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Abstract—Software based cryptographic implementations pro-
vide flexibility but they face performance limitations. In contrast,
hardware based cryptographic accelerators utilize application-
specific customization to provide real-time security solutions.
Cryptographic instruction-set extensions (CISE) combine the
advantages of both hardware and software based solutions to
provide higher performance combined with the flexibility of
atomic-level cryptographic operations. While CISE is widely used
to develop security solutions, side-channel analysis of CISE-based
devices is in its infancy. Specifically, it is important to evaluate
whether the power usage and electromagnetic emissions of CISE-
based devices have any correlation with its internal operations,
which an adversary can exploit to deduce cryptographic secrets.
In this paper, we propose a test vector leakage assessment
framework to evaluate the pre-silicon prototypes at the early
stages of the design life-cycle. Specifically, we first identify func-
tional units with the potential for leaking information through
power side-channel signatures and then evaluate them on system
prototypes by generating the necessary firmware to maximize
the side-channel signature. Our experimental results on two
RISC-V based cryptographic extensions, RISCV-CRYPTO and
XCRYPTO, demonstrated that seven out of eight prototype AES-
and SHA-related functional units are vulnerable to leaking cryp-
tographic secrets through their power side-channel signature even
in full system mode with a statistical significance of α = 0.05.

I. INTRODUCTION

In the modern landscape of information technology, cryp-
tography, and its use cases have evolved into an essential
tool for safeguarding sensitive data and ensuring secure com-
munication. These requirements of cryptography extend far
beyond its traditional role of encoding and decoding messages;
they serve as a foundation for the confidentiality, integrity,
and authenticity of digital information. From securing online
transactions and protecting personal communications and dig-
ital privacy, cryptography plays a critical role in mitigating
the ever-growing spectrum of cyber threats. As technology
advances, there is an increasing demand for robust and fast
cryptographic techniques, making it an integral component of
our daily digital interactions.

Catering to these security demands, there are different
techniques to implement cryptographic functionalities. The
existing solutions can be mainly divided into three categories:
software implementations, hardware accelerators, and cryp-
tographic instruction set extensions. The distinction between
software cryptographic implementations, cryptographic accel-
erators, and cryptographic instruction set extensions revolves
around their specific approaches to managing cryptographic
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operations. Software cryptographic implementations, provided
by libraries like OpenSSL [1], WolfSSL [2], Libgcrypt [3]
and Crypto++ [4], utilize algorithms that are executed by
the CPU through general-purpose instructions. However, their
versatility may encounter performance limitations inherent in
the nature of general-purpose processors. In contrast, crypto-
graphic accelerators, such as Titan Security Key [5], IBM PCIe
Cryptographic Coprocessor [6] and Trusted Platform Mod-
ules (TPMs) [7], [8], employ dedicated hardware components
designed explicitly for cryptographic tasks, operating either
independently or in parallel with the CPU to significantly boost
processing power for cryptographic operations. Cryptographic
instruction set extensions, like Intel Advanced Encryption
Standard Instructions Set (AES-NI) [9], Intel SHA Exten-
sions [10] and ARMv8-A Cryptography Extensions [11], strike
a middle ground between software and hardware implemen-
tations using a hybrid approach by incorporating specialized
instructions directly into the CPU architecture.
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Fig. 1: Instead of using full cryptographic accelerators, a set of
functional units (e.g., CR1) corresponding to cryptographic in-
struction set extensions are implemented in the arithmetic logic
unit (ALU). This lets instructions related to cryptographic
functions to be executed much faster and more efficiently
compared to complete software implementations and more
configurable compared to hardware cryptographic accelerators.

Figure 1 illustrates an abstract implementation concept of
the Cryptographic Instruction Set Extensions (CISE). This
approach aims to enhance performance without the need for
separate hardware components for each cryptographic algo-
rithm. Instead, each of the algorithm steps is divided into
atomic cryptographic operations and each of these unique
steps is implemented as a separate functional unit inside the
processor. When it is required to perform a cryptographic
workload, the pre-compiled software implementations consist
of each of the specific cryptographic instructions that will be
executed as atomic execution steps by the processor.

Whether a cryptographic function is implemented purely
using software, hardware, or in a hybrid manner (CISE),
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Fig. 2: Simple illustration of the setup for launching a power
side-channel attack. An adversary can have a test setup that
creates a power model of the device. In the field, the adversary
can launch the attack on the victim device based on the model
created using the test setup.

they are susceptible to power side-channel attacks. Figure 2
illustrates a generalized setup that can be utilized by an
adversary to mount an attack exploiting the power side-channel
vulnerability. The adversary can obtain a test device with the
same specification as the victim device and construct a model
by manipulating the inputs and observing the power profile
of the device. Then in the field, the adversary can mount the
attack to recover the internal secret values that were leaked
as a power side-channel signature from the victim device.
Although software implementations can be masked with new
software updates, the other two implementation techniques
(hardware and CISE) are hard to mitigate if they are detected
as vulnerable to power side-channel attacks after fabrication
due to the inherent difficulty in modifying an integrated circuit.

This highlights the need for performing test vector leakage
assessment of the hardware prototypes during the pre-silicon
stage to detect potential power side-channel vulnerabilities in
the early design life cycle. Although software-based masking
techniques can be applied to the cryptographic instruction set
extensions, such masking can add huge performance penalty
defeating the purpose of having accelerated functional units
to improve the performance. Therefore, similar to performing
pre-silicon functional validation using simulation as well as
formal verification, security validation of the cryptographic
instruction set extensions using test vector leakage assess-
ment is essential. Although test vector leakage assessment
(TVLA) of cryptographic hardware has been explored in the
literature [12]–[14], there are no prior efforts for evaluat-
ing cryptographic instruction set extensions that can perform
TVLA of both the hardware and firmware components. In
this paper, we propose an end-to-end pre-silicon test vector
leakage assessment framework for cryptographic instruction
set extension prototypes.

A. Research Contributions

In order to analyze cryptographic instruction set extension
(CISE) prototypes, we propose a comprehensive framework,
referred to as CISELEAKS, consisting of two evaluation
rounds: 1) a functional unit evaluation round and 2) a full
system evaluation with leaky functional units at early (pre-
silicon) design stages. Each round will utilize a statistical test
vector leakage assessment (TVLA) framework that assesses
the potential power side-channel leakages. Figure 3 provides
an overview of our proposed information leakage assessment
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Fig. 3: Overall contribution of the proposed information leak-
age assessment framework. This consists of two main sections;
unified information leakage assessment framework and test
vector leakage assessment methodology.

framework. It accepts the hardware implementation and returns
whether the given implementation can leak information as a
power signature. Specifically, this paper makes the following
contributions,

• We propose an input generation algorithm that can max-
imize the side-channel sensitivity of functional units.

• We formulate a methodology to evaluate prototype func-
tional units for their power side-channel leakage.

• We propose a full system evaluation methodology to
evaluate side-channel vulnerable functional units with the
full system prototype.

• In support of system evaluation, we formulated an auto-
mated cryptographic workload generation mechanism to
be used as the firmware for the system.

• We propose an automated trace alignment technique to
detect the power consumption of the functional units from
the full system power consumption.

• Evaluations on two RISC-V cryptographic instruction set
extension (CISE) based designs, RISCV-CRYPTO [15]
and XCRYPTO [16], have demonstrated that AES pro-
totype implementations are vulnerable to leaking internal
secrets as power side-channel signature.

