate
the affected scope when we remove viol function. We exploit
the following metrics to demonstrate the affected scope: path
number and source code coverage ratio. Within the call graph,
the path refers to the function dependency throughout the call
graph. Therefore, we assume several paths intersect with a
function and refer to that function as the cross-point. We set
the cross-point to viol function and search the CallGraph to
figure out the path number (i.e., TotalPaths). More paths
mean a larger range and thus indicate the difficulty will be
higher in this circumstance. Removing a function can only
lead to an error in the functions that are calling or indirectly
calling the removed function. We define those functions that
are directly or indirectly calling the deleted function as upper-
functions. Thus, we calculate the ratio (i.e., UpperRatio) of the
line number of upper-functions to the line number of the entire
source code to illustrate the difficulty of trimming by which
the higher code coverage ratio of upper-functions means higher
difficulty and lower viability for trimming. In addition, if the
path number and the upper-functions code coverage ratio are
too high, we cannot remove the feature by simply deleting the
viol function and thus we need to have a fine-grained analysis.

E. Semantic Intersection

We propose another metric for analyzing the correctness
of HALLMONITOR. The semantic intersection of the function,
Isem, is defined for each rule and function. It considers the
total number of times within the function definition that the
search parameters are triggered for the rule normalized over
the number of search parameters. We can see a visual depiction
of Isem in Figure 3. Formally, B represents the set of strings
in the code block of the function definition, Sr is the set of
search parameters, and

Isem =
|Sr ∩B|
|Sr|

. (1)

It is important to note that this metric can be greater than one
as a search parameter s ∈ Sr can trigger more than one time

2022 IEEE Conference on Communications and Network Security (CNS)

248
Authorized licensed use limited to: University of Florida. Downloaded on July 03,2024 at 19:36:31 UTC from IEEE Xplore. Restrictions apply.

Isem

B

Sr
void foo()
{
 aa = bb
 return aa
}

aa, bb, cc, dd, ee,
ff, gg

aa, bb, aa

void bar()
{
 aa = bb+cc
 ee = aa + dd
 ff = ee + gg
 return ff
}

aa, bb, cc, ee,
aa, dd, ff, ee,

gg, ff

foo

bar

Fig. 3: We show Isem as the intersection between the search
parameters, Sr, and the code block B. For example, in the code
block of foo. The search parameters aa and bb appear for a
total of three times. In the block of code bar, the parameters
appear 10 times. Therefore, Isem is taken to be that intersection
divided over the number of search parameters (7) in this case.
For foo, Isem = 3/7 = 0.42. For bar, Isem = 10/7 = 1.42. Thus,
we would be interested in function bar and not function foo.

within the code block. We can think of Isem as the coverage
of HALLMONITOR over a violation. If Isem is greater than
one, it shows that HALLMONITOR found more instances of
the search parameters in the code block than there are search
parameters. This indicates a high likelihood of violation.

F. ICMP Example

We consider a trivial example of ICMP in the Linux kernel.
Network administrators will block incoming and outgoing
ICMP messages, as ICMP can allow an attacker to map the
internal network. Iptables suffice to block ICMP echo and echo
replies. Consider the following iptables rule.

iptables -A FORWARD -p icmp --icmp-type
0 -j DROP

This rule blocks all incoming and outgoing ICMP echo replies.
Any source code functionality filtered by this iptables rule is
obsolete. The function, icmp_reply provides the function-
ality of replying to ICMP echo and is a part of the attack
surface. Thus, we motivate our work by identifying violations
of network policies that the source code allows for. These
violations extend the attack vector and should be removed.

Network Filter Parsing: For this example, we use iptables.
We can see how HALLMONITOR parses the previous iptables
rule in Figure 4. We pull out each argument from the rule
and generate a group of search terms from each argument.
The table name output becomes a search term. We add
each word in icmp, internet control message protocol, as well
as icmp itself. For the type, we perform a lookup according
to IANA standards [15] and then clean the parameters (e.g.,
extend acronyms and remove special characters). The final list
of search terms is output, icmp, internet, control, message,
protocol, echo, and reply.

