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Abstract

Determining causal effects of interventions onto outcomes from real-world, observational (non-randomized) data, e.g.,
treatment repurposing using electronic health records, is challenging due to underlying bias. Causal deep learning
has improved over traditional techniques for estimating individualized treatment effects (ITE). We present the Doubly
Robust Variational Information-theoretic Deep Adversarial Learning (DR-VIDAL), a novel generative framework that
combines two joint models of treatment and outcome, ensuring an unbiased ITE estimation even when one of the two is
misspecified. DR-VIDAL integrates: (i) a variational autoencoder (VAE) to factorize confounders into latent variables
according to causal assumptions; (ii) an information-theoretic generative adversarial network (Info-GAN) to generate
counterfactuals; (iii) a doubly robust block incorporating treatment propensities for outcome predictions. On synthetic
and real-world datasets (Infant Health and Development Program, Twin Birth Registry, and National Supported Work
Program), DR-VIDAL achieves better performance than other non-generative and generative methods. In conclusion,
DR-VIDAL uniquely fuses causal assumptions, VAE, Info-GAN, and doubly robustness into a comprehensive, per-
formant framework. Code is available at: https://github.com/Shantanu48114860/DR-VIDAL-AMIA-22 under MIT
license.

Introduction

Understanding causal relationships and evaluating effects of interventions to achieve desired outcomes is key to
progress in many fields, especially in medicine and public health. A typical scenario is to determine whether a treat-
ment (e.g., a lipid-lowering medication) is effective to reduce the risk of or cure an illness (e.g., cardiovascular disease).
Randomized controlled trials (RCTs) are considered the best practice for evaluating causal effects1. However, RCTs
are not always feasible, due to ethical or operational constraints. For instance, if one wanted to evaluate whether
college education is the cause of good salary, it would not be ethical to randomly pick teenagers and randomize their
admission to college. So, in many cases, the only usable data sources are observational data, i.e., real-world data
collected retrospectively and not randomized. Unfortunately, observational data are often plagued with various biases
–since the data generation processes are largely unknown– such as confounding (i.e., spurious causal effects on out-
comes by features that are correlated with a true unmeasured cause) and colliders (i.e., mistakenly including effects of
an outcome as predictors), making it difficult to infer causal claims2. Another problem is that, in both RCTs and ob-
servational datasets, only factual outcomes are available, since clearly an individual cannot be treated and non-treated
at the same time. Counterfactuals are alternative predictions that respond to the question “what outcome would have
been observed if a person had been given a different treatment?” If models are biased, counterfactual predictions can
be wrong, and interventions can be ineffective or harmful3. In both RCT-based and real-world based studies, two types
of treatment effects are usually considered: (i) the average treatment effect (ATE), which is population-based and rep-
resents the difference in average treatment outcomes between the treatment and controls; and (ii) the individualized
treatment effect (ITE), which represents the difference in treatment outcomes for a single observational unit with the
same background covariates4. When there is suspected heterogeneity, stratified ATEs, or conditional ATEs, can be
calculated. Traditional statistical approaches for estimating treatment effects, taking into account possible bias from
pre-treatment characteristics, include propensity score matching (PSM) and inverse probability weighting (IPW)5.
The propensity score is a scalar estimate representing the conditional probability of receiving the treatment, given a
set of measured pre-treatment covariates. By matching (or weighting) treated and control subjects according to their
propensity score, a balance in pre-treatment covariates is induced, mimicking a randomization of the treatment assign-
ment. However, the PSM approach only accounts for measured covariates, and latent bias may remain after matching6.
PSM has been historically implemented with logistic-linear regression, coupled with different feature selection meth-
ods in the presence of high-dimensional datasets7. A problem with PSM is that it often decreases the sample size due
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to matching, while IPW can be affected by skewed, heavy-tailed weight distributions. Machine learning approaches
have been introduced more recently, e.g., Bayesian additive regression trees8 and counterfactual random forests9. Big
data also led to the flourishing of causal deep learning10. Notable examples include the Treatment-Agnostic Repre-
sentation Network (TARNet)11, Dragonnet12, Deep Counterfactual Network with Propensity-Dropout (DCN-PD)13,
Generative Adversarial Nets for inference of Individualized Treatment Effects (GANITE)14, Causal Effect Variational
Autoencoder (CEVAE)15, and Treatment Effect by Disentangled Variational AutoEncoder (TEDVAE)16.

