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Abstract—Variational quantum algorithms (VQA) combine the
advantages of classical and near-term quantum computation for
solving problems on today’s noisy quantum devices. Variational
Quantum Eigensolver (VQE) is one of the widely used VQAs,
which aims to find the approximate ground state energy of a
given Hamiltonian. While traditional VQE implementation is
promising for ansatz-based trial state preparation, it requires an
initial fiducial state or a reference state, which can be infeasible
for large quantum systems. In this paper, we propose a novel
approach for trial state preparation in VQE algorithms. This
method leverages passive steering, a circuit-based approach with
repeated measurements, eliminating the need for an initial fidu-
cial state or a reference state. Experimental results demonstrate
that passive steering-based state preparation provides improved
accuracy and scalability of VQE compared to traditional ansatz-
based solutions. Our proposed solution can also be effectively
combined with the existing ansatz-based methods, where passive
steering prepares the reference state while ansatz prepares the
trial state, facilitating a robust and scalable state preparation for
variational quantum algorithms.

Index Terms—Quantum Computing, Variational Quantum
Algorithms, Variational Quantum Eigensolver, Ansatz, State
Preparation, Passive Steering

I. INTRODUCTION

Quantum computers use the unique features of quantum
states, such as superposition, entanglement, and interference,
to perform calculations faster than classical computers, in-
troducing new possibilities for solving a certain class of
problems that are hard for classical computers. Despite these
advances, quantum computing is still an emerging field, facing
challenges such as noise, error rates, the stability of quantum
bits (qubits), and difficulty in building large quantum systems.
Noisy Intermediate-Scale Quantum (NISQ) computers [1], [2],
though limited by their noise levels and the number of qubits,
offer a platform to explore quantum computing applications
on a scale previously unattainable. The development of NISQ
technology marks a critical step in quantum research, acknowl-
edging the current limitations while laying the groundwork for
future advancements.

Variational quantum algorithms (VQA) [3], [4], [5], [6]
enable the synergistic integration of classical and quantum
computing to effectively navigate challenges like noise and
the limited scale of current quantum computers. Specifically,
variational quantum algorithms, such as Variational Quantum
Eigensolver (VQE) [7], [8], [9], harness the precise control
and optimization capabilities of classical computing alongside
the parallel processing power and quantum state manipulation
offered by quantum computing. VQE has shown remarkable
promise in addressing complex problems in various domains,
including quantum chemistry [10], [11], [8] and materials
science [9], [12]. By utilizing quantum computers to estimate

the eigenvalues of a Hamiltonian, VQE leverages the unique
ability of quantum systems to represent, manipulate, and
process information in ways that classical systems cannot. This
capability, combined with classical computers’ power to man-
age optimization routines, forms a potent method for solving
problems beyond the reach of current classical computers.

While existing VQE-based solutions are promising, they
face two fundamental challenges. First, the presence of short
coherence times, system noise, and frequent gate errors in
NISQ computers [1] complicate the execution of larger-scale
experiments due to the challenges in accurately implement-
ing state preparation circuits. Moreover, the existing VQE
frameworks depend on the choice of the reference state and
the ansatz parameters [13]. A well-chosen reference state can
accelerate the VQE process by narrowing the search space.
However, identifying an optimal reference state is challenging,
and preparing it assumes the existence of a known fiducial
state (|0⟩⊗nof n-qubits), which is difficult to achieve in larger
quantum systems [14].

In this paper, we address the fundamental challenge of state
preparation in variational quantum algorithms. Specifically,
we propose a passive steering-based [14] ansatz designed
to outperform widely used Qiskit’s [15] ansatz-based solu-
tions, such as Unitary Coupled Cluster Singles and Doubles
(UCCSD) [16] and hardware efficient SU(2) 2-local circuit
(EfficientSU2) [17], especially in large noisy quantum envi-
ronments with unknown initial state. Unlike existing ansatz-
based methods that rely on a reference state or initial known
state to construct the trial state, our approach eliminates the
need for such prerequisites. Our approach can generate the
quantum circuit required to produce the desired trial state
using measurement-induced passive steering. This represents a
significant departure from traditional ansatzes, where the trial
state is adjusted by tuning parameters within a fixed circuit
structure. In contrast, our method focuses on directly shaping
the trial state itself, subsequently deriving the circuit through
passive steering mechanisms to produce this state. Specifically,
this paper makes the following major contributions.

