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Abstract—We present a benchmarking protocol for universal
quantum computers, achieved through the simulation of random
dynamical quantum maps. This protocol provides a holistic
assessment of system-wide error rates, encapsulating both gate
inaccuracies and the errors associated with mid-circuit qubit
measurements and resets. By employing random quantum cir-
cuits and segmenting mid-circuit qubit measurement and reset in
a repeated fashion, we steer the system of qubits to an ensemble
of steady-states. These steady-states are described by random
Wishart matrices, and align with the steady-state characteristics
previously identified in random Lindbladian dynamics, including
the universality property. The protocol assesses the resulting
ensemble probability distribution measured in the computational
basis, effectively avoiding a tomographic reconstruction. Our var-
ious numerical simulations demonstrate the relationship between
the final distribution and different error sources. Additionally,
we implement the protocol on state-of-the-art transmon qubits
provided by IBM Quantum, drawing comparisons between em-
pirical results, theoretical expectations, and simulations derived
from a fitted noise model of the device.

Index Terms—Quantum computing, quantum noise, quantum
steering, quantum benchmark, random matrix theory

I. INTRODUCTION

Quantum computers offer promising theoretical advantages
over their classical counterparts, such as prime factoring [1],
[2] and search [3]. However, realizing quantum computers
remains a difficult engineering challenge. Most importantly,
quantum computers must satisfy the following contradictory
requirements with sufficient degrees of accuracy [4]: state
initialization, single-and-multiple qubit gates, and individual
qubit measurement. While we desire granular control of indi-
vidual qubits, we also seek to isolate the qubits from unwanted
environmental degrees-of-freedom. In recent years, we have
witnessed considerable experimental progress, marked by the
development and stabilization of many-qubit systems with
decent accuracy [5]. Given the scale and error rates, it is
now feasible to algorithmically correct hardware errors via
quantum error-correcting codes [6]–[8]. However, realizing
error-correcting codes further requires real-time (mid-circuit)
qubit measurement and qubit reset for syndrome extraction
and correction, as shown in Fig. 1. In order to continue
making steps towards fault-tolerant quantum computers, it is
therefore crucial to develop benchmarks incorporating all the
key ingredients.

Understanding the overall behavior of the system emerges
as a significant and challenging question. Although essential,
characterization techniques such as state [9] and process
tomography [10], [11], gateset tomography [12], and mea-
surement tomography [13], are infeasible for systems larger
than a handful of qubits. State-of-the-art scalable methods such
as randomized benchmarking [14], [15] provide average error
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Fig. 1: Quantum computing model. Qubits are first initial-
ized to a known fiducial state. Quantum information is then
processed via a sequence of discrete gates acting on the qubits.
These qubits may be reset, reinitialized, and reused throughout
the computation, such as in an error correcting code or for
post-selection. The final state is then measured.

rates of gates by conducting long sequences of random gates,
but do not capture system-wide properties. Metrics such as
quantum volume [16] are linked with system error rates and
provide a quantification to the effective number of qubits of a
quantum computer. Unfortunately, these metrics do not capture
properties such as mid-circuit qubit measurement and qubit
reset which are necessary for achieving error-correcting codes.
Alternatively, one may observe the performance of many small
quantum workloads via an application benchmark, such as
quantum Fourier transform and phase estimation, and obtain
an estimate to the performance [17]. While these application
benchmarks may be suitable in the future, they are biased to
the choice of workloads and may be difficult to debug.

We seek to address this issue by introducing a protocol
based on the steady-state properties of random open quantum
system (OQS) dynamics. In contrast to closed quantum sys-
tems – where the effects of randomness have been thoroughly
investigated, exemplified by the quantum chaos conjecture
[18] and the characterization of system dynamics through a
Poisson distribution [5], [19] – the exploration of dynamics
within random open quantum systems continues to be an
area of active development. Prior research has concentrated
on unstructured discrete-time quantum maps [20]–[22] and
the impact of decoherence from a stochastic environment
[23], [24], leveraging foundational studies on non-Hermitian
Hamiltonians [25], [26]. Lately, attention has turned towards
the continuous-time random Lindblad dynamics of Markovian
open quantum systems [27]–[30]. Remarkably, the steady-
states of these random Lindbladian dynamics has been iden-
tified as being universal [31]–[33]. Recent works have also
connected properties of continuous models to those discrete-
time quantum maps [34], [35], including the property of uni-
versal steady-states. Additionally, properties of steady-states
have recently found use in various applications, such as in
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Fig. 2: Circuit model. (a) A random dynamical map E is
repeated t times, mapping arbitrary initial states ρ to a steady-
state ρt. (b) Measurement of ρt for an ensemble of random
quantum maps produces a distinguishable distribution (blue).
Deviations from the ideal distribution (black) correspond to
system errors. (c) The map E is constructed via a random
circuit of depth d, concluding with a measurement and reset.

learning local quantum maps [36]. We take advantage of the
properties of discrete quantum maps to develop a quantum
benchmark.

