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Revealing CNN Architectures via Side-Channel Analysis in
Dataflow-based Inference Accelerators
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Convolutional Neural Networks (CNNs) are widely used in various domains, including image recognition,
medical diagnosis and autonomous driving. Recent advances in dataflow-based CNN accelerators have enabled
CNN inference in resource-constrained edge devices. These dataflow accelerators utilize inherent data reuse
of convolution layers to process CNN models efficiently. Concealing the architecture of CNN models is
critical for privacy and security. This paper evaluates memory-based side-channel information to recover
CNN architectures from dataflow-based CNN inference accelerators. The proposed attack exploits spatial
and temporal data reuse of the dataflow mapping on CNN accelerators and architectural hints to recover the
structure of CNN models. Experimental results demonstrate that our proposed side-channel attack can recover
the structures of popular CNN models, namely Lenet, Alexnet, VGGnet16, and YOLOv2.

CCS Concepts: • Security and privacy→ Embedded systems security; Side-channel analysis and counter-
measures; • Computing methodologies→Machine learning.

Additional Key Words and Phrases: Convolutional Neural Networks, Edge Inference Accelerators, Dataflow-
based Inference Accelerators, Side-channels, Model Extraction

1 INTRODUCTION
Convolution Neural Networks (CNNs) [16] are Deep Neural Networks (DNNs) that incorporate
convolution (Conv) layers specialized in processing multidimensional data. CNNs are used in a
wide range of applications, such as image and video recognition, classification, and analysis. These
neural networks operate in two main phases: training and inference. The training phase involves
a time-consuming process of learning weights in the neural network, while inference uses the
pre-trained neural network to perform fast predictions. Resource-constrained edge devices perform
inference in the device rather than sending data to a centralized server for inference. These edge
devices can range from mobile phones to remote offline sensor networks.
Edge artificial intelligence (AI) enhances system performance by mitigating communication

bottlenecks between edge devices and servers, ensuring high availability independently of net-
work/internet connectivity, providing real-time insights, and minimizing the need for extensive
data storage [40]. AI at edge needs inference of pre-trained CNN models on resource-constrained
devices with energy and area constraints. General-purpose central processing units (CPUs) or
graphics processing units (GPUs) can be used for the purpose of training and inference of CNNs,
though GPUs are preferred for their superior parallel processing capabilities. Although central
CPUs or GPUs are used in training these CNNs at servers, dataflow-based accelerators are preferred
for inference at edge devices [8]. Dataflow is a computing scheme that utilizes inherent data reuse
of Conv layers to achieve efficient CNN inference performance. Dataflow-based CNN accelerators
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save energy and execution time by reducing the cost of main memory accesses by introducing a
local memory hierarchy inside the accelerator [40]. Dataflows can be broadly classified into four
categories depending on the type of stationary data [40]: weight stationary, output stationary, input
stationary, and row stationary. This paper explores two widely used dataflows: weight stationary
(WS) and output stationary (OS). These dataflow accelerators can be designed using Application
Specific Integrated Circuit (ASIC) as well as Field-Programmable Gate Array (FPGA). ASIC-based
accelerators are preferred in edge inference since they are energy efficient while providing adequate
computational flexibility [28].

These CNN models need to be run on various edge devices with diverse hardware, software, and
firmware developed by different vendors. Supply chain vulnerability can lead to security concerns
for these edge devices with accelerators. For example, hardware Trojans can be inserted during
the design as well as fabrication phase of an ASIC-based accelerator with the malicious intent
of leaking sensitive information without being detected at the post-silicon verification stage or
during runtime [32]. In many application scenarios, the structure of a CNN model should be kept
confidential for the following reasons. (1) CNN model can be a company’s proprietary and critical
intellectual property. (2) Knowing the network model leads to designing and launching efficient
adversarial attacks [5]. (3) User privacy can be compromised in a shared accelerator if the model
architecture is leaked, as it reveals unique data processing characteristics and intended uses of the
model, while also aiding adversaries in executing model inversion attacks [13]. Different types of
side-channel analysis (memory, timing, electromagnetic emanation) are used in recovering CNN
structures from GPU/CPUs [19, 25, 26, 44, 47]. GPUs/CPUs use a temporal computing paradigm
where centrally controlled processing units can only fetch data from the memory hierarchy. On
the other hand, dataflow-based accelerators have a spatial computing paradigm where transfer
between individually controlled processing units is possible. Due to the inherent difference in
computing paradigm and underlying architecture, existing side-channel attacks on GPU/CPU-
based accelerators cannot be directly applied to dataflow-based accelerators. Furthermore, existing
memory-based side-channel attacks [21] on CNN processing focus on main memory to accelerator
memory transfer, which leads to reverse-engineering a large set of possible CNN structures for a
single CNN model. For example, [21] gives 24 possible structures for Alexnet [27].

In this paper, we try to answer a fundamental question: is it possible for an adversary to exploit

inherent data reuse of dataflow-based CNN inference accelerators via memory side-channels to ac-

curately recover architectures of CNN models? Our proposed research needs to answer two major
challenges in developing such an attack: (1) how to exploit different dataflow patterns to converge
a large number of potential structures to a few, although different layer structures can result in
the same side-channel values, (2) how to develop a generalized approach to recover structures
from different input, output, layer sizes and their mapping on the accelerator? CNN consists of a
sequence of Conv, fully connected (FC), and pooling layers. Due to the prevalence of Conv layers
and their inherent data reuse, CNN accelerators focus on accelerating convolution layers. Therefore,
our study principally concentrated on exploiting these acceleration techniques to recover CNN
architectures. Specifically, this paper makes the following important contributions.

• We adapt and refine the bus snooping-based threat model used in GPUs [20, 21] to collect
memory-based side-channel information from dataflow-based CNN inference accelerators.
• We propose a mechanism to recover the structure of Conv and FC layers from weight
stationary and output stationary dataflow-based CNN inference accelerators with local
forwarding.
• Pooling layer parameters from the pooling module inside the CNN accelerator is recovered
under assumptions on typical pooling layer characteristics.
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• We propose a framework to recover the complete architecture of CNN by iterative recovery
of individual layers.
• Experimental results demonstrate that our approach can fully recover CNN architectures
from popular CNN models (Lenet [29], Alexnet [27], VGG-16 [37], and YOLOv2 [35]).

The rest of the paper is organized as follows. Section 2 presents background on CNN and dataflow-
based accelerators. Section 3 outlines the threat model. Section 4 describes our proposed approaches
for extracting CNN architectures. Section 5 presents the experimental results. Finally, Section 6
concludes the paper.

2 BACKGROUND AND RELATEDWORK
This section first introduces DNNs and CNNs, focusing on the convolution operation. It then outlines
two primary architectures for processing CNNs: temporal architecture and spatial (dataflow-based)
architecture. The discussion emphasizes dataflow-based architectures, which are the main focus of
this paper. Finally, we review prior research on model extraction attacks on DNNs.

2.1 Convolutional Neural Networks (CNN)
Drawing inspiration from human brain, neural networks simulate a behavior of neurons where
each neuron computes a weighted sum of its inputs. This computation is not merely a linear
operation; it involves a nonlinear function (activation function) that activates the neuron only
if the weighted sum of inputs surpass a certain threshold. In a typical neural network, multiple
layers are stacked, each consisting of numerous neurons. These neurons are interconnected across
layers through connections known as weights, which determine the strength and influence of one
neuron’s output on the next layer’s input. The input layer receives values and transmits them to
subsequent layers, often including one or more ‘hidden layers’. These hidden layers process the
weighted inputs and pass them on to the output layer, which then delivers the final results. DNNs
involve architectures with multiple hidden layers, making these networks capable of serving as
universal function approximators. Specifically, CNNs, a specialized type of deep neural networks,
incorporate convolutional layers that excel at handling multi-dimensional data like images and
videos.

A typical input to a CNN is a matrix, such as an image, where each pixel value serves as an
input. An input can have multiple channels, for example, if the image is in RGB format, it will have
three channels, corresponding to the red, green, and blue components. CNN mainly consists of
three types of layers: convolutional, pooling, and fully connected (FC) layers [16]. Convolution
layers dominate the computations in CNN (about 90% [10]). A convolution layer takes an input
activation/input feature map (ifmap) and does 2-D convolution using a set of filters with weights
to obtain an output feature map (ofmap). Applying different filters results in extracting different
embedded features from the ifmap. Figure 1 illustrates a typical convolution operation with 𝐾
convolution filters of size 𝑅 and having𝐶 input channels. It shows how the first element of ofmap is
calculated by the sum of element-wise multiplication between a filter of size 𝑅 ×𝑅 ×𝐶 and the same
size neighborhood of ifmap. Stride and padding are two other vital parameters of a convolution
layer. Stride (𝑆𝑡 ) represents the number of values a filter moves horizontally or vertically during
a convolution operation. Padding (𝑃𝑑) is the number of additional values around the edges of
the ifmap before applying the convolution filter. All convolution layers follow the relationship in
Equation 1. The same relationship holds for 𝑌 and 𝑌 ′.

𝑋 ′ = ((𝑋 − 𝑅 + 2𝑃𝑑)/𝑆𝑡) + 1 (1)

In an FC layer, all the values of ifmap are connected to all the values of ofmap. In other words, a
single ofmap value is composed using the weighted sum of all the ifmap values. The pooling layer
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is typically used after Conv layer to reduce the dimensionality of the feature map. Max pooling and
average pooling are two frequently used pooling operations [15]. Conv and FC layer execution can
be viewed as a set of multiply and accumulate (MAC) operations, and modern accelerators perform
a large number of MAC operations in parallel.
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Fig. 1. Convolution layer parameters, semantics and operation: An 𝑅 × 𝑅 ×𝐶 filter is applied on same size
neighborhood of ifmap of size 𝑋 × 𝑌 ×𝐶 to calculate single value in ofmap of size 𝑋 ′ × 𝑌 ′ × 𝐾 .

2.2 Architectures for CNN Inference
In the realm of deep learning, there are two critical phases: training and inference. The training
phase involves learning to perform a specific task, such as classifying an image into a designated
label. This process primarily focuses on determining the optimal weights within the network
using a training dataset. Specifically, within the convolutional layers, this phase is responsible
for learning the filter weights. After training, the network used in the inference phase, using
predetermined weights to calculate outputs for new input data and perform its designated task.
This paper specifically examines the inference phase and the hardware architectures that facilitate
it, aiming to explore model extraction attacks.

