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ABSTRACT
Reproducibility is crucial to the advancement of science; it strength-

ens confidence in seemingly contradictory results and expands the

boundaries of known discoveries. Computer Security has the natu-

ral benefit of creating artifacts that should facilitate computational

reproducibility, the ability for others to use someone else’s code and

data to independently recreate results, in a relatively straightfor-

ward fashion. While the Security community has recently increased

its attention on reproducibility, an independent and comprehensive

measurement of the current state of reproducibility has not been

conducted. In this paper, we perform the first such study, targeting

reproducible artifacts generated specifically by papers on machine

learning security (one of the most popular areas in academic re-

search) published in Tier 1 security conferences over the past ten

years (2013-2022). We perform our measurement study of indirect

and direct reproducibility over nearly 750 papers, their codebases,

and datasets. Our analysis shows that there is no statistically sig-

nificant difference between the availability of artifacts before and

after the introduction of Artifact Evaluation Committees in Tier 1

conferences. However, based on three years of results, artifacts that

pass through this process work at a higher rate than those that do

not. From our collected findings, we offer data-driven suggestions

for improving reproducibility in our community, including five com-

mon problems observed in our study. In so doing, we demonstrate

that significant progress still needs to be made in computational

reproducibility in Computer Security research.
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1 INTRODUCTION
Advances in science do not come solely from novel exploratory

studies. As pointed out in a recent report by the National Acad-

emy of Sciences [443], scientific progress requires confirmatory

research to validate and expand the limits of new knowledge. This

observation has crucial importance across all branches of science

and engineering and makes it clear that closing the gap between

initial discovery and widespread adoption of claims or methods

requires significant effort to be spent on reproducibility. As a result

of prioritizing exploratory over confirmatory studies, diverse fields

ranging from medicine [184, 256, 591] and economics [122, 239],

to chemistry [16, 219] and psychology [35, 126] have suffered very

public and damaging reproducibility crises.

Research in Computer Science, and Computer Security specifi-

cally, have a rare advantage in their ability to create reproducible

science. Specifically, because much of the work in our community

produces computational artifacts as a side-effect of their method-

ology (e.g., code, data, and figures), the ability to perform con-

firmational studies should be strictly simpler than fields in which
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methods are less portable, potentially dangerous, or more expensive

(e.g., recreating an experimental pharmaceutical compound and

testing it on a large population). An increasing number of papers

appear to be making their code available to the broader community

as a means of supporting such analyses; however, outside of largely

anecdotal evidence, a comprehensive study of the availability of

artifacts and the ability of independent researchers to confirm their

computational reproducibility has not been conducted in our com-

munity. Without such a study, it is unclear if Computer Security

is truly creating reproducible and ultimately broadly applicable

science, or if it is having a reproducibility crisis of its own.

In order to better characterize the current state of computational

reproducibility in Computer Security, we perform an extensive

measurement study and make the following contributions:

• Comprehensive Longitudinal Study:Weperform the largest

known longitudinal study of reproducibility in the Security

community. We focus on the sub-discipline of machine learn-

ing (ML) security as published at Tier 1 security venues over

the past 10 years, yielding observations over a total popula-

tion of nearly 750 papers. We find that 60% of these published

papers do not include code to run their experiments. More-

over, 56% of the provided artifacts do not run at all.

• Measure Impact of Artifact Evaluation Committees:
Using data collected from the longitudinal study, we analyze

whether the introduction of artifact evaluation committees

in 2020 has had an impact on the availability of code artifacts.

We show that there is no statistically significant difference

between the two groups, meaning that Artifact Evaluation

Committees have yet to achieve their intended goals.

• Recommendations Based on Measurement: We high-

light five recommendations based on the most common prob-

lems that we observe in our analysis that impeded both our

indirect and direct reproducibility studies. We believe that

explicitly addressing these issues will result in a substantial

improvement of reproducibility in Tier 1 Security confer-

ences.

Computational reproducibility efforts are often discounted in their

value when compared to exploratory/novelty-focused papers, as the

former often requires less time or expense than their exploratory

counterparts. We note that conducting this study required extensive

resources and time, with an estimated 8 person-years of effort and

well over 10,000 hours of computational time to recreate results.

Only through such comprehensive measurement and analysis of

our community can actionable steps for improvement be offered.

The remainder of the paper is organized as follows: Section 2

provides background information including explicit definitions of

reproducibility; Section 3 states our null hypothesis; Section 4 de-

tails our research questions and methodology; Section 5 discusses

the results and implications of our Indirect Reproducibility study;

Section 6 presents the observations and results of our Direct Re-

producibility study; Section 7 provides discussion of critical issues

and offers recommendations based on our observations; Section 8

presents limitations of our study and future considerations; Sec-

tion 9 highlights related work from a broad set of communities; and

Section 10 provides concluding remarks.

2 BACKGROUND
We briefly discuss the formal study of reproducibility and current

artifact evaluation in the Security community.

2.1 Reproducibility
AlthoughACM harmonized its definition of reproducibility in 2020 [1],

we use the National Academy of Science’s definition [60, 443] for

computational reproducibility, replicability, and generalizability

and discuss the nuances between each.

ComputationalReproducibility: Computational reproducibil-

ity (i.e., reproducibility) refers to recreating a study’s results with
the study’s artifacts. Thus, reproducibility occurs when an inde-

pendent team can obtain consistent results using the same data,

computational environment, and code [212]. Reproducible results

confirm that the phenomenon described by a paper is present under

the study’s environment.
1
Further, bit-wise reproducibility entails

reproducing the exact numeric results. Oftentimes, this strict defi-

nition is relaxed, albeit marginally, for areas that rely on complex

computational processes or use some modicum of randomness (e.g.,

machine learning).

A computational reproducibility study can be either indirect or
direct. An indirect study assesses whether the authors of a study

made their artifacts available. It considers the transparency of the

study and thus requires fewer resources to conduct. A direct study

runs, if available, the same code, data, and analytical methodology

to check that running the provided code recreates the results of the

paper. This inherently requires a greater amount of resources. In this

paper, we conduct both a direct and indirect study to understand

and measure the current state of computational reproducibility

within the Security community.

Replicability: While computational reproducibility uses the

same code and data for a study, replicability studies seek to address

the same research question with different methodologies. Using

different collected data, a replicability study aims to confirm the

results of a previous study, subject to the inherent uncertainty

of the underlying studied system. Due to the statistical nature

of observation, a failure to replicate a study does not necessarily

mean that the original study’s results are false, nor does success

indicate that the original study’s results are true. Replicability is

achieved through numerous attempts that provide a preponderance

of evidence for the existence of the observed phenomenon.