In Fig. 2, we describe our approach involving circuits that
are structured through the sequential layering of pairwise
random gates, coupled with the measurement and reset of
qubits. Each layer comprises random gates and measurements,
together facilitating an approximate-random, completely posi-
tive and trace-preserving map, symbolized as E . The repetitive
application of this standardized layer, denoted as Et, gradu-
ally transitions any initial state ρ towards a steady-state ρss
governed by the spectral characteristics of E ,

Et(ρ) = ρt ≈ ρss. (1)

By generating an ensemble of random maps E , we obtain an
ensemble of steady-states, forming a measurable probability
distribution that serves as a metric for evaluating the perfor-
mance of the device.

This paper makes the following major contributions.
• Establishes the properties of discrete quantum maps, with

an emphasis on the random ensemble of these maps and
examines their theoretical spectral properties.

• Explores various strategies for the numerical generation
of random quantum maps and discuss the construction of
quantum circuits to actualize these maps.

• Conducts a numerical investigation into how different
sources of error impact the theoretical properties.

• Experimental evaluation using two IBM Quantum com-
puters (ibm_tokyo and ibm_osaka) and benchmark-
ing their performance.

The remainder of this paper is organized as follows. Sec-
tion II describes our quantum benchmarking scheme. Sec-

tion III presents experimental results on IBM quantum com-
puters. Finally, Section IV concludes the paper.

II. RANDOM DYNAMICAL QUANTUM MAPS

In this paper, we focus on quantum dynamical maps that are
completely positive and trace preserving (CPTP), also referred
to as quantum channels. The canonical representation of a
quantum map E is via the operator-sum representation

E(ρ) =
r∑

i=1

KiρK
†
i (2)

where r denotes the Kraus rank and Ki are Kraus operators
that satisfy the trace-presevation constraint

∑
iK

†
iKi = I.

For n-qubits, the max Kraus rank is r = 4n which captures
the full dimension of the Hilbert space [37]. The successive
applications of the quantum map on an initial state ρ results
in a final state ρt = Et(ρ) = E ◦ E . . . ◦ E(ρ).

This section is organized as follows. We first consider the
spectral properties of quantum maps. Next, we discuss the
natural candidates for probability distribution on the set of
quantum maps, including their numerical generation. Then, we
examine the eigenvalue spectrum of an ensemble of random
maps, which determines the convergence rate to a steady-state.
Next, we investigate the ensemble steady-state spectrum to
which the system converges to by the application of random
quantum maps. We then examine the statistics obtained by
measuring the final ensemble of steady-states. Finally, we
construct random quantum circuits to approximate a random
dynamical map.

A. Spectral Properties of Quantum Maps

Given a sufficient number of iterations t, the final state will
converge to a steady-state. The steady-state can be analyzed by
the spectral decomposition of E , namely the eigenpair relation

E(ρλ) = λρλ (3)

where λ is the eigenvalue corresponding to the eigenvector ρλ.
The eigenvalues λ are complex numbers, and due to the CPTP
condition, they reside inside a unit disk. In the spectrum of
eigenvalues, there is at least one unit eigenvalue [38], λ = 1,
which we denote as a fixed point. There may be eigenvalues
that live on the edge of the unit disk, |λ| = 1, which are
known as rotating points. The associated eigenvectors of the
fixed points and rotating points define steady-state space. In
this paper, the properties of our maps are such that there
are no rotating points, hence the eigenvector associated with
fixed point is equal to the converging steady-state ρss. By
constructing an ensemble of random maps, we obtain an
ensemble of random steady-states.

