Homework #2 (due midnight, Tuesday, October 7, 2003)

1. Canny edge detector: Show that the product of the Canny detection and localization criteria

$$\mathrm{SNR}(f) \times \mathrm{Loc}(f) = \frac{|\int_{-W}^{W} G(-x) f(x) dx| |\int_{-W}^{W} G'(-x) f'(-x) dx|}{n_0 \sqrt{\int_{-W}^{W} f^2(x) dx} \, n_0 \sqrt{\int_{-W}^{W} f'^2(x) dx}}$$

is maximized by f(x) = G(-x).

- 2. Canny edge detector: Rewrite the detection and localization criteria for a filter $f_w(x) = f(x/w)$. Show that the product of the detection and localization criteria is *invariant* to w.
- 3. Level sets: Assume that a particle is moving in 1D according to the equation of motion

$$\frac{dx}{dt} = -\frac{x+t}{t+1}.$$

What is the corresponding $\psi(x,t)$ function? [Hint: Use $\frac{\partial \psi}{\partial t} = -\frac{\partial \psi}{\partial x} \frac{dx}{dt}$.] Plot $\psi(x,t)$ in the interval $[0,1]^2$ showing the level sets. Explain the relation between the equation of motion and the level sets of ψ . Please realize that this is a reduced 1D motion embedded in a 2D function.