X
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Figure 1: Directed acyclic graph mod-
eling the causal relationships among
treatment t, outcome y and pre-
treatment covariates X , under the latent
space Z.

Contribution This work introduces a novel deep learning approach for ITE
estimation and counterfactual prediction on real-world observational data,
named the Doubly Robust Variational Information-theoretic Deep Adver-
sarial Learning (DR-VIDAL). Motivated from Makhzani et al.17, we use a
lower-dimensional neural representation of the input covariates to generate
counterfactuals to improve convergence. We assume a causal graph on top
of the covariates where the covariates X are generated from 4 independent
latent variables Zt, Zycf , Zyf and Zx indicating latents for treatment, coun-
terfactual, factual outcomes and observed covariates respectively, shown in
Figure 1. In generating the representations, we use a variational autoencoder
(VAE) to infer the latent variables from the covariates in unsupervised man-
ner and feed the learned lower-dimensional representation from the VAE to
a generative adversarial network (GAN). Also, to counter the loss of the
predictive information while generating the counterfactuals, we aim to max-
imize the mutual information between the learned representations and the
output of the generator. We add this as a regularizer to the generator loss to obtain more robust counterfactuals. Fi-
nally, we incorporate a doubly robust network head to estimate the ITE, improving in loss convergence. As DR-VIDAL
generates the counterfactual outcomes, we minimise the supervised loss for both the factual and the counterfactual out-
comes to estimate ITE more accurately.

The main features of DR-VIDAL are, in summary:

• Incorporation of an underlying causal structure where the observed pre-treatment covariate set X is decomposed
into four independent latent variables Zt, ZX , Zyf , Zycf , inducing confounding on both the treatment and the
outcome (Figure 1).

• Latent variables are inferred using a VAE18.
• A GAN19 with variational information maximization20 generates (synthetic) complete tuples of covariates, treat-

ment, factual and counterfactual outcomes.
• Individual treatment effects are estimated on complete datasets with a downstream, four-headed deep learning

block which is doubly robust21,22.

To our knowledge, this is the first time in which VAE, GAN, information theory and doubly robustness are amalga-
mated into a counterfactual prediction method. By performing test runs on synthetic and real-world datasets (Infant
Health and Development Program, Twin Birth Registry, and National Supported Work Program), we show that DR-
VIDAL can outperform a number of state-of-art tools for estimating ITE. DR-VIDAL is implemented in Pytorch
and the code is available at: https://github.com/Shantanu48114860/DR-VIDAL-AMIA-22 under MIT license. In the
repository, we also provide an online technical supplement (OTS) with full details on the architectural design, deriva-
tion of equations, and additional experimental results.

Problem Formulation

We use the potential outcomes framework23,24. Let us consider a treatment t (binary for ease of reading, but the theory
can be extended to multiple treatments) that can be prescribed to a population sample of size N . The individuals are
characterized by a set of pre-treatment background covariates X , and a health outcome Y is measured after treatment.
We define each subject i with the tuple {X, T, Y }Ni=1, where Y 0

i and Y 1
i are the potential outcomes when applying

treatments Ti = 0 and Ti = 1, respectively. The ITE τ(x) for subject i with pre-treatment covariates Xi = x, is
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Figure 2: Architecture of DR-VIDAL incorporating the variational autoencoder inferring the latent space (VAE),
the generative adversarial network for calculating the counterfactual outcomes (GAN), and the doubly robust module
(green box) for estimating ITE.

defined as the difference in the average potential outcomes under both treatment interventions (i.e., treated vs. not
treated), conditional on x, i.e.,