Due to the growing popularity of DNNs, specialized hardware features have been developed to
optimize DNN processing. Highly-parallel compute architectures are instrumental in achieving opti-
mal performance during the inference phase, often paralleling MAC operations. These architectures
can be classified into two paradigms: temporal and spatial [40]. Temporal architectures, commonly
found in CPUs and GPUs, enhance parallelism through vectors (SIMD) or parallel threads (SIMT)
and maintain a centralized control over numerous Arithmetic Logic Units (ALUs). These ALUs are
restricted to fetching data from the memory hierarchy without direct inter-ALU communication.
They map both fully connected (FC) and convolutional (Conv) layers to matrix multiplications for
parallelized MAC operations. For instance, the convolution operation can be reformulated as matrix
multiplication by converting one of the inputs into a Toeplitz matrix [39], which is used in temporal
accelerators. In spatial (dataflow) architecture, each ALU is equipped with its own control logic
and local memory. An ALU with its own local memory is referred to as a processing element (PE).
These PEs form a processing chain allowing direct data transfer between them. These architectures
do not necessitate mapping FC and Conv layers to generic matrix operations, enabling a more
natural execution of DNN layers via individual MAC operations. Dataflow accelerators mitigate
the memory bottlenecks common in temporal architectures by introducing multiple levels of local
memory hierarchy and interconnects. These include global buffers connecting to DRAM, small
local registers within each PE, and an inter-PE network facilitating direct data transfers between
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PEs. This memory structure significantly boosts energy efficiency by reducing the cost of data
accesses by fetching data from local registers or neighboring PEs consuming substantially less
energy than accessing DRAM [40]. Due to the differences in architecture and processing between
the two paradigms, existing attacks designed for model extraction on CPUs/GPUs cannot be directly
applied to dataflow architectures.

2.3 Dataflow-based CNN Accelerators
The dataflow-based CNN inference accelerators considered in this study process the CNN layer
by layer [21]. In other words, the accelerator loads ifmap/weights of a particular layer to the
global buffer, processes it, and writes ofmap of the layer back to the main memory. Dataflow
determines how the data is moved and processed through the accelerator architecture to perform
MAC operation needed for a CNN layer. Dataflow mapping refers to how MAC operations are
assigned to each processing element in each cycle. Dataflow-based CNN accelerators try to get
maximum data reuse efficient dataflow mapping. A typical architecture [21, 31] of a dataflow-based
CNN inference accelerator used in edge devices is shown in Figure 4. The controller, interconnects,
global buffer (GB), and PE arrays can be identified as critical components of a CNN accelerator.

A typical CNN accelerator supports three separate Network-on-Chip (NoC)/interconnects [8, 28]
for two reasons: (1) different data types (weights/ifmaps/ofmaps) need different data transmission
patterns (unicast, multicast, and broadcast), and (2) enables high-speed data transfer and pipelined
operation. Dataflow defines how PEs and interconnects are arranged. While there are several types
of dataflows, including weight stationary (WS), output stationary (OS), input stationary (IS), and
row stationary (RS), this paper focuses on two most widely used configurations: WS and OS. There
are WS [6, 14, 28] and OS [11, 33] dataflow based architectures with subtle differences. Our study
focuses on the dataflow aspect of the accelerator by using a generic WS (Section 2.3.1) and OS
(Section 2.3.2) dataflow architecture with input forwarding. By proposing an attack on these generic
dataflow models, we enhance the generalizability and adaptability of our findings, making them
applicable to a broad range of accelerators.
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PE2,1 PE2,2 PE2,(m-1) PE2,m

PE1,m PE1,m PEn,(m-1) PEn,m
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Fig. 2. WS(𝑚,𝑛) architecture: weight stationary dataflow with n processing element (PE) arrays and m PEs
per array, with separate interconnects for weight/input reads and partial sum reads and writes from/to Global
Buffer (GB). Neighboring PEs in an array has input-forwarding connections.

2.3.1 Weight Stationary Dataflow. As the name suggests, once a weight value is read to a PE, a
WS dataflow does all the MAC operations involving that weight before reading a new value to a
PE. Figure 2 shows an architecture of a weight stationary dataflow that reuses weights temporarily
and input activations spatially. It has 𝑛 PE arrays, each with𝑚 PEs and denoted by the notation
WS(𝑚,𝑛). This accelerator has unicast NoC for weight, PE array-wise multicast supported NoC for
inputs, another interconnect for partial sum reads, and a fixed accumulation tree NoC with adders
similar to [28]. There are separate adder trees per array, and an adder tree will accumulate/sum up
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Fig. 3. Dataflow mapping and data reads for the first two cycles for three scenarios: (a) mapping of 2 × 2 × 2
filter intoWS(4, 1), (b) mapping of 4 × 4 × 2 filter intoWS(4, 1), and (c) mapping of 2 × 2 filter into OS(4, 1)
with 𝑠𝑡 = 1 and 𝑝𝑑 = 0 and ifmap of {𝑋 = 5, 𝑌 = 5,𝐶 = 2}, and ofmap of {𝑋 ′ = 4, 𝑌 ′ = 4, 𝐾 = 1}.

all weight activation products of an array in the preceding cycle. The resulting value is a partial
sum (psum) for a one ofmap entry. This architecture can process multiple filters simultaneously
using separate PE arrays per filter. This architecture minimizes ifmap reads by spatial reuse in
two ways: (1) PE array-wise multicast shares the same input values across multiple PE arrays
where each PE array calculates for a different filter, and (2) forwarding connection in a PE array
can share activation values between two cycles occurring due to the stride of the filter. This
weight stationary architecture has flexibility in mapping, depending on the layer, the in-between
forwarding connections between PEs can be switched on/off. Mapping of the layer to the PEs is
optimized for maximum PE utilization and minimizing input reads. For example, if 𝑚 = 4 and
𝑛 = 1, the first row of two channels of 2 × 2 × 2 CNN filter can be mapped as shown in Figure
3(a). If the filter size is 4 × 4 × 2, only one channel row of the filter is mapped in the first cycle as
shown in Figure 3(b). Both of the examples have a stride of one. State-of-the art MAERI accelerator
architecture [28] employs the basic WS dataflow detailed in this section.

2.3.2 Output Stationary Dataflow. An output-stationary dataflow accumulates psums correspond-
ing to one ofmap value in the internal register of a PE until it is fully calculated. In other words,
a PE is mapped to a single value of ofmap until that value is fully calculated. Similar to the WS
dataflow architecture discussed in Figure 2, it has 𝑛 PE arrays, each with𝑚 PEs and denoted by the
notation OS(𝑚,𝑛), but with the following modifications. Instead of the internal register keeping
weights stationary, it accumulates psums. This accelerator has unicast NoC for inputs, single value
broadcast supported NoC for weights, and separate interconnect to write outputs to the GB. One
PE array will accumulate sums relevant to one row of ofmap so that forwarding links between
PEs in the array can have maximum utilization. Due to the broadcast of a single weight, every PE
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calculates MAC relevant to one input channel in a cycle. In the first cycle, the accelerator multicasts
the same weight to all the PEs and unicasts relevant activations to each PE. After doing MAC
operations and accumulating the partial sum to the internal registry, different weight is broadcast
in the second cycle. After the local forwarding of inputs, the remaining inputs are unicast relevant
to the previous partial sum. Figure 3(c) shows a layer mapping with one filter with parameters
{𝑅 = 2,𝐶 = 2, 𝑠𝑡 = 1, 𝑝𝑑 = 0}, ifmap of {𝑋 = 5, 𝑌 = 5,𝐶 = 2}, and ofmap of {𝑋 ′ = 4, 𝑌 ′ = 4, 𝐾 = 1}
to a𝑚 = 4 and 𝑛 = 1 output stationary accelerator. As we can see, there is only one input read
(I[1,1,5]) in the second cycle due to spatio-temporal forwarding of inputs (I[1,1,2] and I[1,1,3]) from
the previous cycle. State-of-the art Shidiannao accelerator architecture [11] employs the basic OS
dataflow detailed in this section.

2.4 Related Work
There are many efforts on leaking DNN/CNN architectures using side-channel attacks. Timing
and memory side channels have been used to recover DNN models in [19, 21, 26, 44]. An attack to
recover compact DNN models from GPU using timing, memory, power, and kernel side channels is
proposed in [26]. They assume the attacker knows power consumption, memory footprint, and
latency for backward and forward propagation for different batch sizes. Hu et al. [19] propose
a method to find DNN architecture by eavesdropping into off-chip data transfer between CPU
and GPU and exploiting the entire DNN execution stack (the DNN library, Hardware abstraction,
and Hardware). Another side-channel attack on analyzing main memory to accelerator memory
access trace and execution time is discussed in [21]. The adversary can control the input to the
accelerator and derive a set of potential models for the currently running DNN model. For example,
they propose 24 possible structures for Alexnet. Wei et al. [44] exploit context switching of GPU to
recover DNN models. This attack is made in the training stage because they can exploit multiple
uses of the same layers over training time. Similar threat model was proposed in [20] that recovers
DNN architecture through the acquisition of memory access events from bus snooping inside
GPU during inference time. Apart from memory and timing side channels, attacks are proposed
on cache side channels to recover DNN models [25, 30, 46]. Several studies have demonstrated
attacks using power [45] and electromagnetic side channels [3, 9, 17, 18, 47] to successfully recover
CNN models form GPU and other temporal architectures. These studies validate that recovering
DNN/CNN architecture is a critical security concern. All existing side-channel attacks to recover
DNN/CNN model architectures focus on temporal inference accelerators such as GPUs. Due to
inherent differences in architecture and processing mechanism, side-channel attacks on temporal
architectures cannot be directly applied to dataflow-based inference accelerators. To the best of our
knowledge, our paper is the first study on recovering CNN model architecture using memory side
channels of dataflow-based CNN inference accelerators.

3 THREAT MODEL AND PROBLEM FORMULATION
In this section, we define the problem space and establish the threat model under which our attack
operates. This formulation is critical as it lays the groundwork for understanding the potential
vulnerabilities within dataflow-based CNN accelerators.

3.1 Problem Formulation
Figure 4 illustrates an overview of a typical dataflow-based CNN accelerator with layer-by-layer
execution described in Section 2.3. If we zoom into the processing of one layer, first, the host CPU
loads ifmap/weights to the GB. These ifmaps/weights are stored as arrays in memory, which means
they are stored in contiguous memory locations, and GB preserves the order. The PE arrays are
designed in a pipelined manner to do MAC operations in each cycle. Each PE in the PE array
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Fig. 4. Overview of a typical CNN accelerator. The controller, interconnects, global buffer (GB), and processing
element (PE) arrays are the critical components. Unprotected communication can be snooped to extract
side-channel data.

has a local registry to hold or accumulate certain data elements to reuse in MAC operations. The
controller is responsible for loading weights/inputs/psums to individual PEs in each cycle. The
controller first calculates memory requests for the next cycle depending on the dataflow supported
by the accelerator and layer parameters. Then, it issues memory requests to the global buffer.
The global buffer uses interconnects between GB and PE arrays for data transfer. The focus of
this paper is to extract CNN model architecture based on memory side-channel information from
dataflow-based CNN accelerator.