Generalizability: All scientific exploration occurs in some unique

environment. Generalizability defines how the identified trends ap-

ply to other unique environments [60]. There are numerous reasons

a study may not generalize. An unsuccessful attempt to show gener-

alization may not come from the study but from outside conditions

adversely affecting the underlying system. Similarly to replicability,

generalizability is not shown by a single study, but by numerous

studies across multiple conditions that collectively show the same

phenomenon.

2.2 Artifact Evaluation
Conferences seek to address concerns about reproducibility by pro-

viding artifact evaluation committees (AECs) and giving authors

1
It is important to note that errors within the computation are not addressed. Bad

code that leads to erroneous claims will propagate throughout a reproducibility study.
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Figure 1: The pipeline for the methodology of our study. We
collect machine learning papers from the Tier 1 Security
conferences. Then we perform an indirect study of each pa-
per considering the availability of theMethod, Data, and Ex-
periment. Finally, from the available Data and Experiments,
we run a direct study running their code to attempt to recre-
ate their results.

the option to submit to their call for artifacts. The committee ac-

cepts everything including tools, test suites, models, proofs, and

even videos of the artifact working to evaluate whether the arti-

facts are consistent with the claims or procedures of the associated

paper [313]. These committees award badges depending on the suc-

cess of running. USENIX Security as of 2023 assigns three badges:
Artifact Available where some portion of the artifact is publically

available; Artifact Functional where the artifact runs; and Artifact
Reproduced where the artifact directly reproduces the results of the

paper.

While these committees face many issues [48], AECs are becom-

ing increasingly popular in many communities [678]. In 2017, both

WiSec and ACSAC added artifact evaluations committees after calls

from the community [50, 454]. Of the Tier 1 conferences, USENIX
Security introduced its AEC in 2020, and CCS introduced its AEC in

2023. As of the time of writing, NDSS and IEEE S&P have not intro-

duced AECs. Although outside the scope of our work, it is important

to note that NeurIPS open-sourced the reproducibility of papers in

a reproducibility challenge [485]. However, unlike NeurIPS, Tier 1
Security conferences do not require artifact evaluation. As such,

this inherently affects the state of reproducibility. We aim to provide

an analysis of how AECs have affected reproducibility in Section 6.

3 H0 NULL HYPOTHESIS
A null hypothesis, along with an alternative hypothesis, conjec-

ture relationships about a population. These hypotheses are tested

against a statistical model of collected data to show statistical signif-

icance. A null hypothesis claims that there is no causal relationship

resulting in differences between two subpopulations and that any

observation is due to random chance. The alternative hypothesis is

the inverse stating that there is a statistically significant relation-

ship. Although traditional work considers a p-value less than 0.05

as statistically significant, modern experts in the “post p < 0.05”

era encourage classifying 0.005 < p < 0.05 as merely “suggestive”

and p < 0.005 as beginning to indicate statistical significance [49].

We state the null hypothesis for this paper as:

H0 · There is no difference in whether code from published

papers is available before vs after the introduction of AECs

to Tier 1 Security Conferences (2020).

4 METHODOLOGY
To understand the current state of reproducibility in the Security

community, we conduct a measurement study where we collect

machine learning papers from the Tier 1 conferences over the past

10 years. We select this sub-community because it is large and

long-lived. Moreover, it requires less specialized equipment than

other areas (e.g., wireless) giving us the best opportunity to capture

reproducible science. In this section, we outline what criteria a

paper must meet to be considered a part of this study and how

we analyze each paper according to its Method (i.e., a complete

description of its methodology), Data, and Experiment (i.e., code),

outlined in Figure 1. We perform both an Indirect and Direct Study

of reproducibility. We propose the following research questions to

guide our study:

RQ1 (Indirect Study) Do studies provide the details of theirmethod?

RQ2 (Indirect Study) To what extent is collected data made avail-

able? Where are studies sourcing their data?

RQ3 (Indirect Study) To what extent are experimental artifacts

made available?

RQ4 (Direct Study) Of available experimental artifacts, how many

run and produce consistent results?

4.1 Paper Selection
We consider papers from the four Tier 1 Security conferences (ACM-
CCS, IEEE S&P, NDSS, and USENIX Security) ranging from the years

2013 to 2022 (10 years). We exclude all workshops associated with

each conference as well as any poster talks. As we aim to quantify

the state of reproducibility in machine learning security, we attempt

to select every paper that uses ML in its system design.

To make this process as objective as possible, we select papers

according to the following criteria: (1) machine learning is men-

tioned in the Abstract, Introduction, Background, Methodology, or

Conclusion; (2) the paper creates a training procedure based on data

available to the study authors, usually mentioned in the Methodol-

ogy or Results section (e.g., “We train a multi-layer perceptron on

our collected data."); (3) their Results section clearly outlines a met-

ric for an ML model that is not from previous work (e.g., “Our RFC

classifier achieves 99% accuracy"). We enact a consensus protocol

where each year is reviewed by two separate team members. Each

reviewer independently applies the selection criteria to find a list

of papers, and we take the union of the two lists of papers. Note

that our selection process goes beyond AECs and considers every

published paper at the conference. After applying our criteria for

inclusion in this study, we identify 744 papers. We make all of our

data available
2
, which includes a list of the papers and all of their

associated URLs.

4.2 Indirect Study
After finalizing the list of papers, we evaluate each paper according

to its Method, Data, and Experiment. Previous work [50, 212, 496]

reinforces that these three factors are the foundation for repro-

ducibility analysis. We outline in detail the factors and each variable

in Table 1 and discuss them in the following sections. Each paper

is reviewed twice in the Indirect Study. The Indirect Study only

2
https://github.com/reproducibility-sec/reproducibility
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Factor Variable Description

Method
Model What model did it use?

Set Up

Were the hyper-parameters

described?

Training

Does it explicitly outline its

training?

Data
Available Is the data made available?

Reason If not, why is it not provided?

Data Split

Is the data split into

training/validation/test

in a deterministic way?

Experiment

Available Was the code made available?

Instructions

Does the code have explicit

instructions on how to run?

Trained

Is there a trained model?

Is there training code?

Works

Does the code work based on

the instructions? Was further

coding needed?

