
RANsacked: A Domain-Informed Approach for Fuzzing LTE and
5G RAN-Core Interfaces

Nathaniel Bennett

University of Florida

Gainesville, FL, USA

bennett.n@ufl.edu

Weidong Zhu

University of Florida

Gainesville, FL, USA

weidong.zhu@ufl.edu

Benjamin Simon

University of Florida

Gainesville, FL, USA

bsimon4@ufl.edu

Ryon Kennedy

University of Florida

Gainesville, FL, USA

ryonkennedy@ufl.edu

William Enck

North Carolina State

University

Raleigh, NC, USA

whenck@ncsu.edu

Patrick Traynor

University of Florida

Gainesville, FL, USA

traynor@ufl.edu

Kevin R. B. Butler

University of Florida

Gainesville, FL, USA

butler@ufl.edu

ABSTRACT

Cellular network infrastructure serves as the backbone of modern

mobile wireless communication. As such, cellular cores must be

proactively secured against external threats to ensure reliable ser-

vice. Compromised base station attacks against the core are a rising

threat to cellular networks, while user device inputs have long been

considered as an attack vector; despite this, few techniques exist

to comprehensively test RAN-Core interfaces against malicious

input. In this work, we devise a fuzzing framework that perfor-

mantly fuzzes cellular interfaces accessible from a base station or

user device, overcoming several challenges in fuzzing specific to

LTE/5G network components. We also introduce ASNFuzzGen, a

tool that compiles ASN.1 specifications into structure-aware fuzzing

modules, thereby facilitating effective fuzzing exploration of com-

plex cellular protocols. We run fuzzing campaigns against seven

open-source and commercial cores and discover 119 vulnerabilities,

with 93 CVEs assigned. Our results reveal common implementation

mistakes across several cores that lead to vulnerabilities, and the

successful coordination of patches for these vulnerabilities across

several vendors demonstrates the practical impact ASNFuzzGen

has on hardening user-exposed cellular systems.

CCS CONCEPTS

• Security and privacy→Mobile and wireless security; Soft-

ware and application security; • Networks → Mobile net-

works.

KEYWORDS

cellular security, fuzzing, rogue base station

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3670320

ACM Reference Format:

Nathaniel Bennett, Weidong Zhu, Benjamin Simon, Ryon Kennedy, William

Enck, Patrick Traynor, and Kevin R. B. Butler. 2024. RANsacked: A Domain-

Informed Approach for Fuzzing LTE and 5G RAN-Core Interfaces. In Pro-
ceedings of the 2024 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.3670320

1 INTRODUCTION

Cellular telecommunication systems represent critical infrastruc-

ture and the primary means by which most of the world communi-

cates. As successive generations of cellular technologies have been

deployed, the underlying technologies and communication proto-

cols have become more open and accessible, particularly given the

IP-based core network that supports Long Term Evolution (LTE)

and 5th-Generation (5G) systems. These new generations of cellular

systems bring increasing complexity as well, with many different

components and interfaces between them. While past work has

considered the security of these interfaces based on standards doc-

uments [35], implementations of the cellular core have not been

comprehensively assessed for vulnerabilities despite their use in

both academic and commercial settings.

Fuzzing has become an increasingly popular and effective means

to assess system security. Advances in fuzzers have led to solutions

that performwell against large code bases that can carry substantial

internal state, but the most effective solutions are coverage-guided
(i.e., grey-box) fuzzers that discover new test cases through muta-

tions based on an initial corpus of inputs. While this approach can

be parallelized and lead to very high numbers of executed test cases

per second, they encounter challenges when used in the complex

cellular core environment, which can be summarized as follows:

1. Fuzzing-Averse Cellular Core Architectural Design. By configur-
ing and performing ground-truth tests on several LTE implementa-

tions as testbeds, we observe several characteristics of Radio Access

Network (RAN)-Core interfaces that incur additional complexity in

applying a fuzzing harness, lead to significant performance degrada-

tion, or require external components that would introduce erratic

behavior during repeated fuzzing. These characteristics include

intentional delaying of transport protocol messages, distributed or

multiprocess architectures for certain component implementations,

https://doi.org/10.1145/3658644.3670320
https://doi.org/10.1145/3658644.3670320

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nathaniel Bennett et al.

required interactions across multiple network interfaces to initial-

ize a channel for fuzzing, and external dependencies to other core

components to exchange messages during operation. Certain core

components additionally incur significant performance penalties

due to initialization, further reducing fuzzing speeds.

2. Breadth/Complexity of Control-Plane Messages. Most network

protocols define a handful of base message variants and tens or oc-

casionally hundreds of data types within messages. In stark contrast

with this, control-plane protocols define nearly 100 distinct base

message variants and over 1400 data types, with complex nested

data type relations encoded in a dense Abstract Syntax Notation

No. 1 (ASN.1) specification. The combined breadth and depth of

protocol data types make for an expansive range of inputs that need

to be explored to achieve any reasonable measure of protocol cover-

age. To further complicate matters, the encoding scheme employed

by the control plane is susceptible to invalid inputs and experimen-

tally rejected over 95% of fuzz-generated inputs. Taken together,

these represent a significant hurdle to fuzz RAN-core interfaces

effectively.

To address these challenges, we present a new approach to

fuzzing cellular core components, with particular focus on pro-

tocol interfaces that receive input directly from mobile handsets

and base stations. Recent reports indicate that 18% of cellular secu-

rity incidents target base station equipment [21], making attacks via

such RAN devices a credible threat. We conduct experiments on six

different implementations of LTE and 5G cores, several of which are

actively used in commercial, industrial and/or and private network

contexts. We set up and run these cores to develop fuzzing seeds

based on network packet traces, and we develop a structure-aware
approach (ASNFuzzGen) to fuzzing the S1AP/NGAP protocols that

is generalizable to any Packed Encoding Rules (PER) ASN.1 specifi-

cation, including those seen in other cellular, automotive and space

systems. We also perform a black-box fuzzing campaign against a

proprietary LTE core based on the domain-informed techniques

we develop through our analysis of open-source cores. In total,

we discover 119 vulnerabilities across these core implementations,

96 of which have been assigned CVE identifiers. We demonstrate

that our domain-informed, structure-aware fuzzing methodology

finds vulnerabilities efficiently and scalably, and publicly release

ASNFuzzGen to aid further research and ASN.1 fuzzing efforts
1
.

2 BACKGROUND

LTE and 5G cores are composed of several networked components

of differing roles; together, these components enable a cellular

core to scalably serve network traffic to User Equipment (UE) and

meter plan usage. Cellular networks can be divided into the RAN,

which comprises devices that communicate wirelessly at the edge

of the network, and the core, which comprises provider-operated

equipment that enables internetworking.

RAN Architecture. Within the RAN, a UE connects via radio to

the base station (eNodeB/gNodeB for LTE or 5G respectively). The

base station communicates control signalling directly with the core

via S1 Application Protocol (S1AP)/Next Generation Application

Protocol (NGAP) protocols, and transparently forwards Non-Access

1
https://github.com/FICS/asnfuzzgen

MME/AMF

SGW/AGW

S1AP/NGAP

GTP

NAS

? ?

RAN Cellular Core

Attacker-Controlled UE Inputs
Attacker-Controlled BS Inputs

Benign UE Inputs
Benign BS Inputs

Figure 1: Message flow of potential adversary inputs. A ma-

licious UE (1) may send malformed NAS payloads that are

forwarded by a benign base station (BS) over S1AP/NGAP. A

malicious BS (2) may send malformed GTP, S1AP/NGAP, and

NAS payloads directly to core components.

Stratum (NAS) control information between the UE and the core

(as seen in Figure 1). Control information is handled by the Mobility

Management Entity (MME) or Access and Mobility Management

Function (AMF) (which we hereafter refer to collectively as the

Mobility Management (MM) component) for LTE/5G, respectively.

User data is passed to the Serving Gateway (SGW) or Access Gate-

way (AGW) (which we refer to as the Gateway (GW) component)

respectively.

Control Plane (S1AP/NGAP & NAS). The S1AP/NGAP protocols

perform two distinct roles: they enable core MM components to

manage base station operation and receive radio service metadata,

and they serve as a transport channel over which authentication

and handover information is exchanged between the UE and the

MM component via NASmessages. NGAP is largely an extension of

S1AP with additional functionality for 5G. While the two protocols

are not cross-compatible, both handle initial base station registra-

tion via a single unauthenticated setup message, and subsequent

UE authentication and handover actions involve near-identical mes-

sage flows.

S1AP and NGAP are both specified with ASN.1, a language for

describing data structures that can be serialized/deserialized in a

platform-independant way. ASN.1 is widely used not only in the

cellular domain, but in space communications, TLS and LDAP au-

thentication, automotive standards, manufacturing/HVAC systems,

payment cards, and other industries. While ASN.1 use spans back

as far as the 1980’s, vulnerabilities in both deserializing ASN.1 pay-

loads and interpreting decoded fields continue to affect the security

of communication chanels (as our work will show for the cellular

domain).

ASN.1 defines several different methods by which a payload

may be serialized/deserialized, known as encoding rules. Of these,
Packed Encoding Rules is designed to minimize the number of bytes

https://github.com/FICS/asnfuzzgen

RANsacked: A Domain-Informed Approach for Fuzzing LTE and 5G RAN-Core Interfaces CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

used during serialization of a structure. Packed Encoding Rules

encodes individual fields in slices of bits, rather than aligning by

byte boundaries, and any field values that can be inferred by the

recipient are omitted during the serialization process. S1AP and

NGAP use Packed Encoding Rules as their encoding method.

The NAS protocol is not defined using ASN.1, but rather follows

its own custom data format. NAS handles authentication exchange

between the core and the UE, passes configuration parameters to the

UE, and enables Short Messaging Services (SMS). It contains a much

smaller set of data types and message variants than S1AP/NGAP.

User Plane (GTP). Once a UE has connected and authenticated

with a cellular network, the base station exchanges its data and IMS

service traffic with the core network via GPRS Tunnelling Proto-

col (GTP). GTP is a lightweight protocol designed to encapsulate IP

packets with a short header containing sender identification, mes-

sage type and a set of optional extensions. As the encapsulated data

is transparently passed through the cellular core without further

processing, we do not include GTP as a target for structure-aware

fuzzing.

Core Architecture. Within the core, both the MM and the GW

components handle traffic from several base stations; it is not un-

common for a single MM component to handle control signalling

for an entire metropolitan area. The MM and GW components both

handle sensitive user information and must be operational for the

cellular core to function. Likewise, both components handle commu-

nications at a much wider scale than other user-facing components,

such as base stations. As such, they represent significant targets for

both denial of service and remote code execution attacks.

