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Abstract—Constrained optimization plays a crucial role in
the fields of quantum physics and quantum information science
and becomes especially challenging for high-dimensional complex
structure problems. One specific issue is that of quantum process
tomography, in which the goal is to retrieve the underlying
quantum process based on a given set of measurement data.
In this paper, we introduce a modified version of stochastic
gradient descent on a Riemannian manifold that integrates
recent advancements in numerical methods for Riemannian
optimization. This approach inherently supports the physically
driven constraints of a quantum process, takes advantage of
state-of-the-art large-scale stochastic objective optimization, and
has superior performance to traditional approaches such as
maximum likelihood estimation and projected least squares.
The data-driven approach enables accurate, order-of-magnitude
faster results, and works with incomplete data. We demonstrate
our approach on simulations of quantum processes and in
hardware by characterizing an engineered process on quantum
computers.

Index Terms—Quantum process tomography, quantum char-
acterization, quantum computing, Riemannian optimization.

I. INTRODUCTION

Quantum computers present a theoretical exponential
speedup over classical computers for various problems. How-
ever, the capability of these quantum computers is largely
limited by environmental noise [1], [2]. Numerous quantum
devices experience undesired interactions with internal and
external degrees-of-freedom, resulting in decoherence [3],
[4]. Although there are promising algorithmic approaches to
preserve coherence using quantum error correcting codes, their
effectiveness further depends on appropriate understanding
and formulation of the underlying noise [5], [6]. Thus, accu-
rately and effectively describing the noise in current quantum
computing hardware continues to be a crucial component for
achieving their long-term technological potential.

Certain noise can be characterized as a quantum channel,
which is a completely positive and trace-preserving mapping
between quantum states. Quantum channels are often repre-
sented as a set of matrices that transform a quantum state ρ to
another state ρ′. As shown in Fig. 1a, given the initial and re-
sulting states, it is possible to reconstruct the quantum channel
through tomography. Tomography refers to the procedure of
creating a model by merging various partial cross-sections or
slices [7]. Although each slice provides a limited viewpoint,
the data obtained from numerous independent experiments
allows for the construction of a comprehensive model for the
system. This paper specifically focuses on quantum process
tomography (QPT), but it is worth mentioning that the same
approach can be applied to measurement tomography [8], [9],
Hamiltonian tomography [10], [11], and gate-set tomography
[12], [13].

(a) Quantum process tomography estimates the blackbox process
via measurement data di.j . The data is the result of conducting
measurements Mj on states produced by a channel E acting on known
probe states ρi.

(b) We estimate a quantum process via gradient descent of an
objective loss function ℓ(·) on a Riemannian manifold, defined as
a set of Kraus operators k. We adapt an iterative Cayley transforma-
tion to perform a retraction of the gradient ∇ℓ, approximating the
exponential map of a tangent vector onto the manifold.

Fig. 1: Overview of proposed quantum process tomography.

There are promising approaches for QPT, including
maximum-likelihood estimation [14], [15], Bayesian estima-
tion [16], [17], projected gradient descent [18], projected least
squares [19], [20], compressed sensing through convex opti-
mization [21]–[23], variational QPT [24], and trace regression
models [25]. The key challenge, however, is the exponentially
growing size of the process representation, e.g., the Choi
representation is a complex-valued 4n×4n matrix for n qubits
[26]. This makes it difficult to not only estimate the process
from noisy data, but also to derive the source of noise and its
interpretation. Furthermore, to ensure high-fidelity results, the
informationally-complete set (ICS) of measurements and input
states are required, which also grows exponentially in size.
As a result, all experiments so far have predominantly applied
QPT to a maximum of 3 qubits [27]. Recently, methods such
as ShadowQPT have emerged, which relax these constraints
by approximating the quantum channel with classical shadows.



Although these methods have successfully been performed on
4-qubit systems [28], their solution lacks the properties of a
quantum channel, making them unphysical.