Output

What is the output of the code?

Does it match the metrics

in the paper?

Results

Is the code output consistent

with the claims of the paper?

Table 1: An outline of the factors, variables, and details we
use to analyze each paper. The three factors are Method,
Data, and Experiments. Each variable represents a column
in our data frame and forms the foundation for our study.

assesses the availability of the identified factors. We do not run

any code during the Indirect Study. A measure for inter-rater relia-

bility is Cohen’s Kappa coefficient, which balances the agreement

between two raters against the random chance that they would

agree. Generally, a Cohen’s Kappa coefficient above 0.7 is consid-

ered acceptable for inter-rater reliability, and our resulting Cohen’s

Kappa coefficient is κ = 0.83.

Method: To understand howwell a paper describes its methodol-

ogy, we recreate the experimental procedure to replicate the results.

We aim to measure the presence of model descriptions as it is essen-

tial to both reproducibility and replicability studies. This constitutes

the first part of our indirect reproducibility study. When we eval-

uate a paper on its Method, we consider three factors. First, we

look at what model is used. If the paper does not outline its anal-

ysis model, we fundamentally cannot recreate its results. Second,

we consider if all of the hyperparameters are described. Many ML

models consist of numerous parameters (e.g., number of nodes, ac-

tivation functions, loss functions) required for similar performance.

We consider this on a numeric scale of no description (0), partial

description (1), and complete description(2) of hyperparameters.

Finally, we want to understand the paper’s training procedure. A

lack of a training procedure further inhibits any reproduction of its

results. The training procedure is also measured on a scale similar

to the hyperparameters.

Data: For the second part of our indirect reproducibility study, we

evaluate the data on whether it is publically available and if it is

split into train, validation, and test sets in an explicit way. Studies

often use multiple datasets which can be either publically available

or private. We consider that there are reasons why the data is

not released and note that in the Reason variable. The data being

available does not immediately mean the results are reproducible.

Thus, we want to identify when a paper ensures that the data is

used correctly.

Experiment: In machine learning papers, the experiment is often

a computational procedure that is run through code. While running

the code, amodel is trained on processed data, evaluated on test data,

and outputs a metric for performance. The previous two factors we

study are important and affect computational reproducibility, but

themajority of our analysis comes from evaluating the experimental

artifacts. For our indirect study, we assess how often code is made

available for a paper. We consider not only if the authors link a

repository in the paper, but also if we can locate the artifacts online.

We do this by searching the paper’s title in a search engine and

crawling the authors’ websites.

4.3 Direct Study
The indirect study evaluates the availability of analytical method-

ology, data, and experimental artifacts. In contrast, the direct study

aims to evaluate the efficacy of the available artifacts for recreating

the results. Not only do we evaluate if the artifact is available, but

we also evaluate the instructions to run the artifact, whether there

is a trained model or training code available, if the artifact runs, if

the output of the artifact is the metric in the paper, and that the

results are consistent with the paper’s claims. When artifacts are

available via an online repository, we download the repository to

our servers. Following the ReadMe we try to run the code, then in

cases where we are required to request access, we do so.

If we are unable to immediately run the code based on the

ReadMe, we spend at most one-hour debugging or setting up the

project. This is similar in a time scale to Collberg et al.’s [127]

methodology, which only evaluated whether artifacts compiled. If

we are unable to run the artifact code after an hour of setup and

debugging, we mark it as not working. Some projects provide the

code to train their model but not the model they previously trained.

Due to the scope of our study, we disregard the recommended train-

ing time as some require months of computational training time.

We train the model for 10 hours and then perform its evaluation

procedure, if available. We recognize this as a limitation and fur-

ther discuss it in Section 8.2. After evaluation, we consider a result

reproduced if we get within 5% of the claimed metric, similar to

Raff [495]. Raff’s study replicated the experiments by the paper’s

described methodology and create their own code to do so. They do

not rely on the artifacts of the paper. As such, 5% is more generous

in our reproducibility study, since we are running the authors’ code.

Some artifacts require special architectures to run (e.g., GPUs).

We run every model on a CPU unless a special architecture is

specified by the authors. The results of the direct study for each

artifact are reviewed by another reviewer. We run the experimental

artifacts once unless, when the artifacts did not run, the second

reviewer identifies a possible workaround. We accept the most

positive result for the artifact. Following this methodology, we
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Figure 2: A modified Coxcomb plot that summarizes the in-
direct study of hyperparameters. A Coxcomb is a bar graph
in polar coordinates. Thus, the radius depicts the count of
papers in a category. For example, we find that of the 232 pa-
pers we consider at USENIX 88 describe their hyperparame-
ters, 56 partially describe them, and 88 do not describe them.

analyze over 298 code repositories constituting over 8 person-years
worth of work and over 10,000 hours of computation time.

5 INDIRECT STUDY
We discuss the indirect study by analyzing the availability of the

Method, Data, and Experiment. Each subsection outlines the impor-

tance of the factor, the results from our Indirect Study, a case study

that includes examples of the presence of the factor, and lessons of

the results.

5.1 Method
The method of a study is the fundamental process of evaluating a

study. Accurate and complete descriptions of how the analytical

methodology is conducted aid reviewers and readers in understand-

ing the study. For recreating the machine learning security papers,

we are primarily interested in two aspects, the hyperparameters of

their model and the associated training mechanisms. The hyperpa-

rameters dictate the details of their model (e.g., the number of layers

in a deep neural network). Changing any hyperparameter alters

the underlying algorithm, and thus, inhibits reproducibility. The

training mechanism outlines how to run the underlying algorithm

(e.g., specifying the number of epochs to train for). Changes in how

models are trained can result in different models. We measure both

of these attributes on a scale of Not Described, Partially Described,

and Described.

We find that of the 744 papers we look at, 312 papers fully de-

scribed their hyperparameters, 165 partially described their hy-

perparameters, and 267 did not describe their hyperparameters.