3 THREAT MODEL

As mentioned above, the MM and GW components both handle

communications for users across potentially dozens or hundreds of

base stations spanning a large-scale metropolitan area, and both

components must be operable for cellular services to work. For the

scope of our paper, we consider two potential goals of an adversary:

first, to deny access to cellular services across a wide metropolitan

area, and second, to remotely execute code within the network core.
The latter gives an attacker the ability to additionally access sen-

sitive user data or encryption keys, manipulate cellular network

behavior, or establish a foothold within the core whereby further

attacks could be mounted on more critical components. In carrying

out these goals, we assume that the attacker would have the capa-

bility to act from one of two threat vectors, as depicted in Figure 1

and described hereafter:

1. Compromised Base Station. Given the network access of a

base station, an attacker can exchange control plane (S1AP/NGAP)

packets with the MM and user plane packets (GTP) with the GW

component. However, the functions that can be carried out using

these interfaces are restricted in scope to authentication and infor-

mation exchange between the UE and the core, providing metadata

on a UE to the MM component, and performing handovers of UE

devices to other base stations. Base station compromise also limits

an attacker to the area of that station’s radio. Base stations are

therefore incapable of obtaining authentication and ciphering in-

formation from, executing commands on, or persistently denying

service to MM/GW components or users across an entire metro-

politan area. The vulnerabilities we uncover in this paper grant an

attacker several of these capabilities where the normal base station

functionality could not.

Compromised access to a base station is a credible and increas-

ingly common threat. Multiple incidents involving compromised

cell tower equipment have surfaced in the last 5 years, and in 2021

the EU Agency for Cybersecurity (ENISA) reported that 18% of

all telecommunications security incidents involved specifically tar-

geted mobile base stations [21, 57]. Moreover, modern 5G base sta-

tions are deployed withmuch greater density and inmore accessible

and secluded areas than previous generations. Widespread femto-

cell offerings both in the US [10, 16, 52, 56] and worldwide [18, 25,

32, 42] additionally provide an attacker persistent physical access to

such devices, which are susceptible to compromise via flash/RAM

dumping and other exploits [17, 19, 26, 58].

2. Malicious UE. The NAS protocol conveys signalling informa-

tion between the UE and the MM component, and is treated as

opaque data by the intermediary base station. Thus, exploits that

can be triggered via unexpected or malformed NAS payloads can

enable an arbitrary UE to directly compromise a MM component.

NAS datagrams are first exchanged between the MME and UE at

the beginning of authentication procedures; as these packets must

be parsed and interpreted by the MME before it can verify the legit-

imacy of the UE, we designate vulnerabilities in the NAS as remote

pre-authentication attacks.

4 METHODOLOGY

Our methodology is as follows: we first run several LTE/5G testbeds

to determine cellular-specific challenges to fuzzing (Section 4.1).

From these observations, we design a netwok fuzzing harness to

performantly fuzz cellular interfaces (Section 4.2), as well as a novel

approach to structure-aware fuzzing of ASN.1-specified protocols

(Section 4.3). Last of all, we procure fuzzing seeds both from man-

ual testbed analysis and automated generation, as described in

Section 4.4.

4.1 Challenges in Fuzzing LTE/5G Components

To inform our fuzzing approach, we first set up and configure sev-

eral working LTE/5G cores as testbeds, complete with simulated

base stations and radio connections to user devices (shown in Fig-

ure 2). Once all components in the cellular testbed are verified to be

operational, we simulate various UE behaviors such as association,

authentication, call and data transfer, and dropped connections.

We capture and subsequently analyze message exchanges associ-

ated with these interactions. We then perform input stress testing

specifically on RAN-Core interfaces to determine what bottlenecks

would make fuzzing untenable. From these experiments, we dis-

cover several challenges to fuzzing cellular core interfaces:

Intentionally Delayed Messages. Some protocols, such as Stream

Control Transmission Protocol (SCTP), define mechanisms that

intentionally delay packet acknowledgement by hundreds of mil-

liseconds to reduce total packet transmission. While such behavior

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nathaniel Bennett et al.

Seed Selection

Isolated
Commercial

Core

Persistent
Channel Reset
(PCR) HarnessStructure-

Generated
Seeds

Trace Seeds

ASNFuzzGen
Structure-Aware Fuzzing

Module Generation

SCTP/Canary
Harness

Core
Component

Coverage/Signalling

Channel Setup

Fuzzing Input

AFL Mutation
Engine

Service Shims

AFL Mutation
Engine

Structure-Aware
Module Crash Signalling

Fuzzing Input

LTE/5G-Tailored Fuzzing Harnesses

Grey-box Fuzzing Approach

Black-box Fuzzing Approach

Motivate
design of...

Record
packets for...

Simulated RAN

LTE/5G Testbed

S1AP/
NGAP GTP

Structure-Aware
Module

Figure 2: RANsacked System Overview. Based on observations of message flows between simulated RAN components and

LTE testbeds, we approach RAN-core fuzzing by applying structure-aware fuzzing/seed generation and run campaigns using a

specialized LTE-informed harness.

is desirable in the context of high-throughput cellular core oper-

ation, it severely degrades the speed at which network-oriented

fuzzing can occur.

Complex Component Initialization and Architecture. In multiple

cellular core implementations, certain components (such as the

MM) are divided into several threads or even subprocesses with

remote procedure calls defined between them. Such architectures

introduce synchronization challenges during fuzzing engine initial-

ization, reduce the efficacy of coverage-guided fuzzing (as coverage

feedback is limited to one process), and introduce instability in

coverage feedback due to multi-process concurrency. To add to

this, many MM and GW component implementations introduce

significant overhead during initialization each time they are started

(hundreds to thousands of milliseconds) and consume a relatively

large memory footprint, further stifling the potential for performant

fuzzing using existing approaches.

Breadth and Depth of Protocol Structural Complexity. Many cellu-

lar protocols are the culmination of more than 30 years of additions

to functionality in the cellular core. As a result of this, certain pro-

tocols have both a breadth of message types and a depth of nested

field structure that proves difficult for standard fuzzing techniques

to adequately explore. In particular, S1AP defines 91 distinct base

message variants and over 1400 unique Information Element (IE)s

of varying composition, many of which are reused dozens of times

as fields for other IEs. NGAP similarly defines nearly a hundred

base messages and over a thousand IEs, expanding the number of

messages and IEs relative to S1AP. We observe that even after in-

troducing more complex interactions into our testbed, only a small

fraction of message types and IEs were captured in traces to be

used as seeds for fuzzing.

Interface Channel Initialization. Both S1AP/NGAP and GTP re-

quire initialization messages to permit further communication on

the interface. The S1AP requires an S1Setup message (or NGSetup

for NGAP) that matches the configured identity of the MM com-

ponent before processing further packets. Meanwhile, GTP cannot

handle packets until a GTP tunnel is established, which is initialized

by theMM component sending a PFCP control or GTP-Cmessage to

the GW component over a separate interface. As such, for a fuzzing

harness to have any meaningful coverage depth, sufficient steps

must be made by the harness to correctly initialize the interface it

is targeting.

Interconnected Nature of Components. Both theMM andGWcom-

ponents have multiple defined interfaces with other internal core

components. Several implementations manifest this dependency

by refusing any inputs from RAN-Core interfaces until other core

communication channels are established. On the other hand, imple-

mentations that permit communication without core dependencies

end up omitting functions pertaining to those connections, leading

to incomplete coverage.

4.2 Network Fuzzing Harness Design

Grey-box Fuzzing Harness. To overcome the challenge of pass-

ing input into the event-driven core components, we introduce a

concurrent ‘fuzz’ thread to the component being fuzzed. This fuzz

thread persistently iterates through inputs received from the AFL++

forkserver and establishes a distinct communication channel with

the component under test for each input. We observe during testbed

analysis that for both MM and GW interfaces, distinct connection

channels isolate state from being left over by previous fuzzing

rounds; leveraging this behavior enables us to efficiently fuzz while

maintaining a reasonable degree of stability in coverage output.

RANsacked: A Domain-Informed Approach for Fuzzing LTE and 5G RAN-Core Interfaces CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

 ComponentFuzzer
Common:

Initialize Component...

Initialization Complete

Iterate through
fuzzing inputs

S1Setup/NGSetup Request

Response; Pipe Notification

Fuzzing input

Pipe Notification | Shutdown

Start Network
Component

Allocate Base
Station Context

Establish Session

Setup GTP Tunnel

Input causes crash

MM
Setup

GW
Setup

MME/AMF:

SGW/AGW:

Initialize GTP/PFCP Session
Response | Pipe Notification

Initialize GTP Tunnel

Response | Pipe Notification

Figure 3: The combined workflows of MM and GW compo-

nent Persistent Channel Reset (PCR) fuzzing harnesses. Com-

mon steps are illustrated in black, solid lines. Both methods

follow an approach of establishing a communication channel

for each fuzzing input and performing necessary setup prior

to that input.

To synchronize the beginning and end of each fuzzing input

between the MM/GW components and the ‘fuzz’ thread, we intro-

duce a pipe notification channel between the two. After a fuzz input

has been received and the connection has been fully terminated,

the MM/GW component sends a notification to the ‘fuzz’ thread

indicating it will be idle and awaiting fuzzing input. The ‘fuzz’

thread awaits the reception of this notification before looping to

its next fuzzing input. This ensures that no coverage information

from a prior fuzzing input is erroneously recorded as being from

subsequent fuzz input. The extent to which this approach enables

effective cellular component fuzzing is evaluated in Section 5.5.

We hereafter refer to the combination of these techniques as

Persistent mode with Channel Reset (PCR), as the communication

channel is reset between each fuzzing input passed to the compo-

nent. We apply our PCR harness to both MM and GW components.

The complete control flow of PCR can be seen in Figure 3.

Blackbox Fuzzing Harness. As part of our research, we obtain
remote access to fuzz proprietary commercial implementation of

the MME. No coverage information can be obtained remotely from

this core, so we use a modified version of AFLNet with disabled

coverage to perform black-box fuzzing. This modified AFLNet runs

‘havoc’ routines randomly on seed inputs with no coverage guid-

ance; as such, seed selection and structure-awareness is of particular

importance in these experiments.

To detect crashes, we introduce a “canary” channel–an SCTP

connection that exchanges S1Setup messages with the MME prior

to each fuzzing input. After each fuzzing input channel is finished,

the canary connection attempts to communicate with the MME. If

successful, the fuzzer continues to test the next fuzzing input. In

the event that the canary connection is closed or reset, the fuzzer

marks the last tested input as a crash and waits for a timeout period

before continuing to ensure that the crashed MME has restarted.

A
F
L
S
m
a
r
t
[
4
6
]

N
a
u
t
i
l
u
s
[
7
]

R
e
d
Qu

e
e
n
[
8
]

A
u
t
o
g
r
a
m
[
2
9
]

G
l
a
d
e
[
1
1
]

G
r
i
m
o
i
r
e
[
1
2
]

A
S
N
F
u
z
z
G
e
n

Supports non-ASN.1 Formats
t t t t t t d

Works without Format Specification
d d t t t t d

Works with Binary-Only Targets
t d t d t t t

Works without Good Seed Corpus
d t t d d t t

Synthesizes Precise Grammar
t t d t t t t

Pluggable across Mutation Engines
d d d t t d t

Bit-precise Field Support
d d d d d d t

Table 1: Comparison of state-of-the-art grammar-aware

fuzzing approaches. Filled circle indicates the property is

supported, whereas empty circle indicates it is not.