The rest of the paper is structured as follows. First, we
explore the background and related works in Section II. Next,
we discuss the research contributions of the proposed approach
in Section I-A. We elaborate on the major steps of the proposed
information leakage assessment framework for cryptographic
instruction set extensions in Section III and Section IV. In
Section V, we apply the proposed technique to ongoing RISC-
V cryptographic extension standardization work and show
its effectiveness. Finally, we discuss the applicability and
limitations of the proposed framework in Section VI and
conclude the paper in Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we first discuss existing commercial and
open-source implementations of cryptographic instruction-set
extensions. Then, we examine how power side-channel attacks
have been used for extracting cryptographic secrets from these
implementations. Finally, we survey related efforts on pre-
silicon test vector leakage assessment (TVLA) and discuss
issues in using this technique to evaluate the implementations
of cryptographic instruction set extensions.
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A. Cryptographic Instruction Set Extensions

Several commercial implementations of scalar crypto-
graphic extensions exist. An AES (Advanced Encryption Stan-
dard) extension, called AES-NI (”New Instructions”), was
developed by Intel for the x86 instruction set architecture [17].
The extension includes instructions for encryption (AESENC),
decryption (AESDEC), and key generation (AESKEYGE-
NASSIST), with support for key sizes of 128, 192, and 256
bits. The first implementation of AES-NI has been developed
by Intel for x86 architecture based processors and later similar
functionality was adopted by AMD on several versions of
their x86-based processors [18]. Another x86 extension, this
time for SHA (Secure Hash Algorithm), was also developed
by Intel [10]. It currently supports SHA-1 and SHA-256
and there are plans for supporting SHA-512 in the future.
Implementations of this extension have been developed by
both Intel (starting with the Westmere Sandy Bridge gener-
ation) and AMD (on their Zen and Puma processors). The
ARMv8 instruction set architecture also features cryptographic
extensions for both AES and SHA [19]. These extensions,
denoted by the +crypto tag, have instructions for accelerating
encryption and decryption (for AES), as well as for hashing
operations (for SHA) [19].

There have also been efforts to develop cryptographic
extensions for the open-source RISC-V instruction set archi-
tecture. According to a summary of RISC-V scalar crypto-
graphic instruction set extensions [20], RISCV-CRYPTO [15]
and XCRYPTO [16] are the two popular efforts [21]–[24].
Specifically, XCRYPTO [16] was developed considering the
potential architectural side-channels that can be used by
micro-architectural components [24]. Note that both RISCV-
CRYPTO and XCRYPTO implementations are formally veri-
fied using Sail and riscv-formal verification frameworks sep-
arately. Both RISCV-CRYPTO and XCRYPTO implementa-
tions are open source. While the XCRYPTO extension has the
complete prototype hardware implementations of the system
with different functional units, RISCV-CRYPTO has hardware
implementations of the functional units that can be used for
the power side-channel evaluation.

B. Power Side-Channel and Cryptography

Power side-channel attacks present a considerable threat
to cryptographic implementations. They work by monitoring
variations in a device’s power consumption in order to infer
sensitive information. In the context of software implemen-
tations, these attacks target the power fluctuations caused
by the execution of individual general-purpose instructions
of the cryptographic algorithms. For instance, an adversary
can analyze power consumption patterns during the execution
of certain instructions, such as those involved in modular
exponentiation in public key encryption. Software libraries
like OpenSSL have been shown vulnerable to power side-
channel attacks [25]. By monitoring power consumption dur-
ing cryptographic operations, attackers can deduce secret keys,
compromising the security of encrypted communications.

A power side-channel attack on the AES-NI extension is
illustrated in [26]. Here, the authors were able to recover AES-
NI keys from both an SGX enclave and the Linux kernel within

a time frame of 26 hours. Variations in power consumption can
also affect the electromagnetic characteristics of a device. This
property was used to develop a side-channel attack against
the Apple iPhone 7 [27], a device featuring an ARM pro-
cessor with cryptographic instruction set extensions. Specifi-
cally, the authors were able to successfully launch an attack
on ARM/AES-CE implementation that utilizes the ARMv8-
A+crypto extension, and they launched the side-channel attack
focused on Apple’s implementation of the specific instruction
set on the Apple A10 Fusion System-on-Chip (SoC).

Cordwell et al. [28] performed a theoretical analysis of
launching potential power side-channel attacks to reveal the
initial seed input on SHA-2 family algorithms including
SHA-512 using the Hamming weight of the input messages.
The authors demonstrated the possibility of this attack using
entropy/information theory arguments. The success of this
attack is influenced by the word size used in the hash algo-
rithm’s operations; smaller word sizes make the side-channel
attack more likely to succeed. If the algorithm happens to
process input byte-by-byte, the attack is feasible. However,
an algorithm that processes information in 64-bit words, as
in SHA-512 and SHA-384, poses a much greater challenge
to the adversaries. The effectiveness of this side-channel
attack depends on the analyst’s ability to measure near-perfect
Hamming weights, which may be achieved through repeated
measurements of identical hash operations. The theoretical
possibility of extracting information from later rounds, given
80 rounds of processing and 20 independent input words,
adds extra complexity. Success in launching an attack using
the findings of this study depends on specific implementation
details and device characteristics. A similar attack that can be
launched on HMAC-SHA-2 and differential power analysis
was proposed in [29]. The authors have utilized the Hamming
distance leakage model on both pure hardware implementa-
tions on FPGA and software implementations to successfully
launch an attack with less than 30K power traces.

It is important to highlight that the above vulnerable im-
plementations were identified after the fabrication process of
the hardware. Therefore, mitigation to prevent the leakage of
the manufactured hardware adds huge performance penalties
(e.g., with firmware-based masking techniques such as adding
random instructions processing random data in between the
actual cryptographic operations). This highlights the need for
validation mechanisms at the early stages of the design life
cycle of the cryptographic instruction set extensions.

C. Test Vector Leakage Assessment

Test Vector Leakage Assessment (TVLA) for hardware
implementations aims to provide the following statistical as-
surance [30], [31]: the execution of the implementation doesn’t
directly or indirectly expose sensitive information through
power side-channel signatures. There are promising TVLA
techniques for hardware implementations of cryptographic im-
plementations [12]–[14], [32]. Figure 4 illustrates the abstract
steps involved in the pre-silicon test vector leakage assessment
process for cryptographic implementations. The initial step
involves generating tests based on Hamming distance to induce
variations in power signatures [13], [14], [33]. Subsequently,
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the design undergoes simulation with the generated key pairs
and a constant plaintext. The power signature is then derived
from the change in values during the simulation. The disparity
between two power signatures is computed using statistical
techniques like t-test and KL-divergence [13], [14], [32].
Finally, the implementation is classified as either safe or
susceptible to side-channel attacks based on a predetermined
threshold. The same concept is applicable for public key
cryptosystems with a few changes, such as stage-wise test
vector leakage assessment on the vulnerable components and
performing leakage assessment on sequential operations rather
than block-wise operations involved in symmetric key cryp-
tosystems [12].

Simulation

Leakage Assessment

Test
Cases

Statistical Power
Analysis Power

Estimation

Cryptography
Module

Input
Generarion

Power
Trace

Fig. 4: An overview of pre-silicon test vector leakage assess-
ment methodology [31] that consists of four majors steps. The
first step is an input generation mechanism to maximize the
side-channel sensitivity. Next, the designs are simulated with
the generated inputs. Then, it generates a power consumption
model for the device. Finally, it performs statistical evaluations
to perform leakage assessment.