3.2 Threat Model
The threat model assumes the adversary gathers the following memory side-channel information
regarding the execution of each layer CNN: (1) the total number of weight/input reads and output
writes, (2) the number of weight/input reads, output writes each cycle of execution until a targeted
event (𝑒) that depends on the dataflow (the concrete definition of 𝑒 in WS and OS dataflow are
stated in Section 4.3 and 4.4 respectively.), and (3) output stationary dataflow needs the virtual
address of weight reads in the first two cycles. Here, an input read means reading of a single value
from an ifmap and an output write means writing of a single value to an ofmap. Depending on the
adversary’s capabilities, there are several ways to obtain these three pieces of information. The
adversary can exploit unprotected communication between accelerator components. Information
(1) and (2) can be obtained by snooping interconnects from GB to PE arrays ( a in Figure 4). Since
these accelerators use separate interconnects for each data type, it is easy to distinguish and count
GB accesses that can be snooping on the interconnects. Alternatively, the adversary can obtain
information (1) and (2) along with (3) by snooping the unprotected bus between the controller
to GB ( b in Figure 4). If there is a pooling layer, for the recovery pooling layer parameters, the
adversary needs to find the number of pooling operations (𝑁𝑝𝑜𝑜𝑙 ). 𝑁𝑝𝑜𝑜𝑙 can be recovered using the
number of output writes to DRAM from GB ( c in Figure 4) during the layer execution.
Bus snooping is a low-cost, practical and well understood attack that has been widely demon-

strated [4, 22, 23]. Snooping of these buses ( a , b and c ) can be done either through lightweight
Hardware Trojans (HTs) or physical microprobing of buses. The reliance on a long, distributed, and
potentially untrusted supply chain in chip design raises the risk of malicious implants, such as HTs,
introduced through various channels including untrusted CAD tools, rogue designers, or directly at
the foundry [32]. An HT can be clandestinely inserted into the RTL or netlist of an accelerator and
remain undetected not only at the post-silicon verification stage but also during runtime [32]. Fur-
thermore, simple multiple HTs, such as HTs with counters inserted in on-chip communication for
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snooping are harder to detect in runtime due to their insignificant area and power overhead [2, 43].
Advances in technology have significantly improved microprobing capabilities, enabling the ex-
traction of encryption keys, intellectual property, and personal data from densely packed hardware
implementations, as demonstrated in recent studies [36, 38]. Notably, optical probing has been
used to obtain FPGA bitstream decryption keys from 28nm Xilinx devices [41], and focused ion
beam techniques have effectively extracted data from SoC buses [42]. These methods illustrate
that precise data extraction from buses can be leveraged in our attack to gather side-channel
information. Alternatively, compromised accelerator firmware or host operating systems could
also exploit performance counters to stealthily extract relevant side-channel information ((1), (2),
and 𝑁𝑝𝑜𝑜𝑙 ), complementing the physical snooping methods described earlier.

Our threat model also assumes that the adversary knows the accelerator architecture (number of
PE arrays, number of PEs in an array, and the bandwidth of interconnects for each data type) as
well as the dataflow mapping of each accelerator described in Section 2.3. Typically, these basic
architecture details are readily accessible for open-source or standard data-flow accelerators [7,
11, 33]. We also assume the adversary knows the ifmap parameters (𝑋,𝑌,𝐶) of the first layer.
Similar assumption is made in [21] because adversary can control inputs to the accelerator. In the
layer-by-layer recovery of CNN, knowing the previous layer ofmap parameters can be directly
used as ifmap parameters for the next layer. In other words, knowing the ifmap parameters of
the first layer and recovering the parameters of that layer indirectly finds the ifmap parameters
of the second layer. The proposed attack is passive, where the adversary can only snoop on the
side-channel information but cannot alter dataflow mapping or data communication inside the
accelerator. Furthermore, the adversary does not need to know the training or testing data of the
CNN model.

The recovery of a CNNmodel’s architecture poses significant risks for themodel owners and users.
(1) If the structure of a CNN is disclosed, it becomes easier for adversaries to craft efficient adversarial
attacks [5, 20] fine-tuned tomislead themodel without detection, thereby facilitating evasion attacks.
For example, if a particular model is used to detect and flag network anomalies, an adversary can
manipulate network traffic in such a way that it evades detection, allowing malicious activities to
proceed undetected and model owner failing to provide the intended functionality. (2) The exposure
of the model architecture can lead to the leakage of proprietary and critical intellectual property. For
many companies, the design of their models embodies valuable research and development efforts,
and unauthorized access to this information can lead to competitive disadvantages and economic
losses. (3) As outlined in our paper, the leakage of model architecture in environments where the
hardware is shared, increases the risk of user privacy breaches. Adversaries can exploit the known
architecture to perform more effective model inversion attacks [13], potentially reconstructing
sensitive training data. In summary, there are various potential threats from the recovery of a
models’s architecture, including feasibility of adversarial attacks, loss of intellectual property, and
breaches of user privacy, all of which can have severe consequences for the model stakeholders.

4 EXTRACTING CNN ARCHITECTURE USING SIDE-CHANNEL ANALYSIS
Algorithm 1 shows an overview of the attack for recovering potential CNN structures from a
dataflow-based accelerator. Lines 3-9 elaborate layer-by-layer side-channel data collection, which
needs recognizing layer boundaries (line 5) discussed in Section 4.1. In each side-channel variable,
the Superscript ( 𝑗 or 𝑘) specifies the layer number relevant to the variable. Lines 10-14 elaborate
layer-by-layer structure recovery. The first dimension of the 𝑙𝑎𝑦𝑒𝑟𝑠 2D array (line 10) contains
the number of layers ( 𝑗 ) in CNN, and the second dimension contains possible structures for each
layer. In layer-wise structure recovery, as the first step, the layer type is identified (line 12), which
is discussed in Section 4.2. Then the side-channel information is used to recover each layer’s
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Table 1. Table of notations.

𝑛 Number of PE arrays in an accelerator
𝑚 Number of PEs per array in an accelerator
𝑊𝑟 Total no. of weight reads for the layer execution.
𝐼𝑟 Total no. of input reads for the layer execution.

𝑂𝑤 Total no. of output reads for the layer execution.
𝑡𝑒 Cycle number of the targeted event 𝑒 .
𝑤 Array of no. of weight reads at each cycle.
𝑖 Array of no. of input reads at each cycle.
𝑜 Array of no. of output writes at each cycle.

𝑖 [𝑡] Number of input reads at 𝑡𝑡ℎ cycle.
𝑤 [𝑡] Number of weight reads at 𝑡𝑡ℎ cycle.
&(𝑑𝑡) Virtual address of data 𝑑𝑡 in global buffer.

𝐻 Possible parameter sets for a Conv Layer.
𝑐𝑒𝑖𝑙 (𝑥) Round-up number x to nearest integer.

parameters (line 14). It is important to notice that if there are multiple potential structures for the
previous layer, the algorithm tries ifmap parameters (𝑋,𝑌,𝐶) of all of them to recover potential
structures for the current layer (loop at line 13). Finally, the adversary flatten the 2D array 𝑙𝑎𝑦𝑒𝑟𝑠
to multiple 1D arrays satisfying 𝑖 𝑓𝑚𝑎𝑝 𝑗 = 𝑜 𝑓𝑚𝑎𝑝 𝑗−1 to get all the potential structures of the CNN
model (line 15).

Algorithm 1 Recovering potential CNN structures
1: Input: First ifmap parametes, {𝑋1, 𝑌1,𝐶1}
2: Output: Potential CNN architectures
3: j = 1 ⊲ to count the number of layers
4: while processing of the CNN do
5: while IdentifyLayerBoundary() do
6: 𝑊(𝑟,𝑗 ) , 𝐼 (𝑟,𝑗 ) ,𝑂 (𝑤,𝑗 ) ← collect total R/W counts
7: 𝑤 𝑗 , 𝑖 𝑗 , 𝑜 𝑗 ← collect cycle-wise R/W counts until event 𝑒
8: 𝑁 (𝑝𝑜𝑜𝑙,𝑗 ) ← collect No. of pooling operations
9: j ++
10: 𝑙𝑎𝑦𝑒𝑟𝑠 = [] ⊲ empty 2D array
11: for k=1 to j do
12: type← IdentifyLayerType(𝑊(𝑟,𝑘 ) , 𝐼 (𝑟,𝑘 ) ,𝑂 (𝑤,𝑘 ) , 𝑁 (𝑝𝑜𝑜𝑙,𝑘 ) )
13: for number of layer structures in layers[k-1] do
14: 𝑙𝑎𝑦𝑒𝑟𝑠 [𝑘] ∪ recoverLayer(𝑊(𝑟,𝑘 ) ,𝐼 (𝑤,𝑘 ) ,𝑂 (𝑤,𝑘 ) ,𝑤𝑘 ,𝑖𝑘 ,𝑜𝑘 , 𝑋𝑘 ,𝑌𝑘 ,𝐶𝑘 ,𝑡𝑦𝑝𝑒)
15: Return Flatten 2D array 𝑙𝑎𝑦𝑒𝑟𝑠 to multiple 1D arrays satisfying 𝑖 𝑓𝑚𝑎𝑝 𝑗 = 𝑜 𝑓𝑚𝑎𝑝 𝑗−1 to get all

potential structures.