B. Probability Distribution of Random Quantum Maps

To numerically study random quantum maps, we pick Kraus
operators Ki at random by constructing Ginibre matrices Gi

where each element consists of independent Gaussian entries.
We define Ki = GiS

−1/2 where S is a normalization factor
given as S =

∑
iG

†
iGi. We note that this method is the



Fig. 3: Eigenvalue spectrum of random dynamical maps, of rank r = 2, formed by layering random two-qubit gates. The
spectrum includes a leading eigenvalue λ = 1 and the theoretical Girko disk of radius 1/

√
r for the remaining eigenvalues λ.

With successive layering d of random gates, the empirical eigenvalues λ better approximate the Girko disk.

fastest procedure for generating a random quantum map.
Alternatively, one may consider the following natural options
for probability distributions on the convex set of quantum
dynamical maps: (1) Lebesgue measure, (2) Haar-random
isometry W in the Stinespring decomposition, and (3) random
Choi matrix. Under correct parameters, these methods are all
equivalent [39]. For theoretical investigations in this paper,
it is insightful to consider the Stinespring decomposition (2),
as it has direct correspondence with the random circuits in
Fig. 2c and in Sec. II-F. In particular, we have the following
relationship

E(ρ) = Trenv
[
U(ρ⊗ ρenv)U

†]
=

r∑
i=1

⟨ei|U [ρ⊗ |e0⟩ ⟨e0|]U† |ei⟩ =
r∑

i=1

KiρK
†
i (4)

where tracing over r environmental degrees-of-freedom is
equivalent to the Kraus representation of rank r.

C. Eigenvalue Spectrum of Random Quantum Maps

As noted in [20], [39], the properties of E corresponding to a
random map can be modeled by the real Ginibre ensemble. In
particular, the second-largest eigenvalue |λ2| ≤ 1 lives inside
the Girko disk of radius γ = 1/

√
r where r is the rank of

the map. The spectral gap, ∆ = 1 − γ ≥ 0, then determines
the convergences of the system to a steady-state ρss. Namely,
a state ρt is close to the steady-state after a l/∆ iterations,
given an integer l. Ideally, to achieve a desired tolerance ϵ,
the number of iterations t required is t ≈ log(ϵ)

log(γ) . Figure 3
visualizes the eigenvalues for an ensemble of random maps
with rank r = 2, and displaying the expected Girko disk of
radius 1/

√
2.

D. Steady-state Spectrum

As discussed in Sec. II-C, the repeated application of a
random map E on an arbitrary state converges to a steady-state
ρss. The properties of the steady-state are understood through
the eigen decomposition

ρss = UDU† =
∑
i

λMP |ψi⟩ ⟨ψi| . (5)
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Fig. 4: Steady-state eigenvalue spectrum of random maps
E , corresponding to a rescaled Marchecko-Pastur probability
distribution (theory). Eigenvalues are computed for steady-
states of maps with n = 3 qubits and with varying random
circuit depth d.

Since any density matrix is a positive semidefinite Hermitian
operator, it can be diagonalized through a unitary matrix U and
a diagonal matrix D consisting of positive and real eigenval-
ues. This decomposition is given as a mixture of random, pure
quantum states, |ψi⟩, weighted by the eigenvalues. In this case,
the eigenvalues λMP follow a Marchenko-Pastur distribution
[40]–[42] as shown in Fig. 4. This is consistent with the
results observed in the entanglement spectrum of random
bipartite systems [43]–[47]. In these systems, a partial trace is
executed over all environmental degrees-of-freedom after the
combined system-environment undergoes an extended period
of unitary dynamics evolution. In particular, due to CPTP
constraints, we must consider steady-states with Tr(ρss) = 1.
By considering fixed-trace Wishart ensembles, we obtain a
rescaled Marchenko-Pastur probability distribution [42],

PMP(λ) =
1

2πκ

1

λ

√
(λ+ − λ)(λ− λ−) (6)

where κ = 1/(Nr) for Hilbert space N (N = 2n) and

λ± =
1

N

(
1± 1√

r

)2

. (7)
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Fig. 5: Examination of output distribution of random circuits consisting of n-qubits. (a) Normal probability plot comparing
output distributions to the theoretical normal distribution for n = {1, 2, 3, 4, 5}-qubits (note the log-scale). (b) Histogram of
output distribution for n = {3, 4, 5} of rank r = {2, 4, 8}. (c) Normal probability plot for histogram in (b).