The main limitation of applying existing test vector leakage
assessment (TVLA) techniques on the cryptographic instruc-
tion set extension (CISE) prototypes is due to the hybrid
nature of the implementation which utilizes both hardware and
firmware. Unlike software- and hardware-based approaches,
CISE implementations are dependent on a special set of
instructions on the firmware and how the compiler optimizes
them. Moreover, each CISE instruction is executed using a
custom functional unit that will have a unique power signature
which needs to be evaluated.

III. LEAKAGE ASSESSMENT OF CRYPTOGRAPHIC
INSTRUCTION-SET EXTENSION (CISE) PROTOTYPES

In this section, we discuss the proposed information leak-
age assessment framework for cryptographic instruction set
extension prototypes. Figure 5 illustrates the four major steps
involved in the process. The first step is to identify the
victim components of an implementation. This involves going
through different cryptographic implementations to identify
their vulnerable steps, such as collisions. Next, the functional
units that implement these vulnerable components are eval-
uated for their potential information leakage using the test
vector leakage assessment methodology. Then each of the
functional units that fail the leakdown test are evaluated with
the system again using the test vector leakage assessment
methodology. Finally, if the system implementation passes
the leakdown test for each of the functional units, then the
implementation is ready for manufacturing. Otherwise, hard-
ware mitigations should be applied to the system to mask the

internal computations. The following subsections describe this
process in detail with examples using evaluations on RISC-V
XCRYPTO instruction set extension.

A. Victim Algorithm Identification

Before performing information leakage analysis, we have
to identify whether a cryptographic algorithm is susceptible
to power side-channel attacks, specifically those arising from
cryptographic collisions. This process involves a literature
review and a theoretical analysis. In this work, we survey
the literature published by various international, national, and
industry-specific cryptographic standards regulatory bodies,
such as the National Institute of Standards and Technol-
ogy (NIST), European Telecommunications Standards Insti-
tute (ETSI), Internet Engineering Task Force (IETF), and
scientific research bodies, such as Office of Scientific and
Technical Information (OSTI). Next, we utilize the information
about research efforts on existing attacks on cryptographic
implementations. After identifying such vulnerable algorithms,
functional units corresponding to those algorithms should be
considered for the next step of functional unit evaluation.

Example 1 (Vulnerable Algorithms): In the case of the
XCRYPTO instruction set extension, it supports AES and
SHA cryptographic algorithms. There are theoretical as well
as practical power side-channel attacks on both AES and
SHA implementations on existing literature [9], [27]–[29],
[34] as we discussed in Section II-B. Therefore, functional
units corresponding to the parts of the implementations of
AES and SHA should be considered for the functional unit
evaluation. ■

B. Functional Unit Evaluation Round

Once potential components that can leak sensitive informa-
tion as power side channels are identified, the corresponding
functional units need to be evaluated using test vector leakage
assessment. Usually, all the functional units implemented in-
side the extension follow a certain standard of how they handle
inputs and outputs. In addition to the input data registers,
there are control flags that allow communication between the
functional unit and the system. Therefore, a generic testbench
can be used to evaluate all the functional units. For this,
we create a testbench template that handles the control flags
(such as valid and done) and sets them to necessary input
values. This testbench template is also responsible for feeding
the controlled input data into the functional unit to perform
the functional operations while dumping the simulation traces
as a value change dump (VCD). Next, the hardware model
is constructed by combining the hardware description of the
functional unit (such as Verilog implementation) with the
testbench (such as Verilator CPP testbench) into one compiled
simulator application. This application can be sent to the
test vector leakage assessment methodology (which will be
discussed in Section IV) that will evaluate the functional unit
for the information leakage via power side-channel signature.
This methodology will evaluate the hardware model and return
a “Pass” or “Fail” value for the side channel leakage. Here,
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Fig. 5: Overview of information leakage evaluation framework for cryptographic instruction set extension prototypes. First, we
identify the victim functional units that can leak sensitive information as a power signature. Next, we have two main evaluation
rounds: individual functional unit evaluation (→) and full system evaluation (→). Each round prepares a corresponding
hardware model and feeds that into the test vector leakage assessment methodology (Section IV). All the victim functional
units are evaluated in the functional unit evaluation round and each of the failed functional units that is returned by the TVLA
methodology are evaluated with the system evaluation round. Functional units that fail during the system evaluation should be
mitigated with modifications to the prototype implementation.

the “Pass” signifies that the hardware model of the functional
unit does not correlate with the input values indicating a
power side-channel resistant implementation, and the “Fail”
represents that the functional unit itself leaks input data as
the side-channel signature and needs to be evaluated with the
system.

Example 2 (Functional Unit Evaluation): In case of
XCRYPTO instruction set extension, we have evaluated
four functional units of: xc aesmix, xc aessub, xc sha256,
and xc sha512. All these functional units were classified by
the test vector leakage assessment methodology as “Fail”,
indicating that they need to be evaluated with the system. ■

C. System Evaluation Round

Once all the potential victim functional units are evaluated,
all the “Failed” functional units need to be evaluated with
the system. The reason behind the system evaluation is that,
if other computations of the system can mask the operations
of any functional unit, it will provide side-channel resistance
to attacks against the particular functional unit. Compared to
the functional unit evaluation, system evaluation is a complex
process since it requires complete firmware binaries that can
be simulated with the hardware implementation of the system.
Further, this step requires the continuous integration and con-
tinuous delivery/continuous deployment (CICD) version of the
GNU Compiler Collection (GCC) toolchain with the support
for the cryptographic instructions to compile the binary. Next,
we create a firmware template in assembly code that can
switch between cryptographic workloads based on the context
dynamically.

Figure 6 illustrates a firmware template that can be used for
this purpose where value_1 and value_2 are inputs to the
cryptographic functional unit that is under test. Next, in order
to simulate the system, we construct a testbench that can read
the compiled firmware as a hex file and feed it to the read-
only memory (ROM) of the SoC while dumping the simulation
trace as a value change dump (VCD). This firmware template

.text

.global _start
_start:

li x1 , 0
li x2 , 0
...
li x31, 0
j main

(a) System Initialization Function

.data
value_1: .word 0x827b6f
value_2: .word 0x1c42bff

main:
la a1, value_1
la a2, value_2
nop
j work

(b) Main Function
aes:
xc.aessub.enc a0,a1,a2
xc.aessub.encrot a0,a1,a2
xc.aessub.dec a0,a1,a2
xc.aessub.decrot a0,a1,a2
xc.aesmix.enc a0,a1,a2
xc.aesmix.dec a0,a1,a2

(c) AES Workload Template

sha:
xc.sha256.s0 a0, a1
xc.sha256.s1 a0, a1
xc.sha256.s2 a0, a1
xc.sha256.s3 a0, a1

(d) SHA Workload Template

Fig. 6: Cryptographic workload templates used for XCRYPTO
instruction set extension running on SCARV SOC system
implementation. Depending on the functional unit that is under
test, the assembly instruction ‘j work’ should be changed to
jump to the corresponding workload.

is capable of initializing the CPU of the SoC into the proper
state and writing the internal registers with the inputs to the
cryptographic functional unit. Once the input data is loaded,
the firmware makes a jump into the cryptographic workload.
During the simulation process of the hardware model in the
test vector leakage assessment methodology, the firmware will
get updated with the input values of value_1 and value_2.
Note that each functional unit that needs to be evaluated
with the system requires a separate workload with related
cryptographic instructions.

