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ABSTRACT: The use of drones or unmanned aerial vehicles for indoor building inspection tasks requires users to 

understand flight patterns (e.g., flight routes, camera focus points, target approach strategies) for maneuvering the 

aircraft. This study focuses on exploring the visual representation of human behaviors performing indoor building 

inspection flight operations using drones. An interactive 2D representation of drone flight spatial data – InDrone – 

was developed to characterize flight patterns during the inspection of indoor markers that were already defined in 

the inspection area and visualize potential maneuvering difficulties around those markers. This study evaluated 

InDrone via a user-centered assessment methodology that measured performance and usability ratings. Using 

visual flight patterns, users identified inspection markers and difficult-to-inspect building areas in 63% (STD = 

48%) and 75% (STD = 35%) of the time on average, respectively. Overall, users reported high scores for the 

usability of InDrone during the flight pattern recognition tasks with a mean score of 77% (STD = 15%). This study 

contributes to the definition of visual affordances that support the communication of flight patterns for drone indoor 

building inspection tasks. The InDrone pilot system demonstrates the usefulness of visual affordances to explore 

drone flight spatial data for indoor building inspections.  

KEYWORDS: Unmanned Aerial Vehicles (UAVs), Drones, Construction, Flight Visualization, Indoor Building 
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1. INTRODUCTION 

Drones or Unmanned aerial vehicles (UAVs) have been increasingly adopted in the architecture, engineering, and 

construction (AEC) industry for inspecting building structures (Albeaino et al., 2019). Building inspection tasks 

require operators to maneuver a drone to a location of interest (e.g., a truss joint, a wall crack, a connection pad) and 

then independently manipulate the camera on the drone to visually inspect the given target. While many of these 

drone inspection flight operations can be performed autonomously in outdoor environments using GPS signals, 

similar indoor operations present challenges that limits the use of automated operations. Researchers have attempted 

to utilize other technologies to enable autonomous flights indoors by leveraging ultra-wideband (UWB) and wireless 

local area networks (WLAN) (Jang and Skibniewski, 2008), computer vision-based algorithms (Padhy et al., 2018), 

SLAM navigation (Zahran et al., 2018), and fiducial markers (Nahangi et al., 2018). However, these approaches 

have been found expensive to implement, difficult to deploy, or overall restrictive due to context dependencies for 

being applied in real-world construction sites (McCabe et al., 2017; Nahangi et al., 2018). Consequently, drones are 

still often manually operated in indoor environments for building inspection applications.  

Even with manual operations, successful drone flights in GPS-denied environments are difficult to be accomplished 

and require extensive expertise, skills, and precision from the operators and flight team members to overcome 

indoor challenges. Examples of indoor navigation challenges that could potentially result in drone accidents include: 

(1) magnetic interferences caused by the presence of several obstacles; (2) worker’s distraction caused by the 

operation of drones in enclosed areas; as well as (3) high-stress and concentration levels due to the low margin of 

error allowed by the pilot in indoor environments (Kruijff et al., 2012; McCabe et al., 2017). Extensive training is 

therefore needed to improve the pilots’ navigational capabilities and guide them in their decision making, especially 

in dynamic environments such as the AEC’s. In this context, recognizing the drone inflight barriers encountered 

during previous human-operated indoor flights and the pilots’ associated behaviors is valuable for future pilot 

training and successful drone deployment in this setting. 
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Due to the importance of human-based operations in drone control systems, the understanding of bidirectional 

information and loop mechanisms that drive human-drone flight operations is increasingly necessary. As human 

operators interact with the drone technologies, the gained spatial information (e.g., position, elevation, facing 

direction) determines the subsequent operational steps within the flight maneuvers. This human understanding of 

spatial information requires constant updating based on the interaction cycle. Such human-drone interactive systems 

are currently investigated to improve collision avoidance algorithms (Maxey and Shamwell, 2019) and operator 

training strategies (Zhou et al., 2019).  

This exploratory study concentrates on investigating one aspect of these human-drone interactions – human 

interpretation of drone spatial information to determine the operational requirements in building inspection tasks. 

Specifically, the understanding of human-drone interactions in the AEC domain is investigated in two ways: (1) 

definition of visual affordances that communicate drone building inspection tasks; and (2) development of a system 

that enables visual exploration of drone spatial data.  