Algorithm 2 zooms into recovering individual layer structures. Depending on the layer type, the
layer recovery procedure calls different functions (line 3, 5 and 8). The most crucial and difficult
task is to recover Conv layer. The subscript in 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐶𝑜𝑛𝑣𝐷𝐹 highlights that the recovery of
the Conv layer depends on the dataflow. Therefore, recovery of Conv from WS dataflow and OS
dataflow are elaborated in Section 4.3 and 4.4, respectively. The function 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐶𝑜𝑛𝑣𝐷𝐹 returns
a list of potential structures (𝐻 ) but the conditional filters used in recovering Conv layers in WS
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Algorithm 2 Recovering layer parameters
1: function recoverLayer(𝑊𝑟 , 𝐼𝑟 ,𝑂𝑤,𝑤, 𝑖, 𝑜, 𝑋,𝑌 ,𝐶, 𝑡𝑦𝑝𝑒)
2: if type = FC then
3: layer ← recoverFC(𝑊𝑟 , 𝐼𝑟 ,𝑂𝑤)
4: if type = Conv then
5: H ← 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐶𝑜𝑛𝑣𝐷𝐹 (𝑊𝑟 ,𝑂𝑤,𝑤, 𝑖, 𝑜, 𝑋,𝑌 ,𝐶)
6: if Conv layer has pooling then
7: for h in H do
8: h ∪ recoverPooling(𝑁𝑝𝑜𝑜𝑙 , 𝑋

′, 𝑌 ′, 𝐾 )
9: layer← 𝐻

10: retrun layer

and OS dataflows ensure that 𝐻 is a list with a few solutions or one solution (Section 5 shows
Conv layer recovery in popular benchmarks converging to one structure). The recovery of FC
(line 3) and pooling (line 8) layers are discussed in Section 4.5 and 4.7, respectively. Table 1 outlines
the notations used in these algorithms. Figure 5 presents a high-level overview of our proposed
side-channel attack.

While processing of CNN :

Collect Layer specific 
Side-Channel data

(Section III)

N
o

layer
Boundary?

(Section IV-A)

Ye
s

New Layer detected (j++)

layer=ConvIdentify Layer Type
(Section IV-B) Recover Conv in OS

(Section IV-D)
Recover Conv in WS

(Section IV-C)

Recover FC layer
(Section IV-E)

layer=FC

Recover Pooling layer
(Section IV-F)

if there is pooling

Layer-wise
parameters

recoverd
all layers?

No

ifmap of prev. layer

Potential CNN
Structures

Yes

Recover Conv Layer

Fig. 5. Overview of the proposed side-channel attack to recover CNN model. The adversary collects layer-by-
layer side-channel information, and utilizes them to recover layer-by-layer CNN structure.

4.1 Identification of Layer Boundary
We present two ways to identify layer boundaries in a dataflow-based accelerator. The first method
is to use the Read-After-Write (RAW) dependency of ifmap current layer and ofmap of the previous
layer. Dataflow accelerators have sequential execution of the layers. Therefore, upon a successful
layer execution, the ofmap is written back to the hosts’ main memory (DRAM) and read it back
to GB in the next layer as ifmap. This event can be identified using the memory trace as a RAW
dependency on the same memory address. This needs an adversary needs to collect or actively
observe the memory trace (address and cycle) between the GB and DRAM of the host. Similar
to collecting previous side-channel information, this can be done by snooping the memory bus
between GB to DRAM ( c in Figure 4).
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The second method is by identifying the configuration phase between layers. However, this
approach is applicable in accelerators that have some reconfigurability. Since each layer differs,
there is a configuration phase to dataflow mapping at each layer. Most CNN accelerators use a
separate low-bandwidth bus ( d in Figure 4) to send these configurations [28]. Therefore, looking
at active periods in that network is a simple way to identify boundaries. For example, the WS
dataflow-based accelerator configures (on/off) forward links between PEs configured at each layer’s
beginning. The adversary can listen to this control message to identify layer boundaries.

4.2 Identification of Layer Type
The adversary needs to separate between FC, Conv, and Pooling layers. Because of no data reusability
in FC layers, the total number of weight reads (𝑊𝑟 ) in a layer is equal to the multiplication between
the total number of input reads (𝐼𝑟 ) and output writes (𝑂𝑤 ). This relationship is used to distinguish
an FC layer from a Conv layer. If there is a pooling layer after the execution of Conv layer, CNN
accelerators run the Conv layer together with the pooling layer using a separate pooling module as
shown in Figure 4 (not processed as two separate layers). An adversary can detect a pooling layer
by observing a difference between the number of outputs written to the global buffer and those
written to DRAM inside the layer boundary.

4.3 Recovery of Conv Layer fromWeight Stationary Dataflow
There are five parameters (𝑅,𝐶, 𝐾, 𝑆𝑡, 𝑃𝑑) that define a Conv layer. Since the number of input chan-
nels (𝐶) is known from ifmap parameters, an adversary needs to find four parameters (𝑅, 𝐾, 𝑆𝑡, 𝑃𝑑)
for successful Conv layer recovery. Algorithm 3 describes the attack steps for recovering a Conv
layer from the WS dataflow based architecture outlined in Section 2.3. We refer to the 1𝑠𝑡 cycle
relative to each layer which is the first cycle with data transfer between GB to PE arrays. Here we
define the targeted event for the cycle-to-cycle data collection as the cycle 𝑡𝑒 where 𝑖 [1] = 𝑖 [𝑡𝑒 ].
In other words, the adversary collects data reads/writes between the first cycle and the next ones
with the same number of reads in the first cycle. This collects the number of data reads/writes
accountable for the one row of the output feature map.

Due to the inherent feature of a WS dataflow, a single weight value is read only once:

𝑊𝑟 = 𝑅
2 ×𝐶 × 𝐾 (2)

Solving of Equation 2 with known𝐶 in positive integer (Z+) domain provides potential solutions
(𝐻 ) for {R,K} values of the layer parameters (line 2). Then the adversary calculates 𝑛𝑎 , the number
of active PE arrays in the accelerator (line 3). While most of the time, the number of filters (𝐾) is
greater than the number of PE arrays (𝑛) of the accelerator architecture, resulting in 𝑛𝑎 = 𝑛, the
value of 𝑛𝑎 is calculated as𝑤 [1]/𝑖 [1] regardless of whether 𝐾 exceeds 𝑛 or not. Due to the targeted
event of data collection, the number of cycles between reveals the width of the output feature map
(𝑋 ′) (line 4). Even when 𝑅 > 𝑚 and folding is supported, the number of cycles up to the event
minus one reflects the value of 𝑋 ′. Then the adversary iterates (lines 5 - 16) through the potential
{𝑅, 𝐾 } values and uses architectural hints and side-channel information to filter out incompatible
{𝑅, 𝐾 }. The first condition (line 6) applies when the potential value of 𝑅 is smaller than the active
PE array length (𝑤 [1]/𝑛𝑎). As discussed in Section 2.3, the adversary uses the dataflow-mapping
property of the accelerator to minimize input reads by only fully mapping filter rows. For example,
if the PE array length is 12 (𝑚 = 12) and 𝑅, 𝐾 are 5 and 4, the layer is mapped as two 10 MACs
across two channels by utilizing only 10 PEs, not 12 Macs followed by 8. Line 6 checks the condition
((𝑤 [1]/𝑛𝑎)%𝑅 ≠ 0) and filter out solutions.

The adversary calculates the stride (𝑠𝑡 ) of the respective potential 𝑅 (line 8). Since the forward
links between PEs are used to forward ifmap values from the previous cycle, the number of new
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Algorithm 3 Recovering Conv Layer from WS dataflow
1: function 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐶𝑜𝑛𝑣𝑤𝑠 (𝑊𝑟 ,𝑂𝑤,𝑤, 𝑖, 𝑜, 𝑋,𝑌 ,𝐶)
2: 𝐻 ← solve Equation 2 ∈ Z+
3: 𝑛𝑎 ← 𝑤 [1]/𝑖 [1]
4: 𝑋 ′ ← 𝑡𝑒 − 1
5: for {𝑅, 𝐾} in H do
6: if 𝑅 ≤ 𝑤 [1]/𝑛𝑎 and (𝑤 [1]/𝑛𝑎)%𝑅 ≠ 0 then
7: remove {𝑅, 𝐾}
8: 𝑠𝑡 ← 𝑖 [2]/𝑚𝑎𝑥 ((𝑚//𝑅), 1)
9: if 𝑠𝑡 ∉ Z+ or 𝑠𝑡 > 𝑅 then
10: remove {𝑅, 𝐾}
11: 𝑝𝑑 ← substitute {𝑅, 𝑠𝑡} and 𝑋,𝑋 ′ to Equation 1
12: if 𝑝𝑑 ∉ Z+ or 𝑝𝑑 > 𝑅 then
13: remove {𝑅, 𝐾, 𝑠𝑡}
14: 𝑌 ′ ← substitute {𝑅, 𝑠𝑡} and 𝑌, 𝑝𝑑 to Equation 1
15: if 𝑂𝑤 ≠ 𝑋 ′ × 𝑌 ′ × 𝐾 then
16: remove {𝑅, 𝐾, 𝑠𝑡, 𝑝𝑑}
17: return 𝐻

input reads for the current cycle is always an integer multiple of stride. At line 8,𝑚//𝑅 (// is the
integer division) gives out the number of channels of a filter mapped to the PE array when𝑚 ≥ 𝑅.
If𝑚 < 𝑅 and folding is used, only one channel is mapped to a PE array. Taking the maximum,
consider both conditions (𝑚 ≥ 𝑅 and𝑚 < 𝑅 ). The second cycle has input forwarding, and 𝑖 [2] is
the number of new input reads after input forwarding. Therefore, dividing 𝑖 [2] by the number of
channels mapped to one PE array is the stride for the selected 𝑅. The condition at line 9 checks
if the previously calculated 𝑠𝑡 is in the integer domain and is less than the filter size (𝑅). Then
adversary can use Equation 1 to calculate 𝑝𝑑 and check if 𝑝𝑑 is in the integer domain and it is
less than filter width (𝑅). Line 14 calculates 𝑌 ′ using the Equation 1 from previously found values
(𝑅,𝑌, 𝑠𝑡, 𝑝𝑑). The final condition asserts whether the side-channel information 𝑂𝑤 equals expected
output writes (𝑋 ′ × 𝑌 ′ × 𝐾). The returned 𝐻 has potential solutions for the layer’s parameters
{𝑅, 𝐾,𝐶, 𝑠𝑡, 𝑝𝑑}. In WS dataflow, 𝑂𝑤 is equal to the difference between the number of partial sum
reads and writes (𝑝𝑠𝑢𝑚𝑤 − 𝑝𝑠𝑢𝑚𝑟 ). Section 5.3 provides a case study on the second Conv layer of
Alexnet, which converges into one solution.