The average of the PMP(λ) is 1/N , corresponding to a
completely mixed state. However, the variance σ2

MP follows
as 1/(N2r), with higher moments found as [48]

µm =
1

m

1

Nr

m∑
l=1

(
m

l − 1

)(
m

l

)
rl. (8)

The eigenvectors U (|ψi⟩) are themselves Haar random,
aligning to a random unitary ensemble. Since the steady-state
is a weighted mixture of an ensemble of random pure states,
the steady-state is said to be universal, coinciding with prior
results in the continuous Lindbladian regime [31].

E. Measurement Statistics of Steady-State

Measurements of ρss are given by the diagonal matrix
elements. For instance, the probability of |011⟩ is given as
⟨011| ρss |011⟩, corresponding to the magnitude-squared of
the third diagonal matrix element, assuming the standard
computational basis. We denote the measurement bitvector as
|x⟩, hence the probability outcome of |x⟩

Pr|x⟩ = ⟨x| ρss |x⟩ =
∑
i

λMPi | ⟨ψi|x⟩ |2 =
∑
i

λMPPT(n)

(9)
where the magnitude-squared elements in an ensemble of
random state vectors yields the Porter-Thomas distribution
[49], [50]. The probabilities of |x⟩ are a result of a combined
Marchenko-Pastur and Porter-Thomas (PT) distribution, and
due to the invariance of the Haar measure, are equivalent
irrespective of basis or choice of |x⟩. In other words, the diag-
onal elements of the steady-state ρss are equivalent probability
distributions. We note that this invariance is expected as there
is no favoritism in the configuration space, which satisfies the
eigenstate thermalization hypothesis [51]. Figure 5 compares
the results of Pr|x⟩ for different qubit counts n, where N = 2n,
and for different ranks r. These results illustrate the relation-
ship described by (9). As N and r increase, the distribution
becomes narrower. For a fixed N , higher values of r reduce
the tails of the distribution. Comparisons to normal distribution
quantiles visualize the loss of tails for increased N and r.

F. Quantum Circuits for Quantum Maps

By the Stinespring decomposition discussed in Sec. II-B, we
can realize random dynamical quantum maps by working in a
larger Hilbert space and tracing away the ancilla (environment)
degrees-of-freedom. It then follows that a random dynamical
map may be constructed by a composition of these key steps:

1) initialize an ancilla to a known state, denoted as |0⟩
without loss of generality,

2) sample a random unitary U for the combined system
and ancilla,

3) trace away the ancilla, which is equivalent to measuring
the ancilla and taking an unbiased average.

Following (4), this procedure produces r random Kraus oper-
ators Ki which express our channel E .

In the circuit model of quantum computing, it is not possible
to apply a global unitary U acting simultaneously on all qubits.
Instead, a naive strategy is to apply gates from a universal set
randomly, which will require an exponential number of gates
in terms of n-qubits [52]. In other words, sampling from the
uniform Haar distribution is inefficient. In our case, and in
many cases, applying pseudo-random operators is sufficient.
The extent to which the pseudo-random operators behave like
the uniform distribution is known as k-design (sometimes
referred to as t-design). A k-design has the k-th moment equal
to those of Haar distribution [53], [54]. However, methods
for constructing unitary k-designs (such as using Clifford
group) remain inefficient. Instead, we may opt for random
quantum circuits, where a circuit acting on n qubits with
length poly(n, k) approximates a k-design. For instance, it has
been shown that a random circuit of length O(n(n+log 1/ϵ))
is an ϵ approximation for a 2-design [54].

Figure 2c is an example random circuit of depth d acting on
4-qubits. With each layer d, the moments of the distribution
are corrected. After d layers of pair-wise random gates, the
ancilla is measured with the results averaged (ignored). These
steps produce a random dynamical map E . Figure 3 shows the
eigenvalues a channel E generated by a d-layered circuit. As
the depth d is increased, we see agreement in the non-dominant
eigenvalues residing in the Girko disk. After the ancilla is
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Fig. 6: Output distributions consisting of n = 3 qubits and d = 3 random circuit depth with different noise sources. (a) Faulty
reset of ancilla qubit parameterized by p, with ideal reset to |0⟩ corresponding to p = 0 and with p = 1/2 representing an
equal mixture of |0⟩ and |1⟩. (b) Decoherence modeled by a depolarizing channel with strength e applied to each gate. (c) A
probability plot of the distributions with respect to normal distribution quantiles.
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(b) Introducing fresh ancilla.