Example 3 (Workload Templates): Figure 6 illustrates the
abstract firmware template used for the evaluation of the
XCRYPTO instruction set extension prototypes. Here the boot-
loader code responsible for initializing the SoC properly is
illustrated by Listing 6a and main function that writes input
values to the internal registers is illustrated by Listing 6b.
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Fig. 7: Overview of test vector leakage assessment that is used to evaluate individual functional units and full system of
cryptographic instruction set extensions. The input to this methodology is the hardware model that includes a testbench with
the implementation under test. This assessment consists of three major steps: input value generation, power profiling, and
power trace analysis. A test called the leakdown test is performed to classify the hardware model as “Pass” (does not leak
sensitive information as power side-channel signature) or “Fail” (leaks sensitive information as power side-channel).

In the case of the XCRYPTO, we need to evaluate both
AES and SHA. Therefore, we have created two cryptographic
workloads; the AES workload template illustrated in Listing 6c
for evaluating the AES functional unit with the system and
the SHA workload template illustrated in Listing 6d for the
evaluation of SHA implementations with the system. During
the compilation of the workload, the assembly instruction
‘j work’ in Listing 6b is changed to jump to the correspond-
ing workload that is under test. ■

Next, the system hardware model of the SoC with the
firmware and the test bench is provided for the test vector
leakage assessment methodology in Section IV which will
return a “pass” or “fail” based on the statistical evaluations.
If for all the functional units the system implementation
“Passes” the evaluation, the instruction set extension prototype
implementation passes the test vector leakage assessment and
the SoC is ready for the manufacturing process. However, if at
least one of the functional units “Fails” the system evaluation,
modifications are needed to mitigate the power side-channel
leakage. After applying the mitigation, the same experiment
should be repeated until it does not leak information as a power
side-channel signature.

IV. TEST VECTOR LEAKAGE ASSESSMENT

In the previous section, we have discussed the steps involved
in transforming a pre-silicon design for evaluation. In this
section, we discuss the specific steps involved in the test vector
leakage assessment. Figure 7 provides an overview of the
proposed test vector leakage assessment methodology. First,
we generate inputs to be fed into the cryptographic workloads.
Next, we simulate the implementation and obtain the power
signature. Then, we perform trace analysis to quantify the
amount of information leakage. Finally, we perform a leak-
down test to return a “Pass” or “Fail” result on the evaluation.

A. Input Generation

The idea of this step is to manipulate the inputs to the
hardware implementation to maximize the side-channel sensi-
tivity. This facilitates the evaluation mechanism to observe the
power fluctuations and correlate the inputs with the observed
power fluctuations. Transistors, as fundamental building blocks

of hardware circuits, determine the power consumption of
the underlying implementation. The Hamming Weight Model
and Switching Activity Model are two approaches commonly
employed for estimating the power of the hardware design.

• Hamming Weight (HW) Component (vhw): The power
consumed by a register or a memory element is propor-
tional to the number of bits set to ‘1’.

• Switching Activity Component (vsw): The power con-
sumption is related to the switching activity in the logic
gates and interconnects of the design.

Therefore, in order to improve the side-channel sensitivity
of an implementation, the Hamming weight of the inputs
needs to be manipulated in a way that they follow a uniform
distribution. For this purpose, we utilize a modified version
of “Algorithm L” [35] which is used for Lexicographic Per-
mutation Generation. The steps of the modified algorithm
are illustrated in Algorithm 1. This algorithm generates a
random number of a given Hamming weight. In order to
generate sequences of random numbers for manipulating the
implementation, we randomly sample the Hamming weight for
each of the inputs from a uniform distribution. Let’s assume
the register architecture of the instruction set extension is X .
Then the input sequence that an implementation under test will
be simulated with can be represented as shown in Equation 1.

{hwGen(ri) | ri ∈ [0, X), i ∈ N} (1)

Algorithm 1 Input Generation using hwGen() function

Input: Hamming weight hw, generator g, register width w
Output: random number R

1: function hwGen(hw, g, w)
2: R← 0
3: for i← 0 to hw− 1 do
4: bitPosition← U(0, w − 1− i)(g)
5: R← R | (1≪ bitPosition)
6: end for
7: return R
8: end function

Algorithm 1 essentially generates random inputs with uni-
formly distributed Hamming weights that can be fed into
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the functional unit of the implementation under test. This
effect cannot be obtained by directly using randomly sampled
inputs since random numbers do not have uniformly dis-
tributed randomness among their Hamming weights. Figure 8
illustrates the Hamming weight of the numbers generated
using the function hwGen() of Algorithm 1 (■ hw(hwGen))
compared with the Hamming weights of uniformly sampled
random numbers (■ hw(random)). It can be observed that
the Hamming weights of the inputs generated by the function
hwGen() are evenly distributed in the input space compared to
the Hamming weights of the uniformly sampled random num-
bers. A weighted combination of the effect of both Hamming
weight and the switching activity accounts for the input-based
expected power consumption (vf ) of the functional unit, as
illustrated in Equation 2.

vf = w1.vhw + w2.vsw (2)
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Fig. 8: Comparison between the randomness of the Hamming
weights generated using the function hwGen of Algorithm 1
(■ hw(hwGen)) against the Hamming weights of uniformly
sampled random numbers (■ hw(random)).

However, power variations induced by Hamming weights
and switching activity are only correlated to the operation
of individual functional units. This is similar to the approach
followed by the traditional method of TVLA which assumes
a more isolated execution environment. When it comes to
the system evaluation stage of the CISE, we need to account
for complex interactions between the firmware, hardware, and
the operating system kernels. As a result, applying traditional
TVLA methods directly to CISE could miss critical leakage
paths or incorrectly attribute leakage to irrelevant operations,
leading to inaccurate assessments of the system’s side-channel
resistance. For this, we incorporate two additional components
into the power model of the system evaluation round.

• Flag Interaction Component (vfi): Cryptographic ISAs
may affect CPU flags (e.g., zero flag, carry flag) during
the execution of cryptographic instructions, which could
contribute to the overall power consumption.

• Instruction-based Component (vin): Each CISE instruc-
tion has a base power consumption based on its complex-
ity, number of cycles, and hardware resources used.

Finally, we use the weighted sum of these components to
compute the input-based expected power consumption vs of
the system as illustrated in Equation 3.

vs = w1.vhw + w2.vsw + w3.vfi + w4.vin (3)

Computing each of the weights can be done with the help
of post-synthesis results. Post-synthesis reports provide details,
such as net capacitances, gate types, and toggle rates, which
serve as inputs to compute dynamic power. By applying the
technology library’s power models, an initial estimate can be
computed. The scaling factor is then adjusted based on realistic
conditions, accounting for factors like wire loads, parasitics,
and temperature, ensuring a closer approximation to post-
silicon measurements. Due to the scope of this work and the
nature of the reference implementation, we use an average-
case estimation by using equal weights for each component.

B. Power Profiling
Once input patterns are generated, the next step is to feed

the generated inputs into the hardware implementation and
simulate it. The steps involved in the testbench development
process for functional units and system evaluation were dis-
cussed in Section III-B and Section III-C, respectively. Note
that the hardware model that is provided as the input to this
step is a compiled simulator program that accepts sequences of
1) register input values in the case of functional unit evaluation
and 2) compiled firmware in the case of full system evaluation.
Therefore, for the functional unit evaluation, the input values
generated in Section IV-A are directly provided as inputs while
for the system evaluation, the firmware needs to be updated
with the input values generated in Section IV-A and compiled.
The next step is to obtain the estimate of the power consump-
tion of the fabricated chip using the pre-silicon simulation. To
accomplish this, we use simulation value change dump (VCD)
traces and estimate the power consumption of the transistors
in the design with power estimation tools.