• We propose a passive steering-based trial state prepara-
tion method, thereby eliminating the initial state depen-
dency in VQE algorithms. Experimental results demon-
strate that passive steering-based state preparation pro-
vides improved accuracy and scalability of VQE com-
pared to traditional ansatz-based solutions.

• We also demonstrate an effective combination of passive
steering with the traditional ansatz, where passive steering
prepares the reference state while ansatz prepares the trial
state, facilitating a robust and scalable state preparation
for variational quantum algorithms.



The remainder of this paper is organized as follows: Sec-
tion II provides the necessary background on VQE and passive
steering. Section III describes our passive steering-based state
preparation framework, aiming to replace the traditional ansatz
and reference state preparation circuit in VQE. Section IV
presents the experimental results. Finally, Section V concludes
the paper.

II. BACKGROUND AND RELATED WORK

A. Varitional Quantum Eigensolver

Eigensolvers are used to find the eigenvalues and eigen-
vectors of a system [18]. It enables the discovery of ground
state energies of Hamiltonians crucial in quantum chemistry,
advanced simulations in nuclear physics, and aids in the
design of quantum algorithms for optimization problems.
These tools are also significant in material science [19], [20]
for identifying new materials with desired properties and in
cryptography for efficiently factoring large numbers. However,
classical eigensolvers, which typically involve operations like
matrix diagonalization, face significant limitations due to the
exponential scaling of computational resources with system
size. This makes it impractical to analyze large or complex
quantum systems as the computational demand far exceeds
the capabilities of classical computing infrastructure.

In order to address these limitations, VQE implementations
utilize a hybrid quantum-classical approach by leveraging the
strengths of quantum and classical computers to approximate
the minimum eigenvalue (ground state energy) [8]. VQE oper-
ates by preparing a trial quantum state, measuring observables
to evaluate its energy, and employing classical optimization
to adjust the trial state’s parameters toward minimizing its
energy. This method capitalizes on quantum computers’ ability
to handle complex quantum state manipulations and classical
computers’ optimization capabilities.
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Fig. 1: Traditional VQE consists of four stages: initializa-
tion, trial state preparation, measurement, and optimization.
The computations are divided between classical and quantum
computers, as shown by green and blue colors, respectively.

As shown in Figure 1, a traditional VQE framework consists
of four stages. The first stage either initializes a reference
state, which can be obtained from mean field calculations
like the Hartree-Fock method [21] for problems like electronic

structures or initializes ansatz parameters by guessing or by
using past data. This step is followed by the deployment of
a parameterized quantum circuit known as ansatz, such as
UCCSD, TwoLocal, EfficientSU2, etc. The choice of ansatz
is critical, as it determines the algorithm’s capacity to explore
the Hilbert space effectively, balancing expressibility and the
manageability of the computational search space [3]. The
measurement phase of VQE involves applying rotations to
align the measurement basis with the system’s observables,
thus enabling the acquisition of precise energy information
of the trial state. This data is then processed by a classical
optimizer, like COBYLA [22], to iteratively refine the ansatz
parameters towards achieving the lowest energy state. This
iterative loop continues until the optimizer converges on a so-
lution, demonstrating the algorithm’s efficacy in approximating
the ground state energy using NISQ computers.

