
Homework #1 Solutions

1.5. The scenario is depicted in the figure below.
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In the figure, ẑ is not shown. The basic idea is that a blur circle is formed as the screen is moved from
z′ to ẑ′. From the figure, we see that we can use similar triangles to assert that

∆/2

|ẑ′ − z| =
d/2

z′

which gives us

∆ = |ẑ′ − z| d
z′

which is the desired result.
For the second part of the problem, assume that z1 is the nearest point for which z1 > z and for which

the blurred image occurs at z′

1 such that

ε = d
z′1 − z′

z′
.

Similarly, let z2 be the farthest point for which z > z2and for which the blurred image occurs at z′

2 such that

ε = d
z′ − z′2

z′
.

These quantities are in terms of z′, z′1and z′2 and can be rewritten using the thin lens equation
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The corresponding image plane quantities are

z′ =
zf

z + f
, z′1 =

z1f

z1 + f
, and z′2 =

z2f

z2 + f
.

Substituting this in the equations for ε above and simplifying, we get

z1 − z + z − z2 = z1 − z2 = 2εfz(z + f)
d

f2d2 − ε2z2
.

2.3 A rigid transformation of a point AP can be written as

(

BP
1

)

=B
A T

(

AP
1

)

where
B
AT =

(

B
AR BOA

0T 1

)

.

For the set of rigid transformations to form a group, we require that a) the matrix product of two rigid
transformations to be a rigid transformation matrix, b) the matrix product to be associative, c) there is a
unit element and that d) every rigid transformation matrix has an inverse. These properties are all satisfied
by B

AT . First

T1T2 =

(

R1 t1
0 1

) (

R2 t2
0 1

)

=

(

R1R2 R1t2 + t1
0 1

)

=

(

R3 t3
0 1

)

where R3
def
= R1R2 and t3

def
= R1t2 + t1. It is trivial to check that T1(T2T3) = (T1T2)T3. The identity

matrix I acts as an identity element since TI = IT = T . Finally, for every T , there exists an inverse matrix

T−1 def
=

(

RT −RT t
0 1

)

such that TT−1 = T−1T = I . All four properties are therefore verified.

2.7 We have to show that a rigid transformation preserves distances and angles. Assume that we have two
points P1and P2which undergo a rigid transformation. The squared distance between the points before
transformation is ||P1 − P2||2 = P T

1 P1 + P T
2 P2 − 2P T

1 P2. After the transformation, the squared distance is

||RP1 + t−RP2 − t||2 = ||RP1 −RP2||2 = P T
1 RT RP1 + P T

2 RT RP2 − 2P T
1 RT RP2 = P T

1 P1 +P T
2 P2 − 2P T

1 P2.

Similarly, the transformation preserves angles. Assume that we have two vectors V1and V2. The inner product
between the vectors is V T

1 V2before the transformation. After the transformation, it is (RV1)
T (RV2) =

V T
1 RT RV2 = V T

1 V2. Since the inner product remains the same and since distances are preserved, we know
that angles are preserved as well.
2.8 The translation factor is independent of the skew. So this will be ignored. Examine the figure below.
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Due to the skew factor, if the old x coordinate is OA, the new x coordinate is OC and if the old y
coordinate is OB, the new y coordinate is OD. Since CA = AP cot(θ) and OD = AP

sin(θ) , and given that

OA = αx
z

and OB = β y
z
, we have

OC = α
x

z
− β cot(θ)

y

z
, andOD = β

1

sin(θ)

y

z
.

2.15 a) Let A =









a1

a2

a3

1









and B =









a1

a2

a3

1









. Then L =

















a1b2 − a2b1

a1b3 − a3b1

a1 − b1

a2b3 − a3b2

a2 − b2

a3 − b3

















. Since AB =





b1 − a1

b2 − a2

b3 − a3



 ,

we have AB = −(L3, L5, L6)
T . OA × OB =





a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1



. From this, we see that OA × OB =

(L4,−L2, L1)
T . Finally, by trivial algebraic manipulation, we can show that L1L6 − L2L5 + L3L4 = 0.

b) Since the points A and B are only allowed to drift along the line L we have that a new A′B′ =
−(sL3, sL5, sL6)

T and that a new OA′ × OB′ = (sL4,−sL2, sL1)
T . Consequently, the new L′ = sL.

c) Just substitute using the Plucker formula.
d) Again, just follow the hint and show that M̃L · a = 0 and M̃L · b = 0.
e) We know that A, B and P lie on L. Consequently, the three points and the origin O lie in the

same plane. From this, we know that (OA × OB) · OP = 0 and that (OA × OB) = OP × AB. These
two conditions from a set of necessary and sufficient conditions for P to lie on the line joining A and B.
Use the four conditions that you obtain from the above and plug in. To see that these conditions are
necessary and sufficient, note that (OA × OB) · OP = 0 is satisfied by any four points A, B, O and P
that lie in a plane and this can happen without P being collinear with A and B. Similarly, the condition
(OA × OB) = OP × AB can be satisfied by any four points A, B, O and P that do not necessarily lie in
the same plane. However, when one enforces the constraint that A, B, O and P lie in the same plane, then
the constraint (OA × OB) = OP × AB can only be satisfied by three collinear points A, B and P .

f) If AB lies in plane Π,then (OA×OB)×n = d AB where n = (a, b, c)T /
√

a2 + b2 + c2 is the normal to
the plane. Also, AB · n = 0. These are necessary and sufficient conditions for AB to lie in a plane given by
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a normal n and a signed distance d from the origin. Use the four conditions and plug in. To see that these
conditions are necessary and sufficient, note that AB · n = 0 is valid for any line lying in the plane and also
for any line that does not intersect the plane. The condition (OA × OB) × n = d AB can be satisfied by
some three points A, B and O and a unit vector n but does not guarantee that n is perpendicular to AB.
When both constraints are enforced, the sole possibility is that AB lies in the plane Π.
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