Source Code Analysis: We now analyze the icmp.c file from
the Linux kernel with all of the generated search parameters.

iptables -A FORWARD -p icmp --icmp-type 0 -j DROP

forward icmp echo-reply

forward, icmp, internet, control, message, protocol, echo, reply

icmp, internet, control,
message, protocol echo, reply

Fig. 4: An example of parsing the iptable rule. HALLMONITOR
pulls out flags from the iptables rule. It then generates search
parameters from the flags by removing special characters and
fully evaluating acronyms.

HALLMONITOR performs a line-by-line comparison of the file
match to each search parameter. A line of code is considered
for further evaluation once it triggers more than or equal to σ.
Consider σ = 2 as our example1. For instance, in the function
icmp_echo, we find lines 1, 5, 9, and 14, as they all contain
at least two of the search parameters, echo, icmp, or reply.
The four lines of code we found are just a subset of the total
lines HALLMONITOR finds within icmp.c. The lines of code
where the search parameters are in a function (1 and 14) show
an area within the call graph that represents violations, and we
further evaluate their priority by analyzing the call graph.

Call Graph Generation: Based on the result from the source
code analysis, we could start the generation of call graph from
function icmp reply with the method in Section III-C. Then,
we perform inter-analysis with icmp reply as the viol function
and icmp echo as the trigger function.

Viability Assessment: Using the strategies within Sec-
tion III-D, we calculate the path number and upper-function
ratio as 2 and 7.3%, respectively. Thus, we know the viability
for cutting, in this case, is High since only a small scope of
functions in the source code are affected by the viol function.
Moreover, within icmp echo, only a very small portion of
statements are correlated to the variables used by icmp reply.
Therefore, it is also possible to trim the viol function by only
analyzing the trigger function.

IV. EXPERIMENTAL RESULTS

We propose the following research questions to guide our
experiments:

RQ1 Security: Can we use network policies associated with
known vulnerabilities to find network violations in source
code?

RQ2 Viability: How difficult are the violations we identify to
remove from the source code?

1σ is an integer and directly specifies how many search parameters must
be triggered to be considered a candidate violation

2022 IEEE Conference on Communications and Network Security (CNS)

249
Authorized licensed use limited to: University of Florida. Downloaded on July 03,2024 at 19:36:31 UTC from IEEE Xplore. Restrictions apply.

1 static bool icmp_echo(struct sk_buff *
skb)

2 {
3 struct net *net;
4 net = dev_net(skb_dst(skb)->dev);
5 if (!net->ipv4.sysctl_icmp_

echo_ignore_all)
6 {
7 struct icmp_bxm icmp_param;
8 icmp_param.data.icmph = *icmp_hdr(

skb);
9 icmp_param.data.icmph.type =

ICMPECHO_REPLY;
10 icmp_param.skb = skb;
11 icmp_param.offset = 0;
12 icmp_param.data_len = skb->len;
13 icmp_param.head_len = sizeof(struct

icmphdr);
14 icmp_reply(&icmp_param, skb);
15 }
16 return true;
17 }

Fig. 5: caption=Excerpt from icmp.c to demonstrate how
HALLMONITOR analyzes code. We bold our generated search
parameters found in this code section.

RQ3 Scope: Does HALLMONITOR reduce the analysis an
engineer would have to perform to manage the violations?

To evaluate our results, we propose metrics to evaluate the
difficulty, complexity, and correctness of our approach. We
then demonstrate HALLMONITOR and the associated metrics
in an empirical case study.

Metrics: We will evaluate the violations according to the
metrics inter analysis and Isem. Finally, we consider another
metric, the total number of functions identified over the total
lines of code within the source code.

With F as the set of functions that violate policies and C
as the total set of code, we let U = |F |

|C| , that HALLMONITOR
identifies. For the purpose of scope, we want this metric
to be small as this shows that HALLMONITOR is not just
outputting the majority of the program as violations. Thus,
limiting the amount of work an end-user will need to do. As
|F | is dependent on σ, the sensitivity parameter, we present
our results with the context of varying σ.

Empirical Case Study: We use a case study to show the
correctness of HALLMONITOR on larger, mature codebases
that provide measures of ground-truth against which HALL-
MONITOR can be evaluated. Specifically, the exploitation of
vulnerabilities represents a violation of network policy, and
many CVEs contain lines of code corresponding to vulner-
abilities. As such, we consider identifying patched code for
CVEs (similar to Ghavamnia et al. [9]) as an unbiased measure
for the correctness of our approach. We do not use CVEs
or patch notes in HALLMONITOR. We compare the output
of HALLMONITOR on a codebase to CVEs for the given
codebase.