2. BACKGROUND 

Current literature on interpretable visualizations for flight spatial data of manned and unmanned aircrafts employs 

3D and 2D approaches. The adoption of 3D representations to represent inherently spatial data is widely employed 

in the existing visualization methods (Dübel et al., 2014; Zhong et al., 2012). For instance, Chen et al. (2018) 

proposed the use of 3D models for drone flight path planning to capture location images. The authors demonstrated 

how to utilize 3D models to illustrate drone flying paths, showing the height and distance of the drone path with 

respect to the object being captured. It was found that with the addition of depth and camera direction to markers in 

the visualization, users were able to understand the spatiotemporal relationships between the drone and the 

environment for capturing images of complex objects. In another example, Li et al. (2018) employed a 3D visual 

comparison on various indoor flight paths obtained from the models to illustrate collision avoidance algorithms. The 

paper utilized different line continuity and colors, enabling the observer to locate the district paths rapidly in the 3D 

space. Additionally, the use of occlusion within the visualization offers the observer a sense of the locations where 

their vision might become obstructed by objects during that flight path.  

Although 3D proposes an intuitive approach to represent real-world spatial data, challenges occur with respect to the 

ability of users to interpret information within these visualizations. First, distortions occur due to the view 

perspective of the user. This causes difficulties for the user to accurately understand relative positions, size of 

objects, and distribution of graphical elements (Zhong et al., 2012). Additionally, occlusion during the visualization 

introduces difficulties in the perception of the spatial location of objects, affecting the readability and measurability 

of object attributes (Zhong et al., 2012). This effect is especially pronounced within indoor environments where the 

spatial distribution of buildings might introduce many fixed occluding elements (e.g., walls, staircases, installed 

equipment). Ultimately, the combination of these two challenges requires the introduction of complex interactions to 

navigate the data. The addition of another layer of complexity to the visualization challenges requires that the user 

must not only concentrate on observing the data for meaning but must also concentrate on manipulating the view 

perspectives to obtain the appropriate information. 

In response to the challenges associated with representing flight spatial data in 3D, previous studies have explored 

2D approaches to reduce complexity and display only key desired information that is useful for the target domain 

users. For example, Kang et al. (2018) proposed a method to simplify drone navigation and image capture by 

providing a novel user input modality on mobile devices. The authors demonstrate how to visually indicate drone 

trajectory and image capture direction simultaneously using a 2D projection of the drone path. Information is shown 

at certain time intervals, indicating front-facing direction of the camera, and illustrating the locations where the user 

spent the most time for capturing environment. The results from usability experiments showed that the filmmaking 

target users found the proposed approach intuitive to use and easier than traditional navigation methods (e.g., 

controller). In another example, Andrienko et al. (2019) evaluated the amount of information presented in 2D to 

manned aircraft pilots, reducing clutter by grouping flight data on a per-pilot and per-flight phase (take-off, cruise, 

landing) basis. The authors used these grouping techniques to determine how outside forces (e.g., air traffic control) 

influenced flight paths inequitably. Expert pilots indicated that the developed system was capable of diagnosing 

patterns of flight behavior as well as providing insight into the outside factors that influenced such behavior. 

Although existing visualization methodologies in the literature have explored some of the aspects required to 
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understand drone flight paths, none of the studies have specifically investigated these applications within the AEC 

domain in general and building inspection tasks more particularly.  

3. METHODOLOGY 
 

To explore human interpretable drone spatial information representations, data was collected from four 

commercially certified drone pilots within a virtual reality (VR) simulation to create a visualization of building 

inspection operations. Using the experts’ data, this investigation explored the visual design elements necessary to 

demonstrate human behaviors during building inspection tasks in terms of approaches to view the inspection targets 

and detection of areas with potential difficulty. The created InDrone platform leverages a 2D interactive visual 

representation of spatial data to provide users a method to identify flight patterns, facilitating the recognition of 

appropriate practices within the inspection tasks. To evaluate the produced design, a user-centered study was 

performed to assess the task performance of information identification as well as the usability of the system. 

Interviews with expert pilots were conducted to define a set of tasks and evaluate the proposed design, employing a 

think-aloud methodology and a post-assessment survey. Detail explanation of each of platform design rationale are 

provided in the following subsections. 