To address the scalability concerns, we utilize a strategy
similar to deep learning, which has proven to be successful
in various areas of physics [29]–[32]. Deep learning involves
optimizing complex computational models, such as neural
networks, tensor networks [33], [34], and differential equation
solvers [35], using gradient-based methods. Automatic differ-
entiation enables the computational process to be differentiable
with respect to its constituent elements, such as a hidden layer
in deep learning. As a result, the computational model can
be fine-tuned with automatic differentiation using gradient-
based techniques. In the context of quantum physics and QPT,
the elements that are typically optimized are often limited to
a specific class, such as the underlying group or symmetry
structure. Therefore, any optimization that is considered valid
must comply with the corresponding constraints. This pertains
to Riemannian optimization, which alters gradient-based meth-
ods to guarantee that the intermediate solutions maintain the
desired property, such as unitarity, completely positive trace
preserving (CPTP), etc.

In particular, we model this process geometrically, as vi-
sualized in Fig. 1b. All possible quantum channels exist on a
smooth continuous surface known as a manifoldM. Gradient-
based methods find the point that minimizes the loss function
by taking steps along the manifold. In our case, the loss
function compares simulated data generated by applying the
current channel k with the real data that was generated by
the true target channel E . Furthermore, the unique properties
of quantum channels restrict which channels are physically
possible, changing the shape of our manifold. Specifically,
quantum channels exist on the Steifel manifold.

This paper makes the following major contributions:
• Formulates Riemmannian optimization via gradient de-

scent on the Stiefel manifold for QPT.
• Adapts stochastic Adam optimizer for QPT.
• Provides an open-source implementation Qutee.jl [36],

with native accelerated computation via GPUs.
• Demonstrates the effectiveness of QPT with respect to

process dimension and characterization on a set of real
and simulated experiments.

The remainder of this paper is organized as follows. Sec-
tion II provides formulation of quantum channels. Section III
describes our proposed QPT framework. Section IV presents
two case studies using simulation of quantum processes. Sec-
tion V presents a case study with hardware-based evaluation of
our QPT framework. Finally, Section VI concludes the paper.

II. QUANTUM CHANNELS

A quantum channel is generally represented as a completely
positive (CP) and trace-preserving (TP) linear map E that
maps a quantum state represented by the density matrix ρ to
another state represented by ρ′, i.e., ρ′ = E(ρ). The adjoint
of a quantum channel E† generalizes the Heisenberg picture
(under the Frobeniuus norm) and maps operators E to other
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Fig. 2: Pauli-Liouville representation of simulated “noise.” A
channel with Pauli noise Knoise = [

√
pI⊗I,

√
(1− p)σz⊗σz]

is applied after a unitary operation U . Process tomography is
performed to fit the noise+U channel from measurement data.
The “noise” part defined as P̂ ◦ U−1 − I. (a) p = 0.1, (b)
p = 0.25, and (c) p = 0.25 with measurement data perturbed
by a normal distribution with ϵ = 0.01.

operators E′, i.e., E′ = E†(E). This section details how E can
be represented in various forms to highlight specific attributes.

A. Kraus Representation

For computations, it is convenient to use the Kraus-operator
representation (also known as the canonical form) of a quan-
tum channel E and its adjoint E†. Formally, it is

E(ρ) =
k∑

l=1

KlρKl
† and E†(E) =

k∑
l=1

Kl
†EKl (1)

where E acts on states ρ and E† acts on operators E. The k
complex-valued matrices {Kl} of dimension N×N are called
the Kraus operators, with the requirement that the channel
is trace-preserving (for I identity) E†(I) =

∑
l K

†
l Kl = I .