Figure 2 shows our results for the hyperparameters. We see that in

USENIX, S&P, andNDSS there is an even split between not described
and fully described at approximately 38% each, with the remaining

S&P
(124)

Usenix
(232)

CCS
(236)

NDSS
(152)

34

19
71

60

58

114

42

55

139

32
34

86

Method - Training Described
Not Described
Partially Described
Described

Figure 3: A modified Coxcomb to summarize the indirect
study of training methodologies. We find that 77% of the pa-
pers we consider describe or partially describe their training
procedures. 168 papers (23%) in our study did not describe
their training procedure.

going to the partially described. However, at CCS the number of

Described is double that of the Not Described. Figure 3 shows the

results of analyzing the training mechanisms. We find that of the

744 we look at, 410 papers described their training, 166 partially de-

scribed their training, and 168 did not describe their training (RQ1).
Case Study: There are many ways to thoroughly explain hyper-

parameters and training procedures. Oesch et al.’s That Was Then,
This Is Now: A Security Evaluation of Password Generation, Storage,
and Autofill in Browser-Based Password Managers [455] contains a
detailed table in the appendix that lists all of the hyperparameters

for their model. This is a succinct way to outline all associated

hyperparameters.

Training procedures do not require extensive discussions, but it is

important to list the associated parameters. Chen et al.’sOn Training
Robust PDF Malware Classifiers [114] outlines how they train their

neural networks by listing the number of epochs, the batch size,

the optimizer, and the learning rate. When using cross-validation,

it is important to discuss the number of cross-validation folds and

how they are chosen. Siby et al.’s Encrypted DNS ⇒ Privacy? A
Traffic Analysis Perspective [566] uses 10-fold cross-validation de-

scribing exactly how they split the dataset to validate their model.

We label papers as a partial description if they lack a stopping pro-

cedure, the number of epochs, or underdefined a procedure (e.g.,

"we performed cross-validation" instead of "we performed 10-fold

cross-validation").

Lesson: While there is a considerable amount of work that pro-

vides an adequate discussion of their hyperparameters and training

procedures, we find that there are improvements to be made. The

papers with the best discussion of hyperparameters include a table

with the full model hyperaparameters, as well as outlining how they
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S&P
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(152)
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70
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87

67
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52

37

Data Availability
No Data
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Public Data Only

Figure 4: A summary of the data availability found in our
indirect study. Approximately one out of every three studies
collect data but do notmake it available. 35% collect data and
make it available. Every conference demonstrates the same
trend where there are approximately an equal number of
papers that make data available, do not make data available,
and use publicly available data.

choose the parameters (e.g., grid-search). Similarly, the best discus-

sions on training procedures include an explicit training paragraph

or section that explicitly details the training algorithm.

5.2 Data
Machine learning works by training on data, and thus data avail-

ability directly affects the reproducibility of a study. We categorize

the data availability broadly into three categories: No Data Avail-

able is assigned when the paper collected data and did not make it

available or when there is no avenue for accessing the data (e.g., a

broken link); Data Available is used when a study collects their own

data and makes it publically available; Public Data Only is when a

study only uses previously published and accessible datasets.

Figure 4 summarizes the results of our Indirect Study. We find

that approximately 36% of studies collected their own data and did

not make this publically available, 36% collected data and made it

available, and 28% of studies conducted their experiments on pub-

lically available data (RQ2). We see similar trends across USENIX,
CCS, and S&P where the Data Available is larger than the No Data

provided. However, NDSS has more No Data provided than Data

Available. When the data was not available, only 10% of papers

gave a reason with 7% working with sensitive data (e.g., personally

identifiable information) and 3% working with proprietary data

(e.g., collected malware intrusions). Approximately 90% of papers

(243 of 269) that did not make their data available did not indicate

as to why it was not available.

Case Study: Datasets require significant work and funding to

create. Zheng et al.’s Characterizing and Detecting Non-Consensual
Photo Sharing on Social Networks [768] created a dataset that depicts
unaware people in a photo. This dataset contains 6,437 photos that

S&P
(124)

Usenix
(232)

CCS
(237)

NDSS
(152)

61

61
2

139

92

1

140

96

1

101

49

2

Experiment Availability
No Code
Code Available
Request Access

Figure 5: A representation of the papers within our study
that made artifacts available. Only 298 of the 744 papers
(40%) provide artifacts. About 1% of the total papers remain
as request access. The remaining 59% (441 of 744) of papers
did not provide any artifacts with their study.

are labeled by three users from a user study. The dataset is available

online to promote futurework in the area. Das et al.’s TheWeb’s Sixth
Sense: A Study of Scripts Accessing Smartphone Sensors [137] crawled
3,695 websites to detect when a website accessed device sensor data

on mobile devices. They collect and provide data in both the United

States and Europe. The online repository contains the javascripts

that they found, as well as the features of each script, the assigned

cluster, and aggregations across the various sensors. Further, in the

repository’s ReadMe, they connect each file to themethodology that

created it in their paper (e.g., “using the methodology described in

Section 5”). Although these two papers provide complete datasets,

other studies only provide a small subset of their data. This helps

to understand the data collected, but ultimately cannot lead to

reproducibility. Finally, a different study cited a dataset that has

multiple versions without specifying which one, while another

study released its raw data but not its processing script or how it

chose a train/test split.

We find that about 28% of the studies used publically avail-

able resources. The datasets range from static datasets such as

CIFAR10 [314] and MNIST [326] to databases that are continuously

updated like the OpenSky Database [526]. Using publically available

datasets allows for benchmarking and direct comparison between

systems.

Lesson: While we recognize that not every dataset can be made

available, 36% of collected data remains inaccessible. This creates

problems for future research such as a lack of benchmarks when

trying to compare the same data, slowing the growth of future

research on similar problems, and lack of validation of the dataset.

Data collected to support one’s argument should be made fully

available, when possible. To the best of their ability, authors should

make their data available including both processed and unprocessed

versions, and when unable to, discuss why they cannot.
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5.3 Experiment
The last part of the Indirect Study is assessing to what extent studies

make their experiment (i.e., code) available. The results can be seen

in Figure 5. We find that approximately 60% of papers (446 out of

744 ) did not provide code to run their experiments, 39% (298 out of

744 ) provided code, and approximately 1% still remain as request

access.
3 USENIX, CCS, and NDSS contain approximately 1.5 times

more papers without code than with code. There is an equal split

between no code and code for S&P (RQ3). Interestingly, we find
approximately 1% of papers state that their code will be available

in the future or link an empty repository in their paper (even years

after their publication).

Case Study: Of available artifacts, 95% are available via GitHub.