3.1 InDrone Platform 

The goal of this paper’s visualization is to convey the operational steps from expert drone pilots during the 

performance of an indoor building inspection. These operational steps can be visualized through flight behaviors 

using elements such as path patterns, drone direction, and target approach strategies. Data was collected from four 

commercially certified drone pilots to understand these operational steps for building inspection tasks. These expert 

pilots were asked to perform a drone flight inspection of the Perry Yard in the Rinker Hall building at the University 

of Florida campus within a VR simulation. The VR environment used an Oculus Rift head-mounted display and an 

Xbox game controller to operate the drone (Figure 1). The Perry Yard simulation was created within the Unity Game 

Engine, employing a point cloud obtained from the FARO Focus 3D S 120 laser scanner. The expert pilots were 

tasked with examining 10 target markers placed in strategic locations on the point cloud of the building. Spatial 

flight data was logged by the simulation in 1/5 second intervals. For each flight, the following data was captured: 3D 

(x, y, z) coordinates of the drone, rotation of the drone with respect to its center of mass (pitch, roll, yaw), drone 

speed (x, y, z) and a timestamp. Each of the four pilots ran through the simulation twice for a total of 8 flight paths 

stored in 8 separate data logs. For the purposes of this research, the logs were converted to JSON format. A series of 

2D web-based implementations were produced utilizing JavaScript and D3 Version 5 (Bostock et al., 2011).  

 

Fig. 1: Virtual Reality Data Collection from Expert Pilots (Real -left- site duplicated as a Virtual -right- site). 

3.1.1 InDrone Platform Goals 

The goals for the InDrone visualization platform in this study were established by iteratively exploring the collected 

data and interviewing commercially certified drone pilots. Initially, the data from the VR flights was explored by 

implementing a preliminary representation of the drone spatial data. In the existing literature, 2D and 3D approaches 

have been considered to represent spatial data similar to the data collected from the expert users’ drone flights. This 
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first implementation focused on displaying the spatial distribution of the drones across the inspection space. For this 

study, a 2D representation was selected due to the advantages of allowing the viewer to see the entire flight paths at 

once. In a 3D visualization, some of the paths would be occluded by parts of the building which would have resulted 

in the exploration of interactivity methods to reduce spatial complexity.  Additionally, within the AEC domain, users 

are accustomed to analyzed information utilizing isometric projections of 3D real-world objects. By maintaining 2D 

visualization, the perception expectations of domain professionals allow the proposed design to provide simple-to-

interpret representations of building inspection tasks and locations. 

Following, a set of semi-structured interviews were conducted with the same four expert pilots that previously 

participated in the VR simulation. The expert pilots observed the preliminary 2D representation of all the collected 

spatial data. During the interviews, information was collected regarding pattern recognition within the data and 

determination of flight strategies from the visual representation. From the analysis of the interviews, two main 

themes were identified in terms of pilot drone flight behaviors: (1) approaches to view the inspection markers; and 

(2) difficult areas that require longer times to maneuver. These two themes translated into the design goals of this 

project as: 

G1 – Demonstration of the pilots’ approaches to view the inspections markers. The visual representation of these 

approaches should reflect the drone spatial positions across time and drone orientation with respect to the marker 

locations. 

G2 – Detection of areas in the flight path where it was difficult to observe inspection markers. The visual 

representation should reveal the inspection markers that require a longer time to be explored while performing the 

drone flight building inspection.   

3.1.2 Visualizing Drone Critical Operations During Inspection Tasks 

To accomplish the InDrone platform goals of this investigation, data was encoded following Cleveland and McGill 

(Cleveland and McGill, 1986) principles for visual design. In this study’s platform design, the relationship between 

the inspection location and the spatial data is critical for the understanding of the drone operations. A Cartesian 

plane with real-world dimensions in meters hosted a background contour image of the building’s point map to 

demonstrate the context of the flight operations (Figure 2).  