The VCD captures signal activity during simulation, in-
cluding transitions of nets and registers. These transitions
are used to compute dynamic and static power consumption.
The typical flow involves running a functional simulation
with the generated inputs to obtain the VCD file, which is
then analyzed considering both the switching activity and
the design’s capacitance model. This process helps estimate
power consumption based on real signal toggling in the
design [12], [13], [32], [33], [36]–[38]. There are commercial
tools such as Synopsys PrimePower [39], Cadence Voltus [40],
and Siemens PowerPro [41] that can provide detailed power
analysis using VCD files. These tools offer advanced features
like clock gating, glitch filtering, and hierarchical analysis,
making them suitable for both early-stage and more detailed
power estimations.

C. Power Trace Analysis
Once the power signature of the implementation is extracted

from the simulation, the specific region of the power signature
that is responsible for the cryptographic functional unit needs
to be isolated. We first perform a change period detection.
Once the power signature is isolated, correlation power anal-
ysis and differential power analysis can be performed, which
will evaluate the correlation between the power signature and
input values to the cryptographic functional units. In this
section, we discuss these three steps in detail.
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1) Change Period Detection: In order to extract the power
signature corresponding to the functional unit from the entire
simulation, we first need to align the input sequences with
the power traces. This process is done based on the pipeline
depth of the design under test. For example, in case of a
combinational functional unit that implements the dataflow
behavior, the power signature is the power values observed
in the next cycle right after feeding the inputs. On the other
hand, in case of a sequential functional unit that consumes
a fixed number of cycles to complete the operations, the
corresponding power values are found in a region, which we
refer as “Change Period (Cp)”. The change period can be
visually identified in the power trace by changing only the
inputs of the functional unit and keeping all other inputs in
fixed values.
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Fig. 9: Change period (Cp) detection from the full system
(executing cryptographic workload AES firmware on SCARV-
SOC) power signature evaluation. By only changing the input
register values from X1 to X2 for the functional unit on
the particular firmware, the power consumption period of the
functional unit can be uniquely identified.

Example 4 (Change Period Detection): Figure 9 illustrates an
example where we have used the proposed change period de-
tection technique on an AES functional unit of the XCRYPTO
extension with the SCARV-SoC. In this instance, the firmware
is unchanged except for the fact that the input values to
the AES functional unit are changed from X1 to X2. This
drastically changes the power signature of the functional
unit, which makes it distinguishable from the power signature
created by other components of the SoC. ■

Once the Cp is identified, we map it to a single power
value (pm) by considering the maximum observed power point
within the range of Cp as illustrated in Equation 4. The reason
for this is that an adversary is interested in the peak power
points in the power signature since that is observable during
the actual device is in the field.

pm = max(Cp = {p1, . . . , pj}) (4)

Next, we need to determine the minimum number of exper-
iments (n) that need to be performed in order to achieve the
required statistical significance level of α. In order to calculate
this, we repeat the above process with 1000 experiments and
collect the peak power distribution that contains 1000 samples
as P 1000 = {pm1 , . . . , pm1000}. Next, we use Equation 5 to
compute the n value using the collected peak power distribu-
tion. Here, Zi is the point on the normal distribution to give

the required statistical power and significance. Additionally,
d represents the effect size, σ is the standard deviation,
while β and α represent the statistical power and significance
respectively. Next, the value of the n is obtained and the
change period detection experiment is repeated until it satisfies
the required n peak power samples.

n = 2 ·
(
Z(1−α

2 ) + Zβ

d

)2

· σ2 (5)

Once this process is repeated for the minimum number
of experiments (n) required for the required statistical sig-
nificance, we can obtain a distribution that consists of the
peak power of each experiment as Pm = {pm1 , . . . , pmn }
which will be used to perform the correlation power analysis
in the next step. This will result in distribution with either
V f = {vf1 , . . . , vfn} or V s = {vs1, . . . , vsn} representing
input-based expected power consumption depending on the
corresponding evaluation round of functional unit or system
evaluations, respectively. For ease of reference, we will refer
to this distribution as V f/s throughout the rest of this sec-
tion. This essentially refers to V f during the functional unit
evaluations and V s during the system evaluation round.

2) Correlation Power Analysis: At this stage, we have two
distributions of expected power consumption values (V f/s for
functional units or the system) generated by Algorithm 1 and
peak power (Pm) obtained in Section IV-C1 which contains
n samples in each. Lets represent these two distributions as
V f/s = {v1, . . . , vn} and Pm = {pm1 , . . . , pmn }, respectively.
For the correlation power analysis, we will be conducting
hypothesis testing. Therefore, we construct the hypotheses

• H0 as there is no correlation between the observed power
consumption against the input-based expected power con-
sumption

• H1 as there is a correlation between the observed power
consumption and the input-based expected power con-
sumption

Then we set the statistical significance to α which is
used to calculate the sample size (n). Next, we compute
the Chi-squared static for two distributions using Equation 6.
Here, pi corresponds to each element in the peak power
distribution Pm. The expected power value ei is calculated
using Equation 7 and the contingency table that is constructed
using both the distributions of V f/s and Pm. In Equation 7,
γ, ν,Λ represent row sum, column sum, and the total sum of
the contingency table, respectively.

χ2 =

n∑
i=1

(pi − ei)
2

ei
(6) Ei =

γ(W (vi))× ν(pi)

Λ
(7)

A contingency table is constructed to organize and summa-
rize the joint distribution of two categorical variables of peak
power distribution and the expected power consumption based
on the input. To create a contingency table, we assign each
variable either a row or a column, and the intersection cells
represent the frequency of corresponding observations falling
into that category. In other words, the contingency table can
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translate the expected power consumption based on the input
into a corresponding peak power value.

Observed Peak Power Values (Pm)
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

E
xp

.
Po

w
er

(V
f

) v1 3 8 5 2 7 4 10 6 9 1
v2 7 1 9 6 3 8 2 10 4 5
v3 1 4 2 9 8 3 6 7 10 5
v4 5 6 8 3 1 10 7 9 2 4
v5 8 3 4 7 5 2 1 6 10 9
v6 2 7 1 10 9 5 4 8 3 6
v7 9 10 6 4 2 9 3 1 7 8

Fig. 11: Example contingency table constructed from input-
based expected power consumption value of the functional
units with the observed peak power values.

Example 5 (Contingency Table): Figure 11 illustrates an ex-
ample contingency table constructed from two example peak
power and input-based expected power consumption distri-
bution. In this example, we have observed ten unique power
levels in the peak power consumption distribution from p1 to
p10 which is represented as each column. On the input-based
expected power consumption distribution, we have observed
seven different values from v1 to v7 which are represented
in each row. Then the internal cell values are the frequencies
of both occurrences at the same time. For example, the entry
corresponding to the first row (v1) and the first column (p1)
indicates that we have observed 3 samples with the input-
based expected power consumption of v1 and the peak power
value of p1. ■

df = (|γ| − 1).(|ν| − 1) (8)

p-value = 1− CDF (χ2, df) (9)

Next, we use Equation 8 to compute the degree of freedom
df , where |γ| represents the number of rows and |ν| represents
the number of columns in the contingency table. For the
contingency table in Figure 11, the degree of freedom is
df = (7 − 1) × (10 − 1) = 54. Finally, using the cu-
mulative distribution function (CDF) with the computed χ2

value from Equation 6 and df from Equation 8, the p-value
is computed using Equation 9. If p-value ≤ α, we reject
the null hypothesis (H0), which indicates that there is a
significant correlation between the peak power consumption
of the implementation with the inputs to the cryptographic
function units. Alternatively, if p-value > α, we fail to reject
the null hypothesis (H0).