Note that the Kraus representation is not unique, as Fi =∑
j Ui,jKj represents the same CPTP map defined by a

unitary transformation U .
Additionally, it is more efficient to work with the minimum

number of Kraus operators needed to represent a CPTP map,
which is known as the Kraus rank. Given that a Hilbert
space of dimension N contains N2 linearly independent
operators, the Kraus rank is no larger than N2 [26]. Thus,
we may convert the Kraus representation to an N2 × N2

(Hermitian) Choi matrix and obtain the minimal representation
by considering only eigenvectors with non-zero eigenvalues
[26]. An alternative method is to compute the overlap matrix
Cij = Tr(KiK

†
j ) and diagonalize it C = V †DV . The

new Kraus operators K̃i =
∑

j VijKj will be the minimal
representation, where some matrices will be zeros if the
original representation was redundant. Finally, we define a
matrix of dimension kN ×N

k = [K1 K2 . . . Kk]
T (2)

by column-stacking the k Kraus operators. This matrix k is an
element of the Stiefel manifold, satisfying k†k = I (the TP
condition).



B. Liouville and Choi Representation

Although we perform all computations using the Kraus
representation, it is illustrative to discuss the properties of
CPTP maps via their Liouville representation. The Liouville
(superoperator) representation of E is an N2 ×N2 matrix of
the form Ê =

∑
l Kl ⊗ K̄l (K̄l being the complex conjugate

of Kl) acting on a vectorized N2-dimensional density matrix
|ρ⟩⟩ from the left. This representation, equivalent to the Kraus
representation, conveniently allows for the examination of a
channel’s spectral properties along with performing channel
composition, i.e., for channels E and L: (E ◦ L)(ρ) =
E(L(ρ)) = Ê · L̂ · |ρ⟩⟩ where · is the standard matrix (vector)
product. As a result, a specific component of the quantum
process, such as noise, can be isolated.

Since the Liouville representation consists of complex ele-
ments, it can be convenient to represent Ê (when N = 4n)
in the Pauli basis, where all the matrix elements are real.
The Pauli-Liouville may be written as P̂i,j = Tr

[
E†

jE(Ei)
]

where operators {Ei} are the Pauli operators. For example,
Fig. 2 displays a heatmap of the Pauli-Liouville matrix where
a unitary channel is extracted to reveal only a “noise” part.

Furthermore, the Liouville matrix is related to the Choi
matrix Ĵ through an involution Ĵij,kl = Êik,jl. By the Choi-
Jamiołkowski isomorphism, a quantum channel may be viewed
as a quantum state. Therefore, one way to define distances
between channels is via state fidelity

F (ρ, σ) =
1

N2

(
Tr
√√

ρσ
√
ρ

)2

(3)

where ρ and σ are two quantum channels as Choi matrices.

III. QUANTUM PROCESS TOMOGRAPHY USING
RIEMMANIAN OPTIMIZATION

This section describes our proposed QPT framework via
Riemmanian optimization. Assuming the convention in (2)
of column-stacked Kraus operators that reside in the Stiefel
manifold M, and a loss function ℓ(·), we formulate the task
of QPT as the following optimization problem

min
k∈M

ℓ(k). (4)

A general loss function for the QPT task may be defined as

ℓ(k) =
∑
i,j

[
di,j − Tr

(
Mj

∑
c

KcρiK
†
c

)]2
, (5)

where Mj denotes the j-th measurement operator, ρi denotes
the i-th initial state, and di,j denotes readout of the experiment.
In other words, the optimization problem is to find a set
of Kraus operators that minimizes the difference between
experimental and simulated data. A graphical representation
of this process is presented in Fig. 1a.

This section is organized as follows. First, we outline the
steps for using the output of automatic differentiation to obtain
a gradient residing in the tangent bundle. Next, we discuss
an efficient method for performing the gradient descent via
retraction. Finally, we discuss optimization opportunities.