 

Fig. 2: Multiple Drone Flight Paths Visualization 
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Within that background, the important spatial data was encoded in the visualization using inspection markers, flight 

paths, and drone orientations. These encodings corresponded with G1 by enabling users to determine the pilot’s 

approaches to perform the flight tasks (Figure 3). In the visualization, the inspection markers were represented by 

bright red markers. These target inspection markers corresponded with spatial coordinates in the simulated flight 

operation. Pre-attentive processing enabled users to quickly recognize the targets in the spatial configurations of the 

projected building. For each pilot, flight paths were plotted using the x and z spatial coordinates—y coordinates 

were encoded separately as altitude. Each pilot’s flight path was encoded with a unique color, with the second run 

varying in shades of the same color. This allowed the users to associate position with each pilot’s paths displayed in 

the inspection location. Because the flight paths varied in length and contained a lot of overlapping points (the drone 

may not be moving every 1/5 of a second), the data was resampled using the initial steps of the $1 algorithm 

(Wobbrock et al., 2007), reducing the number of points per line while maintaining the overall length of the path. 

Additionally, the start (blue) and end (yellow) points were explicitly shown to indicate the direction of the flight 

path. Moreover, the drone’s yaw was represented by triangular markers that scaled according to the y coordinate 

altitudes along the drone path (larger triangles being at higher altitudes and smaller triangles lower altitudes). These 

triangular markers were additionally encoded using the yaw rotation angle of the triangle to demonstrate the forward 

point direction at a given time. The triangular marker encoding in conjunction with the x, y, and z coordinates, 

represents the drone fly path in a way that keeps unmanned vehicle parallel to the ground. Finally, a slider was 

provided to the user to increase the granularity of triangles displayed to account for the potential loss of information 

introduced by the resampling method applied to the data. 

 

Fig. 3: Visual encodings to accomplish platform goals 

To demonstrate the areas of difficulty as described in G2, fuchsia circles were used to represent locations with low 

drone speed (Figure 3). During the inspection task, areas of low speed indicate that the pilot requires maneuvering 

with exceptional care. The speed data for each drone pilot was ranked from low to high, and the top 2% of low 

speeds were employed to demonstrate the difficulty areas. A slider was provided to change this threshold varying 

from 1% to 10%. It is important to highlight that the fuchsia circles were partially transparent, enabling the user to 

observe color intensity variations on areas with dense overlaps.  

With the objective of supporting all the encodings and the user navigation of the spatial data, an interface was 

created following Shneiderman’s mantra (Shneiderman, 1996) for information seeking. Iterative development was 

utilized to refine these interactions. A pilot test was performed with two users to understand the usefulness of the 

proposed encodings and interactions for the visualization. Improvements were done considering their feedback, and 

the challenges faced during the interaction with the system. The resulting implementation from the iteration is 

shown as Figure 2. Initially, an overview of the data was provided by enabling the user to observe the start/end 

points for the first drone flight of each pilot. To provide a zoom and filter of the data, a Drone Flight Path menu 

section was provided to enable users to toggle on/off different paths using a check box interface. Using the Drone 

Markers menu section, users were able to activate or deactivate the triangles that denoted orientation of the drone 

within the paths. Similarly, a Difficult Areas checkbox allowed users to display the fuchsia circles that denote 

reduced speed areas.  The Background Display menu permitted users to modify the background using radial buttons. 
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Details-on-demand could be obtained from any of the markers (inspection, start, end, triangles) by hovering over 

them to reveal a tooltip with the raw data. Finally, the control of the parameters aligned with G1 and G2 was 

exposed to the users to provide them with further details that they might require. 

3.2 EXPERIMENTAL EVALUATION 

This project utilized a user-centered experimental evaluation to assess two different metrics: task performance and 

usability rating. First, task performance focused on studying how users retrieve important information from the 

visualization in terms of G1 – Approaches (pilots’ approaches to view the inspections markers) and G2 – 

Difficulties (difficulties detection around inspection markers). This measurement is intended to identify the 

advantages and challenges of the proposed design for the users to understand drone operations during inspection 

tasks. A set of 10 questions was developed to assess user task performance using high- and low-level cognition 

analysis, as displayed in Table 1.  For the G1 – Approaches, four questions aimed to determine how users perceived 

the drone navigation patterns in the inspection location as well as pilots’ behaviors while exploring the target 

markers (high-level cognition).  For the G2 – Difficulties, two questions aimed to establish how users determined 

challenges to observe target markers by the drone pilots (high-level cognition). Finally, four questions were asked 

about usability to provide a practical understanding of how users employed different encodings to explore the 

visualization (low-level cognition).  