4.4 Recovery of Conv Layer from Output Stationary Dataflow
Algorithm 4 outlines the attack steps for recovering Conv layer parameters from the OS dataflow-
supported architecture described in the Section 2.3. Here we define the targeted event for the
cycle-to-cycle data collection as the cycle where the first ofmap value is written. In other words,
the adversary collects the cycle-to-cycle data from the first cycle to the cycle where the first output
is written. In an OS dataflow, there are no partial outputs/sums. In other words, an ofmap value is
written only after it is fully calculated. The intuition behind the targeted event selection is to find
the number of weight reads responsible for fully calculating one ofmap value.
When we consider one ofmap value, it is generated from an accumulation of multiplications

between a single filter of width and height of 𝑅 with𝐶 channels. In other words, the total responsible
weight reads for a single value in ifmap is 𝑅2𝐶 . Our selection of the targeted event ensures that the
(𝑡𝑒 −1) equals 𝑅2𝐶 (line 2). Since the architecture reads one weight in a cycle, the relationship in line
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Algorithm 4 Recovering Conv Layer from OS dataflow
1: function 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐶𝑜𝑛𝑣𝑜𝑠 (𝑊𝑟 ,𝑂𝑤,𝑤, 𝑖, 𝑜, 𝑋,𝑌 ,𝐶)
2: 𝑒𝑞 ← 𝑅2𝐶 = 𝑡𝑒 − 1
3: 𝑅 ← solve 𝑒𝑞 for 𝑅 in Z+
4: 𝑠𝑡 ← &[𝑤1] - &[𝑤2]
5: for 𝑝𝑑 = 0 to 𝑅 − 1 do
6: 𝑋 ′ ← substitute 𝑅, 𝑠𝑡, 𝑝𝑑, 𝑋 for Equation 1
7: 𝑌 ′ ← substitute 𝑅, 𝑠𝑡, 𝑝𝑑,𝑌 for Equation 1
8: if 𝑋 ′, 𝑌 ′ ∉ Z+ then

continue ⊲ Not a solution
9: 𝐾 ← substitute {𝑋 ′, 𝑌 ′} to Equation 3
10: if 𝐾 ∈ Z+ and {𝑋 ′, 𝑌 ′, 𝑅, 𝐾,𝐶} satisfy Equation 4 then
11: 𝐻 ← 𝐻∪ {𝑅, 𝐾,𝐶, 𝑠𝑡, 𝑝𝑑}
12: return 𝐻

2 holds. Solving this relationship in the Z+ domain gives the value of R. Because of the forwarding
connections at each PE in the PE array, the difference between the virtual address of weight reads
from the controller gives the value of stride (line 4). Lines 5 to 11 iterate through all possible 𝑝𝑑
values. This loop termination considers that padding cannot exceed the filter width (𝑅). Lines 6 and
7 calculate the width (𝑋 ′) and height (𝑌 ′) of the ofmap for the selected 𝑝𝑑 . The condition at line 8
checks if the calculated 𝑋 ′, 𝑌 ′ is in Z+ domain; if not, we move to the next 𝑝𝑑 value in the loop. In
an OS dataflow, the number of total output written (𝑂𝑤) to the GB:

𝑂𝑤 = 𝑋 ′ × 𝑌 ′ × 𝐾 (3)

Line 9 substitutes previously calculated {𝑋 ′, 𝑌 ′} to the above equation and finds 𝐾 . Line 9 checks
for two conditions: (1) whether 𝐾 is in Z+ domain, and (2) does the relationship stated in Equation
4 holds for the potential value set {𝑋 ′, 𝑌 ′, 𝑅, 𝐾,𝐶}?

𝑊𝑟 = (𝑐𝑒𝑖𝑙 (
𝑋 ′

𝑚
) × 𝑐𝑒𝑖𝑙 (𝑌

′

𝑛
))𝑅2𝐶𝐾 (4)

All PEs in this OS architecture conducts MAC operations relevant to one output channel due to
the broadcasting of weights. Therefore, the psum accumulated at each registry is also relevant to
a single output channel. When we zoom into Equation 4, (𝑐𝑒𝑖𝑙 (𝑋 ′

𝑚
) × 𝑐𝑒𝑖𝑙 (𝑌 ′

𝑛
)) gives the number

of tiles needed to calculate all ofmap values of a single output channel. A tile is a subset/block
of the output feature map that is processed as a unit. For example, if we process a layer with
(𝑋 ′, 𝑌 ′ = 12, 𝐾 = 1) in an OS(12, 4) architecture. The first tile calculates ofmap values for the first
four rows and the second and third tiles for the middle four rows and last four rows, respectively.
From the first line of the algorithm, 𝑅2𝐶 gives weight reads for one tile. So, the number of tiles per
single output channel × weight reads per tile × number of output channels gives the total weight
reads. Section 5.4 shows a case study on the second Conv layer of Alexnet that converged into one
solution.

4.5 Extraction of FC Layer Parameters
An FC layer can be considered a Conv layer with a filter size equal to the size of the input,
effectively connecting all neurons to each other. Therefore, extracting FC layer parameters is
relatively straightforward compared to extracting Conv layer parameters. An FC layer has only
two parameters, which are input neuron size and output neuron size. FC layer parameters can be
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determined independently of the dataflow architecture by solely examining the total data reads
and writes for the layer. The total number of input reads in a layer (𝐼𝑟 ) equals the number of input
neurons in an FC layer. Similarly, the total number of output writes (𝑂𝑤) equals the number of
output neurons. Additionally, a dense FC layer has𝑊𝑟 = 𝐼𝑟 ×𝑂𝑤 relationship.

4.6 Identification of Activation Functions
Activation functions as integral components of a DNN’s architecture. In our study, we assume that
the accelerators incorporate the Rectified Linear Unit (ReLU) as the sole activation function, thereby
eliminating the need for its explicit identification. The review of state-of-the-art dataflow CNN
inference accelerators, including those detailed in [7, 8], supports this assumption by consistently
showing ReLU as sole implementation inside the accelerator. This choice is based on empirical
evidence suggesting that CNNs typically achieve better performance with ReLU in their hidden
layers [1]. The type of activation function employed in final layer can often be inferred based on
the specific task that the model addresses. For instance, multi-class classification tasks generally
use a softmax activation function, whereas binary classification tasks might use a sigmoid function.
It is important to note that these final layer activations (e.g. sigmoid, softmax) are usually executed
outside the dataflow accelerator, on the host CPU [40]. However if future dataflow accelerators
support a variety of activation functions, such as Leaky ReLU or Parametric ReLU, our proposed
method to identify the activation function is to monitor which specific functional unit is activated
during the processing of each layer.

4.7 Extraction of Pooling Layer Parameters
Our methodology to extract pooling layers from max or average pooling depends on three assump-
tions based on typical pooling operations on CNNs. (1) Usually, the stride is greater than 1 [40].
(2) Max and average pooling typically does not use padding. (3) CNNs tend to use small pooling
filter sizes because large pooling filters tend to overfit models by losing information. The pooling
operation does not change the number of output channels (𝐾). Algorithm 5 outlines the steps to
recover pooling layer parameters ({𝑅𝑝𝑜𝑜𝑙 , 𝑠𝑡𝑝𝑜𝑜𝑙 }) from side-channel information.

Algorithm 5 Recovering pooling layer
1: function recoverPooling(𝑁𝑝𝑜𝑜𝑙 , 𝑋

′, 𝑌 ′, 𝐾 )
2: for 𝑅𝑝𝑜𝑜𝑙 = 2 to 𝑋 ′ do
3: for 𝑠𝑡𝑝𝑜𝑜𝑙 = 𝑅𝑝𝑜𝑜𝑙 to 1 do
4: 𝑋𝑝𝑜𝑜𝑙 ← ((𝑋 ′ − 𝑅𝑝𝑜𝑜𝑙 )/𝑠𝑡𝑝𝑜𝑜𝑙 + 1)
5: 𝑌𝑝𝑜𝑜𝑙 ← ((𝑌 ′ − 𝑅𝑝𝑜𝑜𝑙 )/𝑠𝑡𝑝𝑜𝑜𝑙 + 1)
6: if 𝑁𝑝𝑜𝑜𝑙/𝐾 = 𝑋𝑝𝑜𝑜𝑙 × 𝑌𝑝𝑜𝑜𝑙 then
7: return {𝑅𝑝𝑜𝑜𝑙 , 𝑠𝑡𝑝𝑜𝑜𝑙 }

The loop at line 2 searches for pooling layers for increasing filter sizes, which gives more
dominance to small pool layers. The second loop (line 3) ensures the attack first tries to match a
non-overlapping pooling layer and increases the overlapping in subsequent iterations. Line 4 and 5
calculates the ofmap width (𝑋𝑝𝑜𝑜𝑙 ) and height (𝑌𝑝𝑜𝑜𝑙 ) after pooling. Finally, the condition at line 6
checks if the monitored 𝑁𝑝𝑜𝑜𝑙 satisfies the calculated {𝑋𝑝𝑜𝑜𝑙 , 𝑌𝑝𝑜𝑜𝑙 } values to find the pooling layer
parameters. If a particular CNN architecture employs a Global Average Pooling (GAP), we can use
the same side-channel data (𝑁𝑝𝑜𝑜𝑙 ) to identify it. Unlike average and max pooling, which involve
hyperparameters such as stride and filter size, GAP operates by computing the average of each
feature map channel in the ofmap. This results in a single average value per channel, effectively
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producing a vector of size 𝐾 for an ofmap of dimensions 𝑋 ′ × 𝑌 ′ × 𝐾 . As GAP lacks configurable
parameters beyond its basic function, the only information we can derive from side-channel analysis
is the usage of GAP in a particular layer. If 𝑁𝑝𝑜𝑜𝑙 corresponds exactly to the number of output
channels (𝐾 ), it indicates the use of GAP.

5 EXPERIMENTS
In this section, we first describe the experimental setup used to evaluate the effectiveness of
our attack. Next, we present results on popular CNN models demonstrating potential structures
recovered by our approach with two case studies on weight stationary and output stationary
architectures. Then, we discuss the applicability and limitations of the proposed method. Finally,
we outline potential mitigation techniques.

5.1 Experimental Setup
We performed modifications on top of the cycle-accurate Stonne [34] accelerator simulator to model
the WS dataflow described in Section 2.3.1. Furthermore, we extended Stonne, which originally only
supported theWS dataflow, to alsomodel the OS dataflow described in Section 2.3.2.We gathered the
side-channel information using the simulation stat of the global buffer of the simulator. We provided
adequate bandwidth for interconnects of each data type (input, output, weight) in each simulation
so that any data loads will happen in one cycle (Section 5.5 discuss relaxing of this assumption).
We modeled a simple pooling module in both accelerators to mimic pooling operations and extract
the number of pooling operations. We modeled three concrete weight stationary accelerator
architectures from the architecture described in Section 2.3: WS(4, 4), WS(12, 4), and WS(24, 10).
Similarly, we used three output stationary dataflow accelerators: OS(4, 4), OS(10, 4), and OS(20, 10).
We attacked and recovered popular CNN models: a 5-layer Lenet, an 8-layer AlexNet, a 16-layer
VGGnet-16, and 28-layer YOLOv2 to evaluate the proposed CNN model recovery attack. Each CNN
model was subjected to 10 rounds of experiments to ensure robustness and repeatability of results.
Table 3 shows an overview of composition of the layers in these models.