A. Stiefel Manifold, Tangents, and Automatic Differentiation

We recall that the Stiefel manifold consists of all n×p, n ≥
p unitary matrices

M(n, p) = {k ∈ Cn×p : k†k = Ip}. (6)

The tangent space at a point k ∈M(n, p) is given by

TkM(n, p) = {kΩ+ k⊥Θ : Ω = −Ω†,Θ ∈ C(n−p)×p} (7)

where k⊥ ∈ Cn×(n−p) is orthonormal and span(k⊥) =
(span(k))⊥. The Stiefel manifold becomes a Riemannian
manifold by introducing a Riemannian metric g, which is a
smoothly varying inner product in the tangent space. There are
two natural inner products for the tangent space: the Euclidean
inner product inherited from the embedding space Cn×p and
the canonical inner product. That is, given A,B ∈ TkM(n, p),
we may opt for either:

⟨A,B⟩ =
{
Tr
(
A†B

)
or Tr

(
A†(I − 1

2
XX†)B

)}
. (8)

The distinction arises in the norm of a vector A = kΩ+k⊥Θ,

||A|| =
√
⟨A,A⟩ =

{√
||Ω||2 + ||Θ||2 (inherited)√
1
2 ||Ω||2 + ||Θ||2 (canonical)

(9)

The factor of 1
2 gives an equal weighting of both Ω and Θ

(Ω = −Ω† produces an extra factor of 2.) We assume the
canonical inner product throughout the remainder of this paper.

We use reverse (adjoint) mode automatic differentiation to
compute the loss gradient ℓ : M(n, p) → R, which we will
denote by ∇ℓ. However, automatic differentiation assumes
that the underlying space is Euclidean. Thus, the calculated
gradient ∇ℓ ∈ Cn×p does not adhere to the properties of
tangent space of the Stiefel manifold in (7). To obtain a
gradient that resides in the tangent space, we use the fact that
the Stiefel manifold may be embedded in the Euclidean space.
Therefore, the gradient vector in the Stiefel tangent space can
be expressed as

∇TkMℓ = projk(∇ℓ) (10)

where projk projects the Euclidean gradient onto the Stiefel
tangent space and is defined as

projk(X) = X − k(kX† + k†X)/2. (11)

B. Gradient Descent and Retraction

Gradient-based methods typically assume an initial guess x
for a parameter and then iteratively evaluate the loss function,
compute the gradient, and then update the parameter

x← x− β∇ℓ(x). (12)

Similarly, the gradient-based approach to solve the optimiza-
tion problem in (4) assumes an initial guess for the quantum
channel k ∈ M and iteratively updates the guess. However,
unlike the simple update rule of (12), extra care must be taken
to ensure that each individual update to k remains on the
manifold.



Let γ(τ) denote a curve on the manifold such that γ(0) =
k and γ̇(0) = ∇TkMℓ(k). The curve γ(τ) is considered a
geodesic if it satisfies the exponential map

γ(τ) = Expk(τ∇TkMℓ(k)), for τ ∈ [0, 1]. (13)

In other words, the exponential map takes a vector in tangent
space to a point on the manifold such that it remains on
the shortest path. Recall that the objective is to minimize a
function while remaining constrained to the manifold. One
way to view this is to find the geodesic on the manifold that
moves us from the starting point to the optimal point that
minimizes the function. However, this is difficult to formulate
generally, and instead we must rely on approximate algorithms
such as line search. In this case, via the gradient-based method,
we perform a step in the tangent space and are still constrained
to the manifold via the exponential mapping.

The exponential map is not computationally efficient. We
can approximate the exponential map to m-th order in a Tay-
lor or Padé expansion. Other approximations include matrix
decomposition, such as QR and singular value decomposition
(SVD). Such approximation of the exponential is known as
retraction. A common choice for a retraction is the Cayley
transform (a first-order Padé expansion), which defines a curve

Y (τ) =
(
I +

τ

2
W
)−1 (

I − τ

2
W
)
k (14)

where W is a skew-hermitian matrix, i.e. W † = −W .
By choosing W = W̄ − W̄ †, where W̄ = ∇ℓ(k)k† −
1
2k(k

†∇ℓ(k)k†), the transformation implicitly projects the
gradient onto the tangent space in the descent direction. Here,
W is the matrix operator for projection in (11).