Second, the System Usability Scale (SUS) survey (Brooke, 1996) was used to assess the usability rating assigned to 

the visualization. This survey provided a metric for the visualization in terms of ease of use, satisfaction, 

effectiveness, and design efficiency (Brooke, 2013). The survey used a 5-point Likert scale that contained ten 

questions scaled from strongly disagree to strongly agree. The usability score was computed by inverting the score 

of negative statement questions, summing all the scores, multiplying the resulting score by 2.5, and normalizing the 

scores (ranging from 0 to 100) as established by Brooke (1996). SUS usability benchmarks have shown that the 

average score of a system approximates 68% in the scale (Sauro, 2011). To further support the user responses in this 

survey, an open-ended comment section was provided. 

Table 1: Task Performance Question 

Approaches – G1 Difficulties – G2 Usability  

1. Which drone pilot performed the 

building inspection task the fastest? 

1. Which building inspection 

target was the most difficult to 

observe across all drone pilots? 

1. How many drone pilots are present 

in the data showed to you? 

2. Do drone pilots have a preference 

target exploration direction (i.e., 

clockwise, counterclockwise) 

2. Which building inspection 

target was the easiest to observe 

across all drone pilots? 

2. How many flights per pilot are 

shown in the visualization? 

3. Does the drone camera for Pilot 2 

face every target at some point in 

the flight path? 

 3. What general area do drone pilots 

start and end their flights? 

4. Did any of the drone pilots 

inspect a target more than once? 

 4. What is the elevation of the highest 

building inspection target? 

Participants were recruited from the University of Florida. The participants interacted with the visualization while a 

researcher asked the questions defined in this document. A think-aloud protocol was employed to obtain as much 

qualitative data as possible from the users’ interactions during the task performance activities. These conversations 

were recorded for later analysis. After completing the task performance questions, the SUS survey instrument was 

administered to the participants using an online Qualtrics questionnaire (Qualtrics, 2019). Posteriorly, the responses 

from the task performance questions were graded to determine the number of successfully or unsuccessfully 

answered questions. Furthermore, the SUS survey instrument was scored using the analysis previously described. 

Prior to the task performance and usability data collection,, users completed a consent form (IRB201902372) and a 

demographics survey describing their age, gender, education, and experiences with drones and building inspection 

tasks. 
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4. RESULTS AND DISCUSSION 

A total of 10 participants evaluated the proposed design. Participants had an average age of 28 years (STD = 5 

years) and were mostly males (90%). A large proportion of the participants were PhD students (60%), but the 

sample also contained master’s (20%) and undergraduate (20%) students. None of the participants reported to have a 

commercial license to fly drones but presented varying degrees of familiarity with drone technologies (Low = 30%; 

Average = 70%; High = 0%) and building inspection tasks (Low = 40%; Average = 60%; High = 0%). While none 

of the participants were certified drone pilots, the goal of the InDrone platform is to enable future pilots learn flight 

strategies; thus, these participants were deemed to be suitable for the analysis of the InDrone platform. Participants 

completed the task performance and usability questions in approximately 14 minutes (Average = 14 minutes, STD = 

4 minutes). 

The results of the task performance questions were analyzed using descriptive statistics as shown in Table 2. The 

average score for the G1 – Approaches was 63% (STD = 48%). This score indicates that participants had 

challenges understanding some of the critical operations during inspection tasks. While questions 1 and 2 were 

easily answered by the participants, questions 3 and 4 were very difficult. On average, participants scored 100% for 

questions 1 and 2 but had an average success rate of 50% for question 3 and 0% for question 4. Participants were 

unable to properly identify the drone facing direction across time due to potential issues with clutter, height 

identification, and temporal relationships in visualization. For instance, one of the participants indicated that “the 

triangles overlap in this marker, but I’m not sure if that means that the pilot is looking at the target just once or 

multiple times”.   

The average score for G2 – Difficulties was 75% (STD = 35%). This score indicates that most participants were 

able to detect difficult-to-maneuver areas in the inspection locations. While question 1 had a 100% success rate, 

question 2 had a success rate of 50%. The lower average success rate of question 2 was potentially caused by the 

lack of identifiers of high-speed areas. In the visualization, only low-speed areas were highlighted, and it was 

assumed that the target markers with a lesser number of fuchsia circles implied lower difficulty. Finally, the average 

score for usability questions was 95% (STD = 6%). These consistently high scores indicate that the visualization 

was easy to navigate for low-level type of cognitive tasks such as the ones asked in this category. 