Nginx [16] and Curl [17] are two networking tools that
are customizable and present many attack vectors. We look at

CVE Rules σ Isem #Path UpperRatio
2018-16845 Snort 3 27.10 12 0.40%
2017-7529 Both 2 1.65 1 0.02%
2016-4450 Snort 2 8.00 3840 1.87%

Nginx 2014-3556 Snort 2 1.50 2 0.10%
2013-4547 iptables 2 0.85 6 0.34%
2012-1180 - - - - -
2009-3555 Snort 3 3.80 1 0.39%
2009-2629 Snort 3 12.10 4 0.40%
2021-22890 Both 3 1.38 6 0.19%
2020-8177 Snort 3 2.47 2 0.55%

2018-1000007 iptables 3 2.70 192 0.90%
Curl 2016-8624 Snort 3 24.40 36 2.28%

2016-7141 Snort 2 0.31 6 0.67%
2016-5419 Snort 3 2.63 36 2.29%
2016-4802 - - - - -
2016-0755 Snort 3 2.61 36 2.56%

TABLE I: This table shows the results for the empirical study
from the network filters. We show the different CVEs for which
network filters were able to identify associated patch code, and
the sensitivity, σ, required to find them. We are able to identify
seven out of eight CVEs for both Nginx and Curl. The next
column shows the metrics (Isem, #Path, and UpperRatio),
for each of the identified vulnerabilities. The metrics give an
indication for how possible the removal will be.

eight CVEs for Nginx and Curl. We use patch release notes
and associated code modification for both Nginx and Curl.
The primary goal is to show that by using search parameters
generated from Snort and iptables, we can point to direct
functions before patching what the patch modified. We use the
set of Snort Community rules [18] and a list of 12 iptables rules
that target common functionality. Moreover, after we get the
entry functions from previous approaches, we generate a call
graph for further analysis. Since Nginx and Curl are written
with C language, we use LLVM to generate Intermediate
Representation (IR) code (i.e., bitcode) and then link them with
link-time optimization (LTO) tool to get an overall bitcode.
After that, we generate an overall call graph with LLVM
provided tool (i.e., opt) and then perform the methodology
in Section III-C to generate the call graph based on the viol
function (i.e., entry function). Additionally, we generate CFG
of the trigger function from the bitcode. Therefore, we could
deploy inter-analysis and intra-analysis with generated call
graph and CFG.

Case Study Results: Of the eight CVEs for both Nginx and
Curl, we can identify code modified by the associated patch for
seven out of the eight. The results for each CVE can be seen
in Table I. Only two of the CVEs associated Isem are lower
than 1.0, with the rest over one and three over 10.0. Indicating
that semantically, many of the associated functions contained
numerous instances of the associated search parameters. It is
important to distinguish Isem from the sensitivity, σ. Isem is a
metric that regards the total number of search parameters found
throughout the function definition, whereas σ only considers
line-by-line what the semantic entropy is. The CVEs associated
with Nginx were split on sensitivity. Three CVEs were found
at a higher sensitivity of three, whereas four were found at a
sensitivity of two. For Curl, we can see that of the found CVEs
only one required a low sensitivity of 2. The rest we can find
at three. To compare these sensitivities, we refer to Figure 6.
Iptables output an average of 1.5%, 0.5%, and 0% violations
for σ equals two, three, and four, respectively. Snort outputs

2022 IEEE Conference on Communications and Network Security (CNS)

250
Authorized licensed use limited to: University of Florida. Downloaded on July 03,2024 at 19:36:31 UTC from IEEE Xplore. Restrictions apply.

2 3 4
Sensitivity

0

2

4

6

8

10

12

14

16

Av
er

ag
e

Pe
rc

en
t o

f S
ou

rc
e

Co
de

Outputted Source Code by Varying Sensitivities
Rules

Snort
iptables

Fig. 6: This Figure shows the percent of code HALLMONITOR
outputs out of the total size of the source code with the
different levels of sensitivity. The split is between the two
network filters we used, iptables and Snort. Notice that iptables
outputs significantly less at σ = 2 than Snort rules do. This
is due to the available semantic information. For Snort, σ at
3 results in the most meaningful output as it has the smallest
violation identification while being able to find 9 of the 16
CVEs. For iptables, σ at 2 contains the most information.

an average of 15.1%, 3.1%, 0.5% for σ equals two, three,
and four, respectively. Snort outputs more due to the available
semantic information from the arguments, a, in each Snort
rule.