4% are websites hosted Google Sites or Google Drive links, and

the remaining 1% are hosted at universities. Often the link is in a

footnote in the paper. Some treated their repository as a citation,

and the link is in the references section. We find that if the citation

is ambiguous we often did not find it on the first pass (e.g., “We

get 90% accuracy[0].” and the reference says “[0] - ToolName. link.”
). Pasquini et al.’s Improving Password Guessing via Representation
Learning [477] cite the artifact, but it is explicitly in a section labeled
“Availability”. While generally if there are artifacts that exist but

are not linked in the paper, we could find them via the authors’

websites or searching sites like GitHub. However, for one outlier

case, there was no code linked in the paper or the authors’ websites,

but we found a link to the artifact website in a Twitter thread.

Lesson: Not providing the experimental code limits the extent

that future work can improve on new tasks and compare against the

technique. Further, complex pre-processing tasks, novel analysis

techniques, and complicated system designs are non-trivial to build

from scratch. Providing implementations not only improves the

state of reproducibility but allows further development of these

techniques.We further discuss the state of the available experiments

in Section 6.

6 DIRECT STUDY
A direct reproducibility study seeks to understand if the available

experimental setup will allow us to recreate the results of the work.

Building upon the indirect study, we take the papers that made

its artifacts available and attempt to run them. In this section, we

summarize the results of our direct study on the 298 papers that

have available experimental artifacts.

6.1 Results
We find that we are unable to get 56% of the artifacts to run. Al-

though the results show that 44% of repositories run, this does not

depict the full story. With only 20% of the repositories running with

the same results, the remaining 22% either recreate different results

(4%) or execute but are missing arguments or outputs (18%). We can

see this relationship in Figure 6 where the results are grouped by

conferences. USENIX had 92 papers with code where 53 did not run,

21 recreated the claimed results, 3 did not create the same results,

and 16 were missing parameters, files, or outputs. CCS contained

3
Papers remain as request access until we acquire access to their experiments. Then,

we change the paper to a code available paper. Note some request access have been

waiting for months.

S&P
(61)

Usenix
(92)

CCS
(96)

NDSS
(49)

30
11

1
20

53
21

3

16

53

19

3
22

30
8

4
8

Experimental Success
Does Not Run
Runs - Same Results
Runs - Diff. Results
Runs - Missing Param.

Figure 6: The number of experimental successes for the pa-
pers in experiment availability which their artifacts avail-
able. Only 20% of the available artifacts run and recreate
the results claimed in the paper. 53 of the 92 papers (58%) at
USENIX, 30 of the 61 papers (49%) at S&P, 53 of the 96 papers
(55%) at CCS, and 30 of the 49 papers (61%) atNDSS did not run.
Code not running is the dominant occurrence amongst pa-
pers that made artifacts available, which is a common trend
across all conferences.

96 with code where 53 did not run, 19 recreated the results, 3 did

not create the same results, and 22 were missing parameters. S&P
had 61 papers with artifacts where 30 did not run, 11 recreated

the same results, 1 did not create the same results, and 20 were

missing parameters. NDSS had 49 papers where 30 did not run, 8

recreated the same results, 4 did not produce the same results, and

8 were missing parameters. A commonality across all conferences

is that over half of all papers that make code available do not run.

We observe artifacts missing parameters from a variety of areas

such as output, arguments to run the commands, or data not being

included(RQ4).
There are many factors that affect the running of an artifact

including the clarity of the instructions, what is available in the

repository, and what the code outputs. Figure 7 visualizes five

factors that we noticed while running the repositories. Specifically,

we look at the clarity of the ReadMe, whether the code works out-

of-box, the output of the code, the train-test splitting, and if they

included a trained model.

ReadMe: The ReadMe is the foundation for experimental arti-

facts. They inform about the purpose of the artifact, how to set up

the repositories, what commands to run, and changes that can be

made. 57% of the artifacts possess a ReadMe that offers instructions

and necessary environments. Some artifacts provide directions for

reproducing its results. For instance, the ReadMe for Mehnaz et al.’s

Are Your Sensitive Attributes Private? Novel Model Inversion Attribute
Inference Attacks on Classification Models [408] contains a section
dedicated to reproducibility, and following the ReadMe reproduces

their results. 30% of the repositories lack concise instructions or
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Figure 7: Visualization of the five factors we notices while running repositories: the quality of the ReadMe, whether the code
works out-of-box, if the output matches the study’s claims, whether the train/test splitting is deterministic, and if they in-
cluded a trained model. We notice that outside the Readme, the other four factors resulted in the majority of papers failing to
meet their requirements.

dependency descriptions. One problem we encounter is that some

artifacts require specific package versions but do not specify which

one. Others require a preprocessing step that is either not speci-

fied or made available. While 87% of the ReadMe’s contain some

information, we find that 13% contain nothing in the ReadMe be-

sides a title. In these cases, we try to run any file that could lead to

reproducibility (e.g., eval_results.py), but often we cannot run

the artifact. In one example, the artifact contains 70+ files with no

instructions on how to run. Further, when we opened main.py, the
file is commented out.

Out-of-Box: While 42% of the artifacts run, most do not run

immediately. Only 28% of the available code repositories work by ei-

ther following the instructions or, in the absence of instructions, by

running the main file. When it did not run immediately, sometimes

we could get it to work by installing further packages, changing

paths or directory structures, or fixing errors that appear. Reposito-

ries that immediately work often limit the number of commands

required to run, provide a setup script, or provide a Docker image

or virtual machine.

Output: When we gauge the reproducibility of a paper, we try

to compare the output of an artifact with the study’s claim, yet only

43% of the available repositories match its output to the claims made

in the associated paper. In the instances where the output does not

match, the code often analyzes small examples, demonstrates the

system, or is a library. While the artifacts provide code, they often

do not provide meaningful output. For example, one paper claims a

performance boost in its system design, but the experimental code

outputs “DONE!”. It did not generate any files or any other output

for further analysis. Further, correcting the output in most of these

repositories is a non-trivial task requiring an expert understanding

of the codebase, naming schema, and techniques applied.

Train/Test: As machine learning models learn from a training

set, an artifact should use the same training set. We find that 22%

of the artifacts determine their train, validation, and test sets in a

deterministic way. Artifacts where the code specifically delineates

the train and test sets usually place them in separate directories

or the data contains a column that denotes which set the sample

belongs to. Without clear separation of the train, validation, and

test sets we are unable to accurately reproduce their results, though

sometimes we can get close. Further, data availability affects our

ability to reproduce results. If they do not include their complete

data, scripts to process the data, or scripts to collect the data, we will

not be to reproduce their results. For example, while one repository

contains a detailed ReadMe with well-marked instructions for every

file and how to reproduce their results, there is no collected data and

the data collection scripts require access to a $1,000 oscilloscope.