τ(x) = E[Y 1
i − Y 0

i | Xi = x] (1)

The ITE cannot be calculated directly give the inaccessibility of both potential outcomes, as only factual outcomes can
be observed, while the others (counterfactuals) can be considered as missing values. However, when the potential out-
comes are made independent of the treatment assignment, conditionally on the pre-treatment covariates, i.e., {Y 1, Y 0}
⊥ T | X , the ITE can then be estimated as τ(x) = E[Y 1 | T = 1,X = x] − E[Y 0 | T = 0,X = x] = E[Y | T =
1,X = x]− E[Y | T = 0,X = x]. Such an assumption is called the strongly ignorable treatment assignment (SITA)
assumption25,26. By further averaging over the distribution of X , the ATE τ01 can be calculated as

τ01 = E[τ(X)] = E[Y | T = 1]− E[Y | T = 0] (2)

ITE and ATE can be calculated with stratification matching of x in treatment and control groups, but the calcula-
tion becomes unfeasible as the covariate space increases in dimensions. The propensity score π(x) represents the
probability of receiving the treatment T = 1 conditioned on the pre-treatment covariates X = x, denoted as π(x) =
P (T = 1 | X = x)24. The propensity score can be calculated using a regression function, e.g., logistic. ITE/ATE
can then be calculated by matching (PSM) or weighting (IPW) instances through π(x), in a doubly robust way27, or
through myraid approaches28,9,29,30,27,31,32,33. In the next section, we describe approaches based on deep learning.

Related Work

Alaa and Van der Schaar34 characterized the conditions and the limits of treatment effect estimation using deep learn-
ing. The sample size plays an important role, e.g., estimations on small sample sizes are affected by selection bias,
while on large sample sizes, they are affected by algorithmic design. Our work builds up on the ITE estimation
approaches of CEVAE15, DCN-PD13, Dragonnet12, GANITE14, TARNet11, and TEDVAE16. DCN-PD is a doubly
robust, multitask network for counterfactual prediction, where propensity scores are used to determine a dropout prob-
ability of samples to regularize training, carried out in alternating phase, using treated and control batches. CEVAE
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uses VAE to identify latent variables from an observed pre-treatment vector and to generate counterfactuals. TARNet
aims to provide an upper bound effect estimation by balancing the distributions of treated and controls –with a weight
indemnifying group imbalance– within a high dimensional covariate space, but it does not exploit counterfactuals,
and only minimises the factual loss function. Dragonnet is a modified TARNet with targeted regularization based on
propensity scores. GANITE generates proxies of counterfactual outcomes from covariates and random noise using a
GAN, and feeds them to an ITE generator. For both GANITE and TARNet, in presence of high-dimensional data, the
loss could be hard to converge. TEDVAE16 uses a variational autoencoder to infer hidden latent variables from proxies
using a causal graph similar to CEVAE. In the next sections, we discuss in detail the novelty of DR-VIDAL and the
differences in the architectural design and training mechanisms with respect to the aforementioned approaches.

Proposed Methodology

DR-VIDAL architecture can be summarized in three components: (1) a VAE inferring the latent space, (2) a GAN
generating the counterfactual outcomes, and (3) a doubly robust module estimating ITE. The architectural layout is
schematized in Figure 2, while the algorithmic details are given in the OTS.

Latent variable inference with VAE. We assume that the observed covariates X = x with treatment assignment
T = t factual and counterfactual outcomes Yf = yf and Ycf = ycf respectively, are generated from an independent
latent space z, composed by zx ∼ p(zx), zt ∼ p(zt), zyf ∼ p(zyf ), and zycf ∼ p(zycf ), which denote the latent
variables for the covariates x, treatment indicator t, and factual outcomes yf and ycf , respectively. This decomposition
follows the causal structure shown in Figure 1. The goal is to infer the posterior distribution p(zx, zt, zyf , zycf |x),
which is harder to optimize. We use the theory of variational inference35 to learn the variational posteriors qϕx(zx|x),
qϕt