For Nginx, the average percent violations identified out
of the total lines of code, U , for sensitivities of two, three,
and four are 14.9%, 2.18%, and 0.42%, respectively. For Curl,
the sensitivities of two, three, and four resulted in a violation
identification of 17.2%, 3.5%, and 0.6%. Overall, a sensitivity
of four is too small to trigger any meaningful code related to
the patch. At a sensitivity of three, there are enough triggered
lines of code to find many of the CVEs. After we analyze
the CVEs with our iptables-based and Snort-based approaches,
we can use the viol function for viability assessment. We can
see the associated viability metrics in Table I. The largest
Isem was 27.10 with the largest found being 0.31. For the
TotalPaths, we have a significantly large path number for
CVE-2016-4450 at 3,840, indicating it is unlikely to have a
simple removal for the identified code.

V. DISCUSSION

a) Security: The primary goal of HALLMONITOR is
to identify violations in source code. We consider how well
HALLMONITOR can identify violations by comparing patch
code associated with CVEs for the known systems with the
output of HALLMONITOR. Unlike other debloating techniques
which seek to remove as much code as possible, we seek
to identify targeted lines of code that remove disallowed
functionality from the network. Performance measurements
such as overall binary reduction and ROP removal do not
hold the same meaning for our approach. Similarly, Razor [4]
and Chisel [7] compare against CVEs related to Linux kernel
commands (e.g., gzip, grep, mkdir, mv). None of these CVEs

touch network functionality and thus are out of the scope of
our analysis.

Overall, we found the patch code for seven out of the
eight CVEs in both Nginx and Curl. Thus, we find violations
associated with known vulnerabilities (RQ1). The CVEs we
consider relate to read and write, TLS/SSL, buffer overflow,
and parsing errors. For example, CVE-2009-3555 is a renegoti-
ation vulnerability in SSL protocol. The violation in question is
ngx_http_ssl_verify_callback. The Snort rule that
triggered this violation creates an alert when a packet destined
for the webserver has an established connection and attempts
to overflow a challenge length. HALLMONITOR finds five out
of the six functions modified by the patch as violations. Further
reflecting the coverage of HALLMONITOR is that for this CVE,
Isem is 3.8. Thus, showing that the search parameters that
found the function has high coverage over the associated code.
This indicates that the identified violations in the source code
are closely related to vulnerabilities.

HALLMONITOR cannot identify any violations related to
CVE-2012-1180. This CVE is a memory disclosure with a
specially crafted backend for Nginx. Since HALLMONITOR
does not perform deep packet inspection, we are unable to
identify vulnerabilities related to buffer overflow or errors
incurred by processing malformed data. For Curl, we are
unable to identify CVE-2016-4802, which allows an attacker
to execute arbitrary code when Curl is initialized with telnet
or SSPI. The violations associated with the patch cannot
be detected by HALLMONITOR because the patch modifies
initialization functions and library loading. Thus, while HALL-
MONITOR can target many network-related violations pertain-
ing to vulnerabilities, it is unable to identify vulnerabilities
that take advantage of dynamically linked library loading or
initialization of the project.

b) Viability: To show the viability of removal, we con-
sider the metrics of inter analysis for the CVEs we identified
violations for. These metrics consider the number of paths
going through the violation. The inter analysis relates how
removing the violation will impact the surrounding functions.
We see that eight out of the fourteen violations identified for
the CVEs have less than 10 paths through them. Thus, they are
candidates for quick and easy removal. Of the remaining six,
four have less than 50 paths through them, one has 192, and the
last has 3,840 paths through it. These violations are less viable
than the others. Overall, eight out of the fourteen violations
HALLMONITOR identifies are easily removed (RQ2), with the
remaining six requiring more complex removal.