For large models k, the Cayley transform in (14) cannot be
performed efficiently due to the matrix inversion. It is possible
to simplify the computation of the inverse via the Sherman-
Morrison-Woodbury formula, however, this is only efficient to
do so for matrices where n≪ p. Instead, we adapt the fixed-
point iteration method for the Cayley transform [37], which
requires only matrix multiplications while also serving as an
efficient approximation. The iterative update to the Cayley
transform is defined as

Y (τ)i ← k+
τ

2
W (k+ Y (τ)i−1) (15)

where i denotes the iterative step. Figure 3 highlights the
computational and error improvement in iterative Cayley.

C. Momentum Updates and Vector Transport

Data collected in the real world are subject to randomness.
This means that the measurements we obtain are assumed to
come from an underlying probability distribution. Therefore,
our objective is to minimize the expected value E[ℓ(k)], where
ℓ(·) depends on stochastic measurement data di,j . We may
consider the gradient ∇ℓ as a random variable for which
obtaining the true first (mean) and second (standard devia-
tion) moments is costly. Adam, a successful technique for
gradient-based optimization of stochastic objective functions,
estimates and updates the moments via random subsamples
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Fig. 3: Iterative-based Cayley transform has better perfor-
mance (time and accuracy) with respect to traditional Cayley
transform. The accuracy (dashed lines) are computed by solv-
ing the exact exponential map and taking the norm difference
with respect to approximated retraction.

(minibatches) of data points. Adam further accumulates the
gradients from previous iterations into a momentum term,
which reduces the oscillations in ℓ(·) arising from randomness
and hence accelerates convergence. However, Adam is only
suitable for optimizations in a Euclidean space. We adopt
Adam for the task of QPT on the Stiefel manifold.

The key idea is to move a vector in the tangent space along
the search paths on the manifold. In general, this is done using
a parallel transport that preserves the geometrical properties
of the vector from one tangent space to another. However,
this requires the solution of a costly differential equation.
Instead, some geometric conditions may be relaxed to perform
an efficient vector transport. Since the Stiefel manifold is a
submanifold of the Euclidean space, the tangent space is a
subspace of the Euclidean space. Hence, a vector transport on
the Stiefel manifold is a projection onto the tangent space.
Following [37], using the property that the projection is a
linear map, the key Adam steps may first be performed in
Euclidean space, followed by a projection:

αprojkk(Mk)+βprojkk(∇ℓ(kk)) = projkk(αMk+β∇ℓ(kk))

Namely, a linear combination of the gradient ∇ℓ(k) and the
momentum Mk for step k − 1 is taken with real “learning”
coefficients α and β. Instead of explicitly performing a projec-
tion, the iterative Cayley transform in (15) implicitly projects
the vector onto the tangent space while also performing a
parameter update.

IV. CASE STUDY: SIMULATION OF QUANTUM PROCESSES

In this section, we present the results of our QPT optimiza-
tion on a set of problems with varying difficulty: randomized
channels and controlling coherent states of a harmonic oscil-
lator. In both examples, we use a random initial guess k for
the channel. Furthermore, all optimizations are performed on
an Nvidia RTX6000 GPU with 48GB of GDDR6 of memory.

A. Random Channels with Insufficient Measurements

In our first case study, we explore the capabilities of
Riemannian optimization of quantum processes with respect
to dimensions, Kraus rank, and measurement error. We follow
a direct QPT approach, where 6n probes ρi and 6n mea-
surements Mj are selected as eigenstates of the generalized
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Fig. 4: (a) Mean loss of the optimization as noise ϵ is increased
for different channel ranks. Reconstruction error saturates as
a power curve with respect to noise ϵ (note the log-log scale.)
(b) Channel fidelity at ϵ = 0.01 for a reconstructed quantum
channel with varying Kraus rank as well as access to only a
fraction of data. Kraus rank is the dominant factor for fidelity,
while the fraction of data is responsible for fidelity margin.