We conduct experiments on real hardware implementations of the two weight stationary accel-
erator architectures (WS(4,4), and WS(12,4)). These architectures were implemented on the Alchitry
Cu FPGA board, which utilizes the Lattice iCE40 HX FPGA supported by the open source tool chain
IceStorm. The configuration parameters of the accelerator implementation in our experiments are
outlined in Table 2.

Table 2. WS accelerator configuration parameters

Parameter Value
PE array dimensions: (m,n) [(4,4), (12,4)]
Precision (weights, ifmap, ofmap) 8 bits
GB to PE arrays input bus width 4 × 8 bits
GB to PE arrays weight bus width 4 × 8 bits
Accumulator tree precision 32 bits
Accumulated output bus width 4 × 32 bits
Input forwading path width 8 bits
Global buffer size 256B

Due to space limitations on the FPGA, we opted for a relatively small global buffer (GB). How-
ever, this constraint does not affect our ability to accurately recover side-channel information
regarding the number of memory reads and writes from GB. We use a Python frontend, similar
to the one used in STONNE [34], to emulate the host CPU. The UART (Universal Asynchronous
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Table 3. Number of potential structures recovered from Lenet, Alexnet, VGGnet-16 and YOLOv2 using our
method and comparison with [21] that exploit DRAM to GBmemory access on temporal inference accelerator.

CNN model Lenet Alexnet VGGnet-16 YOLOv2
Number of layers
(Conv/Pool/FC) 3/2/2 5/3/3 13/5/3 23/5/0

Conv layer filter sizes 5x5
2x2

11x11
5x5, 3x3

1x1
3x3

1x1
3x3

Number of
potential
structures

WS(4,4) 1 1 1 1
WS(12,4) 1 1 1 1
WS(24,10) 1 1 1 1
OS(4,4) 1 1 1 1
OS(10,4) 1 1 1 1
OS(20,10) 1 1 1 1
[21] 9 24 - -

Receiver/Transmitter) communication protocol is employed to facilitate serial communication
between the Python frontend and the FPGA-implemented accelerator. This setup allows us to
send control and data to the accelerator and receive snooped side-channel information from the
accelerator. To facilitate the capture of memory-based side-channel information, particularly the
number of memory reads and writes from the GB, we used snooping on the bus between the GB
and the processing element array ( a in Figure 4), as well as between the DRAM and GB ( c in
Figure 4). Snooping of buses was achieved by embedding two Hardware Trojans (HTs) into the
RTL of the accelerator, analogous to the use of hardware performance counters in GPUs to emulate
snooping, as discussed in previous studies [20]. We conducted 10 rounds of experiments for each
of the four CNN models: Lenet, AlexNet, VGGnet-16, and YOLOv2.

5.2 Results
As shown in Table 3, we can fully recover CNN parameters for Lenet, Alexnet, VGGnet-16, and
YOLOv2 for both WS and OS dataflow accelerators of three sizes, across all ten iterations per a
model. Furthermore, it shows our approach can recover exact model architectures compared to
model recovery via snooping DRAM to GB memory access [21] on temporal inference accelerator
that does not consider a dataflow. The layer boundaries of WS dataflow are identified by monitoring
the configuration phase and OS dataflow by observing RAW dependency of feature maps. The CNN
structure has converged into one solution, which highlights that for each Conv layers Algorithm 3
and 4 converged to one solution (𝑠𝑖𝑧𝑒 (𝐻 ) = 1) for the respective layer parameters. This is because
our method can recover exact values for some parameters (𝑋 ′ in WS and 𝑅 and 𝑠𝑡 in OS) and
use them with multiple condition checks to converge to the potential structure. Our findings
from these real-world experiments on FPGA implemented accelerator align with the results from
cycle-accurate simulation, successfully recovering the exact architecture of all four CNN models
every time, across all tested WS dataflow configurations.

Table 4. Side channel data (𝐼𝑟 ,𝑂𝑤 ,𝑊𝑟 ) for all fully connected layers of Alexnet on OS and WS dataflows.

Layer FC1 FC2 FC3
Input reads 9216 4096 4096
Weight reads 37748736 16777216 4096000
Output writes 4096 4096 1000

Since no approaches exist on dataflow architectures to recover CNN models, we compare our
results with [21], which uses the DRAM to GB memory access patterns and execution time of
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layers on a temporal accelerator to recover CNN models. They were able to recover six potential
structures for Lenet and 24 potential structures for Alexnet. Since our approach exploits inherent
dataflow patterns and data reuse that leak critical characteristics of layers, our solution converged
into one correct structure in both cases across all architectures. This accurate recovery of CNN
architecture, facilitated by architectural hints from dataflow inference accelerators, highlights how
layer-specific mapping and processing enhance the leakage of CNN architectures. Table 4 and 5
shows side-channel data on all FC and pooling layers of Alexnet. The side-channel data of FC and
pooling layers do not depend on the specific dataflow architecture of the accelerator. Section 5.3
and 5.4 provide two case studies using Alexnet to provide insight into the recovery procedure of
Conv layers.

Table 5. Side channel data (𝑁𝑝𝑜𝑜𝑙 ) for all pooling layers of Alexnet running on the pooling module.

Layer Pool 1 Pool 2 Pool 3
Number of pool op. 69984 43264 9216

5.3 Case Study: Alexnet with Weight Stationary Dataflow
Table 6 shows the side-channel information used to recover all five Conv layers of Alexnet in the
WS(12, 4) accelerator. The attack needs only a relatively small number of cycle-wise data to be
collected. For example, the targeted event cycle in the second Conv layer is 27, while the total is
11197441 cycles. The rest of the section zooms in on recovering the second Conv layer of Alexnet
using Algorithm 3.

Table 6. Side-channel values for five Conv layers of Alexnet running on WS(12, 4) and the number of cycles.

Layer Weight
reads

psum

reads
psum

writes
Event
cycle

Total
cycles

Conv1 34848 9292800 9583200 55 2395801
Conv2 614400 44603136 44789760 27 11197441
Conv3 884736 12395136 12460032 13 3115009
Conv4 1327104 18625152 18690048 13 4672513
Conv5 884736 12416768 12460032 13 3115009

The second Conv layer of Alexnet has 256 filters (𝐾 = 256) with parameters {𝑅 = 5,𝐶 = 96, 𝑠𝑡 =
1, 𝑝𝑑 = 2}. This layer takes a input feature map of size {𝑋 = 27, 𝑌 = 27,𝐶 = 96} and output a feature
map of paramaters {𝑋 ′ = 27, 𝑌 ′ = 27, 𝐾 = 256}. According to the dataflow mapping described in
Section 2.3, this layer is mapped as two rows (row size = 5) of filter representing two input channels
in one PE array. There are four such PE arrays representing different filters. Figure 6 shows the
mapping of dataflow in the first two cycles in the first PE array with ten active PEs (the diagram
does not show unmapped and idle PE(1,11) and PE(1,12)). The mapping of weights maximizes the
input forwarding between two consecutive cycles (there are only two new input reads and eight
forwarding in second cycle). The other three PE arrays load weights of filter 2-4 in the same relative
order and use the same ifmap values provided to the first PE array through array-wise multicast.
Execution of the Conv2 of Alexnet in WS(12, 4) results in𝑊𝑟 = 614400, 𝑝𝑠𝑢𝑚𝑟 = 44603136,

and 𝑝𝑠𝑢𝑚𝑤 = 44789760. The rest of the section goes through the Algorithm 3 to recover Conv2
parameters of Alexnet. Figure 7 shows the cycle-by-cycle number of GB reads/writes of different
data types. The set H with potential (R,K) values = {(2,1600), (4,400), (5,256), (8,100), (10,64), (16,25),
(20,16), (40,4), (80,1)}. Then the number of active PE arrays can be calculated as 𝑛𝑎 = 40/10 = 4.
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Fig. 6. Dataflow mapping at 1𝑠𝑡 and 2𝑛𝑑 cycle of Alexnet Conv2 layer inWS(12,4) accelerator (only 1𝑠𝑡 PE
array is shown).
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Fig. 7. Cycle-wise number of data reads/writes until the targeted event of Alexnet Conv2 layer in WS(12,4).

Since the targeted event occurs in the 27𝑡ℎ cycle, 𝑋 ′ is 27. Then let us look at each condition and
what potential values are filtered out. The first condition (line 6) applies to the first five elements of
𝐻 where 𝑅 ≤ 10. From these five values, (4,400) and (8,100) are filtered out from 𝐻 . For example
(𝑤1/𝑛𝑎)%𝑅 is 10%4 = 2 for (4,400).
When considering the next two conditions in lines 9 and 12, Table 7 shows 𝑠𝑡 and 𝑝𝑑 values

generated according to the algorithm. 𝑖 [2] = 2 is from side channels, which is used to calculate 𝑠𝑡
for each value remaining in set 𝐻 . When we look at the table, only (5,256) satisfy both conditions.
It is important to notice that potential 𝑅 ≥ 10 fails the 𝑝𝑑 > 𝑅 condition. When we consider the
final condition and the remaining value of set H (5,256): 𝑋 ′ × 𝑌 ′ × 𝐾 = 186624, which is equal to
𝑂𝑤 = 𝑝𝑠𝑢𝑚𝑤 − 𝑝𝑠𝑢𝑚𝑟 . Therefore, we can successfully recover Alexnets’ Conv2 layer parameters.

Table 7. Checking conditions 2 and 3 of Algorithm 3 for Conv2 of Alexnet on WS(12, 4) dataflow accelerator.

(R,K) (2,1600) (5,256) (10,64) (16,25) (20,16) (40,4) (80,1)
max(m//R,1) 6 2 1 1 1 1 1
st 4/6 1 2 2 2 2 2
pd - 2 35/2 41/2 45/2 65/2 105/2
x/✓ x ✓ x x x x x

5.4 Case Study: Alexnet with Output Stationary Dataflow
Table 8 shows the side-channel information used to recover all the five convolution layers of
Alexnet in the OS(10, 4) accelerator. The attack needs only a small number of cycle-wise data to
be collected. For example, the targeted event cycle in the first Conv layer is 363, while the total
is 2927233 cycles. The remainder of the section describes how to recover the first Conv layer of
Alexnet using Algorithm 4.