Trained Model: Most machine learning algorithms are stochas-

tic as they seek to find an optimal solution to a problem and thus

add an element of randomization [205]. This directly affects an algo-

rithm’s reproducibility and can be simply alleviated by providing a

trained model. While 17% of artifacts include a trained model, some

papers provide both a trained model as well as code to re-train their

model. For instance, Bollinger et al.’s Automating Cookie Consent
and GDPR Violation Detection [61] provides extensive documenta-

tion on how to train their model or run the results with one of the

trained models in the repository. We could reproduce their results

in less than 10 minutes of work.

6.2 Statistical Analysis
In Section 3, we discussed our null hypothesis: There is no difference

in whether code is available before and after the introduction of

AECs to Tier 1 Security Conferences (2020). In this section, we

conduct a statistical test to either accept or reject H0.
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Permutation Testing: We use the non-parametric statistical

test, permutation testing because it does not require assumptions

on the underlying distribution of the data. The test works by sim-

ulating multiple permutations of the data across the two groups,

calculating the average distribution within the simulated permu-

tations, taking the difference between the two groups’ averages,

and then calculating the proportion of samples with a higher dif-

ference than the true sample. We take the proportion of papers

that make their code available against the papers that do not in

a given year. We then separate the years into two groups, before

2020 (year < 2020) and after (year ≥ 2020). We simulate 10,000

permutation distributions and calculate a p = 0.068, thus we accept

the null hypothesis, H0. While traditionally some scientists may

have tried to argue that this is highly suggestive of significance, a

modern interpretation requires a p-value significantly less than 0.05
to imply even a weak relationship. The p-value is close to indicat-

ing that there is a suggestive relationship between introducing the

AECs and the availability of code, but it does not nearly meet the

threshold to do so. In accepting the null hypothesis, we must there-

fore conclude there is no statistically significant difference between

code artifacts produced before and after AECs were introduced to

Tier 1 Security conferences.

While we do accept the null hypothesis, we recognize that the

introduction of AECs was only three years ago. As such, we look

at the quality of artifacts at USENIX from 2020 through 2022, as

seen in Figure 8. There are not enough samples to test for statistical

significance within the USENIX AEC; however, anecdotally, we

notice that papers submitted to the AEC have a higher likelihood

of working. Based on these observations, we believe that further

inclusion of AECs in Tier 1 conferences may further increase not

only the availability of artifacts but also artifacts that reproduce

results claimed in the associated paper. So while it has yet to fully

demonstrate its desired impact, gathering more data points on the

AEC across multiple conferences will allow a better evaluation of

the impact the experiment has had on computational reproducibility

in the Security community.

6.3 USENIX Security 2022 Artifact Evaluation
USENIX started its artifact evaluation in 2020 with 40 artifacts

submitted and 38 passing [79]. The badge awarded was the Artifact
Evaluated. In 2021, USENIX awarded 34 of the 37 submitted artifacts

with the same badge [209]. In 2022, USENIX changed its badge

awarding process. For the 114 papers submitted, it awarded one or

more of Artifact Available (107), Artifact Functional (98), and Artifact
Reproduced (65) [70]. We aim to understand how AEC assign badges.

Further, USENIX made the artifact appendices (i.e., instructions

to recreate) available for all papers submitted to its AEC as well

as the badges associated with each paper [406]. While this is a

step towards transparency, they do not provide an analysis of how

the AEC determined each badge. We follow the submitted artifact

appendix for each paper that overlaps with our indirect study for

a total of 21 papers. Two papers only made their data available to

the AEC as it was sensitive user data, thus we do not include them

in our analysis. Of the 19 remaining papers, we find that we can

recreate 15 of the paper’s badges (i.e., when following the artifact

2020 2021 2022
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Figure 8: An overview of the impact the AEC has made on
artifact availability and code running for papers submitted
to USENIX over the past three years. We see an increase not
only in the number of papers submitting artifacts but also a
notable increase in the total number of papers that actually
run when submitted to the AEC. Additionally, the number
of papers that had artifacts but did not submit to the AEC
has steadily decreased to the point of being less than the
AEC submission.

appendix, we agree with 15 of the paper’s badges). There are 4

papers for which we cannot recreate the badges.

Most of the cases where our evaluation differed from the AEC

consisted of two issues: permission issues and package problems.

In the case of permission issues, either data was unavailable for

privacy or access control purposes or the commands to grab given

to the AEC required permissions are given to the committee but not

to the general public. Package problems are twofold, either code

written with imports that were not designated for installation or

make files that were out of date and errored out. There was a single

case where the AEC did not give a tag that we did, which was an

availability tag.

Based on the difference between our tests and the AEC, the most

common issue is that code, packages, and make files are sensitive to

updates and changes and there is no real incentive for any code to

be maintained once it is accepted into a conference. In most cases,

the setups were not a complete failure and usually failed toward

the end of the installation process. Many of these systems would

benefit from a pre-made instance (e.g., Docker or VM) since the

installation processes were quite complex and it would guarantee

resiliency to the constantly updating versions of packages.

Our study consists of papers published in the past 10 years. The

number of ML papers published at Tier 1 security conferences has

been steadily rising since 2013. Figure 9 shows the number of papers

considered by year and conference. As the number of ML papers
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2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year
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Figure 9: The change of experimental results across 10 years for each conference. As time progresses, we see that the number
of papers considered in our study and the total number of papers with artifacts grows. The artifact evaluation commitee (AEC)
that USENIX started in 2020 influenced both an increase in the number of artifacts and the proportion of artifacts that worked.

increases, there is an increase in the number of available artifacts.

USENIX’s AEC was introduced in 2020, and it appears that this

improves the code availability throughout the conference.

6.4 Academia and Industry
Past studies looking at systems research have observed low repro-

ducibility among papers with authors from Industry [127]. To date,

no one has performed a similar analysis in the Security community.

We are unable tomake any claims relating to this as Industry-related

papers only account for 6% of the papers in this study. However,

we understand that there are legitimate reasons companies or aca-

demicsmay not wish for every paper to be reproducible (e.g., private

data, startups, or intellectual property). A larger discussion on the

role of intentionally not publishing artifacts (e.g., intellectual prop-

erty concerns, data sensitivity, etc) and how the community should

collectively decide to evaluate the claims of those papers in relation

to work with reproducible artifacts, should be had.