B. Measurement-Induced Passive Steering

There are various methods for preparing quantum states,
such as thermal relaxation and algorithmic cooling to obtain a
fiducial state or applying a series of discrete quantum gates to
the known initial state to obtain the target state. The existing
methods can be inefficient for large quantum systems due to
long relaxation times, the complexity of required operations,
or the need for careful calibration of quantum gates. Moreover,
direct initialization faces with scalability concerns and can
introduce unacceptable overhead for large-scale quantum sys-
tems. Measurement-induced quantum steering (MIQS) [14],
[23] exploits the non-local correlations inherent in quantum
mechanics to manipulate the state of a quantum system
indirectly. This technique hinges on the establishment of
entanglement between the system and an ancillary system, the
latter being subjected to measurements that induce a back-
action on the system, thus steering it towards the desired state.
This iterative protocol leverages the repetition of quantum
measurements and unitary transformations to navigate the state
space.

|ψ0⟩

ancilla:

system:

U

|ψ⊕⟩

n = 1 n = 2 n = N

|0⟩
U

|0⟩|0⟩
U
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Fig. 2: Illustration of the iterative process for steering an
unknown initial state, |ψ0⟩, towards the designated target state,
|ψ⊕⟩, after N applications, utilizing passive steering [14].

Figure 2 shows the iterative steps of the MIQS protocol that
are outlined as follows:

• A unitary operation U is applied to entangle the sys-
tem and ancilla qubits, transforming the state of the
ancilla-system after the nth iteration ρn+1

ancilla−system =

U(ρancilla ⊗ ρnsystem)U
†, where ρancilla represents the

density matrices of the ancilla and ρnsystem represents
the density matrices of the system after n iterations.



The selected U should satisfy the steering inequality:
⟨ψ⊕|ρnsystem|ψ⊕⟩ < ⟨ψ⊕|ρn+1

system|ψ⊕⟩.
• The measurement of ancilla qubits leads to the state of

the system conditioned on the measurement outcome of
the ancilla. The system’s state after measurement is given
by ρn+1

system = Trancilla[ρ
n+1
ancilla−system], where Trancilla is

the trace of ρancilla.
• Following the measurement, the ancilla qubits are reset

to their initial state for the next iteration, making the
process memory-less. This protocol incrementally steers
the system towards the target state. Since here we are
disregarding the measurement results, this approach is
called passive steering.

The MIQS protocol aims to maximize the fidelity of the
prepared state, with each iteration bringing the system closer
to the desired target state.

III. PASSIVE STEERING BASED STATE PREPARATION

The concept of an ansatz plays a pivotal role in the trial
state preparation in the VQE framework. An ansatz is es-
sentially a parameterized quantum circuit designed to explore
the quantum system’s Hilbert space in search of its ground
state energy. In this section, we first discuss a hybrid state
preparation approach by utilizing both traditional ansatz and
passive steering. Next, we discuss passive steering-based trial
state preparation as a replacement for the traditional ansatz in
the VQE framework.

A. State Preparation using Passive Steering and Ansatz

This section explores an effective combination of passive
steering and ansatz, where passive steering prepares the ref-
erence state and ansatz prepares the trial state, as outlined in
the following sections.

1) Trial State Preparation using Ansatz: The ansatz’s pur-
pose within the VQE pipeline is to generate trial states that
are iteratively optimized, based on the feedback from quantum
measurements, to find the system’s ground state energy as
closely as possible. Selecting an effective ansatz is crucial
for the success of VQE because it directly influences the
algorithm’s ability to converge to the true ground state within a
feasible number of iterations. The main criterion for selecting
an ansatz is its expressibility, which refers to the ansatz’s
capacity to generate a diverse set of states across the Hilbert
space. Expressibility can be defined in terms of the Kullback-
Leibler divergence that compares the distribution of states
generated by the ansatz to a uniform distribution in Hilbert
space, also known as the Haar random states. For a given
ansatz C, the quantified expressibility ε(C) is defined as
follows in terms of Kullback-Leibler (KL) divergence [24]:

ε(C) = DKL(P (C,F )||PHaar(F ))

=

∫ 1

0

P (C,F ) log

(
P (C,F )

PHaar(F )

)
dF.