This approach overcomes false negatives caused by race condi-

tions with connecting to an MME after fuzzing (as the MME could

have crashed and been reloaded). It also overcomes false positives

wherein the MME abruptly closes fuzzing connections due to mal-

formed input–since the canary is an unrelated channel, it should

remain open even when a fuzzing channel closes.

4.3 Structure-Aware Fuzzing

As mentioned in Section 4.1, the S1AP and NGAP protocols include

a significant breadth of IE field type and structure. These messages

are encoded with ASN.1 PER, which compresses IE fields into bit-

specific boundaries and adds precise padding to align certain IEs

to word boundaries. Because of the strict correctness requirements

enforced by PER, our preliminary fuzzing experiments showed that

96% of generated fuzzing inputs do not pass ASN.1 decoding, repre-

senting nearly two orders of magnitude of performance degradation

in fuzzing post-decode logic. These challenges show up in many in-

terfaces within cellular cores and RANs that use the same encoding,

as in other fields such as space communications and automotive

interfaces [1, 2, 22, 51].

We resolve this challenge by designing ASNFuzzGen, a code

generation tool capable of parsing arbitrary ASN.1 specifications

to emit a structure-aware module (as outlined in Figure 2). This

module can be easily plugged into an existing fuzzing harness to

enable the syntactically valid generation of ASN.1 packets, and is

highly adaptable to any fuzzing engine that emits byte values as

fuzzing inputs.ASNFuzzGen has been tested successfully on several

other cellular protocols (E2AP, SUPL, NGAP and RANAP) and is

applicable across diverse domains employing ASN.1 specifications.

We contrastASNFuzzGenwith other state-of-the-art approaches

in Table 1. ASNFuzzGen notably can generate the bit-precise struc-

tures necessary for ASN.1 PER, whereas current approaches assume

structures that are aligned to byte boundaries. This limitation pre-

cludes the use of these approaches to fuzz PER constructs. For

instance, length fields for variable-length IEs are packed in the min-

imum number of bits needed to unambiguously represent them; as

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nathaniel Bennett et al.

01
11
18
22
f2
10
36
10
bb
7a
40
08
73
72
73
65
6E
62
30
31
99
25
...

Input Output
00
11
00
2d
00
00
04
00
3b
00
08
00
22
f2
10
00
00
19
b0
00
3c
40
...

InitiatingMessage:
 procedureCode: 17
 criticality: Reject
 value:
 S1Setup:
 field_globalENBId:
 id: 59
 criticality: Reject
 value:
 pLMNIdentity:
 mcc: 222
 mnc: 01
 macroENB-ID: 001101...
 field_ENBName:
 id: 60
 criticality: Ignore
 value:
 eNBName: "srsenb01"
 ...

A
S

N
.1

 A
P

E
R

 E
nc

od
e

Surjective
Mapping

In-Memory Data
Representation

❶

❷

❸

❹

Figure 4: The ASNFuzzGen module maps raw byte inputs

from AFL to semantic decisions on the existence, length and

content of data fields. The resulting output is guaranteed to

be well-formed ASN.1, thereby enabling much deeper state

to be reached early on in fuzzing.

such, they cannot be modeled by a byte-precise grammar. ASNFuz-

zGen additionally integrates seamlessly within existing fuzzing

mutators (whereas other approaches normally necessitate custom

mutation engines). While other approaches are more suitable across

many general byte-precise grammars and protocols, ASNFuzzGen

offers the first bit-precise structure-aware approach for fuzzing

arbitrary ASN.1, which makes it well-suited for a wide array of

cellular, space, vehicular and other protocols.

Functional Mapping of Inputs to ASN.1 Outputs. Each module

emitted by ASNFuzzGen contains a function 𝑓 that defines a sur-

jective mapping from an arbitrary-length sequence of bytes into

an intermediary in-memory data structure conforming to ASN.1.

This data structure is then encoded using ASN.1 PER to output a

sequence of structured bytes. As shown in Figure 4, input bytes are

consumed sequentially in order to: (1) choose a specific enumerated

value out of several options, (2) determine whether an optional

field should be present or not, (3) populate fields with data that

conforms to composition requirements, or (4) choose a length for

variable-length fields.

In addition to adhering to the ASN.1 specification for data con-

straints, we include a postprocessing step in ASNFuzzGen for

S1AP/NGAP that accounts for special rules in packets not ade-

quately enforced by the ASN.1 definition. In particular, certain

fields are marked as ‘Mandatory’, but no guarantee is enforced that

such fields will be present (we explore the implications of this on

code security in Section 6.6). ASNFuzzGen accounts for this by

parsing ‘Mandatory’ labels from IE fields and adjusting the for-

ward/inverse mapping functions it emits to include all mandatory

fields by default, adding a 1/32 chance of omitting the field based on

a consumed input byte. By including this step, we enable fuzzing

to explore conditions beyond mandatory field checks while still

catching bugs introduced by the absence of those fields.

As the NAS protocol has no formal ASN.1 specification,ASNFuz-

zGen does not apply structure-aware procedures to it. Rather, NAS

payloads are treated as a variable-length field of raw bytes by AS-

NFuzzGen, thereby enabling unstructured fuzzing of NAS inputs

within syntactically-valid S1AP/NGAP payloads.

Partial Inversion Function for Mapping Seeds. Regular seeds can-
not be used in a structure-aware fuzzer, as they will be mapped

into new bytes instead of being passed transparently to the MM

component. To overcome this, we also include a partial inverse

function in the module, 𝑔, such that 𝑓 (𝑔(𝑖𝑛𝑝𝑢𝑡)) = 𝑖𝑛𝑝𝑢𝑡 (though

not necessarily 𝑔(𝑓 (𝑖𝑛𝑝𝑢𝑡)) = 𝑖𝑛𝑝𝑢𝑡). One can simply pass selected

seeds through 𝑔 to obtain “inverted” seeds prior to fuzzing. Using

these inverted seeds for structure-aware fuzzing will result in the

original seed values being passed onward to the system under test.

4.4 Seed Selection

We gather S1AP/NGAP and GTP packets exchanged between a

simulated RAN and active LTE/5G testbed to use as one selection

of seed inputs for fuzzing. Taken together, these messages comprise

necessary interactions a base station would make with the core

through the connection lifecycle of a mobile device. We likewise

use these same seeds in our black-box S1AP fuzzing experiments.

In addition to this “Trace” set of seeds, we employ our structure-

aware module to generate a wide variety of syntactically-valid

S1AP/NGAP control messages from thousands of random inputs.

We then trim this set down to two control messages of each base

type and use these as a second “Generated” set of starting seeds.

For structure-aware fuzzing campaigns, we use the S1AP or NGAP

module’s partial inverse function to invert each of each of these seed

sets, thereby ensuring the same resulting packet sequence. We hy-

pothesize that this set will improve the discovery of vulnerabilities

stemming from uncommon packet types.

In adhering to best practices in fuzzing research [36], we run a

third set of fuzzing campaigns for each core using an empty seed

corpus. This serves as a benchmark to evaluate our other seed

selection approaches against.

5 EVALUATION

In evaluating the efficacy of our fuzzing methodology, we consider

the following research questions:

RQ1 Are LTE/5G implementations robust against inputs originat-

ing from the RAN?

RQ2 Can we discover additional vulnerabilities and coverage

paths by applying structure-aware approaches to fuzzing?

RQ3 Does our fuzzing harness efficiently fuzz RAN-core inter-

faces?

RQ4 Does grey-box fuzzing of open-source cellular implementa-

tions inform more effective black-box fuzzing?

RANsacked: A Domain-Informed Approach for Fuzzing LTE and 5G RAN-Core Interfaces CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 2: Cellular components/interfaces tested by RAN-

sacked (marked with ✓). Magma and OAI share the same

MME, so subsequent discussion will combine the two.

Name Version Fuzz Approach S1AP NGAP GTP

Magma 1.8.0 Coverage-Guided ✓ ✓ -

NextEPC 1.0.1 Coverage-Guided ✓ N/A ✓

Open5GS 2.6.1 Coverage-Guided ✓ ✓ ✓

OAI 2.0.0 Coverage-Guided ✓ ✓ ✓

SD-Core 1.3.0 Coverage-Guided ✓ - -

srsEPC 20.10 Coverage-Guided ✓ N/A ✓

Athonet vEPC 9.4.0 Remote Black-box ✓ N/A -

We answer RQ1 in Section 5.2, and further explore its ramifica-

tions in Section 6. RQ2 is addressed in Section 5.3 and 5.4, while

RQ3 is covered in Section 5.5 and RQ4 in Section 5.6.

5.1 Experimental Setup

We apply our grey-box fuzzing harness to all six publicly-available

LTE core implementations (Magma, NextEPC, Open5GS, Open Air

Interface (OAI), SD-Core, and srsEPC) and three 5G implementa-

tions (Magma, Open5GS, and OAI), and perform black-box fuzzing

on a proprietary remote core for which no source or binary access

is given (HPE Athonet vEPC). Of these implementations, we note

that at least four of these (Open5GS, Magma, OAI, Athonet) are

used in commercial/industrial applications and are thus representa-

tive of “in-the-wild” systems rather than merely hobby or research

projects [9, 13, 37, 43, 50]. We fuzz the MM component of every

core (with Magma and OAI sharing an MME implementation), as

well as the GW component where possible. Table 2 lists the versions

of software fuzzed and indicates covered interfaces.

We run a total of 512 48-hour grey-box fuzzing campaigns spread

across six open-source LTE core and three 5G core implementations.

For each MM component, we run 30 distinct regular fuzzing cam-

paigns, i.e. 10 for each seed selection (Null, Trace and Generated).

We then repeat this process with the ASNFuzzGen structure-aware

module added to the fuzzer. For GW components, we run eight

distinct fuzzing campaigns (four with seeds, four without). Each

campaign is run using AFLPlusPlus version 4.04c, with a persistent-

mode loop set to 1000 iterations and minimum/maximum input

sizes of 1 and 100k bytes, respectively. We run our experiments on

a Supermicro H12SSW-NT rack-mounted server running Ubuntu

20.04 with an AMD EPYC 7763 64-Core CPU, 256GB of DDR4 3200

ECC RAM, and a Samsung 870 EVO Solid-State Drive. Grey-box

fuzzing campaigns are isolated in separate Docker containers lim-

ited to one distinct CPU core each to ensure uniformity of test

conditions. Black-box campaigns are performed on a standalone

Athonet vEPC core on an isolated network.

5.2 MM/GW Implementation Robustness

Our fuzzing campaigns uncover 119 vulnerabilities across seven

cellular core implementations, nearly all of which are previously

undiscovered. 4 vulnerabilities stemmed from GTP parsing within

SGW components (2 each for Open5GS and OAI). The remaining

115 vulnerabilities are spread across seven MME and three AGW

implementations; a detailed listing of these vulnerabilities can be

viewed in the extended version of this paper. With the exceptions

of srsEPC and OAI 5G, nearly every MME contained vulnerabilities
at the NAS layer that could be exploited by an unauthenticated UE.
We explore and analyze these further in Section 6. Our findings

indicate that many cellular cores lack robustness against malicious

RAN-core inputs (RQ1).