3) Differential Power Analysis: Differential Power Anal-
ysis (DPA) enhances Correlation Power Analysis (CPA) by
grouping power traces based on key guesses and analyzing
the differences in power consumption, which enables efficient
detection of key-dependent leakage, even in noisy environ-
ments [42]. DPA can further improve the analysis by incorpo-
rating higher-order power analysis [43], which targets more
complex leakage scenarios involving multiple intermediate
values. Specifically, we use DPA in the system-level analysis,
where noise can be introduced by other components, such
as the processor pipeline and the compiled code (assembly
instructions executed in the pipeline). Similar to the CPA,

we conduct hypothesis testing for the DPA. Therefore, we
construct the hypotheses

• H0 as there is no correlation between the observed power
consumption against the input-based expected power con-
sumption

• H1 as there is a correlation between the observed power
consumption and the input-based expected power con-
sumption

Next, we select a possible guess for the algorithm’s secret
key. Then, for each input value in V f/s, we compute the input-
based expected power consumption considering the guessed
key as the input. After that, we group the input values V f/s

and corresponding power traces Pm into two groups, one
where the hypothetical power matches the key guess and one
where it does not. Then for each group, we calculate the
average power trace over all the samples. Finally, we compute
the difference between the average traces of the two groups
to identify potential key-dependent leakage using t-statistic
illustrated by Equation 10 (with a corresponding p-value value
in Equation 11). In Equation 10, µg1 and µg0 corresponds to
means of the two groups and σg1 and σg0 are the variances,
and ng1 and ng0 are the sample size of two groups.

t =
µg1 − µg0√
σg1

ng1
+

σg0

ng0

(10) p-value = 2

∫ ∞

|t|
f(t, d)dt (11)

We use the p-value from Equation 11, where f(t, d) is
the probability density function of the t-distribution with d
degrees of freedom. The null hypothesis H0, which assumes
no relationship between power consumption and the key guess,
is rejected if the p-value is below a chosen significance level
α. If the p-value < α, it indicates the presence of higher-
order key-dependent leakage, rejecting H0. Otherwise, H0 is
accepted.

D. Leakdown Test

Leakdown test determines whether each functional unit
leaks internal secret information as a power side-channel
signature based on the correlation power analysis results and
differential power analysis results by assigning a ”Pass” or
”Fail” result. Here ”Fail” result happens when we reject the
null hypothesis (p-value ≤ α) for either of the CPA or
DPA results which means that the functional unit leaks the
information about the cryptographic secrets as power side-
channel signature. In other words, in order to leakdown test
to be passed, both CPA and DPA results should accept their
corresponding null hypothesis H0.

Since the proposed leakage assessment methodology is
comprised of two rounds of functional unit evaluation (dis-
cussed in Section III-B) and system evaluation (discussed in
Section III-C), the leakdown test is carried out as follows.
First, each functional unit is evaluated with the test vector
leakage assessment methodology in the functional unit evalu-
ation round to obtain the leakdown test results. Next, all failed
functional units are sent to the system evaluation round. The
objective is that if other components in the system can mask
the power signature of the functional unit, then the implemen-
tation will not leak the information. The leakdown test results
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for system evaluation round corresponding to each functional
unit will classify the testing prototype implementation as a
”Pass” or ”Fail” from the test vector leakage assessment.
Any functional units that ”Fails” the leakdown test should
incorporate register masking techniques to hide/obfuscate the
power signature and the modified implementation should be
again evaluated with our proposed approach until it passes the
system evaluation round.

V. EXPERIMENTS

In this section, we evaluate two prototype implementations
of cryptographic instruction set extensions for the open-source
RISC-V architecture. We first briefly introduce these two
instruction set extensions. Next, we outline our experimental
setup. Finally, we present our experimental results.

A. Instruction Set Extensions Under Evaluation

In order to evaluate the effectiveness of proposed test vector
leakage assessment framework, we have selected two popular
cryptographic instruction set extensions, RISCV-CRYPTO and
XCRYPTO . In this section, we provide a brief overview of
these implementations.

RISCV-CRYPTO instruction set extension [15]: RISCV-
CRYPTO extension was proposed as a lightweight accelerator
solution for cryptographic workloads of embedded systems.
Modern cryptographic operations work with operands wider
than the individual elements in modern computer architecture,
which are typically limited to 64 bits. These wider operands,
often 128 or 256 bits, can consist of smaller elements that
are combined or may be a single value (e.g., 128-bit block or
round key in AES). RISCV-CRYPTO treat these operands as
vectors of one or more element groups based on the RISC-
V Vector Element Groups specification. Each vector crypto
instruction explicitly defines three parameters, Element Group
Width (EGW), Effective Element Width (EEW) and Element
Group Size (EGS), which represents total number of bits in an
element group, number of bits in each element, and the number
of elements in an element group, respectively. Table I presents
the specification details of different cryptographic algorithms
with the three parameters of EGW, EEW, and EGS.

XCRYPTO instruction set extension [16]: XCRYPTO aims
to facilitate efficient and secure software implementation of
cryptographic primitives, similar to standard floating-point
extensions. It explores a diverse design space for processor
cores and system architectures, allowing for hardware-only,
mixed, or firmware-only approaches. However, XCRYPTO
specifically focuses on supporting firmware-based crypto-
graphic implementations, with an emphasis on constrained
cores like microcontrollers. The specification does not assume
a specific value for architecture register widths (32, 64, or
128), but it commonly targets 32-bit microcontroller-class
cores. XCRYPTO requires interaction with a Random Number
Generator (RNG), leaving the instantiation unspecified but
assuming adherence to best practices for security. This ap-
proach balances flexibility in implementation with the critical
importance of selecting a secure RNG instance. Compared

to RISCV-CRYPTO, XCRYPTO is in a more mature stage
in its development. It consists of Verilog prototypes for each
of the required functional units for cryptographic algorithms
of AES, SHA256, and SHA512. It consists of a complete
SoC implementation in Verilog with a CPU that integrates
the prototype functional units enabling full pre-silicon system
simulation.

TABLE I: Specification details of different cryptographic
algorithms on RISCV-CRYPTO instruction set extension.

Algo. AES SHA256 SHA512 GCM SM4 SM3
Extn. Zvkned zvknh zvknhb Zvkg Zvksed Zvksh
EGW 128 128 265 128 128 256
EEW 32 32 64 32 32 32
EGS 4 4 4 4 4 8

B. Experimental Setup
We have used Verilog prototype implementations of both

RISCV-CRYPTO and XCRYPTO extension prototypes. For
the systems evaluation of the XCRYPTO extensions, we
have used SCARV-SOC with the SCARV-CPU that integrated
the prototype functional units. Verilator [44] simulator was
used to simulate the Verilog implementations and obtain the
simulation traces as value change dumps (VCD). Pre-silicon
power estimation based on VCD was performed with Synopsys
PrimePower [39]. For compiling the firmware for the system
evaluation, the modified GNU GCC toolchain with XCRYPTO
extension was used. The process of building the system
model, automated compilation of firmware and the power
modeling was performed using C++ and C while statistical
computations were performed using Python scripts. The entire
framework was implemented inside a Docker environment
and the experiments were performed on a system with an
Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz (64 bit) with
24GiB memory. According to the analysis of the cryptographic
algorithms and their associated collisions that can reduce the
effort of key/secret guessing, we have selected the functional
units corresponding to the algorithms SHA and AES.