The first Conv layer of Alexnet has 96 filters (𝐾 = 96) with parameters {𝑅 = 11,𝐶 = 3, 𝑠𝑡 =

4, 𝑝𝑑 = 0}. This layer takes an input feature map of size {𝑋 = 227, 𝑌 = 227,𝐶 = 3} and outputs a
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Table 8. Side-channel information for all Conv layers on Alexnet running on OS(10, 4)

Layer Weight
reads

Output
writes

Event
cycle

Total
cycles

Conv1 2927232 290400 363 2927233
Conv2 12902400 186624 2400 12902401
Conv3 7077888 64896 2304 7077889
Conv4 10616832 64896 3456 10616833
Conv5 7077888 43264 3456 7077889

feature map of parameters {𝑋 ′ = 55, 𝑌 ′ = 55, 𝐾 = 96}. Figure 8 shows dataflow mapping in the first
two cycles: the first ten entries of the first row of the ofmap are accumulated in the first row of
the PE array. Similarly, the subsequent three rows of the ofmap are mapped into the next three PE
arrays in order. The weight reads in consecutive cycles are done to maximize input forwarding. For
example, the reading of the𝑊 [1, 1, 5] in the second cycle after𝑊 [1, 1, 1] in the first cycle results in
only one input read from GB (𝐼 [1, 1, 41]) for that PE array. Only four input reads from GB in the
second cycle for all four PE arrays.

O[1,1,1] O[1,1,2] O[1,1,3] O[1,1,4]

W[1,1,1] W[1,1,1] W[1,1,1]

I[1,1,1] I[1,1,5]

W[1,1,1] W[1,1,1] W[1,1,1] W[1,1,1] W[1,1,1] W[1,1,1] W[1,1,1]

I[1,1,9] I[1,1,13] I[1,1,17]

O[1,1,5] O[1,1,6] O[1,1,7] O[1,1,8] O[1,1,9] O[1,1,10]

W[1,1,5] W[1,1,5] W[1,1,5]

I[1,1,5]

W[1,1,5] W[1,1,5] W[1,1,5] W[1,1,5] W[1,1,5] W[1,1,5] W[1,1,5]

I[1,1,9] I[1,1,13] I[1,1,17] I[1,1,21] I[1,1,25] I[1,1,29] I[1,1,33] I[1,1,37] I[1,1,41]

PE1,10PE1,9PE1,8PE1,7PE1,5PE1,4PE1,3PE1,2PE1,11st PE
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Output

PE1,6

Cycle 1

Cycle 2

I[1,1,21] I[1,1,25] I[1,1,29] I[1,1,33] I[1,1,37]

Fig. 8. Dataflow mapping at 1𝑠𝑡 and 2𝑛𝑑 cycle of Alexnet Conv1 layer in OS(10, 4) accelerator (only 1𝑠𝑡 PE
array is shown).
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Fig. 9. Cycle-wise number of data reads/writes until the targeted event of Alexnet Conv1 layer in OS(10,4).

Execution of the Conv1 of Alexnet in OS(10, 4) results in𝑊𝑟 = 2927232 and 𝑂𝑤 = 290400. The
rest of the section goes through the Algorithm 4 to recover Conv1 parameters of Alexnet. Figure
9 shows the cycle-by-cycle number of GB reads/writes of different data types. The cycle of the
targeted event (𝑡𝑒 ) is 364. Therefore, 𝑅2𝐶 = 363 (line 1). Solving this in the Z+ domain gives 𝑅 = 11.
The virtual address difference between weight reads in the first (W[1,1,5]) and second (W[1,1,1])
cycle is 4, which is equal to the stride. When we consider the two conditions in lines 8 and 10,
Table 9 shows 𝑋 ′/𝑌 ′ and 𝐾 values generated according to the algorithm for each potential 𝑝𝑑
value (0-10). As shown in the table, only 𝑝𝑑 = 0 passes all the conditions. 𝑝𝑑 = 0 also satisfies
Equation 4 (2927232 = (𝑐𝑒𝑖𝑙 (55/10) × 𝑐𝑒𝑖𝑙 (55/4))112 × 3 × 96 )). Therefore, we can successfully
recover Alexnets’ Conv1 layer parameters.
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Table 9. Checking conditions 1 and 2 of Algorithm 4 for Conv1 of Alexnet on OS(10, 4) dataflow accelerator.

pd 0 1 2 3 4 5 6 7 8 9 10
X’/Y’ 55 55.5 56 56.5 57 57.5 58 58.5 59 59.5 60
K 96 - 92.6 - 89.3 - 86.3 - 83.4 - 80.6
x/✓ ✓ x x x x x x x x x x

5.5 Applicability and Limitations
Our proposed attack works on any concrete configuration of abstract WS and OS dataflow archi-
tectures outlined in Section 2. For this study, we assumed there is no bandwidth limitation on
interconnect for each datatype. After relaxing this assumption, a minor modification in Algorithm
3 in WS dataflow or 4 in OS dataflow can generate the same results. For example, if weight NoC
has a bandwidth limitation of 10 on the processing of the Conv layer in WS(12, 4), as elaborated in
Figure 7, four cycles would be spent on the initial weight memory read. We can identify the initial
four memory reads by either lagging of psum writes by three cycles or idling input interconnect for
three cycles. Another assumption we made was the accumulation of multiplication on one PE array
in WS dataflow happens in one cycle. If we relax this assumption and set q cycles for accumulating
a psum write in a PE array, every psum write will lag by extra 𝑞 − 1 cycles. A minor modification of
calculating the event cycle as 𝑡𝑒 − 𝑞 can fix this. Our approach can be applied to folding-supported
WS architectures since our attack uses side-channel information independent of folding.

One feature of our methodology warrants further discussion, is its approach to scenarios where
multiple potential structures for a previous layer might exist. In such cases, our algorithm tests
the ifmap parameters of each potential structure to identify the correct configuration for the
subsequent layer. Our approach utilizes a layer-by-layer structure extraction mechanism where
integer factorization establishes an initial set of possible outcomes. These are then refined through
a set of rules driven by architectural hints and side-channel information, ensuring convergence to
a singular structure for each layer. Our experimental results, covering 64 layers across six different
dataflow accelerators (384 combinations), consistently demonstrate a convergence to a single layer
structure, proving the robustness of our approach. Furthermore, if multiple structures exist in the
previous layer, the incompatibility with rules in the current or any preceding layer will further
narrow down the solutions. Due to the use of a layer-by-layer extraction approach, our method is
inherently scalable for more complex and deeper architectures; this is evidenced by its successful
scaling for deeper networks in our results.
In this paper, we develop a methodology for recovering CNN models from weight stationary

and output stationary dataflow architectures with input forwarding. The proposed attack can be
extended to any WS accelerator with input forwarding, such as MAERI [28], by leveraging the
hierarchical interconnects and input forwarding mechanisms to infer memory access patterns and
extract CNN model parameters. The main difference between MAERI and the WS architecture in
the paper lies in their reconfigurable interconnects, allowing dynamic adjustment of PE array size
when processing each layer. This control message for reconfiguration can be snooped from the
same bus ( d in Figure 4) used in layer boundary identification (Section 4.1). Once the PE size is
determined through snooping, the proposed attack can be applied accordingly. Our attack on OS
dataflow can be extended to other OS architectures with input forwarding [11, 33] to recover CNN
models. Both architectures, ShiDianNao [11] and Envision [33], adhere to the OS architectures
with input forwarding outlined in the paper, with subtle implementation differences. For example,
Envision, rather than having dedicated input forwarding at each PE array, uses a FIFO buffer shared
between PE arrays for input forwarding. Since this does not change the observed side-channel
information (number of reads and writes) outside of the PE arrays, our attack can be extended
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to this architecture as well. These extensions are feasible because both WS and OS architectures
share fundamental characteristics in data movement and reuse that were exploited in the attacks to
recover model parameters and structures. The underlying abstract methodology can be extended to
recover CNN models from other dataflow architectures using different local forwarding data-type
(e.g., Neuflow [12]) and different dataflow types (input-stationary and row stationary [7]) by (1)
defining a targeted event/events to collect cycle-wise number of data reads and writes, (2) collecting
total reads and writes responsible for a layer, and (3) exploiting spatial and temporal data reuse
in (1) and (2) with architectural details. Our approach cannot be directly applied to recover CNN
structures with sparse FC and Conv layers such as Squeezenet [24]. Our study on recovering CNN
architectures highlights that memory access patterns should not be exposed to adversaries to avoid
the leaking of CNN model architectures through dataflow-based CNN accelerators.

5.6 Potential Mitigation Techniques
We highlight potential countermeasures that can be explored by designers in securing CNN ar-
chitectures against proposed memory-based side channel attacks. Several mitigation strategies
can be explored by the designers. (1) Introducing dummy operations that do not affect the final
output but alter the memory access patterns and computational behavior can help obscure the
true operations being executed, thereby confusing attackers and complicating their analysis of
side-channel data. (2) Implementing variable precision for weights and activations can make it
more challenging for attackers to determine the number of memory reads and writes, increasing
the difficulty of correlating observed memory operations with specific network layer structures. (3)
Employing decoy architectures and alternative data paths that activate during specific operations
can mislead attackers about the actual computational processes. (4) Specifically for OS dataflow
architectures, randomizing the order of data storage in memory, such as weights and activations, can
prevent attackers from easily correlating observed memory access patterns with specific operations.
These countermeasures can also be combined to form a multi-layered defense strategy against
side-channel attacks. Future research could further explore these mitigation techniques to validate
their effectiveness against model recovery attacks in dataflow-based inference accelerators.

6 CONCLUSION
Artificial intelligence at edge devices is becoming increasingly ubiquitous with the abundance of
data. Convolution neural networks (CNN) are executed using dataflow-based CNN accelerators
due to energy efficiency. These accelerators use dataflows coupled with architectural designs to
maximize different types of data reuse in CNN layers to efficiently perform inference using CNN
models. This paper proposes an end-to-endmemory-based side-channel attack that exploits dataflow
patterns with the help of architectural hints to recover CNN model structures. Extensive evaluation
of multiple architectures on weight stationary and output stationary dataflows demonstrates that
our proposed method can fully recover well-known benchmark CNN models running in these CNN
accelerators. This work also highlights the importance of concealing memory access patterns in
dataflow-based inference accelerators.

ACKNOWLEDGMENTS
This work was partially supported by National Science Foundation (NSF) grant SaTC-1936040.