To better explore the impact of our fuzzing approaches on vulner-

ability discovery, we perform awide-scale analysis of approximately

37,000 crashes saved by AFL across the 300 MME/AMF grey-box

fuzzing campaigns. To map crashes to distinct vulnerabilities, we

rerun saved crashes on a patched version of the tested component

that emits the ID of the reached vulnerability in logs. Following

this, we extract the timestamp and execution count of the earliest

recorded crash for each vulnerability across all campaigns.

Figure 5 shows the result of this analysis for Open5GS and

Magma; we include findings from NextEPC and SD-Core in the

extended version of this paper. We omit srsEPC, as only one vulner-

ability was found across all fuzzing campaigns for it. We observe

that several vulnerabilities are uncovered during fuzzing only under

specific conditions and configurations. We explore the discovery of

these vulnerabilities in the context of specific seed selections in Sec-

tion 5.4, the introduction (or absence) of structure-aware fuzzing in

Section 5.3, and the number of executions the campaign can carry

out in Section 5.5.

5.3 Structure-Aware Fuzzing

Effect on Coverage. For all MM implementations, structure-aware

fuzzing outperformed regular fuzzing significantly during early

hours and by a modest margin through the remainder of fuzzing

campaigns. Figure 7 shows coverage over time for Magma LTE;

coverage across other campaigns follow largely the same trend,

and can be viewed in the extended version of this paper. For each

seed approach, the minimum and maximum observed coverage out

of the 10 runs are indicated by a shaded area; the line within that

shaded area represents the average coverage across 10 runs. This

increase in coverage comes in spite of the fact that the structure-

aware fuzzer does not cover basic blocks reachable by invalid ASN.1

inputs; these basic blocks number in the several hundreds.

The low percentile coverage of basic blocks observed across im-

plementations is a direct result of the span of functionality the MM

and GW components cover. RAN-facing interfaces and handlers

are but one of nearly a dozen different interfaces used to commu-

nicate with various core components. Many of these interfaces

require large libraries of auto-generated code to handle distinct

protocols such as Diameter, GTP-C and HTTP REST interfaces;

combined with the actual implementation of interface functionality,

these inflate the total number of basic blocks any given MM or GW

implementation has. While this makes it difficult to quantify the ex-

tent to which our fuzzing completely covers RAN-facing functions,

subsequent analysis in Section 6.3 indicates our fuzzing uncovered

vulnerabilities spanning dozens of message types and extending

deep into protocol handlers.

Detected Crashes. Following the same trend as coverage, distinct

crashes are found much earlier in fuzzing when the ASNFuzzGen

module is applied to each of the cores: the final number of saved

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nathaniel Bennett et al.

100 1k 10k 100k 1m 10m 100m Never
Reached

Executions Prior to Crash

VULN-D06
VULN-D21
VULN-D22
VULN-D23
VULN-D24
VULN-D11
VULN-D16
VULN-D25
VULN-D01
VULN-D05
VULN-D13
VULN-D07
VULN-D04
VULN-D03
VULN-D20
VULN-D17
VULN-D12
VULN-D18
VULN-D19
VULN-D08
VULN-D02

Vu
ln

er
ab

ilit
y

Null
Trace
Generated

(a) Magma/OAI LTE Vulnerabilities (Regular)

100 1k 10k 100k 1m 10m 100m Never
Reached

Executions Prior to Crash

VULN-D06
VULN-D21
VULN-D22
VULN-D23
VULN-D24
VULN-D11
VULN-D16
VULN-D25
VULN-D01
VULN-D05
VULN-D13
VULN-D07
VULN-D04
VULN-D03
VULN-D20
VULN-D17
VULN-D12
VULN-D18
VULN-D19
VULN-D08
VULN-D02

Vu
ln

er
ab

ilit
y

Null
Trace
Generated

(b) Magma/OAI LTE Vulnerabilities (Structure-Aware)

100 1k 10k 100k 1m 10m 100m Never
Reached

Executions Prior to Crash

VULN-C01

VULN-C13

VULN-C12

VULN-C15

VULN-C11

VULN-C09

VULN-C07

VULN-C08

VULN-C14

VULN-C02

Vu
ln

er
ab

ilit
y

Null
Trace
Generated

(c) Magma 5G Vulnerabilities (Regular)

100 1k 10k 100k 1m 10m 100m Never
Reached

Executions Prior to Crash

VULN-C01

VULN-C13

VULN-C12

VULN-C15

VULN-C11

VULN-C09

VULN-C07

VULN-C08

VULN-C14

VULN-C02

Vu
ln

er
ab

ilit
y

Null
Trace
Generated

(d) Magma 5G Vulnerabilities (Structure-Aware)

Figure 5: Vulnerabilities discovered across Magma LTE and 5G fuzzing campaigns. Grey dotted lines separate vulnerabilities by

those found only with structure-aware fuzzing (top), those found with both approaches (middle), and those found only with

unstructured fuzzing (bottom).

crashes ranging anywhere from a modest 15% increase in Open5GS

to a 300% increase in Magma for trace seeds. These crashes corre-

spond to new distinct vulnerabilities discovered in each core. As

an exception, we note some vulnerabilities that structure-aware

fuzzing could not detect–in particular, Open5GS, SD-Core and

srsRAN all contained vulnerabilities in the ASN.1 decoding function

for S1AP that required malformed inputs to reach. ASNFuzzGen

produces only syntactically-valid ASN.1, and therefore would not

produce the invalid ASN.1 necessary to reach these vulnerabilities.

Takeaway. Fuzzing campaigns that make use of the ASNFuzzGen

module exclusively discover 17 new vulnerabilities, with nine of

these being high-impact memory corruption vulnerabilities in NAS

payloads (RQ2). Vulnerabilities found by regular fuzzing but not

by structure-aware fuzzing were related either to ASN.1 decoding

errors or missing Mandatory IE fields, which both occur relatively

early on in packet processing.

5.4 Seed Selection

Impact on Coverage. As Figure 7 shows, initial seed corpus makes

a significant impact on coverage for fuzzing campaigns without

the ASNFuzzGen module. Across MM components tested, trace-

derived seeds strongly outperformed structure-generated seeds in

all but SD-Core. However, we observe in Figure 5 that this does not

always correlate to the discovery of more vulnerabilities.

The choice of seed corpus had a far less pronounced impact on

code coverage when the ASNFuzzGen module was applied. In all

MM implementations other than Magma/OAI, the choice of seed

corpus made no significant difference in coverage after the first few

hours of fuzzing. Magma/OAI shows some coverage improvement

in generated seeds over seeds recorded from packet traces, though

the effect is muted compared to fuzzing without the ASNFuzzGen

module.

Since the GW component handles packet in a less complex fash-

ion, we generate seeds for GTP fuzzing by enumerating all GTP

RANsacked: A Domain-Informed Approach for Fuzzing LTE and 5G RAN-Core Interfaces CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

100 1k 10k 100k 1m 10m 100m Never
Reached

Executions Prior to Crash

VULN-F27
VULN-F24
VULN-F26
VULN-F16
VULN-F25
VULN-F07
VULN-F20
VULN-F21
VULN-F19
VULN-F03
VULN-F22
VULN-F05
VULN-F17
VULN-F10
VULN-F15
VULN-F04
VULN-F02
VULN-F09
VULN-F14
VULN-F08
VULN-F06
VULN-F23

Vu
ln

er
ab

ilit
y

Null
Trace
Generated

(a) Open5GS LTE Vulnerabilities (Regular)

100 1k 10k 100k 1m 10m 100m Never
Reached

Executions Prior to Crash

VULN-F27
VULN-F24
VULN-F26
VULN-F16
VULN-F25
VULN-F07
VULN-F20
VULN-F21
VULN-F19
VULN-F03
VULN-F22
VULN-F05
VULN-F17
VULN-F10
VULN-F15
VULN-F04
VULN-F02
VULN-F09
VULN-F14
VULN-F08
VULN-F06
VULN-F23

Vu
ln

er
ab

ilit
y

Null
Trace
Generated

(b) Open5GS LTE Vulnerabilities (Structure-Aware)

Figure 6: Vulnerabilities discovered in Open5GS LTE fuzzing campaigns. Vulnerabilities are ordered vertically based on which

approach (structured, both or unstructured) discovered the vulnerability.

Figure 7: Magma Basic Block Coverage Over Time. Colored

areas represent the min/max spread of block coverage across

10 distinct fuzzing runs, while solid lines represent mean

block coverage. Left graph shows the result of regular fuzzing,

while right graph shows structure-aware results.

headers with attached random data. We find that fuzzing with gen-

erated seeds improves the block coverage marginally and shortens

execution time, but most gains in coverage occur very early on

across all GTP fuzzing campaigns regardless of seed selection.

Takeaway. We observe a significant number of vulnerabilities in

Open5GS LTE (shown in Figure 6a) that are only discovered via the

use of structure-generated seeds in regular fuzzing. These vulner-

abilities are common in their preconditions: each requires a valid

packet with a particular missing ‘Mandatory’ field and an invalid

field value. We note the presence of vulnerabilities in other LTE

and 5G cores found only with generated seeds, and even vulnera-

bilities in structure-aware fuzzing that required generated seeds to

reach. Thus, we observe that our generative approach to improve

PCR Fork
Server

PCR Fork
Server

PCR Fork
Server

PCR Fork
Server

PCR Fork
Server

0

200

400

600

800

1000

1200

1400
Ex

ec
ut

io
n

Sp
ee

d

srsEPC SD-Core NextEPC Open5GS Magma/OAI

Fuzzing Approach
Regular
Structure-Aware

Figure 8: Fuzzing harness performance comparison between

Persistent Channel Reset (PCR) and traditional fork server

harnesses across five open-source MME implementations.

the breadth of seed selection proves effective at discovering new

vulnerabilities (RQ2). At the same time, we note that the effect of

seed selection is somewhat more muted in structure-aware fuzzing

rounds. Combined with observations on structure-aware fuzzing

improvements, we conclude that using a combination of regular

fuzzing with generated seeds and structure-aware fuzzing may lead

to the widest breadth of discovered vulnerabilities.

5.5 Harness Performance

We benchmark the performance of RANsacked using our PCR

persistent fuzzing harness approach vs. traditional fork server/stdin

approaches (e.g. those used by AFLNet). As seen in Figure 8, PCR

results in up to a 100x improvement in performance over fork

server fuzzing, with hundreds to thousands of inputs tested each

second. We set design persistent fuzzing to execute 1000 iterations

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nathaniel Bennett et al.

per fork in this benchmark. Better performance can potentially be

attained by increasing the iteration count, at the cost of possibly

lower coverage feedback stability.

The synthesis of this benchmark and Figure 6 paints a clear pic-

ture of the vulnerability discoverymade possible by themore perfor-

mant PCR fuzzing approach. NextEPC, Magma/OAI and Open5GS

benchmark at 1.9, 1.1, and 5.8 executions per second respectively

without PCR; over the course of a 48-hour fuzzing campaign, this

translates to 190k-1.0m total executions. Between these three im-

plementations, less than half of all vulnerabilities would have been

discovered within the 48 hour window, and a significant number

of repeat findings across distinct fuzzing campaigns would like-

wise be absent. In some cases, such as VULN-D23 or VULN-F05,

fuzzing campaigns would have had to run for upwards of a hundred
days to discover the same vulnerabilities found by PCR in under

48 hours. Overall, we see that our PCR fuzzing harness achieves

significantly faster execution speeds, which enables the discovery

of vulnerabilities that would not be otherwise found (RQ3).