C. SHA Functional Unit Evaluation Results
In this section, we present the results for evaluating SHA

functional units that are implemented in Verilog from RISCV-
CRYPTO and XCRYPTO extensions. For this, we have sim-
ulated the prototype implementations according to the steps
outlined in Section III-B. Table II presents the configuration
parameters and the results of the experiments for evaluating
SHA implementations. The statistical results in Leakdown test
column illustrate that there is a strong correlation between
the input-based expected power consumption and the observed
power consumption of individual functional units, which leaks
the cryptographic secrets as power side-channel signature.

In order to visually observe this correlation we have
plotted the observed power consumption against the input-
based expected power values. Figure 13 demonstrates the
visual similarity between the observed power values (■ obs.
power) of the functional units against the input-based ex-
pected power consumption (■ exp. power) of the func-
tional unit. Here Figure 13a, Figure 13b, Figure 13c, and Fig-
ure 13d represent the first 256 experiments out of all conducted
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(a) RISCV-CRYPTO SHA256
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(b) RISCV-CRYPTO SHA512

0 50 100 150 200 250
Cycles

0
20
40
60
80

100
120
140
160

ob
s.

po
w

er
(P

m
)

0
2.5
5
7.5
10
12.5
15
17.5
20

ex
p.

po
w

er
(V

f
)

obs. power exp. power

(c) XCRYPTO SHA256
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(d) XCRYPTO SHA512
Fig. 13: Visual similarity between the observed peak power consumption (■ obs. power) of the functional unit and the
input-based expected power values (■ exp. power) on functional modules related to SHA computations on RISCV-CRYPTO
and XCRYPTO cryptographic instruction set extension prototypes. The variations in the trend of the input-based expected power
values are preserved in the observed power signature.

TABLE II: Test vector leakage assessment results on
SHA functional unit prototypes from RISCV-CRYPTO and
XCRYPTO extensions. Here all the functional units fail the
leakdown test indicating a high correlation between the input-
based expected power consumption against the observed power
consumption of the functional unit.

RISCV-CRYPTO XCRYPTO
Module SSHA256 SSHA512 SHA256 SHA512
Minimum n 4896 5103 4972 5001
Eval. Time (Sec) 6 5 5 6
CPA p-value 6.534e-7 7.548e-7 2.838e-7 8.991e-7
Leakdown Test Fail Fail Fail Fail

experiments of four instances of experiments on RISCV-
CRYPTO SHA256, RISCV-CRYPTO SHA512, XCRYPTO
SHA256, and XCRYPTO SHA512, respectively. It illustrates
that prototype implementations from both RISCV-CRYPTO
and XCRYPTO have a high correlation between the input-
based expected power with the observed power signature of
the implementation.

D. AES Functional Unit Evaluation Results

In order to evaluate the AES implementations of both
RISCV-CRYPTO and XCRYPTO prototype extensions, we
have applied the steps outlined in Section III-B on the cor-
responding Verilog functional units. Table III presents the
configuration parameters and the results of the experiments
for evaluating AES implementations. Similar to the SHA
implementation results, the leakdown test results for AES
functional modules illustrate that there is a strong correlation
between input-based expected power consumption and the
observed power consumption of individual functional units.

TABLE III: Test vector leakage assessment results on
AES functional unit prototypes from RISCV-CRYPTO and
XCRYPTO extensions. Here all the functional units fail the
leakdown test indicating a high correlation between the input-
based expected power consumption against the observed power
consumption of the functional units.

RISCV-CRYPTO XCRYPTO
Module SAES32 SAES64 AESMIX AESSUB
Minimum n 5293 5209 5013 5320
Eval. Time (Sec) 11 10 13 14
CPA p-value 6.892e-7 5.473e-7 8.857e-7 7.921e-7
Leakdown Test Fail Fail Fail Fail

Figure 13 demonstrates the visual similarity between the ob-
served power values (■ obs. power) of the functional units
against input-based expected power consumption (■ exp.
power) of the functional units. Here Figure 14a, Figure 14b,
Figure 14c, and Figure 14d represent the first 256 experiments
out of all the conducted experiments of four instances of exper-
iments on RISCV-CRYPTO AES32, RISCV-CRYPTO AES64,
XCRYPTO AESMIX, and XCRYPTO AESSUB, respectively.
It illustrates that AES prototype implementations from both
RISCV-CRYPTO and XCRYPTO have a high correlation
between the input-based expected power consumption and the
observed power signature of the implementation.

E. System Evaluation Results

Since all the functional units related to the cryptographic
algorithms of AES and SHA failed the functional unit eval-
uations signifying that there is a considerable information
leakage, we have performed the system evaluation as discussed
in Section III-C. However, since both RISCV-CRYPTO and
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(a) RISCV-CRYPTO SAES32
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(b) RISCV-CRYPTO SAES64
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(c) XCRYPTO AESMIX
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(d) XCRYPTO AESSUB
Fig. 14: Visual similarity between the observed peak power consumption (■ obs. power) of the functional unit and the
input-based expected power values (■ exp. power) on functional modules related to AES computations on RISCV-CRYPTO
and XCRYPTO cryptographic instruction set extension prototypes. The variations in the trend of the input-based expected power
values are preserved in the observed power signature.

XCRYPTO are in the development phase, all the functional
units are not integrated into full system prototypes. The full
system prototype is available for only three functional units
of SHA256, AESSUB, and AESMIX from the XCRYPTO
instruction set extension. Table IV presents the configuration
parameters and the results of the experiments for evaluating
SHA256, AESSUB, and AESMIX implementations. The ‘Fail’
statistical results in the Leakdown test column illustrate that
there is a strong correlation between the input-based expected
power consumption and the observed power consumption
of the system on both AESSUB and AESMIX prototypes,
which leaks the cryptographic secrets as power side-channel
signature. On the other hand, the SHA256 implementation
‘Pass’ the leakdown test signifying that it does not have a
statistical correlation between the input-based expected power
consumption and the observed power consumption of the
system implementation.

Similar to the previous experiments, we have plotted the
visual relationship between the system power consumption
against the input-based expected power consumption related
to the system, when executing the firmware. Figure 15 demon-
strates the visual similarity between the observed power values
(■ obs. power) of the functional units against the input-
based expected power consumption (■ exp. power) of
the system. Here Figure 15a, Figure 15b, and Figure 15c
represent the maximum power values observed in the first 256
experiments out of all the experiments of each power trace
analysis round for three instances of XCRYPTO SHA256,
XCRYPTO AESMIX, and XCRYPTO AESSUB, respectively.
As expected, there is no visible correlation for SHA (Fig-
ure 15a) but a strong correlation for AES (Figure 15b and

TABLE IV: Test vector leakage assessment results on full
system prototypes of XCRYPTO extensions. Here the two
functional units related to AES computations fail the leakdown
test indicating a high correlation between the input-based
expected power consumption against the observed power con-
sumption of the system. However, SHA computation passes at
the system level, which indicates that other system operations
have masked the unit level leakage (shown in Table II).

SoC (Extension) SCARV-SoC (XCRYPTO)
Module SHA256 AESMIX AESSUB
Minimum n 5214 4976 5084
Avg. Firmware Size (Bytes) 450 450 450
Avg. Compile Time (Sec) 6 5 8
Evaluation Time (Sec) 2475 2610 2836
CPA p-value 0.9241 9.376e-7 5.863e-7
DPA p-value 0.6427 6.527e-6 7.874e-6
Leakdown Test Pass Fail Fail

Figure 15c). Unlike functional unit evaluations, system eval-
uations include the noise added by the compiler and the pro-
cessor pipeline such as the instruction fetch, decode, execute,
etc. Additionally, memory transfers occur during the execution
of the firmware. In the case of SHA, the effects from the above
components hindered the power side channel leakage that we
observed on the isolated functional unit.