TABLE I: Comparing execution time of QPT methods.

# Qubits Hilbert space Basis size Qiskit time Our time
2 4 16 4.153s 3.424s
3 8 64 76.134s 4.791s
4 16 256 1355.841s 61.766s

Gellmann matrices. For a random channel Erand, the simulated
data is computed as

di,j = Tr(MjErand(ρi)) +N (0, ϵ) (16)

where N (0, ϵ) introduces measurement error following a
normal distribution with variance ϵ. We generate a random
channel k by computing the orthonormal part of the QR
decomposition of a random rn×n matrix where each element
is sampled from the normal distribution.

Figure 4a shows simulation results for a 3-qubit system
undergoing a random process Erand. The Hilbert space is
23 = 8, with a maximal Kraus rank of 43 = 64. Various
Kraus ranks are fitted, with different measurement noise. The
computed loss with lower Kraus ranks saturate sooner, as the
fitted channel is simply not expressive enough to represent the
full-rank process. Figure 4b further exemplifies the importance
of Kraus rank. The fidelity of the reconstructed channel
(3) with respect to original channel is computed, where the
reconstructed channel was computed with a fraction of data,
namely

√
ν6n probes and

√
ν6n measurements are used given

a ratio ν ∈ (0, 1]. High fidelity is observed even with the
absence of a fraction of data. We are able to reconstruct the
quantum channel in a few seconds, even at maximal rank.
In comparison, other tomography techniques become limiting
even at 3-qubits. Table I compares our method to state-of-the-
art libraries, such as Qiskit [38] (via constrained maximum-
likelihood estimate), for several qubit sizes.

B. Universal Control of a Harmonic Oscillator

Our second case study considers a continuous-variable
quantum system, where information is encoded in an infinite-
dimensional Hilbert space, following a similar example in [32].
Due to the nature of an infinite-dimensional system, selecting
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Fig. 5: Wigner functions of a probe state undergoing ideal
simulation and tomographic reconstruction with a Fock space
N = 64. The data are measured values of displaced parity
operator Πd(β), but with fewer sample points β to mimic an
experimental setup.

an appropriate Hilbert space cut-off is crucial for correctly
describing a state numerically. In our case, we consider a Fock
space cut-off of N = 64, which exceeds previously considered
dimension cut-offs.

Such systems (single bosonic mode) may be modeled as
quantum harmonic oscillators with associated creation α̂† and
annihilation operators α̂. Coherent states |α⟩ are the unique
eigenstates with corresponding eigenvalue α of the annilation
operator α̂ |α⟩ = α |α⟩. Universal control of a harmonic oscil-
lator can be achieved by combining displacement operation

D(α) = exp
(
αα̂† − α∗α̂

)
, |α⟩ = D(α) |0⟩ (17)

and a selective number-dependent arbitrary phase (SNAP) gate

S(ϕ⃗) =
∑
n

eiϕn |n⟩ ⟨n| (18)

which adds a real phase ϕn to the Fock state |n⟩. This can
be shown by observing that the generators and commutators
of D(x) and S(ϕ) generate the full Lie algebra u(N) for any
truncated oscillator space [39].