Effect of PCR on fuzzing stability. One concern with persistent-mode

fuzzing is the introduction of latent state in earlier fuzzing execu-

tions that lead to differing coverage output for the same fuzzing

input. The extent to which a program always produces the same cov-

erage feedback for a given input is termed as “stability” in fuzzing

engines such as AFL++, and it is measured by the percentage of

branches that always give consistent feedback for an input. Main-

taining a sufficiently high level of stability is important, as fuzzing

engines must either a) ignore unstable branches and risk missing

inputs that effectively explore new coverage in those branches,

or b) allow unstable branches and risk scheduling many inputs

that trigger unstable branches without meaningfully exploring new

program states.

Several of our MM component fuzzing campaigns run at greater

than 80% stability. For those that exhibited lower stability, we dis-

covered that the the MM was architected as several components

that would concurrently execute and communicate via remote pro-

cedure calls, which led to inherent coverage instability independent

of the application of PCR. Executing multi-threaded and multi-

process fuzzing in a way that ensures stable and deterministic

coverage output is an open challenge across many fuzzing works

and tools. While RANsacked is able to maintain high stability in

single-threaded environments, we consider multi-threaded stability

to be outside the scope of our work.

5.6 Black-box Fuzzing

Using a subset of the approaches demonstrated to yield increased

coverage for grey-box fuzzing, we employ remote black-box fuzzing

against an instance of the HPE Athonet core. We separate these

strategies garnered from grey-box fuzzing into three distinct ap-

proaches: structure-aware fuzzing using the ASFuzzGenn generated

module, regular fuzzing using trace seeds from testbed observa-

tions, and regular fuzzing using randomly generated S1AP packets

of each packet type as seeds.

For each approach, we run fuzzing campaigns with a timeout

of 20,000 iterations (roughly 1.5 hours of fuzzing) over 20 runs.

Using these approaches, we identify a total of eight unique crash-

ing inputs. The baseline method of fuzzing yielded three unique

crashes, while adding structure-aware fuzzing to AFLNet uncovered

an additional two unique crashes. The introduction of generative

syntactically-valid seeds produced the strongest results in black-

box fuzzing, resulting in the discovery of an additional 3 unique

vulnerabilities. To add to this, one of the vulnerabilities discovered

through generative seed selection pertained to the NAS portion of

the S1AP packet, which is passed transparently from UE through

the base station to the MME.

These findings are consistent with our general hypothesis that a

structure-aware approach in both seed selection and fuzzing genera-

tion would be instrumental in finding S1AP and NAS vulnerabilities

(RQ4). We note that the three vulnerabilities discovered without

the assistance of ASNFuzzGen all pertain to ASN.1 Information

Element ID fields in message types that were directly observed in

the testbed. Meanwhile, fuzzing with structure-generated seeds

yielded vulnerabilities in more diverse message types in addition

to rediscovering the crashes found by trace seeds. The addition of

the structure-aware fuzzing module in black-box fuzzing netted

vulnerabilities beyond ASN.1 decoding, such as crashes related to

attempting to release an unassociated UE or transferring configu-

ration parameters to a nonexistent base station.

6 VULNERABILITY ANALYSIS

We analyze the crashes discovered as a direct result of our fuzzing

campaigns and perform root cause analysis of each crash to remove

any duplicates. For open-source cores, we pinpoint the exact loca-

tion in code that causes the MM or GW component to crash and

categorize these by vulnerability type, cause, and general location

in the network component. For the proprietary MME implementa-

tion, we narrow the vulnerability down to the specific field or value

change that causes the crash by repeatedly testing small modifica-

tions to the packet on the black-box. We then perform a best-effort

determination of the likely cause and location of the vulnerability

based on the crashing field/value.

Of the 119 vulnerabilities RANsacked discovered, 79 were found

in MME implementations, 36 in AMF implementations and four

in SGW implementations. 25 vulnerabilities lead to NAS pre-auth

attacks that can be carried out by an arbitrary cellphone. Nearly all

of these vulnerabilities were as of yet undiscovered at the time we

disclosed them to the respective maintainers of these cellular cores.

6.1 Vulnerability Classes

For each vulnerability, we identify the root cause of programming

errors that lead to the manifestation of the vulnerability and classify

them. Table 3 categorizes these vulnerability types for each imple-

mentation fuzzed. We find that 37 of the discovered vulnerabilities

trigger invalid memory use or memory corruption, which could

potentially be used as gadgets to facilitate remote code execution.

We experimentally demonstrate such an attack in Section 6.5. All

discovered GW vulnerabilities are reachable assertions triggered as

the result of unexpected protocol state, while a majority of memory

corruption issues occurred within NAS handling methods. NAS

vulnerabilities are all reachable by messages sent prior to authenti-

cation between the UE and MM component.

RANsacked: A Domain-Informed Approach for Fuzzing LTE and 5G RAN-Core Interfaces CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 3: Classes of Vulnerabilities Discovered in MM

Implementation R
e
a
c
h
e
d
A
s
s
e
r
ti
o
n

N
u
ll
D
e
r
e
fe
r
e
n
c
e

T
y
p
e
C
o
n
fu
s
io
n

U
n
in
it
.
P
o
in
te
r

O
O
B

R
e
a
d

O
O
B

W

r
it
e

Magma/OAI LTE 2 13 1 0 4 2

Open5GS LTE 26 0 1 0 0 0

NextEPC 0 0 7 0 0 2

SD-Core 0 0 1 0 0 8

srsEPC 0 0 0 0 0 1

Magma 5G 19 0 0 0 0 1

OAI 5G 0 2 0 5 1 2

Open5GS 5G 5 0 0 0 0 0

Total 52 15 10 5 5 16

With regards to causes, Table 4 categorizes common root causes

of vulnerabilities across fuzzed cores. Several Type Confusion vul-

nerabilities stemmed from faulty ASN.1 code generation, leading

to a mismatch in type for some IEs when interpreting and sub-

sequently freeing memory. Several implementations lacked any

bounds checks when copying variable-length S1AP/NAS IEs into

fixed-length buffers (OAI, SD-Core, NextEPC) or else contained

integer underflow bugs that rendered such checks useless (Magma).

Most reachable assertions and null pointer crashes were due to

expected missing ‘Mandatory’ IE fields; we discuss this further in

Section 6.6. Taken as a whole, these vulnerabilities outline a pattern

of implicit trust in RAN inputs by MM implementations.

Since GW components mainly perform as a packet forwarding

module without complex decoding functionality, they expose less

attack surface compared to S1AP/NGAP. Our evaluation finds four

distinct crashes in Open5GS and OAI, all caused by reachable as-

sertions in GTP packet handlers. Crashes in Open5GS occur when

the GTP packets apply for unavailable resources, such as when a

GTP packet attempts to carry user-plane data from UE to the core

network without an established GTP tunnel. For OAI, all crashes

are caused by the misuse of open-source libraries, including wrong

inputs in spdlog [40] and bad tunnel queries in the key-value store –

TEID (GTP tunnel ID) and PDR (packet detection rule) – of folly [23].
The root causes of these are unexpected states.

6.2 Breadth of Vulnerable Message Types

As previously discussed, both S1AP and NGAP each define nearly

a hundred base message variants each and well over a thousand

IE data types. The vulnerabilities we discover span 32 of these

base message variants. Of these, most discovered vulnerabilities

occurred while handling InitialUEMessage payloads (responsible

for conveying initial NAS payloads from the UE) which contained

22 distinct vulnerabilities scattered across various decoding and

handling subroutines in implementations.

We similarly find vulnerabilities that are triggered by malformed

or missing data across 29 distinct IE data types. Several IEs within

the NAS are commonly mishandled by two or more implementa-

tions, such as the ‘Emergency Number List’ and ‘IMSI’ types lacking

Table 4: Cause of MM Vulnerabilities

Implementation In
v
a
li
d
C
o
d
e
g
e
n

A
b
s
e
n
t
F
ie
ld

M

a
lf
o
r
m
e
d
F
ie
ld

M

a
lf
o
r
m
e
d
S
iz
e

U
n
e
x
p
e
c
te
d
S
ta
te

O
th
e
r

Magma/OAI LTE 0 12 6 3 2 0

Open5GS LTE 1 21 2 1 0 0

NextEPC 7 0 2 0 0 0

SD-Core 1 0 5 2 0 1

srsEPC 1 0 0 0 0 0

Magma 5G 0 19 0 1 0 0

OAI 5G 0 4 2 1 4 0

Open5GS 5G 0 0 4 1 0 0

Total 10 56 21 9 6 1

length bound checks, and generally oversized NAS payloads cause

4 of the found vulnerabilities.

Overall, the presence of vulnerabilities across a wide range of

both message types and IEs points to the need for a fuzzing ap-

proach that enables broader and more comprehensive S1AP/NGAP

fuzzing, such as what ASNFuzzGen enables. Many message han-

dling routines both require complex input structures and modify

global state during the course of handling. As such, alternative

function-specific fuzzing strategies would be both tedious to im-

plement and difficult to scale given the wide breadth of handler

routines to cover. As such, the wide spread of vulnerabilities across

many message types demonstrates the advantage that general-

ized protocol-targeted fuzzing RANsacked provides over function-

specific fuzzing strategies.

6.3 Vulnerability Location/Depth

We identify four primary locations in which most MM component

implementations contained vulnerabilities: in the core mechanics of

the network daemon, in ASN.1 deserialization methods, in handlers

for various S1AP/NGAP request types, and in NAS deserialization

and handling. Table 5 breaks down vulnerabilities from each MM

component by their location. These locations represent distinct

layers of ‘depth’ of packet processing. In the leftmost column, ‘Dae-

mon’ level vulnerabilities could be reached prior to full decoding

by ASN.1 methods and therefore were relatively low complexity.

On the other hand, ‘NAS Handler’ vulnerabilities required struc-

turally correct ASN.1, present S1AP/NGAP mandatory IEs, correct

IE field information, and partially correct NAS fields leading up to

the source of crash. Thus, from left to right, each location in Table 5

is progressively ‘deeper’, or further on in packet processing, than

the last.

We note a few trends in vulnerability location based on this cate-

gorization. First, nearly every implementation contained at least one

bug in ASN.1 decoding that could be leveraged to trigger memory

corruption. These relatively ‘shallow’ bugs were contained within

code structured in such a way that it could be easily fuzzed using

function-level fuzzers. Second, a strong majority (82%) of vulner-

abilities were post-ASN.1 and 21% of S1AP/NGAP vulnerabilities

occurred in NAS handling routines. This confirms our hypothesis

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nathaniel Bennett et al.