REFERENCES
[1] Abien Fred Agarap. 2018. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375 (2018).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



Revealing CNN Architectures via Side-Channel Analysis in Dataflow-based Inference Accelerators 1:23

[2] M Meraj Ahmed, Abhijitt Dhavlle, Naseef Mansoor, Purab Sutradhar, Sai Manoj Pudukotai Dinakarrao, Kanad Basu,
and Amlan Ganguly. 2020. Defense against on-chip trojans enabling traffic analysis attacks. In 2020 Asian Hardware

Oriented Security and Trust Symposium (AsianHOST). IEEE, 1–6.
[3] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2019. CSI NN: Reverse engineering of neural network

architectures through electromagnetic side channel. (2019).
[4] Erik-Oliver Blass and William Robertson. 2012. TRESOR-HUNT: attacking CPU-bound encryption. In Proceedings of

the 28th Annual Computer Security Applications Conference. 71–78.
[5] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Debdeep Mukhopadhyay. 2018. Adver-

sarial attacks and defences: A survey. arXiv preprint arXiv:1810.00069 (2018).
[6] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari Cadambi. 2010. A dynamically configurable

coprocessor for convolutional neural networks. In Proceedings of the 37th annual international symposium on Computer

architecture. 247–257.
[7] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2016. Eyeriss: An energy-efficient reconfigurable

accelerator for deep convolutional neural networks. IEEE journal of solid-state circuits 52, 1 (2016), 127–138.
[8] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A flexible accelerator for emerging deep

neural networks on mobile devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019),
292–308.

[9] Łukasz Chmielewski and Léo Weissbart. 2021. On reverse engineering neural network implementation on GPU. In
Applied Cryptography and Network Security Workshops: ACNS 2021 Satellite Workshops, AIBlock, AIHWS, AIoTS, CIMSS,

Cloud S&P, SCI, SecMT, and SiMLA, Kamakura, Japan, June 21–24, 2021, Proceedings. Springer, 96–113.
[10] Jason Cong and Bingjun Xiao. 2014. Minimizing computation in convolutional neural networks. In Artificial Neural

Networks and Machine Learning–ICANN 2014: 24th International Conference on Artificial Neural Networks, Hamburg,

Germany, September 15-19, 2014. Proceedings 24. Springer, 281–290.
[11] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing Feng, Yunji Chen, and Olivier

Temam. 2015. ShiDianNao: Shifting vision processing closer to the sensor. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture. 92–104.

[12] Clément Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio Culurciello, and Yann LeCun. 2011. Neuflow:
A runtime reconfigurable dataflow processor for vision. In CVPR 2011 workshops. IEEE, 109–116.

[13] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion attacks that exploit confidence information
and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC conference on computer and communications security.
1322–1333.

[14] Vinayak Gokhale, Jonghoon Jin, Aysegul Dundar, Berin Martini, and Eugenio Culurciello. 2014. A 240 g-ops/s mobile
coprocessor for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition

workshops. 682–687.
[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT press.
[16] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang,

Gang Wang, Jianfei Cai, et al. 2018. Recent advances in convolutional neural networks. Pattern recognition 77 (2018),
354–377.

[17] Peter Horvath, Lukasz Chmielewski, Leo Weissbart, Lejla Batina, and Yuval Yarom. 2023. BarraCUDA: Bringing
Electromagnetic Side Channel Into Play to Steal the Weights of Neural Networks from NVIDIA GPUs. arXiv preprint
arXiv:2312.07783 (2023).

[18] Peter Horvath, Lukasz Chmielewski, Leo Weissbart, Lejla Batina, and Yuval Yarom. 2024. CNN architecture extraction
on edge GPU. arXiv preprint arXiv:2401.13575 (2024).

[19] Xing Hu, Ling Liang, Lei Deng, Shuangchen Li, Xinfeng Xie, Yu Ji, Yufei Ding, Chang Liu, Timothy Sherwood, and
Yuan Xie. 2019. Neural network model extraction attacks in edge devices by hearing architectural hints. arXiv preprint
arXiv:1903.03916 (2019).

[20] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xinfeng Xie, Yufei Ding, Chang Liu, Timothy
Sherwood, et al. 2020. Deepsniffer: A dnn model extraction framework based on learning architectural hints. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and

Operating Systems. 385–399.
[21] Weizhe Hua, Zhiru Zhang, and G Edward Suh. 2018. Reverse engineering convolutional neural networks through

side-channel information leaks. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 1–6.
[22] Andrew Huang. 2002. Keeping secrets in hardware: The microsoft xboxtm case study. In International Workshop on

Cryptographic Hardware and Embedded Systems. Springer, 213–227.
[23] Yongbing Huang, Licheng Chen, Zehan Cui, Yuan Ruan, Yungang Bao, Mingyu Chen, and Ninghui Sun. 2014. HMTT:

A hybrid hardware/software tracing system for bridging the DRAM access trace’s semantic gap. ACM Transactions on

Architecture and Code Optimization (TACO) 11, 1 (2014), 1–25.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:24 Hansika Weerasena and Prabhat Mishra

[24] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer. 2016.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360
(2016).

[25] Mihailo Isakov, Lake Bu, Hai Cheng, and Michel A Kinsy. 2018. Preventing neural network model exfiltration in
machine learning hardware accelerators. In 2018 Asian Hardware Oriented Security and Trust Symposium (AsianHOST).
IEEE, 62–67.

[26] Nandan Kumar Jha, Sparsh Mittal, Binod Kumar, and Govardhan Mattela. 2020. DeepPeep: Exploiting design ramifica-
tions to decipher the architecture of compact DNNs. ACM Journal on Emerging Technologies in Computing Systems

(JETC) 17, 1 (2020), 1–25.
[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Imagenet classification with deep convolutional neural

networks. Commun. ACM 60, 6 (2017), 84–90.
[28] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. Maeri: Enabling flexible dataflow mapping over dnn

accelerators via reconfigurable interconnects. ACM SIGPLAN Notices 53, 2 (2018), 461–475.
[29] Yann Le Cun, Lawrence D Jackel, Brian Boser, John S Denker, Hans Peter Graf, Isabelle Guyon, Don Henderson,

Richard E Howard, and William Hubbard. 1989. Handwritten digit recognition: Applications of neural network chips
and automatic learning. IEEE Communications Magazine 27, 11 (1989), 41–46.

[30] Yuntao Liu and Ankur Srivastava. 2020. Ganred: Gan-based reverse engineering of dnns via cache side-channel. In
Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing Security Workshop. 41–52.

[31] Raju Machupalli, Masum Hossain, and Mrinal Mandal. 2022. Review of ASIC accelerators for deep neural network.
Microprocessors and Microsystems 89 (2022), 104441.

[32] Prabhat Mishra, Swarup Bhunia, and Mark Tehranipoor. 2017. Hardware IP security and trust. Springer.
[33] Bert Moons, Roel Uytterhoeven, Wim Dehaene, and Marian Verhelst. 2017. 14.5 envision: A 0.26-to-10tops/w subword-

parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural network processor in 28nm fdsoi. In 2017

IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 246–247.
[34] Francisco Muñoz-Martínez, José L Abellán, Manuel E Acacio, and Tushar Krishna. 2021. STONNE: Enabling cycle-level

microarchitectural simulation for dnn inference accelerators. In 2021 IEEE International Symposium on Workload

Characterization (IISWC). IEEE, 201–213.
[35] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only look once: Unified, real-time object

detection. In Proceedings of the IEEE conference on computer vision and pattern recognition. 779–788.
[36] Qihang Shi, Navid Asadizanjani, Domenic Forte, and Mark M Tehranipoor. 2016. A layout-driven framework to assess

vulnerability of ICs to microprobing attacks. In 2016 IEEE International Symposium on Hardware Oriented Security and

Trust (HOST). IEEE, 155–160.
[37] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556 (2014).
[38] Sergei Skorobogatov. 2017. How microprobing can attack encrypted memory. In 2017 Euromicro Conference on Digital

System Design (DSD). IEEE, 244–251.
[39] Gilbert Strang. 1986. A proposal for Toeplitz matrix calculations. Studies in Applied Mathematics 74, 2 (1986), 171–176.
[40] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient processing of deep neural networks: A

tutorial and survey. Proc. IEEE 105, 12 (2017), 2295–2329.
[41] Shahin Tajik, Heiko Lohrke, Jean-Pierre Seifert, and Christian Boit. 2017. On the power of optical contactless probing:

Attacking bitstream encryption of FPGAs. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security. 1661–1674.
[42] Huanyu Wang, Domenic Forte, Mark M Tehranipoor, and Qihang Shi. 2017. Probing attacks on integrated circuits:

Challenges and research opportunities. IEEE Design & Test 34, 5 (2017), 63–71.
[43] Hansika Weerasena and Prabhat Mishra. 2023. Security of Electrical, Optical and Wireless On-Chip Interconnects: A

Survey. ACM Trans. Des. Autom. Electron. Syst. (oct 2023). https://doi.org/10.1145/3631117
[44] Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad Abdullah Al Faruque. 2020. Leaky dnn: Stealing

deep-learning model secret with gpu context-switching side-channel. In 2020 50th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN). IEEE, 125–137.
[45] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang, Haiyang Hao, Jinyin Chen, Yi Liu, Zhefu Wu, Qi Xuan, and

Xiaoniu Yang. 2020. Open dnn box by power side-channel attack. IEEE Transactions on Circuits and Systems II: Express

Briefs 67, 11 (2020), 2717–2721.
[46] Mengjia Yan, Christopher Fletcher, and Josep Torrellas. 2020. Cache telepathy: Leveraging shared resource attacks to

learn DNN architectures. In USENIX Security Symposium.
[47] Honggang Yu, Haocheng Ma, Kaichen Yang, Yiqiang Zhao, and Yier Jin. 2020. Deepem: Deep neural networks model

recovery through em side-channel information leakage. In 2020 IEEE International Symposium on Hardware Oriented

Security and Trust (HOST). IEEE, 209–218.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/3631117

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Convolutional Neural Networks (CNN)
	2.2 Architectures for CNN Inference
	2.3 Dataflow-based CNN Accelerators
	2.4 Related Work

	3 Threat Model and Problem Formulation
	3.1 Problem Formulation
	3.2 Threat Model

	4 Extracting CNN Architecture using Side-Channel Analysis
	4.1 Identification of Layer Boundary
	4.2 Identification of Layer Type
	4.3 Recovery of Conv Layer from Weight Stationary Dataflow
	4.4 Recovery of Conv Layer from Output Stationary Dataflow
	4.5 Extraction of FC Layer Parameters
	4.6 Identification of Activation Functions
	4.7 Extraction of Pooling Layer Parameters

	5 Experiments
	5.1 Experimental Setup
	5.2 Results
	5.3 Case Study: Alexnet with Weight Stationary Dataflow
	5.4 Case Study: Alexnet with Output Stationary Dataflow
	5.5 Applicability and Limitations
	5.6 Potential Mitigation Techniques

	6 conclusion
	References