We simulate a setup where the coherent probe states ρi =
|α⟩ ⟨α| undergo a displacement + SNAP process, and are then
measured via a displaced-parity operator [40]

Πd(β) =

N∑
n=0

(−1)iD(β) |n⟩ ⟨n|D(β)†. (19)

Similarly, the Wigner functions are approximated using expec-
tation values of the parity operator [41]. Figure 5 shows the
Wigner functions for one instance of the complete process.
An initial probe state ρi undergoes the simulated process to
a final state ρ′i. The computation of the expectation values
for the displaced-parity operator is performed on a discretized
grid. This was done to mimic an experimental scenario in
which conducting a full Wigner tomography is infeasible. We
find good results with a rank-fitted channel r = 2, despite the
fact that the process is purely unitary (r=1). This indicates,
non-unitary behavior, which arises from the discretization of
measurement expectation values.



n = 1 n = 2 n = N

|0⟩ |0⟩ . . . |0⟩

. . .
E(ρ) E(E(ρ)) En(ρ)

A: |0⟩
U[dt] U[dt] U[dt]

S: ρ

Fig. 6: Circuit of quantum nondemolishing measurement.

V. STEADY STATES OF NONDEMOLISHMENT
MEASUREMENT IN QUANTUM HARDWARE

In the following experiment, we assume a setup as shown
in Fig. 6. Namely, a system that is coupled to a detector

ρ = |0⟩D ⟨0|D ⊗ ρS (20)

where the system is in an unknown mixed state ρS and the
detector is in a known pure state |0⟩D. The system evolves for
a duration dt subject to a two-body Hamiltonian H ,

ρ′ = UρU†, U = exp(−iHdt). (21)

The detector is then measured and promptly reset to its known
state |0⟩. As a result of this procedure, the system is disrupted,
resulting in a new state given by a partial trace

ρS = TrD
[
U(|0⟩D ⟨0|D ⊗ ρS)U

†] . (22)

In this ideal scenario, we may express the evolution of ρS as
a quantum channel E in terms of two Kraus operators

K1 = ⟨0|D U |0⟩S and K2 = ⟨0|D U |1⟩S . (23)

The evolution then follows (1). The repeated application of E ,
will cause the system to converge to a steady state.

We run the circuit in Fig. 6 on three different IBM Quantum
computers: ibmq_lima, ibmq_belem, ibm_perth. The
system and detector are selected as neighboring qubits coupled
via a cross-resonance (CR) gate. We idle the qubits for a
duration dt, corresponding to an idealized evolution U[dt].
After the detector measurement, the system is measured on
a different basis by performing a single qubit rotation gate
followed by measurement in the computational basis. This
process is repeated in which the measurement of the system
is only performed in the end, providing an estimate of the
quantum state ρS after each non-demolishing measurement.
In addition, we performed 30 trials.

The process is considered to be strictly Markovian, and that
U[dt] is stable from one iteration to the next. Assuming the loss
function of (5), we fit a channel E with ranks r = {2, 3, 4}
in 20 trials, leaving 10 trials to test the fitted channel. As
shown in Fig. 7b, the maximum rank (r = 4) provides the
best results from optimization against the test data. While (23)
states that the ideal scenario is described with a Kraus rank
r = 2, in reality the detector state is not perfectly initialized to
|0⟩ and may instead be in a state |1⟩ or a general superposition.
Hence, the maximum rank of r = 4 is required to capture
faulty initialization. In addition, stochastic and non-Markovian
effects are present on quantum devices which can no longer
be described by a quantum channel.
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Fig. 7: Results of optimization on IBM Quantum computers.

VI. CONCLUSION AND FUTURE WORK

We have introduced a data-driven approach for the con-
strained optimization task of quantum process tomography.
Utilizing advanced stochastic objective optimizers, we can
achieve outstanding results by considering the quantum pro-
cess as residing in a Stiefel manifold and performing local
updates that respect the geometry. We implement an iterative
Cayley transform for an efficient retraction on the manifold,
as well as adopt the implicit projection to include moment
estimates of stochastic optimization. These considerations alle-
viate some numerical and memory issues, which distinguishes
this approach from other tomographic methods. We demon-
strated that our approach can quickly reconstruct quantum
processes, such as scenarios with a Hilbert space of dimension
64. Furthermore, using random processes, we established the
relationship between Kraus rank and measurement error for
precision in estimation.
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