Table 5: MM Vulnerabilities by Location

Implementation D
a
e
m
o
n
*

A
S
N
.1
D
e
c
o
d
e
r

S
1
A
P
H
a
n
d
le
r

N
A
S
H
a
n
d
le
r

Magma/OAI LTE 0 0 13 12

Open5GS LTE 1 1 21 4

NextEPC 0 7 0 2

SD-Core 1 1 5 2

srsEPC 0 1 0 0

Athonet 0 5 2 1

Magma 5G 0 0 19 1

OAI 5G 3 1 7 0

Open5GS 5G 0 0 2 3

Total 5 16 69 25

* Vulnerabilities in the network event handler or memory pool

that fewer vulnerabilities would be due to ASN.1-specific errors

and that enforcing correct ASN.1 structure through ASNFuzzGen

would therefore improve crash discovery.

6.4 Case Study I: Type Confusion in Magma

LTE NAS messages can be one of two variants: EPS Mobility Man-

agement (EMM) or EPS Session Management (ESM). The message

variant is normally encoded in a discriminant value in the header

prepended to the message, such that the MME can interpret the

message contents correctly. When encrypted, a NAS message has

two of these headers: one preceding the encrypted payload and one

encapsulated within the payload.

In Magma MME, RANsacked uncovered a vulnerability in the

way encrypted NAS messages are decoded. Specifically, a header

discriminator value contained within the encrypted payload is used

to decode the data into memory fields, but a separate discriminator

contained in the outer (unencrypted) header is used to subsequently

interpret the decoded message struct. As a result, a payload with

an outer EMM header and inner ESM header can cause pointer and

data type confusion in the fields of that packet. An attacker could

exploit this to read/write or free() memory at arbitrarily chosen

pointer locations with a high degree of flexibility.

We note such a vulnerability is only possible due to the distinct

structure of NAS–payloads need to be either plaintext or ciphered

depending on the state of the connection with the UE, and mes-

sages can be one of two variants (EMM or ESM). The presence of

multiple encapsulated headers with potentially different protocol

discriminant values directly led to incorrect handling of such mes-

sages as seen in this case study. The 3GPP specification on NAS for

LTE reads: “The protocol discriminator in the header of a security

protected NAS message is encoded as "EPS mobility management

messages."” [3]. For ESM messages that are ciphered, this results in

a protocol mismatch between encrypted and unencrypted variants

of the same NAS payload. Clearer disambiguation may be needed in

the specification with regards to handling outer vs. inner protocol

headers.

482 case ProtocolIE_ID_id_NAS_PDU:
483 {
484 NAS_PDU_t *s1apNASPDU_p = NULL;
485 if(UplinkNASTransport_IEs__value_PR_NAS_PDU == ie_p ->value

.present)
486 {
487 s1apNASPDU_p = &ie_p ->value.choice.NAS_PDU;
488 }
489 else
490 {
491 log_msg (LOG_ERROR , "Decoding of IE NAS PDU failed");
492 return -1;
493 }
494

495 proto_ies ->data[i]. IE_type = S1AP_IE_NAS_PDU;
496 memcpy(s1Msg ->nasMsg.nasMsgBuf , (char*) s1apNASPDU_p ->buf ,

s1apNASPDU_p ->size);
497 // ^ nasMsgBuf is fixed -size buffer; oversized NAS PDU

leads to buffer overflow

Listing 1: Buffer overflow in SD-Core Uplink NAS Transport
handler (line 496, memcpy).

6.5 Case Study II: Stack Overflow in SD-Core

When handling Uplink NAS Transport messages, handlers in SD-

Core copy the contents of the NAS payload into a fixed-size buffer

of 500 bytes (shown in Listing 1). No length check is performed

prior to this copy, so excess bytes are copied from the NAS packet

into stack memory. This overflow occurs within a loop that handles

all IEs within the S1AP message. Following the buffer overflow,

certain data pointers may be arbitrarily overwritten such that a

subsequent memcpy() call actually overwrites the Global Offset Ta-

ble; from there, a third memcpy() call is overwritten to call system(),
leading to arbitrary code execution. We release a proof-of-concept

implementation demonstrating this exploit as part of our vulnera-

bility disclosure, but limit the exploit to require that certain stack

protection features be disabled at build time in order to hamper any

malicious use on production systems.

Several MM implementations exhibited unrestricted buffer over-

flow vulnerabilities similar to this case study, both in S1AP/NGAP

andNAS-specific fields. The effect of such vulnerabilities being com-

promised is potentially catastrophic; any unauthenticated cellphone

could send a payload triggering these memory corruption vulner-

abilities, and the right input could give an attacker a foothold in

the MM component, as we demonstrate with SD-Core. An attacker

with remote access to anMM component could performwidespread

surveillance across a metropolitan area, selectively deny service or

manipulate authentication/billing against select targets, or pivot to

attacks against the core’s subscriber database (which services areas

spanning an entire nation).

6.6 Common Vulnerabilities Across Cores

Through our analysis of vulnerabilities in open-source and com-

mercial MMEs, we identify three domain-specific root causes of

vulnerabilities that span multiple implementations.

1. Underscrutinized NAS Input. Four MM implementations con-

tained unbounded buffer overflows across various fields in NAS

payloads. An additional two implementations contained crashing

assertions when certain unimplemented fields in the NAS were

present. Given that the NAS allows untrusted, unauthenticated

inputs to be passed into the core, it is telling that low-hanging

vulnerabilities still show up in some of the most dangerous code of

RANsacked: A Domain-Informed Approach for Fuzzing LTE and 5G RAN-Core Interfaces CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

S1AP -PROTOCOL -IES ::= CLASS {
&id ProtocolIE -ID UNIQUE , &criticality Criticality ,
&Value , &presence Presence

} WITH SYNTAX {
ID &id
CRITICALITY &criticality
TYPE &Value
PRESENCE &presence --- denotes Required/Optional IE fields

}

ProtocolIE -Container {S0AP -PROTOCOL -IES : IEsSetParam} ::=
SEQUENCE (SIZE (-1.. maxProtocolIEs)) OF
ProtocolIE -Field {{ IEsSetParam }}

--- &presence omitted when defining concrete types (seen below)
ProtocolIE -Field {S0AP -PROTOCOL -IES : IEsSetParam} ::= SEQUENCE {

id S0AP -PROTOCOL -IES.&id (
{IEsSetParam}

),
criticality S0AP -PROTOCOL -IES.& criticality (

{IEsSetParam }{@id}
),
value S0AP -PROTOCOL -IES.&Value (

{IEsSetParam }{@id}
)

}

Listing 2: S1APASN.1 specification outliningmandatory field

markers. As seen above, fields denoted as mandatory are not

necessarily verified to be present by generated ASN.1 code.

nearly every LTE/5G implementation. Had these vulnerabilities ex-

isted in common webserver software, they would likely have been

discovered and exploited 20 years ago; the breadth of vulnerabilities

found in MME implementations highlights a significant need for

more rigorous security analysis in cellular components and further

application of security hardening techniques to the domain.

2. Unclear Invariants in S1AP/NGAP Specifications. The 3GPP

specification for S1AP/NGAP indicates whether a given IE field is

mandatory, optional or conditional using a distinct ‘presence’ field

contained in the PROTOCOL-IES class. However, the underlying

implementations of this class that define IE types during ASN.1

compilation omit the field, leading to no ‘presence’ information in

implemented types (see Listing 2). The specification additionally

reads as follows: “IEs marked as Mandatory (M) shall always be

included in the message.” A developer not familiar with the finer

details of ASN.1 compilation may easily mistake this to mean that

Mandatory IEs are enforced similarly to that of other ASN.1 con-

structs. Two MME implementations and one AMF contained mul-

tiple vulnerabilities stemming from the assumption of Mandatory

field presence, indicating that insufficient clarity in this specifica-

tion has a carryover effect on the robustness of implementations

used in the wild.

3. Insecure/Invalid ASN.1 Deserialization. Despite years of work
pointing to ASN.1 parsing as a key source of memory corruption

vulnerabilities in cellular systems [55], such issues continue to

plague cellular cores in use today. Five out of six MMEs evaluated

in our fuzzing contained missing bounds checks, type confusion

and/or off-by-one vulnerabilities specifically within ASN.1 PER

decoding routines.

7 DISCUSSION

Responsible Disclosure Efforts. For each vulnerability discovered,

we notified the vendors of the respective core implementations

of our findings. As part of our disclosures, we included sample

crashing inputs for each vulnerability to reproduce the effect and

indicated the portion of their source code containing the vulnerabil-

ity, where applicable. Most vendors have responded to our contact

and confirmed the legitimacy of these findings, including all ven-

dors of LTE/5G cores actively used in commercial settings, and

many have already incorporated fixes into their projects.

Limitations and Future Work. Our fuzzing efforts are intention-
ally scoped to the threat model faced by interfaces between the

RAN and the cellular core. As we discuss in Section 8, most efforts

in cellular fuzzing have focused on either interactions between

basebands and base stations or direct UE interactions with the core.

Future fuzzing work may be needed to explore interactions among

components within the cellular core itself.

While our work improves state coverage by adding protocol

shims where needed, a fundamental limitation of our fuzzing ap-

proach is that it cannot explore interactions caused as a result of

chains of message exchanges. Future work may incorporate addi-

tional mechanisms to explore multi-message exchanges between

the base station and MM/GW component or include additional

setup routines to produce more starting states from which to fuzz.

The underlying coverage-instrumentation tool used for RAN-

sacked was AFLPlusPlus; as such, the fuzzing approach is limited

to C/C++ projects. We note that a few open-source 5G implementa-

tions (such as free5GC and SD-Core) are implemented in the Go

programming language, so adapting this work to such projects

would necessitate a change in fuzzing engine and instrumentation.

8 RELATEDWORK

Security in Telephone Networks. Since the inception of the Public

Switched Telephone Network, security research in telephony has

focused on operations that are exposed to public access–whether

intentionally or not. One of the earliest examples of such unin-

tentionally exposed functionality is the discovery and exploitation

of in-band telephone signalling to circumvent call costs, dubbed

“phone phreaking” [48]. Phone networks were subsequently provi-

sioned with an updated, out-of-band signalling protocol named SS7

that mitigated such exploits. As phone networks have evolved more

rapidly over the last twenty years, so too have the incidence of se-

curity vulnerabilities and corresponding countermeasures. Newer

communication methods such as SMS/MMS brought with them

security concerns ranging from botnets [53] to denial of service

attacks on individual phones [41] and even entire networks [20, 54]

that necessitated architectural changes. The introduction of home-

use femtocells, followed by more easily-accessible gNodeB base

stations in 5G deployments, represent a further shift in security

dynamics: where once physically locked-down, RAN equipment

is now openly exposed to physical adversarial threats. Our work

explores the implications of this final area by enabling performant

fuzzing interfaces that have historically been assumed implicitly

secure but now face imminent threats.

General Network Fuzzing. The asynchronous, stateful and of-

ten concurrent nature of network components create unique chal-

lenges that several fuzzing frameworks have attempted to tackle.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nathaniel Bennett et al.

AFLNet [45] advanced network fuzzing by enabling packet send-

ing while replacing file-level I/O with socket-based I/O in AFL.