c) Scope: Unlike traditional software debloating sys-
tems, we do not approach the problem as a total removal.
We are concerned about targeted and meaningful output and
consider the total code outputted as a good measure of the
efficiency and usefulness of HALLMONITOR. By lowering
σ, we can raise and lower our false-positive rate similar to
lowering the probability threshold in an Intrusion Detection
System. The problem is that by lowering σ we increase the
total output. If HALLMONITOR outputs 85% of the source
code as a violation, this does not indicate or instruct an end-
user in any meaningful way. It is of the utmost importance
that HALLMONITOR outputs a small percentage of the source

2022 IEEE Conference on Communications and Network Security (CNS)

251
Authorized licensed use limited to: University of Florida. Downloaded on July 03,2024 at 19:36:31 UTC from IEEE Xplore. Restrictions apply.

code as violations. Thus, with a small number of violations, the
end-user can further analyze the importance of the violations.

Iptables output significantly fewer candidate violations than
the Snort rules. This is primarily due to the fact that the Snort
rules contain more semantic information (e.g., authors put an
alert comment on each rule). The largest amount of output for
iptables and Snort rules is at σ = 2, which outputs 1.5% and
15.1%, respectively. We notice for Nginx that four of the eight
CVEs can only be found at this level (two of which are found
by iptables), while only one CVE is found for Curl. Increasing
σ to three, HALLMONITOR outputs only 0.5% of the source
code for iptables and 3.1% for Snort rules. Similarly, six out
of the remaining seven CVEs we identify for Curl are found
at σ = 3, while only three for Nginx. Thus, we can limit the
output for an end-user verifying the ease of use as well as the
correctness of HALLMONITOR (RQ3).

VI. LIMITATIONS AND FUTURE WORK

HALLMONITOR identifies possible functions to trim from
the callgraph based on allowed network functionality. It does
not perform deep packet inspection (DPI). This results in
missing CVEs related to packet contents and packet parsing.
We are also unable to identify CVEs related to a buffer
overflow. Primarily, many patches involving an overflow of
a variable are difficult to catch and relate to buffer size rather
than actual network functionality. The search parameters can
arbitrarily trigger a line of code. Our biggest limitation is
semantic differences between function names and generated
search parameters. In other words, concatenated words used
for function or variable names are not triggered by the
complete generated word. Other times, the search parameters
erroneously trigger lines of code simply because the line of
code contained the characters of the search parameters without
the same semantic meaning (e.g., “app” flagging a line of code
containing “overlapped”).

We see this work as a promising start for relying on
network-based software debloating. Future work includes com-
bining search parameter generation by connecting it to the
CVE information that is present in many Snort rules. We could
use the associated patch code with the CVE to generate new
search parameters for the source code analysis. Another avenue
to consider is the semantic differences between the search
parameters and the code. Semantic analysis of source code has
been used to detect plagiarism of code [19], identify topics in
source code [20], and fix code [21]. Using similar approaches,
we can guide the analysis by using semantic differences. In
future work, we consider modifying the search algorithm to
always iterate over network search parameters. Then for the
line of code to be flagged, it would need to hit specific search
parameters directly related to the code (e.g., “http” will always
be searched in the line of code, but it will not be flagged unless
it also hits “connect to” generated by the network filter).

VII. RELATED WORK

a) Software Debloating: Many approaches have been
suggested in removing unused code. Jiang et al. [2] propose
JRed, a Java Runtime Environment specialization framework.
By analyzing a constructed callgraph and using points-to

analysis, they can trim unused classes and methods from
a Java program. Ghavamnia et al. [9] propose an elegant
temporal system call specialization approach for reducing the
attack surface to servers. They do so by statically analyzing
source code and identifying functions not used after server-
initialization and thus reducing attack surfaces of web servers.
For developing a complete usage profile, Azad et al. showed a
reduction in code size and CVEs for web servers by developing
a complete usage case [6]. They did this by crawling the
webserver, using tutorials from the internet to get usage, and
simulating the user interaction with random clicks. As software
systems grow in complexity, the end-user may not use all of the
features associated with a program. This provides a great op-
portunity for debloating code and reducing the attack surface.
Another approach by Mulliner et al. [1] removed Dynamic
Loaded Libraries from the Control Flow Graph. CHISEL [7],
CARVE [5], TRIMMER [12], TOSS [22], and RAZOR [4]
use varying CFI policies derived using machine learning. They
analyze user interaction, tutorials, and configuration to do so.