7 RECOMMENDATIONS
While there are numerous issues that we see throughout the direct

study, we discuss five of the most common problems that we faced.

7.1 Packaging and Dependencies
The most common problem we face when running artifacts is main-

taining consistent packages and dependencies as the artifact. Often,

a specific version is not declared, and the current stable version

does not work. However, this is not the only problem. Certain pack-

ages became deprecated or were no longer maintained resulting

in numerous errors and hours of finding a workable version (e.g.,

Tensorflow 1 was deprecated in 2018). As such, tools like pip will
not install it, yet we find that repositories from as late as 2022

still used a deprecated Tensorflow version. The install scripts or

environments in the artifacts using this version did not properly

set up the dependencies, forcing us to install it from the source.

Other times the artifacts required unmaintained repositories and

the current version is unstable with logged issues.

Lesson: When an artifact relies on complex dependencies or uses

tools maintained by outside entities, there is an inherent risk that

future work will not be able to use those artifacts. Special care is

needed to identify what requirements an artifact needs and specify

versions of any outside dependencies or packages.

Recommendation: It should be a standard practice to set a require-
ments.txt file with explicit version control with every repository

and researchers need to be more consistent with providing self-

contained environments (e.g., Docker images or Virtual Machines)

to avoid issues with deprecation.

7.2 Incomplete Files or Data
A complete artifact contains every file required for running the code.

This includes the data, preprocessing scripts, training scripts, and

evaluation scripts. Often, the repositories were missing numerous

files. As discussed in Section 6.1, the data availability adversely

affected the reproducibility, but the missing data is not the only

problem. We often saw repositories calling for functions that exist

in a file that was not in the repository. We saw numerous spelling

errors in the code, uninstantiated arrays, or call functions that were

commented out. Some repositories provide the raw data but do not

provide the labels or preprocessing scripts. Consequently, we are

unable to reproduce their results. We saw numerous artifacts call

on pre-trained models that were missing in the repository with

no designation on how to acquire them. One repository even left

coding the experiment for reproducing the results as something

for the end-user to do. They provided the functions, data, and an

outline to recreate the results but no script to do so.

Lesson: An artifact is only reproducible when all files required to

do so are available. Scripts that contain bugs, call functions that do

not exist, or rely on data not in the repository are difficult, if not

impossible, to reproduce.

Recommendation: When creating a repository for a project, re-

searchers should keep all files in a single location instead of requir-

ing the end user to collect additional files from multiple locations.

Additionally, if the community embraces artifact evaluation more,

we can guarantee that research papers will have an instance where

their work is not missing necessary files or code.
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7.3 Incomplete Instructions
We outline in Section 6.1 the importance of ReadMes. While some

ReadMe’s contained no context or instructions, others are convo-

luted with excess information or instructions that are out-of-order.

These instructions often called for confusing steps that should be

unnecessary (e.g., changing every file path from a hardcoded, abso-

lute path to our own absolute path). Another repository required

root access, because it hardcoded an absolute path in their artifact.

We find that some repositories never include the preprocessing of

the data as an instruction. Yet further examples never mentioned

running the script that labels the data for supervised learning.

Lesson: The steps involved to run a repository are often complex

and cumbersome requiring non-trivial steps to get them to work.

A lack of straightforward explicit instructions further complicates

the effort required to run the artifact.

Recommendation: Each Readme should contain, at a minimum, a

step-by-step set of instructions that explicitly give the exact com-

mands necessary to run their system. If there are variable options to

the command, an example should always accompany the command

framework. Researchers should test that a non-expert can run their

artifact solely based on the instructions that they provide.

7.4 Complex Hardware Setup
The designed systems often require a specific hardware setup both

for collecting the data and running the system. In the case of collect-

ing the data, we see that artifacts often do not include the selected

data, requiring us to run their collection scripts. When the scripts

use hardware that we do not have access to, we are unable to re-

produce the results. When the artifact itself requires a complex

hardware system to train, we struggle with setting up the system

or adapting to the existing architecture that we have.

Lesson: While complex hardware improves performance or collects

interesting data, by placing the burden on future work without

consideration, it greatly increases the difficulty of reproducibility.

Recommendation: For specialized setups, the researchers should be

aware that the reproducibility of their work is especially difficult if

they fail to provide necessary factors such as their data. If data is

collected with atypical hardware, when applicable, that data should

be made available as an artifact of the paper.

7.5 Not Designed for Reproducibility
Finally, not all artifacts are designed for reproducibility. We often

saw repositories that include examples, demonstrations, tools, or

more supplementary information for the paper. As discussed in

Section 6.1, the output did not match the claims in the paper 57%

of the time. Artifacts often produced examples or online tools that

allowed us to run a sample against their system (e.g., decompiling

a binary), but we could not feasibly craft the output to reproduce

their performance evaluation.

Lesson: Creating reproducible experiments is a conscious choice

authors must make in computational sciences reflected in the state

of their artifacts.

Recommendation:When approaching making projects reproducible,

researchers need to ensure that every claim that is made in the

paper can be reproduced in the artifact they release. Outputs to

their code should be the table and data-driven figures that appear

in the paper whenever possible. Researchers should be proactive

and build their projects with reproducibility in mind for the design.

8 LIMITATIONS AND OPEN CHALLENGES
To encourage reproducibility in future work, we discuss the limita-

tions of reproducing our study, further limitations within our study

design, and the plethora of future work that exists in this area.

8.1 Reproducing Our Work
This body of work consists of over eight person-years of work from

a large research team. We recognize that reproducing our work

would take similarly significant time and resources. Furthermore,

our work is inhibited by the fact that we cannot openly share a

repository that has every paper’s code and data. First, we do not own

the code and are restricted by licenses for sharing their repositories.

Second, most online repositories have a limit on the memory size

of a repository. Including all 298 repositories of code exceeds this

limit.

While we cannot avoid the above problems, we provide all of

our processed data in a CSV in our repository. This CSV contains

every paper, a URL link to the paper, a URL link to the code if one

exists, and our coding of each paper. We also provide the scripts

to create each figure in this paper, and we strongly encourage the

reader to download and run our scripts to ensure that our figures

are re-creatable from the data.

8.2 Limitations
To the best of our ability, we tried to limit biases and identify

limitations. We acknowledge that there are still several biases and

limitations and discuss them in this section.

First, selection bias could exist within our work.We do our best to

systematically pick papers as noted in Section 4, and further confirm

the selected papers by having a consensus with two reviewers.