However, AFLNet requires a response for every request sent and

employs timeouts to handle edge cases, leading to severely de-

graded performance in fuzzing protocols that may not have a 1-

to-1 request/response pattern (as is the case for S1AP/NGAP and

GTP). SnapFuzz [4] builds atop AFLNet and leverages fast syn-

chronous network communication instead of slow asynchronous

I/Os that greatly accelerates fuzzing speed, though with the same

drawbacks of required messages as AFLNet. On the other hand,

NyxNet [49] proposed a novel snapshot-based fuzzing framework

using hypervisor-based snapshot to ensure the deterministic state

of network system before fuzzing with an input. These existing

approaches all aim to solve the issue of passing initial fuzzing inputs

to the network-attached program while maintaining a consistent

initial state, but none of these approaches attempt to account for

multi-interfaced systems.

Fuzzing of Cellular Protocols. Advancements in vulnerability dis-

covery have been applied to newer cellular networks in an attempt

to cover an increasingly widening attack surface, such as formal

modeling of programs and documentation [5, 6, 14, 30, 31, 34, 44]

and protocol fuzzing for both cellular devices and select core in-

terfaces. Prior research has explored various ways to fuzz core

interfaces accessible directly by UE, such as by leveraging exist-

ing NAS testing harnesses (T-Fuzz) [33], performing automata re-

construction of the NAS protocol [15], mutating messages passed

between a legitimate UE and eNodeB [24, 47], adding NAS state

machine awareness to fuzzing efforts [27], and dynamic semi-

automated property testing of UE messages [35]. Such works fo-

cus on either the NAS protocol between the UE and MME [15, 27,

33, 35, 47] or the network stack that the UE and eNodeB inter-

face on [24]; most works were evaluated on only one implemen-

tation [27, 33, 47]. More recently, extensive work has been done

to enable fuzzing of the baseband firmware that resides within

cellphones. BaseSAFE [39] applies coverage-guided fuzzing to UE

firmware by rehosting individual functions within specific firmware

implementations; Firmwire [28] further explores baseband fuzzing

by creating a generalizable framework capable of emulating base-

bands from hundreds of devices. Such works focus exclusively on

UE devices rather than core components. Apart from UE-specific

fuzzing, HFuzz [38] targets the GTP Control Plane (GTP-C) proto-

col (distinct from GTP) used for Narrow-Band Internet of Things

devices. Our work targets fuzzing from the perspective of a rogue

eNodeB/gNodeB or cellphone, which opens up a significantly wider

surface area of attack.

9 CONCLUSION

Cellular cores control a wide range of critical functionality. As such,

they represent a tempting potential target for attack. To improve

the security of these systems, we conduct the first structure-aware

fuzzing effort on both open-source and commercial cellular cores.

Because the interactions between the nodes in these systems are

extremely complex, we incorporate a number of mechanisms to

dramatically improve the reach and speed of our campaigns. We

additionally develop and release ASNFuzzGen, which facilitates

structure-aware fuzzing for arbitrary ASN.1 specifications across

many other cellular interfaces. RANsacked discoveres 119 vulnera-

bilities that enable denial of service and memory corruption attacks.

In so doing, we help to advance the state of the art for fuzzing

cellular interfaces, and demonstrate that much work remains to be

done to ensure a sufficient standard of robustness in LTE/5G core

implementations.

ACKNOWLEDGMENTS

We thank Gabriella Neris for her assistance with the cellular testbed.

This workwas supported in part by the National Science Foundation

grants CNS-2054911, CNS-2055014, CNS-1933208, an NSF Graduate

Fellowship, and the Air Force Office for Scientific Research grant

FA8650-19-1-1969. Any findings and opinions expressed in this

material are those of the authors and do not necessarily reflect the

views of the funding agencies.

REFERENCES

[1] 3GPP. 2018. 3GPP TS 38.331 V15.3.0. Technical Report. 3GPP. https://www.etsi.

org/deliver/etsi_ts/138300_138399/138331/15.03.00_60/ts_138331v150300p.pdf

[2] 3GPP. 2019. 3GPP TS 36.423 V15.5.0. Technical Report. https://www.etsi.org/

deliver/etsi_ts/136400_136499/136423/15.05.00_60/ts_136423v150500p.pdf

[3] 3GPP. 2023. 3GPP TS 24.301 V16.9.0. Technical Report. ETSI. https://www.3gpp.

org/ftp/Specs/archive/24_series/24.301/24301-g90.zip

[4] Anastasios Andronidis and Cristian Cadar. 2022. SnapFuzz: High-Throughput

Fuzzing of Network Applications. In Proceedings of the 31st ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis.

[5] Myrto Arapinis, Loretta Mancini, Eike Ritter, Mark Ryan, Nico Golde, Kevin

Redon, and Ravishankar Borgaonkar. 2012. New Privacy Issues in Mobile Tele-

phony: Fix and Verification. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS).

[6] Myrto Arapinis, Loretta Ilaria Mancini, Eike Ritter, and Mark Dermot Ryan.

2017. Analysis of Privacy in Mobile Telephony Systems. International Journal of
Information Security 16, 5 (2017), 491–523.

[7] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,

Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep

Bugs with Grammars. Proceedings of the ISOC Network and Distributed System
Security (NDSS) Symposium (2019).

[8] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and

Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence.

In NDSS, Vol. 19. 1–15.
[9] Athonet. [n. d.]. Our Customers. https://athonet.com/customers/

[10] AT&T. 2023. AT&T Cell Booster. https://web.archive.org/web/20230622145138/

https://www.att.com/buy/accessories/Specialty-Items/att-cell-booster.html

[11] Osbert Bastani, Rahul Sharma, Alexander Aiken, and Percy Liang. 2017. Syn-

thesizing Program Input Grammars. Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (2017).

[12] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Reza Abbasi, Sergej

Schumilo, Simon Wörner, and Thorsten Holz. 2019. GRIMOIRE: Synthesizing

Structure while Fuzzing. In USENIX Security Symposium.

[13] BNAmericas. [n. d.]. Brisanet Brings Connectivity to Remote Areas in the
Northeast with Magma. https://web.archive.org/web/20240123162926/https:

//www.bnamericas.com/en/news/brisanet-brings-connectivity-to-remote-

areas-in-the-northeast-with-magma

[14] Yi Chen, Yepeng Yao, XiaoFengWang, Dandan Xu, Chang Yue, Xiaozhong Liu, Kai

Chen, Haixu Tang, and Baoxu Liu. 2021. Bookworm Game: Automatic Discovery

of LTE Vulnerabilities through Documentation Analysis. In 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 1197–1214.

[15] Merlin Chlosta, David Rupprecht, and Thorsten Holz. 2021. On the Challenges

of Automata Reconstruction in LTE Networks. Proceedings of the 14th ACM
Conference on Security and Privacy in Wireless and Mobile Networks (2021).

[16] Sprint Corporation. 2023. Sprint Airave Support. https://web.archive.org/web/

20230622145651/https://www.sprint.com/en/support/solutions/device/airave-

support-center.html

[17] Doug DePerry, Tom Ritter, and Andrew Rahimi. 2013. Traffic Interception &
Remote Mobile Phone Cloning with a Compromised CDMA Femtocell. Technical
Report. DEF CON.

[18] NTT DoCoMo. 2024. Super-Compact Base Station for Femtocells.
https://web.archive.org/web/20240122234628/https://www.docomo.ne.jp/

english/corporate/technology/rd/tech/network/femtocells/

[19] DrmnSamoLiu. 2018. CVE-2018-6311/CVE-2018-6312. https://gist.github.com/

DrmnSamoLiu/cd1d6fa59501f161616686296aa4a6c8

https://www.etsi.org/deliver/etsi_ts/138300_138399/138331/15.03.00_60/ts_138331v150300p.pdf
https://www.etsi.org/deliver/etsi_ts/138300_138399/138331/15.03.00_60/ts_138331v150300p.pdf
https://www.etsi.org/deliver/etsi_ts/136400_136499/136423/15.05.00_60/ts_136423v150500p.pdf
https://www.etsi.org/deliver/etsi_ts/136400_136499/136423/15.05.00_60/ts_136423v150500p.pdf
https://www.3gpp.org/ftp/Specs/archive/24_series/24.301/24301-g90.zip
https://www.3gpp.org/ftp/Specs/archive/24_series/24.301/24301-g90.zip
https://athonet.com/customers/
https://web.archive.org/web/20230622145138/https://www.att.com/buy/accessories/Specialty-Items/att-cell-booster.html
https://web.archive.org/web/20230622145138/https://www.att.com/buy/accessories/Specialty-Items/att-cell-booster.html
https://web.archive.org/web/20240123162926/https://www.bnamericas.com/en/news/brisanet-brings-connectivity-to-remote-areas-in-the-northeast-with-magma
https://web.archive.org/web/20240123162926/https://www.bnamericas.com/en/news/brisanet-brings-connectivity-to-remote-areas-in-the-northeast-with-magma
https://web.archive.org/web/20240123162926/https://www.bnamericas.com/en/news/brisanet-brings-connectivity-to-remote-areas-in-the-northeast-with-magma
https://web.archive.org/web/20230622145651/https://www.sprint.com/en/support/solutions/device/airave-support-center.html
https://web.archive.org/web/20230622145651/https://www.sprint.com/en/support/solutions/device/airave-support-center.html
https://web.archive.org/web/20230622145651/https://www.sprint.com/en/support/solutions/device/airave-support-center.html
https://web.archive.org/web/20240122234628/https://www.docomo.ne.jp/english/corporate/technology/rd/tech/network/femtocells/
https://web.archive.org/web/20240122234628/https://www.docomo.ne.jp/english/corporate/technology/rd/tech/network/femtocells/
https://gist.github.com/DrmnSamoLiu/cd1d6fa59501f161616686296aa4a6c8
https://gist.github.com/DrmnSamoLiu/cd1d6fa59501f161616686296aa4a6c8

RANsacked: A Domain-Informed Approach for Fuzzing LTE and 5G RAN-Core Interfaces CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[20] William Enck, Patrick Traynor, Patrick McDaniel, and Thomas La Porta. 2005.

Exploiting Open Functionality in SMS-Capable Cellular Networks. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS).

[21] ENISA. 2021. Telecom Security Incidents 2020 - Annual Report. Technical Re-

port. European Union Agency for Cybersecurity. https://www.enisa.europa.eu/

publications/telecom-annual-incident-reporting-2020

[22] ETSI. 2024. ETSI EN 302 637-2 V1.4.1. Technical Report. https:

//www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.04.01_60/en_

30263702v010401p.pdf

[23] Facebook. 2023. Folly: Facebook Open-Source Library. Facebook. https://github.

com/facebook/folly

[24] Matheus E. Garbelini, Zewen Shang, Sudipta Chattopadhyay, Sumei Sun, and

Ernest Kurniawan. 2022. Towards Automated Fuzzing of 4G/5G Protocol Imple-

mentations Over the Air. IEEE Global Communications Conference (GLOBECOM)
(2022), 86–92.

[25] O2 Germany. 2023. O2 Business Femtocell/Signal Box. https://web.archive.org/

web/20240122235101/https://www.businesstarife.de/femtocell/

[26] N Golde, R Borgaonlar, and K Redon. 2011. Femtocells: Poisonous Needle in the
Operator’s Hay Stack. Technical Report. Blackhat USA.