b) Automatic Patching: The research community seeks
to apply automatically generated patches. Keromytis intro-
duces work that would allow a central authority to auto-
matically update its deployed systems by monitoring exploits
discovered via a honeypot [23]. Further work explores the
feasibility and usefulness of automatic patches against network
worms [24], [25]. Patching software vulnerabilities remains
largely a manual task, but recent research suggests that identi-
fication of such vulnerabilities remains an open and promising
area [26]. Many methods include using patches from other
software to inform new systems. Systems such as GenProg and
Par use genetic algorithms to generate patches from previously
created patches [27], [28]. Qi et al. [29] build on these ideas by
measuring the effectiveness of random algorithms. SimFix [30]
compares against a set of defined patches with differences in
source code to build a candidate patch. Tools like Genesis [31]
and Prophet [32], use these previous patches to identify fixes
for current vulnerabilities, while Sidiroglou et al. [33], [34]
uses donor software applications to mitigate bugs in code.
Another focus is on mitigating the downtime of servers, such
as KSplice [35]. Other tools [36], [37], [38] mitigate atomicity
and concurrency bugs. Binary and byte-based patching focus
on mitigating known software vulnerabilities without source
code by using evolutionary algorithms and computation [39],
[40]. ClearView [41] observes the execution of the code’s
binaries and learns invariants of the program to patch errors
in deployed code.

VIII. CONCLUSION

We present HALLMONITOR, a system that infers source
code violations of network policies. Current debloating tech-
niques focus on what the user does not use. We use network
policies to identify violations in the source code (i.e., what the
user is not allowed to do), and then perform analysis on the
targeted associated functionality. We present two metrics that
show the viability and correctness of HALLMONITOR. Then,
relying on mature codebases, we show HALLMONITOR can
identify code associated with 14 out of 16 CVEs for Nginx and
Curl. By leveraging this novel perspective, we can efficiently
find source code violations.

2022 IEEE Conference on Communications and Network Security (CNS)

252
Authorized licensed use limited to: University of Florida. Downloaded on July 03,2024 at 19:36:31 UTC from IEEE Xplore. Restrictions apply.

IX. ACKNOWLEDGEMENTS

We thank the reviewers for their helpful feedback. This
work was supported by Office of Naval Research N68335-19-
C-0633 and National Science Foundation CNS-1562485. The
findings and conclusions in this paper are only of the authors
and do not necessarily represent the opinions of ONR and NSF.

REFERENCES

[1] C. Mulliner and M. Neugschwandtner, “Breaking payloads with runtime
code stripping and image freezing,” Black Hat USA, 2015.

[2] Y. Jiang, D. Wu, and P. Liu, “Jred: Program customization and bloat-
ware mitigation based on static analysis,” in 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC), 2016.

[3] Y. Jiang, Q. Bao, S. Wang, X. Liu, and D. Wu, “Reddroid: Android
application redundancy customization based on static analysis,” in 2018
IEEE 29th International Symposium on Software Reliability Engineer-
ing (ISSRE). IEEE, 2018.

[4] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee,
“Razor: A framework for post-deployment software debloating,” in 28th
USENIX Security Symposium (USENIX Security 19), 2019.

[5] M. D. Brown and S. Pande, “Carve: Practical security-focused software
debloating using simple feature set mappings,” in Proceedings of
the 3rd ACM Workshop on Forming an Ecosystem Around Software
Transformation, 2019.

[6] B. A. Azad, P. Laperdrix, and N. Nikiforakis, “Less is more: Quan-
tifying the security benefits of debloating web applications,” in 28th
USENIX Security Symposium (USENIX Security 19), 2019.

[7] K. Heo, W. Lee, P. Pashakhanloo, and M. Naik, “Effective program
debloating via reinforcement learning,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, 2018.

[8] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith,
“Implementing a distributed firewall,” in Proceedings of the 7th ACM
conference on Computer and communications security, 2000.

[9] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, “Temporal
system call specialization for attack surface reduction,” in 29th USENIX
Security Symposium (USENIX Security 20), 2020.

[10] M. R. McNiece, R. Li, and B. Reaves, “Characterizing the security
of endogenous and exogenous desktop application network flows,” in
International Conference on Passive and Active Network Measurement.
Springer, 2021.