(1)

where DKL(p||q) is the KL-divergence between probability
distributions p and q. P (C,F ) is the estimated probability
distribution of the fidelity (F), which can be defined as:

F = |⟨ψθ|ψϕ⟩|2 (2)

where θ and ϕ are randomly sampled parameters from the
ansatz C. PHaar(F ) is the probability distribution of fidelity
F for the Haar random state which is defined as

PHaar(F ) = (N − 1)(1− F )N−2 (3)

where N is the dimension of the Hilbert Space. The ansatz C
is considered more expressible if it has a lower KL-divergence
value with respect to the Haar measure. Hardware-efficient
ansatz (EfficientSU2), UCCSD, and heuristic excitation-
preserving wave function ansatz (ExcitationPreserving) are
prominent examples of different types of ansatz available in
the Qiskit environment. These varieties highlight the breadth of
strategies developed to navigate the complexities of quantum
state preparation, each with its unique approach to balancing
expressibility and computational efficiency.

2) Reference State Preparation using Passive Steering:
In quantum chemistry, many ansatzes begin with a reference
state, typically a product state, derived from mean-field cal-
culations such as Hartree-Fock. These reference state circuits
are predicated on the assumption that the initial state of the
qubits in the VQE pipeline is a known fiducial state. However,
as previously discussed, traditional methods of preparing these
known fiducial states can be inefficient in larger quantum
systems. By implementing passive steering for reference state
preparation, our proposed method circumvents the need for
a predetermined fiducial state. Figure 3 depicts how this
reference state is prepared via passive steering, which is then
integrated with traditional ansatz in the VQE pipeline, demon-
strating a combined strategy that boosts both the performance
and flexibility of the algorithm.
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Fig. 3: State preparation using both passive steering and ansatz

B. State Preparation using Passive Steering

In this section, we discuss a solution for state preparation
using only passive steering. The passive steering-based trial
state preparation avoids the reliance on internal parameterized
gates for state generation. Instead, it capitalizes on the princi-
ples of MIQS to directly guide the quantum state towards the
desired state, acting effectively as a dynamic ansatz. One of
the key advantages of passive steering-based state preparation



is that it can achieve any target state starting from any initial
state. Therefore, this method is well suited for large quantum
systems where state preparation is a challenging task. As
shown in Figure 4, our approach allows for the complete
replacement of ansatz-based trial state preparation with passive
steering within the VQE pipeline. Here, classical optimization
is applied not to tune parameterized gates in each iteration but
to adjust the parameters of the wave function itself, offering
a more direct and more efficient route to state preparation, as
demonstrated in Section IV.
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Fig. 4: Proposed passive steering-based VQE framework

IV. EXPERIMENTS

In this section, we present experimental results to demon-
strate the effectiveness of passive steering-based state prepa-
ration in the VQE framework.

A. Experimental Setup

We conducted our experiments using the Qiskit [15] sim-
ulator. To compare our passive steering-based trial state
preparation method against state-of-the-art approaches, we
selected a range of inbuilt ansatzes available in Qiskit, in-
cluding UCCSD [16], EfficientSU2 [17], RealAmplitudes [25],
TwoLocal [26], and ExcitationPreserving [27]. To ensure a
fair assessment of all ansatzes, we employed the same VQE
algorithm implementation, including consistent measurement
circuit generation, expected value calculation, and classical
optimization techniques across all trials. The COBYLA opti-
mizer, known for its gradient-free approach to optimization,
was chosen as the classical optimizer for its robustness in
handling the algorithm’s non-linear optimization challenges.
We utilized the Qiskit Aer simulator [28] with the state vector
method as our simulator. All the results were obtained as an
average of ten rounds, with each round consisting of 8192
shots. These experiments were executed on a Mac mini with
an 8-core Apple M2 processor and 16 GB of RAM.

We focus on computing the ground state energy of the
H2 molecule across a range of interatomic distances and
compare our approach with existing methods as well as
the exact ground state energy. Specifically, VQE determines
the molecule’s ground state energy by finding the minimum
eigenvalue of its Hamiltonian matrix. To achieve this, we
input the Hamiltonian of the H2 molecule, modified to reflect

various interatomic distances, into the VQE and calculate the
ground state energy for each distance using different trial state
preparation methods. For reference, we employ a mathematical
eigenvalue solver (NumpyEigenSolver [29]) to compute the
exact ground state energy of the given Hamiltonian.