[27] Fengjiao He, Wenchuan Yang, Baojiang Cui, and Jia Cui. 2022. Intelligent Fuzzing

Algorithm for 5G NAS Protocol Based on Predefined Rules. International Confer-
ence on Computer Communications and Networks (ICCCN) (2022), 1–7.

[28] Grant Hernandez, Marius Muench, Dominik Maier, Alyssa Milburn, Shinjo Park,

Tobias Scharnowski, Tyler Tucker, Patrick Traynor, and Kevin Butler. 2022.

FIRMWIRE: Transparent Dynamic Analysis for Cellular Baseband Firmware.

Proceedings of the ISOC Network and Distributed Systems Security (NDSS) Sympo-
sium (2022).

[29] Matthias Hoschele and Andreas Zeller. 2017. Mining Input Grammars with

AUTOGRAM. In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering Companion (ICSE-C). IEEE, 31–34.

[30] Syed Rafiul Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino.

2018. LTEInspector: A Systematic Approach for Adversarial Testing of 4G LTE.

In Proceedings of the ISOC Network and Distributed System Security (NDSS) Sym-
posium.

[31] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowdhury, and

Elisa Bertino. 2019. 5GReasoner: A Property-Directed Security and Privacy

Analysis Framework for 5G Cellular Network Protocol. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS).

[32] Jio. 2024. JioConnect. https://www.jio.com/business/jio-connect

[33] William Johansson, Martin Svensson, Ulf Larson, Magnus Almgren, and Vin-

cenzo Gulisano. 2014. T-Fuzz: Model-based Fuzzing for Robustness Testing

of Telecommunication Protocols. Seventh International Conference on Software
Testing, Verification and Validation (2014), 323–332.

[34] Eunsoo Kim, Dongkwan Kim, CheolJun Park, Insu Yun, and Yongdae Kim. 2021.

BaseSpec: Comparative Analysis of Baseband Software and Cellular Specifications

for L3 Protocols. In Proceedings of the ISOC Network and Distributed System
Security (NDSS) Symposium.

[35] Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim. 2019. Touching the Untouch-

ables: Dynamic Security Analysis of the LTE Control Plane. IEEE Symposium on
Security and Privacy (SP) (2019), 1153–1168.

[36] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating Fuzz Testing. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS).

[37] Sukchan Lee. 2023. Support - Open5GS. https://web.archive.org/web/

20230930053106/https://open5gs.org/open5gs/support/

[38] Xinyao Liu, Baojiang Cui, Junsong Fu, and Jinxin Ma. 2020. HFuzz: Towards

Automatic Fuzzing Testing of NB-IoT Core Network Protocols Implementations.

Future Generation Computer Systems 108 (2020), 390–400.
[39] Dominik Maier, Lukas Seidel, and Shinjo Park. 2020. BaseSAFE: Baseband Sani-

tized Fuzzing Through Emulation. Proceedings of the 13th ACM Conference on
Security and Privacy in Wireless and Mobile Networks (2020), 122–132.

[40] Gabi Melman. 2023. Spdlog: Fast C++ logging library. Github. https://github.

com/gabime/spdlog

[41] Collin Mulliner, Nico Golde, and Jean-Pierre Seifert. 2011. SMS of Death: From

Analyzing to Attacking Mobile Phones on a Large Scale. In Proceedings of the
USENIX Security Symposium.

[42] O2. 2023. Boostbox Guide. https://web.archive.org/web/20231010170442/https:

//www.o2.co.uk/help/network-coverage-and-international/boostbox-guide

[43] OpenAirInterface. [n. d.]. OSA Members - OpenAirInterface. https://web.archive.

org/web/20231226212507/https://openairinterface.org/osa-members/

[44] CheolJun Park, Sangwook Bae, BeomSeokOh, Jiho Lee, Eunkyu Lee, Insu Yun, and

Yongdae Kim. 2021. DoLTEst: In-depth Downlink Negative Testing Framework

for LTE Devices. In Proceedings of the USENIX Security Symposium.

[45] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2020. AFLNet: A

Greybox Fuzzer for Network Protocols. In 2020 IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST). IEEE, 460–465.

[46] Van-Thuan Pham, Marcel Böhme, Andrew E Santosa, Alexandru Răzvan Căci-

ulescu, and Abhik Roychoudhury. 2019. Smart Greybox Fuzzing. IEEE Transac-
tions on Software Engineering 47, 9 (2019), 1980–1997.

[47] Srinath Potnuru and Prajwol Kumar Nakarmi. 2021. Berserker: ASN.1-based

Fuzzing of Radio Resource Control Protocol for 4G and 5G. 2021 17th International
Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob) (2021), 295–300.

[48] Ron Rosenbaum. 1971. Secrets of the Little Blue Box. Esquire Magazine 76 (1971),
117–125.

[49] Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali Reza Abbasi, and

Thorsten Holz. 2022. Nyx-Net: Network Fuzzing with Incremental Snapshots.

Proceedings of the Seventeenth European Conference on Computer Systems (2022).
[50] Toby Shapshak. [n. d.]. African Internet Connectivity Gets a Mobile World Congress

Boost. https://www.forbes.com/sites/tobyshapshak/2019/02/27/african-internet-

connectivity-gets-a-mobile-world-congress-boost/?sh=434ed2c4c607

[51] European Space Agency. 2015. ASN1SCC - ASN.1 Space Certifiable Compiler.
https://essr.esa.int/project/asn1scc-asn-1-space-certifiable-compiler

[52] T-Mobile. 2023. Register a Signal Booster. https://web.archive.org/web/

20230622145341/https://www.t-mobile.com/support/coverage/register-a-

signal-booster

[53] Patrick Traynor, Michael Lin, Machigar Ongtang, Vikhyath Rao, Trent Jaeger,

Patrick McDaniel, and Thomas La Porta. 2009. On Cellular Botnets: Measuring

the Impact of Malicious Devices on a Cellular Network Core. In Proceedings of
the ACM Conference on Computer and Communications Security (CCS).

[54] Patrick Traynor, Patrick McDaniel, and Thomas La Porta. 2007. On Attack

Causality in Internet-Connected Cellular Networks. In Proceedings of the USENIX
Security Symposium.

[55] Patrick Traynor, Patrick McDaniel, and Thomas La Porta. 2008. Security for
Telecommunications Networks. Vol. 40. Springer Science & Business Media.

[56] Verizon. 2023. Verizon LTE Network Extender. https://web.archive.org/web/

20230622145025/https://www.verizon.com/products/verizon-lte-network-

extender/

[57] J Webb-Twoomey. 2023. The Rising Threat Landscape for Cell Towers. BioCon-
nect. https://bioconnect.com/2023/05/31/the-rising-threat-landscape-for-cell-

towers/

[58] Y Zheng and H Shan. 2015. Hacking Femtocell. Technical Report. DEF CON.

A ABBREVIATED TERMS

3GPP 3rd Generation Partnership Project

5G 5th-Generation Cellular Network

AFL American Fuzzy Lop

AGW Access Gateway

AMF Access and Mobility Management Function

ASN.1 Abstract Syntax Notation No. 1

EMM EPS Mobility Management

ESM EPS Session Management

EPC Evolved Packet Core

EPS Evolved Packet System

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

GTP GPRS Tunnelling Protocol

GTP-C GTP Control Plane

GW Gateway component

IE Information Element

LTE Long-Term Evolution (4G)

MM Mobility Management component

MME Mobility Management Entity

NAS Non-Access Stratum

NGAP Next Generation Application Protocol

PCR Persistent mode with Channel Reset

PER Packed Encoding Rules

RAN Radio Access Network

S1AP S1 Application Protocol

SCTP Stream Control Transmission Protocol

SGW Serving Gateway

UE User Equipment (cellular mobile devices)

https://www.enisa.europa.eu/publications/telecom-annual-incident-reporting-2020
https://www.enisa.europa.eu/publications/telecom-annual-incident-reporting-2020
https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.04.01_60/en_30263702v010401p.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.04.01_60/en_30263702v010401p.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.04.01_60/en_30263702v010401p.pdf
https://github.com/facebook/folly
https://github.com/facebook/folly
https://web.archive.org/web/20240122235101/https://www.businesstarife.de/femtocell/
https://web.archive.org/web/20240122235101/https://www.businesstarife.de/femtocell/
https://www.jio.com/business/jio-connect
https://web.archive.org/web/20230930053106/https://open5gs.org/open5gs/support/
https://web.archive.org/web/20230930053106/https://open5gs.org/open5gs/support/
https://github.com/gabime/spdlog
https://github.com/gabime/spdlog
https://web.archive.org/web/20231010170442/https://www.o2.co.uk/help/network-coverage-and-international/boostbox-guide
https://web.archive.org/web/20231010170442/https://www.o2.co.uk/help/network-coverage-and-international/boostbox-guide
https://web.archive.org/web/20231226212507/https://openairinterface.org/osa-members/
https://web.archive.org/web/20231226212507/https://openairinterface.org/osa-members/
https://www.forbes.com/sites/tobyshapshak/2019/02/27/african-internet-connectivity-gets-a-mobile-world-congress-boost/?sh=434ed2c4c607
https://www.forbes.com/sites/tobyshapshak/2019/02/27/african-internet-connectivity-gets-a-mobile-world-congress-boost/?sh=434ed2c4c607
https://essr.esa.int/project/asn1scc-asn-1-space-certifiable-compiler
https://web.archive.org/web/20230622145341/https://www.t-mobile.com/support/coverage/register-a-signal-booster
https://web.archive.org/web/20230622145341/https://www.t-mobile.com/support/coverage/register-a-signal-booster
https://web.archive.org/web/20230622145341/https://www.t-mobile.com/support/coverage/register-a-signal-booster
https://web.archive.org/web/20230622145025/https://www.verizon.com/products/verizon-lte-network-extender/
https://web.archive.org/web/20230622145025/https://www.verizon.com/products/verizon-lte-network-extender/
https://web.archive.org/web/20230622145025/https://www.verizon.com/products/verizon-lte-network-extender/
https://bioconnect.com/2023/05/31/the-rising-threat-landscape-for-cell-towers/
https://bioconnect.com/2023/05/31/the-rising-threat-landscape-for-cell-towers/

	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Methodology
	4.1 Challenges in Fuzzing LTE/5G Components
	4.2 Network Fuzzing Harness Design
	4.3 Structure-Aware Fuzzing
	4.4 Seed Selection

	5 Evaluation
	5.1 Experimental Setup
	5.2 MM/GW Implementation Robustness
	5.3 Structure-Aware Fuzzing
	5.4 Seed Selection
	5.5 Harness Performance
	5.6 Black-box Fuzzing

	6 Vulnerability Analysis
	6.1 Vulnerability Classes
	6.2 Breadth of Vulnerable Message Types
	6.3 Vulnerability Location/Depth
	6.4 Case Study I: Type Confusion in Magma
	6.5 Case Study II: Stack Overflow in SD-Core
	6.6 Common Vulnerabilities Across Cores

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Abbreviated Terms