F. Evaluation on Mitigated Implementations

Based on our experiments, we have explored two mitigation
strategies: (i) operand blinding and (ii) affine masking.
Operand blinding introduces minimal hardware overhead and
has the least impact on the cryptographic instruction set
extensions (CISE) workflow. However, it may remain vulner-
able to higher-order differential power analysis (DPA), where
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(a) Evaluating SCARV-SoC with SHA256
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(b) Evaluating SCARV-SoC with AESMIX
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(c) Evaluating SCARV-SoC with AESSUB

Fig. 15: Visual (dis)similarity between the observed peak
power consumption (■ obs. power) of the SoC and the
input-based expected power values (■ exp. power) of
the System evaluation with functional unit prototypes from
XCRYPTO cryptographic instruction set extensions. Here the
system consists of SCARV-SoC with SCARV-CPU that inte-
grates XCRYPTO functional units.

adversaries analyze combinations of leakage from multiple
points in the execution. In contrast, affine masking is a more
robust countermeasure for higher-order attacks by applying an
affine transformation to the data, which involves both linear
and random elements. [45]. However, affine masking comes
with a higher hardware overhead, particularly in terms of
logic complexity compared to operand blinding. To evaluate
the effectiveness of the proposed approach on hardware im-
plementing power side-channel mitigation, we performed two
separate experiments with hardware modifications addressing
leaking registers in the functional units. In the first experiment,
we applied operand blinding by introducing random masks
to the operands in the XCRYPTO AESMIX and AESSUB
operations, masking the data before performing cryptographic
functions and unmasking the results afterward. In the sec-
ond experiment, we implemented affine masking, where the
operand data was masked using a combination of a random
value and an affine transformation.

Table V illustrates the summary of the experiments
against three SoC configurations of the system with original,

operand blinded, and affine mask applied functional units for
XCRYPTO AESMIX and AESSUB. During this experiment,
we observed no CPA correlation (p-value ≈ 1) between the
input-based expected power values against the observed power
side-channel signature for both operand blinded and affine
masked implementations. However, during the analysis with
DPA, which accounts for higher order evaluations, operand-
blinded implementations failed with p-value < 0.05. This
illustrates that affine-masked implementation is resistant to
potential power side-channel vulnerabilities including higher-
order analysis after fabrication.

TABLE V: Test vector leakage assessment results on full
system prototypes of the original XCRYPTO extensions com-
pared with the modified implementations that incorporate
operand blinding power side-channel mitigation.

p-valueFunctional Unit Area
% CPA DPA

Leakdown
Test

Original 1 7.823e-7 8.342e-7 Fail
Op. Blind 1.04 0.8720 4.827e-3 FailAES MIX
Affine 1.21 0.9653 0.7521 Pass
Original 1 7.921e-7 8.310e-7 Fail
Op. Blind 1.05 0.9021 5.924e-3 FailAES SUB
Affine 1.25 0.9672 0.6739 Pass

Figure 16 illustrates the visual dissimilarity between the
observed power consumption (■ obs. power) of the SoC
and the input-based expected power consumption of the system
(■ exp. power) after performing operand blinding and
affine masking. It can be observed that there are no visual
similarities between the observed power consumption and the
input-based expected power consumption, however, higher-
order analysis confirms the potential for information leakage
with operand blinding mitigation as illustrated by the results
of Table V. Although the mitigation strategies discussed pro-
vide protection against higher-order analysis, it is important
to use true random number generators (TRNG) during the
fabrication. This experiment illustrates that our pre-silicon
side-channel evaluation framework is universally applicable
regardless of whether the design incorporates mitigation or not.
In fact, a design should use our framework after incorporating
mitigation to ensure that the mitigation is effective.

VI. APPLICABILITY AND LIMITATIONS

As discussed in Section I, there are two ways of designing
fast cryptographic implementations: hardware accelerators and
cryptographic instruction set extensions (CISE). This paper fo-
cused on the information leakage assessment of cryptographic
instruction set extensions (CISE) prototypes. However, our
proposed framework can be extended to support the evaluation
of hardware accelerators as well as cryptographic coprocessors
with minor modifications. For example, when we want to
evaluate an AES hardware accelerator which is connected
using a memory-mapped input/output (MMIO) interface, the
system evaluation round should be modified with necessary
firmware modifications. Additionally, the focus of our work is
on pre-silicon evaluation methodologies tailored specifically
for early-stage design exploration, in line with state-of-the-
art pre-silicon side-channel evaluation techniques. At this
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(a) Operand blinding on SCARV-SoC with AESMIX
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(b) Operand blinding on SCARV-SoC with AESSUB
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(c) Affine Masking on SCARV-SoC with AESMIX
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(d) Affine Masking on SCARV-SoC with AESSUB

Fig. 16: Visual dissimilarity between the bserved peak power consumption (■ obs. power) of the SoC and the input-based
expected power values (■ exp. power) after performing power side-channel mitigation on functional modules.

stage, our objective is to identify cryptographic weaknesses
and potential leakage vulnerabilities at the architectural and
logic levels of cryptographic instruction set extension (CISE)
prototypes, before considering the physical effects associated
with post-routing concerns.

Similar to existing TVLA methods, our approach assumes
the knowledge of potentially vulnerable cryptographic func-
tions (e.g., cryptographic collisions) as well as module (unit)
level boundaries. Although there are many industrial CISE
implementations with different instruction set architectures, we
do not have access to the corresponding hardware to apply our
proposed framework. As a result, we applied only on open-
source CISE prototype implementations.

Cryptographic instruction set extensions (CISE) ecosystem
consists of many components and interactions between them,
including custom instructions, compilers, firmware templates,
hardware modules, and validation framework with the contin-
uous integration and continuous deployment (CICD) pipeline.
Currently, the validation framework uses an effective com-
bination of simulation-based validation and formal methods.
Going forward, our proposed information leakage assessment
framework will be included into the CICD pipeline.

VII. CONCLUSION

Cryptographic instruction set extensions (CISE) is a promis-
ing avenue to design fast and flexible security implementation.
Unfortunately, there are many demonstrated attacks on CISE
implementations and it is hard to mitigate them without in-
troducing significant performance overhead. Clearly, there is a
need to develop an efficient solution for verifying the existence
of side-channel vulnerabilities in CISE prototypes. In this pa-
per, we proposed a test vector leakage assessment framework
that can be used to evaluate information leakage in hardware
implementations of CISE prototypes. Specifically, this paper

made three important contributions. First, we evaluate each
functional unit for potential power side-channel leakage of
internal secrets. Next, if the functional units are determined
to be leaky, we also evaluate the system model for potential
power side-channel leakage. Finally, we have demonstrated
the applicability and effectiveness of our proposed framework
using two CISE prototypes, RISCV-CRYPTO and XCRYPTO,
covering eight functional units of fu ssha256, fu ssha512,
xc sha256, xc sha512, fu saes32, fu saes64, xc aesmix and
xc aesmix. Experimental results revealed that, except for the
full system evaluation of xc sha256, all other functional
modules along with their systems evaluations failed the leak-
down test, signifying that there is a considerable amount of
information leakage during the computations of cryptographic
workloads. These results also highlight the need for pre-silicon
test vector leakage assessment during the development life-
cycle of cryptographic instruction set extensions.
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