B. State Preparation Results Utilizing Both Passive Steering
and Traditional Ansatz

As described in Section III-A2, passive steering-based state
preparation is utilized to generate an initial fiducial state-
independent reference state, which is then combined with the
UCCSD ansatz to execute the VQE. We utilized the Hartree-
Fock method to find the reference state by using classical
computation and constructed a passive steering-based circuit
to achieve that reference state for the current system’s initial
state. Figure 5a presents the H2-based experiment using our
proposed combined ansatz (passive steering and UCCSD),
with the exact (mathematical) value as the reference. In this
experiment, the only UCCSD ansatz was initialized with the
Hartree-Fock reference state, while the combined ansatz was
also initialized with the same Hartree-Fock reference state
but with the passive steering-based circuit. We observed that
our proposed approach (combined ansatz) produces results
comparable to that of the state-of-the-art (UCCSD).

To demonstrate the advantages of the combined ansatz,
we conducted the same H2-based experiment in a noisy
environment. We utilized a noise model available in Qiskit
to incorporate noise factors such as measurement errors, gate
imperfections, and decoherence effects. Figure 5b shows the
results of this experiment, which clearly highlight the noise-
resilient state preparation capabilities of passive steering, while
UCCSD is not stable in a noisy environment.

C. State Preparation Results using Passive Steering

We first evaluate the expressibility of passive steering-based
state preparation. Next, we compare our approach (with a
random initial state) and traditional ansatz (with a known
initial state) in a noise-free environment. We repeat the same
experiment with a random initial state for all methods. Finally,
we repeat these experiments in a noisy environment.

1) Expressibility of Passive Steering-based State Preparation:
In this experiment, we evaluate the expressibility of the
passive steering, focusing on how well it can explore
quantum states. To visualize this effectively, we use a single
qubit to represent states on a Bloch sphere. Figure 6a depicts
a Bloch sphere with 4000 uniformly sampled states, generated
from 5000 pairs of target states, which are inputs for passive
steering-based state preparation.

To estimate the probability distribution of the fidelity, F =
|⟨ψθ|ψϕ⟩|2, where |ψθ⟩ and |ψϕ⟩ are uniformly sampled target
states, we employed histograms with a bin number of 75. The
distribution is illustrated by the orange histogram in Figure 6b.
We compare this with the fidelity distribution for a Haar-
distributed ensemble, described by Equation 3 showcased as
the blue histogram in the same figure.



(a) Comparison of VQE results without noise (b) Comparison of VQE Results with noise

Fig. 5: Comparison of H2 ground state energy produced by our approach (passive steering and UCCSD) and UCCSD.

(a) Passive steering-based
uniform state preparation

(b) Histogram of estimated fidelity over-
laid with the Haar measure.

Fig. 6: Quantified expressibility for single-qubit circuit

Based on Equation 1, we calculate the KL-divergence
for our method as 0.0211, indicating the expressibility of
passive steering-based state preparation. The smaller the KL-
divergence, the more closely our method’s fidelity distribution
aligns with that of the ideal Haar measure, suggesting high
expressibility. For comparison, we also calculated the KL-
divergence for the UCCSD ansatz using the same number of
samples, which yields 0.4147. These results highlight that the
passive steering can evenly explore quantum state spaces.

2) State Preparation in a Noise-Free Environment: We com-
pare our approach (passive steering with random initial state)
against traditional ansatz-based state preparation.

Traditional Ansatz with Known Initial State: Figure 7a illus-
trates the computed ground state energies at different inter-
atomic distances using VQE with passive steering for state
preparation, alongside the results from VQE with UCCSD
ansatz and the exact values. Our proposed method can produce
results comparable with state-of-the-art (UCCSD).

As shown in Figure 7b, we also compare our approach
with five widely utilized ansatzes using a box and whisker
plot. For ease of illustration, we have used the following
acronyms: UCCSD (US), EfficientSU2 (ES), RealAmplitudes
(RA), TwoLocal (TL), ExcitationPreserving (EP), and Passive
Steering (PS). In this comparison, we compute the logarithmic
difference between the ground state energies calculated by

VQE and the exact values. In this experiment, every traditional
ansatz was initialized with the Hartree-Fock reference state,
while a random initial state was used for the passive steering-
based preparation. Figure 7b reveals that passive steering
achieves results of comparable accuracy to traditional methods,
even without relying on a predefined reference state.