[11] M. Ghaffarinia and K. W. Hamlen, “Binary control-flow trimming,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019.

[12] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar, “Trimmer: appli-
cation specialization for code debloating,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, 2018.

[13] “IANA: Service Name and Transport Protocol Port Number Registry.”
[Online]. Available: https://www.iana.org/assignments/service-names-
port-numbers/service-names-port-numbers.xhtml

[14] J. Wu, R. Wu, D. Antonioli, M. Payer, N. O. Tippenhauer, D. Xu,
D. J. Tian, and A. Bianchi, “LIGHTBLUE : Automatic profile-aware
debloating of bluetooth stacks,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 2021.

[15] “IANA: Internet control message protocol (ICMP) parameters,”
1981. [Online]. Available: https://www.iana.org/assignments/icmp-
parameters/icmp-parameters.xhtml#icmp-parameters-codes-0

[16] “Nginx,” https://www.nginx.com/.
[17] “Curl,” https://curl.se/docs/security.html.
[18] “Snort community rules.” [Online]. Available: https://www.snort.org/

downloads/#rule-downloads
[19] G. Cosma and M. Joy, “An approach to source-code plagiarism detection

and investigation using latent semantic analysis,” IEEE transactions on
computers, 2011.

[20] A. Kuhn, S. Ducasse, and T. Gı̂rba, “Semantic clustering: Identifying
topics in source code,” Information and software technology, 2007.

[21] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 2013.

[22] Y. Chen, S. Sun, T. Lan, and G. Venkataramani, “Toss: Tailoring on
server systems through binary feature customization,” in Proceedings
of the 2018 Workshop on Forming an Ecosystem Around Software
Transformation, 2018.

[23] A. D. Keromytis, ““patch on demand′′ saves even more time?[network
security],” Computer, vol. 37, no. 8, 2004.

[24] M. Vojnović and A. Ganesh, “On the effectiveness of automatic patch-
ing,” in Proceedings of the 2005 ACM workshop on Rapid malcode,
2005.

[25] S. Sidiroglou and A. D. Keromytis, “Countering network worms
through automatic patch generation,” IEEE Security & Privacy, 2005.

[26] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical
program repair with on-demand candidate generation,” in Proceedings
of the 40th international conference on software engineering, 2018.

[27] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” Ieee transactions on
software engineering, 2011.

[28] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in 2013 35th International Con-
ference on Software Engineering (ICSE). IEEE, 2013.

[29] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random
search on automated program repair,” in Proceedings of the 36th
International Conference on Software Engineering, 2014.

[30] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in Proceedings of
the 27th ACM SIGSOFT international symposium on software testing
and analysis, 2018.

[31] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017.

[32] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2016.

[33] S. Sidiroglou-Douskos, E. Lahtinen, A. Eden, F. Long, and M. Rinard,
“Codecarboncopy,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, 2017.

[34] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, “Au-
tomatic error elimination by horizontal code transfer across multiple
applications,” in Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2015.

[35] J. Arnold and M. F. Kaashoek, “Ksplice: Automatic rebootless kernel
updates,” in Proceedings of the 4th ACM European conference on
Computer systems, 2009.

[36] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated atomicity-
violation fixing,” in Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation, 2011.

[37] G. Jin, W. Zhang, and D. Deng, “Automated concurrency-bug fixing,”
in 10th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 12), 2012.

[38] P. Liu and C. Zhang, “Axis: Automatically fixing atomicity violations
through solving control constraints,” in 2012 34th International Con-
ference on Software Engineering (ICSE). IEEE, 2012.

[39] E. Schulte, S. Forrest, and W. Weimer, “Automated program re-
pair through the evolution of assembly code,” in Proceedings of the
IEEE/ACM International Conference on Automated Software Engineer-
ing. Association for Computing Machinery, 2010.

[40] Z. Deng, X. Zhang, and D. Xu, “Bistro: Binary component extraction
and embedding for software security applications,” in European Sym-
posium on Research in Computer Security. Springer, 2013.

[41] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. Rinard, “Automatically patching
errors in deployed software,” in Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, 2009.

2022 IEEE Conference on Communications and Network Security (CNS)

253
Authorized licensed use limited to: University of Florida. Downloaded on July 03,2024 at 19:36:31 UTC from IEEE Xplore. Restrictions apply.