(zt|x), qϕyf
(zyf |x), qϕycf

(zycf |x), using 4 different neural network encoders with parameters ϕx, ϕt, ϕyf , and
ϕycf , respectively. Using the latent factors sampled from the learned variational posteriors, we reconstruct x by
estimating the likelihood pϕd

(x|zx, zt, zyf , zycf ) via a single decoder parameterized by ϕd. The latent factors, assumed
to be Gaussian, are defined as follows:

p(zx) =
Dzx∏
i=1

N (zxi
|0, 1); p(zt) =

Dzt∏
i=1

N (zti |0, 1) (3)

p(zyf ) =
Dzyf∏
i=1

N (zyfi
|0, 1); p(zycf ) =

Dzycf∏
i=1

N (zycfi
|0, 1) (4)

where Dzx , Dzt , Dzyf
, Dzycf

are the dimensions of the latent factors zx, zt, zyf , zycf , respectively. The variational
posteriors of the inference of models are defined as:

qϕx
(zx|x) =

Dzx∏
i=1

N (µ = µ̂x, σ
2 = σ̂2

x) (5)

qϕt
(zt|x) =

Dzt∏
i=1

N (µ = µ̂t, σ
2 = σ̂2

t ) (6)

qϕyf
(zyf |x) =

Dzyf∏
i=1

N (µ = µ̂yf , σ
2 = σ̂2

yf ) (7)

qϕycf
(zycf |x) =

Dzycf∏
i=1

N (µ = µ̂ycf , σ
2 = σ̂2

ycf ) (8)

where µ̂x, µ̂t, µ̂yf , µ̂ycf and σ̂2
x, σ̂

2
t , σ̂2

yf , σ̂2
ycf are the means and variances of the Gaussian distributions parameterized

by encoders Eϕx
, Eϕt

, Eϕyf
, Eϕycf

with parameters ϕx, ϕt, ϕyf , ϕycf respectively. The overall evidence lower bound
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(ELBO) loss of the VAE is expressed as LELBO in the following equation,

LELBO(ϕx, ϕt, ϕyf , ϕycf ; x, zx, zt, zyf , zycf ) = Eqϕx ,qϕt ,qϕyf
,qϕycf

[log pϕd
(x|zx, zt, zyf , zycf )]

−KL
(
qϕx

(zx|x)||pϕd
(zx))

)
−KL

(
qϕt

(zt|x)||pϕd
(zt))

)
−KL

(
qϕyf

(zyf |x)||pϕd
(zyf ))

)
−KL

(
qϕycf

(zycf |x)||pϕd
(zycf ))

)
where KL denotes the Kullback–Leibler divergence of two probability distributions. We minimize the optimization
function of the VAE as LV AE to obtain the optimal parameter of the encoders ϕx, ϕt, ϕyf , ϕycf , and of the decoder
ϕd as LV AE(ϕx, ϕt, ϕyf , ϕycf ; x, zx, zt, zyf , zycf ) = −LELBO(ϕx, ϕt, ϕyf , ϕycf ; x, zx, zt, zyf , zycf ).

Generation of counterfactuals via GAN. After learning the hidden latent codes zx, zt, zyf , zycf from the VAE, we
concatenate the latent codes to form zc, passed to the generator of the GAN block Gθg , along with a random noise
zG ∼ N (0, Id). Gθg is parameterized by θg , and it outputs the vector y of the potential (factual and counterfactual)
outcomes. We replace the factual outcome yf in the generated outcome vector y to form ŷ0 and ŷ1, which are passed
to the counterfactual discriminator Dθd , along with the true covariate vector x. Dθd is parameterized by θd, and is
responsible to predict the treatment variable, similarly to GANITE. The loss of the GAN block is defined as:

VGAN (G,D) = Ex,zG,zc
[
tT logD(x, G(zG, zc)) + (1− t)T log(1−D(x, G(zG, zc))

]
where x ∼ p(x), zG ∼ p(zG) and zc denote the concatenated latent codes zx ∼ qϕx

(zx|x), zt ∼ qϕt
(zt|x), zyf ∼

qϕyf
(zyf |x) and zycf ∼ qϕycf

(zycf |x). From y, we also calculate the predicted factual outcome ŷf . As also done in
GANITE, we make sure to include the supervised loss LG

S (yf , ŷf ), which enforces the predicted factual outcome ŷf
to be as close as to the true factual outcome yf .