Table 2: Task Performance Descriptive Statistics 

Task 

Performance 

 Approaches  Difficulties  Usability 

Average 63% 75% 95% 

STD 48% 35% 6% 

The results of SUS survey were analyzed using the strategy outlined in Brooke (1996) and descriptive statistics were 

reported as shown in Table 3. For the SUS scores, the average score was 77% (STD = 15%). This average score in 

this investigation is above the 68% average that was found in a meta-analysis for usability studies (Sauro, 2011). 

This result indicates that the system design in this research presents a good usability rating as reported by 

participants. Moreover, these results are consistent with the scores reported for the task performance questions. 

Participants’ comments in general were positive about the usability of the system. One participant indicated that 

“[the] system was not too complicated overall after using it for a couple of tasks” and another one suggested that 

“the system can easily provide a lot of information about the paths of the pilots”. 

Table 3: SUS Descriptive Statistics 

SUS (Brooke, 1996) 
Average STD Max Min 

77% 15% 98% 55% 

Overall, the observed results for the designed affordances within InDrone platform indicate that trainees were able to 

successfully identify drone inspection speed and flight path direction. Additionally, trainees were able to identify the 

level of difficulty required to inspect certain markers within the location. The high usability findings further support 

the use of these visually encoded affordances for drone inspection tasks. Ultimately, the findings of this study 

provide insights for designers and practitioners of indoor drone data visualization platforms in terms of effective 

visual encodings that demonstrate human behaviors. 
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5. LIMITATIONS 

This study exhibited limitations in two main areas: (1) sample size; and (2) data representation. First, due to the 

exploratory nature of the research, the sample size of the collected data was small. This eliminates the possibility to 

provide statistical generalizations over the whole study population in terms of G1 and G2. However, this sample 

size seems appropriate for usability studies, as research has revealed that 10 participants can identify up to 95% of 

the problems in software tools (Faulkner, 2003). Second, the 2D representation selected for this study limits the data 

representation flexibility. Some of the height encodings that are inherently 3D are difficult for users to understand 

and interpret in a 2D representation. However, constraining the visualization to 2D simplifies interaction and 

reduces the requirement for larger exploration times often required in 3D representations. 

6. CONCLUSION AND FUTURE WORK 

This exploratory research investigated the design requirements and considerations necessary to understand drone 

pilots’ behaviors while performing building inspection tasks. Design goals were established through iterative 

exploration of drone spatial data and interviews with commercially certified drone pilots. As a result, the two 

defined goals for this study were: G1 – identify pilots’ approaches to view the inspections markers and G2 – 

demonstrate difficulty detection around inspection markers. A user-centered experimental evaluation was performed 

to assess the users’ task performance and usability rating while utilizing a developed visualization system. Results 

showed that users identified pilots’ approaches to view the inspections markers on average 63% (STD = 48%) of the 

time. This was caused by challenges with clutter, height identification, and temporal relationships. On the other 

hand, it was found that on average, most users were able to identify difficult-to-inspect building areas with a success 

rate of 75% (STD = 35%). Finally, users reported high scores for usability of the system during both, task 

performance activities and the SUS survey. The survey average score was 77% (STD = 15%), indicating a good 

usability rating. 

Future work in this research area should explore summarization of flight paths to represent commonalities across 

multiple drone pilots. By condensing common paths into a single representation, visualization clutter can be 

reduced, which could avoid some of the challenges reported in this research. Moreover, an in-depth evaluation of the 

accurate perception of the height encoding needs to be performed to better understand the impact relative sizes have 

on the users’ responses. Comparative analyses should also be conducted between the 2D visualization design 

proposed in this study and a 3D design to assess the advantages and disadvantages of each approach for drone 

building inspection applications. While this study focuses on the development of a UAV-mediated data visualization 

platform – InDrone, additional investigations are warranted to validate the effectiveness of this design in reducing 

the pilots’ stress and concentration levels, as well as improving their navigational skills and decision-making to 

successfully accomplish indoor building inspection tasks.  
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