Traditional Ansatz with Random Initial State: In this experi-
ment, we initialize all ansatzes with a random state and execute
VQE to determine the ground state energy of the H2 molecule
across varying interatomic distances. Figure 8a shows the
computed ground state energies at various interatomic dis-
tances using VQE with passive steering for state preparation,
as well as the results obtained from VQE with the UCCSD
ansatz and the exact values. Our proposed method significantly
outperforms state-of-the-art (UCCSD) because of its capability
of the initial state independent state preparation.

We also computed the error by comparing the VQE results
with the exact ground state energy and visualized this error
using a box and whisker plot. As depicted in Figure 8b,
the passive steering-based method performs equally or better
than other ansatzes employed in our study. For instance, the
widely used chemistry-inspired UCCSD ansatz is significantly
less accurate compared to the passive steering-based trial
state preparation, exhibiting nearly tenfold higher median error
without a pre-set initial state. While ansatzes such as TwoLo-
cal, EfficientSU2, and RealAmplitude demonstrate comparable
results to passive steering, their efficacy cannot be guaranteed
for larger quantum systems [30].

3) State Preparation in a Noisy Environment: We have con-
ducted the same two experiments as outlined above under
noisy conditions. Specifically, we compare our approach (pas-
sive steering with random initial state) with traditional ansatz-
based state preparation.

Traditional Ansatz with Known Initial State: Figure 9a presents
a box and whisker plot illustrating the error in VQE results
for various ansatzes when initialized with a Hartree-Fock
reference state, taking into account the effects of noise. We can
observe that passive steering-based state preparation achieved
comparable results even without an initial state.



(a) H2 ground state energy comparison with UCCSD. (b) Error comparison with traditional ansatz.

Fig. 7: Comparison of H2 ground state energy produced by our approach (passive steering with random initial state) and
state-of-the-art (five traditional ansatz-based solutions with known initial states).

(a) H2 ground state energy comparison with UCCSD. (b) Error comparison with traditional ansatz-based.

Fig. 8: Comparison of H2 ground state energy produced by our approach (passive steering with random initial state) and
state-of-the-art (five traditional ansatz-based solutions with random initial states).

(a) Comparison with traditional
ansatz with known initial states

(b) Comparison with traditional
ansatz with random initial states

Fig. 9: Error comparison of H2 ground state energy produced
by our approach (passive steering with random initial state)
and traditional ansatz-based solutions in noisy environments.

Traditional Ansatz with Random Initial States: Figure 9b
displays the error in VQE results without the use of a reference
state, indicating the performance under noisy conditions with
random initial states. We can see that our proposed method
outperforms most of the tested ansatzes in a noisy environment
with a random initial state. For example, the proposed method
is around 2.5-fold more accurate than the UCCSD.

V. CONCLUSION

Variational quantum eigensolvers (VQE) can effectively
utilize the benefits of both classical computers and near-term

noisy quantum computers to find the approximate ground state
energy of a given Hamiltonian. A fundamental bottleneck
in traditional VQE is that it assumes the availability of
an initial fiducial state or a reference state, which can be
infeasible for large quantum systems. In this paper, we de-
veloped a passive steering-based state preparation framework
that does not require an initial fiducial state or a reference
state. We have also explored an effective combination of
passive steering and traditional ansatz. Extensive experimental
evaluation demonstrated that our proposed framework can
outperform state-of-the-art ansatz-based solutions (UCCSD,
EfficientSU2, RealAmplitudes, TwoLocal, and ExcitationPre-
serving). Our findings highlighted that passive steering-based
trial state preparation can significantly enhance the efficiency
and accuracy of VQE in quantum computing applications,
particularly for large-scale quantum systems, paving the way
for developing robust and scalable quantum algorithms.
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