LG
S (yf , ŷf ) =

1

n

n∑
i=1

(
yf (i)− ŷf (i)

)2
(9)

The complete loss function of counterfactual GAN is given by VCF (G,D) = VGAN (G,D) + γLG
S (yf , ŷf ).

We also employ an additional regularization λI(zc;G(zG, zc)) to maximize the mutual information between the
learned concatenated latent code zc and the generated output by the generator G(zG, zc), as in20.We thus propose
to solve the following minimax game:

min
G

max
D

VCF I(G,D) = VCF (G,D) + λI(zc;G(zG, zc)) (10)

I(zc;G(zG, zc)) is harder to solve because of the presence of the posterior p(zc|x)20, so we obtain the lower bound of
it using an auxiliary distribution Q(zc|x) to approximate p(zc|x).

Finally, the optimization function of the counterfactual information-theoretic GAN –InfoGAN– incorporating the vari-
ational regularization of mutual information and hyperparameter λ is given by:

min
G,Q

max
D

VCF infoGAN (G,D,Q) = VCF (G,D)− λLI(G,Q) (11)

The counterfactual InfoGAN is used to generate the missing counterfactual outcome ycf to form the quadruple {x, t,
yf , ycf}Ni=1 and sent to the doubly robust block to estimate the ITE.

Information-theoretic GAN optimization. The GAN generator Gθg works to fool the discriminator Dθd . To get the
optimal Discriminator D∗

θd
, we maximize VCF infoGAN

max
D

LD(θd) = VCF infoGAN (G,D,Q) (12)

To get the optimal generator G∗
θg

, we maximize VCF infoGAN

min
G,Q

LG(θg) = VCF infoGAN (G,D,Q) (13)
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Doubly robust ITE estimation. As introduced above, the propensity score π(x) represents the probability of receiv-
ing a treatment T = 1 (over the alternative T = 0) conditioned on the pre-treatment covariates X = x. By combining
IPW through π(x) with outcome regression by both treatment variable and the covariates, Jonsson defined the doubly
robust estimation of causal effect21 as follows:

δ̂DR =
1

n

n∑
i=1

[
yiti − (ti − π(xi))µ(xi, ti)

π(xi)
− yi(1− ti)− (ti − π(xi))µ(xi, ti)

1− π(xi)

]
(14)

where µ(x, t) = α̂0 + α̂1x1 + α̂2x2 + · · ·+ α̂nxn + δ̂t, and (ti − π(xi))µ(xi, ti) is used for the IPW estimator.

After getting the counterfactual outcome ycf from the counterfactual GAN to form the quadruple {x, t, yf , ycf}Ni=1,
we pass this as the input to the doubly robust multitask network to estimate the ITE, using the architecture shown
in Figure 2 (green box). To predict the outcomes y(0) and y(1), we use a configuration similar to TARNet, which
contains a number of shared layers, denoted by fϕ, parameterized by ϕ, and two outcome-specific heads fθ0 and fθ1 ,
parameterized by θ0 and θ1.