Further, our research questions are aimed at answering the state

of reproducibility in machine learning at Tier 1 conferences in the

Security community. There are possibly papers that we miss in our

analysis due to our methodology. We also note that there are some

code repositories that we may have missed. While we do our best

to find online repositories that are not connected to the paper, our

search is not exhaustive and some repositories may be left out.

Second, we recognize that parts of our analysis are subjective

(e.g., what one reviewer considers as missing hyper-parameters may

not be the same for another reviewer). We limit this by relying on

objective measures as much as possible (e.g., paper X was missing

the activation function) to inform a scale of the presence of a feature

in our coding (e.g., instead of a binary class on whether paper X

had hyper-parameters, we use varying degree). Further, there is a

risk for any reviewer to favor negative results as that creates more

interesting results [127, 443]. Thus, we accept the most positive

result we can for a paper.

Finally, running, and in some cases training, multiple machine

learning models is computationally and time intensive. We limit

the amount of time a model was trained to 10 hours, and how much

time we spend on debugging or attempting to set the repository up

to one hour. We recognize that these limitations exist despite our

best ability to limit them.
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8.3 Open Challenges
One of the most significant but not discussed challenges to repro-

ducibility comes in the form of funding for research. Often after

papers are published, funding sources change and there are simply

no means by which older projects can continue to be financially

supported. Moreover, students and employees often move on to

new positions, making it especially challenging to maintain com-

plex research software in the long term. One potential means of

improving outcomes in this space is making it easier for Funding

Agencies to identify artifacts early and point their authors towards

programs like the US National Science Foundation’s "Transition

to Practice" track. Additionally, authors should consider making

their papers "reproducible by design", ensuring that artifacts are

packaged into self-contained environments (e.g., Docker instances,

VMs) whenever possible. Finally, we by no means recommend that

significant effort be put into resurrecting the papers that we were

unable to reproduce in this study; rather, effort and funding are

likely better spent in making sure that future contributions improve

their relative reproducibility.

While Section 2 clearly delineates the differences between re-

producibility, replicability, and generalizability, our study focuses

solely on the first of these goals. Studies into the latter two areas

are extremely important and worth the attention of the community;

however, due to their potential scale (e.g., collecting fundamentally

new datasets), future studies may need to be even more narrowly

scoped than our study of machine learning security. Lastly, as men-

tioned early in this work, we are unable to consider the correctness

of implementations in this study - only the performance of available

code to reported values. There is substantial research work to be

done in this space that would result in significant improvement in

the trust of research claims made by our community.

9 RELATEDWORK
Our study is the first reproducibility study to comprehensively mea-

sure the reproducibility of machine learning in the Security commu-

nity. We perform both an indirect and direct study of reproducibility

that serves as the foundation for reproducibility studies in Security,

complementing a vast swath of work in similar fields. We outline

notable contributions in different areas and differentiate our work

from previous work.

Computer Science: Prior reproducibility studies in computer

science evaluated the availability of artifacts in venues such as IEEE
Transactions of Signal Processing [634], AIS International Conference
of Information Systems [496], and various ACM journals and con-

ferences [127]. The indirect studies found that in 2004 only 9% of

134 considered papers had code and 33% provided a dataset [634],

which improved to 28% of the 100 papers evaluated in 2019 pro-

viding code [496]. When directly studied, only 32% of considered

papers in 2014 could be compiled within 30 minutes [127]. How-

ever, they did not evaluate whether the artifact recreated the results

claimed in the paper.

Machine Learning: Machine learning is subject to the same

concerns of reproducibility, if notmore so[211]. Randomness greatly

influences the performance of machine learning models [25], and

only 8% of 45 evaluated papers between 2015 and 2018 discussed

how randomness affected their model [363]. Even more worrisome,

11 of 12 reproduced recommender systems were outperformed by

conceptually simpler models overmultiple splits of the dataset [177].

Further compounding this issue, only 25% of papers published at

AAAI and IJCAI in 2013 to 2016 described their method in a re-

producible way [212]. Though, Raff [495] found that they could

replicate results from described methodology 62% of the time look-

ing at 255 papers from 1984 to 2017. While the extent of availability

of artifacts has been observed in other conferences, our study is

more comprehensive with a larger scope in Tier 1 conferences that

have not been considered before.

Security: As noted in Section 2.2, calls for better reproducibility

in the Security community have made slow changes to conferences.

Yet, to the best of our knowledge, there are only two studies on

reproducibility in the Security community that attempt to measure

this problem. Van et al. [633] looked at 50 systems security papers

from USENIX, CCS, NDSS, and S&P in the years 2010 and 2015. Their

paper primarily focused on benchmarking flaws in the papers they

looked at where 1 of the 5 pillars for errors was reproducibility.

They found that approximately 1 out of 4 papers did not specify

their platform or their software version. Hamm et al. [215] looked

at 61 user studies from Usenix, CCS, and S&P from 2013 to 2018.

They found that 51% of the papers offered up the questionnaire used

in the user study and none provided the full response data. Both of

these studies are indirect studies. Our paper expands beyond both

of these papers in both scope and depth. We consider 744 papers

and evaluated the papers in both an indirect and direct study.

10 CONCLUSION
Academic research often prioritizes novel, exploratory research.

However, without reproducible science, the widespread adoption of

new ideas and their transition to practice can be severely degraded.

Measuring where our community stands in terms of reproducible

science is crucial to making recommendations that meaningful help

to normalize such contributions. We perform the first such longitu-

dinal study of computational reproducibility in Computer Security

research, investigating both indirect and direct reproducibility over

a decade of publications. To our knowledge, our study is the most

comprehensive reproducibility analysis of our community in size by

at least an order of magnitude. Our results show both that making

working artifacts available is not yet a priority of the community

and that having artifact evaluation committees and badging may

be leading to improvements.

Most critically, we show that common platitudes regarding re-

producibility (i.e., “Just make code available”) fail to meaningfully

move our community forward. Instead, where making artifacts

public is possible, researchers should focus on improving the five

most-common issues preventing their work from being reproduced:

packages and dependencies, incomplete or missing files/data, in-

complete or confusing instructions, distribution of artifacts from

complex hardware setups, and not designed for reproducibility.

While other issues beyond the control of individual researchers still

exist (i.e., funding for the continued maintenance of said artifacts,

legal limitations on distributing code and/or datasets, etc), we be-

lieve that addressing these issues will help to make more papers

“reproducible by design”.
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