To ensure doubly robustness, we introduce two more heads that predict the propensity score π(x) = P(T = 1|x) and
the regressor µ(x, t). These two are calculated using two neural networks, parameterized by θπ and θµ respectively.
The factual and counterfactual outcome y

(0)
i and y

(1)
i of the ith sample are then calculated as:

ŷ
(i)
f = ti(fθ1(fϕ(xi))) + (1− ti)(fθ0(fϕ(xi))) (15)

ŷ
(i)
cf = (1− ti)(fθ1(fϕ(xi))) + ti(fθ0(fϕ(xi))) (16)

Next, the predicted loss will be

Lp
i (θ1, θ0, ϕ) = (ŷ

(i)
f − y

(i)
f )2 + (ŷ

(i)
cf − y

(i)
cf )

2 + αBinaryCrossEntropy(π(xi), ti)

where α is a hyperparameter. With the help of the propensity score π(x) and the regressor µ(x, T ), the doubly robust
outcomes are calculated as

ŷ
(i)
fDR

= ti

[
tiŷ

(1)
i − (ti − π(xi)µ(xi, ti))

π(xi)

]
+ (1− ti)

[
(1− ti)ŷ

(0)
i − (ti − π(xi)µ(xi, ti))

1− π(xi)

]
(17)

ŷ
(i)
cfDR

= (1− ti)

[
(1− ti)ŷ

(1)
i − (ti − π(xi)µ(xi, ti))

π(xi)

]
+ ti

[
tiŷ

(0)
i − (ti − π(xi)µ(xi, ti))

1− π(xi)

]
(18)

The doubly robust loss LDR
i (θ1, θ0, θϕ, θµ, ϕ) is calculated as:

LDR
i (θ1, θ0, θπ, θµ, ϕ) = (ŷ

(i)
fDR

− y
(i)
f )2 + (ŷ

(i)
cfDR

− y
(i)
cf )

2 (19)

Finally, the loss function of the ITE is:

LITE(θ1, θ0, θπ, θµ, ϕ) =
1

n

n∑
i=1

(
Lp
i + βLDR

i

)
(20)

where β is a hyperparameter and the whole network is trained using end-to-end strategy.

Experimental Setup

Synthetic datasets. We conduct performance tests on two synthetic data experiments. The first uses the same data
generation process devised for CEVAE15. We generate a marginal distribution x as a mixture of Gaussians from the
5-dimensional latent variable z, indicating each mixture component. The details of the synthetic dataset using this
process is discussed in the OTS. Datasets of sample size {1000, 3000, 5000, 10000, 30000} are generated, and divided
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(a) (b) (c)

Figure 3: Panel (a): performance (ATE) of DR-VIDAL vs. all other models on samples from the generative process
of CEVAE. Panel (b) and (c): performance (PEHE) of DR-VIDAL with or without the doubly robust (DR, w/o DR)
block vs. GANITE on samples from the generative process of CEVAE-GANITE.

into 80-20 % train-test split. In the second experimental setting, we amalgamate the synthetic data generation process
by CEVAE with that of GANITE14, to model the more complex causal structure illustrated in Figure 1. We sample
7-, 1-, 1-, and 1-dimensional vectors for zx, zt, zyf , and zycf from Bernoulli distributions, and then collate them into
x. From the covariates x, we simulate the treatment assignment t and the potential outcomes y as described in the
GANITE paper. We generate multiple synthetic datasets for sample sizes {1000, 3000, 5000, 10000, 30000}, also
divided into 80-20 % splits. Equations for both data generating processes are provided in the OTS.

Real-world datasets. We use three popular real-world benchmark datasets: the Infant Health and Development Pro-
gram (IHDP) dataset8, the Twins dataset36, and the Jobs dataset37. The IHDP and Twins two are semi-synthetic, and
simulated counterfactuals to the real factual data are available. These datasets have been also designed and collated to
meet specific treatment overlap condition, nonparallel treatment assignment, and nonlinear outcome surfaces8,11,15,14.
In detail, IHDP collates data from a multi-site RCT evaluating early intervention in premature, low birth infants, to
decrease unfavorable health outcomes. The dataset is composed by 110 treated subjects and 487 controls, with 25
covariates. The Twins dataset is based on records of twin births in the USA from 1989-1991, where the outcome is
mortality in the first year, and treatment is heavier weight, comprising 4553 treated, 4567 controls, with 30 covariates.
The Jobs study (1978-1978) investigates if a job training program intervention affects earnings after a two-year period,
and comprises 237 treated, 2333 controls, with 17 covariates. For all the real-world datasets, we use the same experi-
mental settings described in GANITE, where the datasets are divided into 56/24/20 % train-validation-test splits. We
run 1000, 10 and 100 realizations of IHDP, Jobs and Twins datasets, respectively.

Model fit and test details. Consistent with prior studies8,11,14, we report the error on the ATE ϵATE , and the expected
Precision in Estimation of Heterogeneous Effect (PEHE), ϵPEHE , for IHDP and Twins datasets, since factual and the
counterfactual outcomes are available. For the Jobs dataset, as the counterfactual outcome does not exist, we report the
policy risk Rpol(π), and the error on the average treatment effect on the treated (ATT) ϵATT , as indicated in11,14. The
training details and the hyperparameters of the individual networks are given in the OTS. We compared DR-VIDAL
with TARNet, CEVAE, and GANITE. In addition, for real-world datasets, we compare: least squares regression with
treatment as a covariate (OLS/LR1); separate least squares regression for each treatment (OLS/LR2); balancing linear
regression (BLR)10; k-nearest neighbor (k-NN)33; Bayesian additive regression trees (BART)28; random and causal
forest (R Forest, C Forest)9; balancing neural network (BNN)10; counterfactual regression with Wasserstein distance
(CFRWASS)11.

Results

Synthetic datasets. Figure 3 (a), (b) and (c) shows ATE/PEHE results of DR-VIDAL vs. all other models according
to the two synthetic data generation processes. In the generative process of CEVAE, the doubly robust version of DR-
VIDAL demonstrates lower ATE error than all other models at all sample sizes. When comparing PEHE, DR-VIDAL
(both with and without the doubly robust feature) largely outperforms GANITE. In the second synthetic dataset, gener-
ated under the more complex assumptions, DR-VIDAL (both with and without the doubly robust feature) outperforms
GANITE in terms of PEHE. It is worth noting the potential of DR-VIDAL to better infer hidden representations in
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IHDP(
√

ϵPEHE) Twins(
√

ϵPEHE) Jobs(RPol)
Out-Sample In-Sample Out-Sample In-Sample Out-Sample In-Sample

OLS/LR1 5.8 ± 0.3* 5.8 ± 0.3* 0.318 ± 0.007 0.319 ± 0.005* 0.23 ± 0.02* 0.22 ± 0.00*
OLS/LR2 2.5 ± 0.1* 2.4 ± 0.1* 0.320 ± 0.003* 0.320 ± 0.001* 0.24 ± 0.01* 0.21 ± 0.00*
BLR 5.8 ± 0.3* 5.8 ± 0.3* 0.323 ± 0.018* 0.312 ± 0.002* 0.25 ± 0.02* 0.22 ± 0.01*
k-NN 4.1 ± 0.2* 2.1 ± 0.1* 0.345 ± 0.007* 0.333 ± 0.003* 0.26 ± 0.02* 0.02 ± 0.00*

BART 2.3 ± 0.1* 2.1 ± 0.2* 0.338 ± 0.016* 0.347 ± 0.009* 0.25 ± 0.00* 0.23 ± 0.02*
R Forest 6.6 ± 0.3* 4.2 ± 0.2* 0.321 ± 0.005* 0.306 ± 0.002 0.28 ± 0.02* 0.23 ± 0.01*
C Forest 3.8 ± 0.2* 3.8 ± 0.2* 0.316 ± 0.011 0.366 ± 0.003* 0.20 ± 0.02* 0.19 ± 0.00*

BNN 2.1 ± 0.1* 2.2 ± 0.1* 0.321 ± 0.018* 0.325 ± 0.003* 0.24 ± 0.02* 0.20 ± 0.01*
TARNET
(TensorFlow)

0.95 ± 0.02* 0.88 ± 0.02* 0.315 ± 0.003 0.317 ± 0.007 0.21 ± 0.01* 0.17 ± 0.01*

TARNeT (Py-
torch)

1.10 ± 0.02* - - - 0.29 ± 0.06* -

CFRWASS 0.76 ± 0.0* 0.71 ± 0.0* 0.313 ± 0.008 0.315 ± 0.007 0.21 ± 0.01* 0.17 ± 0.01*

GANITE 2.4 ± 0.4* 1.9 ± 0.4* 0.297 ± 0.05 0.289 ± 0.005 0.14 ± 0.01* 0.13 ± 0.01*
CEVAE 2.6 ± 0.1* 2.7 ± 0.1* n.r n.r 0.26 ± 0.0* 0.15 ± 0.0*

DR-VIDAL 0.69 ± 0.06 0.69 ± 0.05 0.318 ± 0.008 0.317 ± 0.002 0.10 ± 0.01 0.09 ± 0.005

Table 1: Performance of
√
ϵPEHE and RPol (mean ± st.dev) of various models (prior tools and DR-VIRDAL) on

the IHDP, Twins and Jobs datasets. TARNet was originally developed in TensorFlow. We re-implemented TARNet in
Pytorch for IHDP and Jobs dataset. (*) is used to indicate methods that DR-VIDAL shows a statistically significant
improvement over

Figure 4: Performance comparison of doubly robust vs. non-doubly robust version of DR-VIDAL. The bar plots show
how many times one model setup is better than the other in terms of error on the factual outcome (yf ). Panels, from
left to right, show results on IHDP, Jobs and Twins datasets (100, 10, 100 iterations), respectively.

comparison to GANITE irrespective of the presence of the doubly robust module.

Real world datasets. In all three IHDP, Jobs and Twins datasets, across all realizations, the information-theoretic,
doubly robust configuration of DR-VIDAL yields the best results against all other configurations –with/without
information-theoretic optimization and with/without doubly robust loss. The doubly robust loss seems to be responsi-
ble for most of the improvement. The absolute gain is small, in the order of 1%, but the relative gain with respect to
the non-doubly robust setup is significant, where the doubly robust module always outperforms its non-doubly robust
version, from 55-60% in IHDP to over 80% in Twins and Jobs datasets (Figure 4). Table 1 shows the comparison
for the

√
ϵPEHE and RPol values with the state-of-the-art methods on the three datasets. DR-VIDAL outperforms

the other methods on all datasets. On the IHDP and Jobs dataset, DR-VIDAL is the best over all by a larger margin.
Instead, performance increment in the Twins dataset is mild. Even if DR-VIDAL has a large number of parameters,
the deconfounding of hidden factors and the adversarial training make it appropriate for datasets with relatively small
sample size like IHDP. It is worth noting that DR-VIDAL converges much faster than CEVAE and GANITE, possibly
due to the doubly robustness.
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Conclusions

DR-VIDAL is a new deep learning approach to causal effect estimation and counterfactual prediction that combines ad-
versarial representation learning, information-theoretic optimization, and doubly robust regression. On the benchmark
datasets, both the doubly robust property and information-theoretic optimization of DR-VIDAL improve performance
over a basic adversarial setup.

The work has some limitations. First, the causal graph, even if more elaborate than CEVAE, could be improved. For
instance, by connecting the Z to X and only to their respective t, factual and counterfactual outcome nodes would
imply two adjustments set. Another option could be to use the TEDVAE structure in conjunction with out doubly-
robust setup. Also, the encoded representation in the VAE does not employ any attention mechanism to identify the
most important covariates for the propensity scores, especially with of high-dimensional datasets. Finally, one thing
that would be worth evaluating is how Dragonnet would perform as a downstream module of DR-VIDAL, substituting
it to our current four-head doubly-robust block.

In conclusion, DR-VIDAL framework is a comprehensive approach to predicting counterfactuals and estimating ITE,
and its flexibility (modifiable causal structure and modularity) allows for further expansion and improvement.
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