Fig. 7: External degrees-of-freedom may be introduced by
either (a) reset and reuse of qubits, or (b) allocating fresh
qubits. The intention of the protocol is to reuse the qubits.

measured, it is reset to a known state so that we can repeat
the same random quantum circuit (E). Upon several repetitions
of E , following the analysis of Sec. II-D, the system converges
to a steady-state governed by a Marchenko-Pastur distribution.
Fig. 4 highlights the distribution for different circuit depths d.

While the intention of the protocol is to benchmark mid-
circuit reset, one may instead opt to use freshly prepared
ancillas after each iteration as depicted in Fig. 7. However, this
may be costly to perform, requiring additional swap operations
to move fresh qubits to couple with the system qubits.

G. Effect of Noise

We numerically analyze two simple sources of noise:
1) a faulty reset of the ancilla qubit, modeled as

ρ(p) =
√
p |0⟩ ⟨0|+

√
1− p |1⟩ ⟨1| ; p ∈ [0, 0.5] (10)

2) depolarizing error of the state after a gate, modeled as

ρ 7→ (1− e)

N
I+ eρ; e ∈ [0, 0.5] (11)

TABLE I: Qubit properties [55] and the final Kolmogorov-
Smirnov (KS) distance between empirical and expected result.
Asterisk (*) denotes the ancilla qubit. The final column p(1|0)
is the error rate of resetting a qubit to |0⟩.

Device KS Qubit T1 [µs] T2 [µs] Readout p(1|0)
ibm_kyoto 0.103 43 408.8 388.2 0.014 0.013

44 299.1 225.9 0.008 0.008
45 273.9 413.2 0.008 0.006
*46 323.4 457.7 0.009 0.008

ibm_osaka 0.275 *25 212.5 382.5 0.004 0.002
26 297.5 15.8 0.008 0.005
27 399.7 159.6 0.014 0.015
28 256.5 31.1 0.007 0.009

As shown in Fig. 6, we see that both sources of noise lower the
variance of the measurement distribution. In particular, both
the error in the reset of the ancilla qubit and the error via a
depolarizing channel result in a loss of quantum information,
converging to a completely mixed quantum state. The rank
of the channel increases, resulting in a new Marchenko-Pastur
distribution (6). Coherent and unbiased error in quantum gates
will, on average, have no impact on the output statistics. This
is a result of the invariance of the Haar measure, where a
change in basis does not affect the statistics. On the other
hand, biased sources of noise will place preference to certain
states, leading to a change in the distribution. This includes
for example a decay channel, or unequal Pauli-noise channels.

III. DEMONSTRATIONS ON QUANTUM COMPUTERS

We demonstrate the protocol on two superconducting quan-
tum computers from IBM Q, ibm_kyoto and ibm_osaka
[55]. Additionally, we simulate the circuits using fitted noise
models from the respective devices via Qiskit ecosystem [56].
We perform the protocol with 4 qubits in total, with 1 qubit
acting as an ancilla qubit that is measured and reset. We
conduct experiments on 100 randomly generated dynamical
maps, constructed with random circuits of depth d = 3, and
executed with 4096 shots. Raw data and code is available [57].

The error models of the devices include: (a) single and two
qubit errors consisting of a depolarizing channel, (b) a thermal
relaxation channel specified via T1 and T2 relaxation time,
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Fig. 9: Probability plot comparing device and noisy simulation
results in terms of theoretical quantiles. Ideally, points should
align with a line of slope = 1.

and (c) a readout error. The parameters of the error models
are provided by the IBM Q team [55], and are summarized
in Tab. I. A notable difference between the two devices is in
the T2 time, with ibm_kyoto having an order of magnitude
longer coherence time.

Figure 8 illustrates both the resulting distribution and the
cumulative distribution function (CDF) for the final output of
the devices and simulations. We calculate the Kolmogorov-
Smirnov (KS) distance – the maximum vertical discrepancy
between the empirical and theoretical CDFs – to quantify
the overall error. The KS distances for ibm_kyoto paired
with the simulation are 0.103 and 0.081, respectively, while
ibm_osaka paired with the simulation display distances of
0.275 and 0.149. Figure 9 further compares the distributions
using a probability plot, highlighting the differences. The
observed discrepancies between the simulations and the actual
device outputs are attributable to the simplifications made
in the error models. These models primarily assume that
all gate and measurement errors are local and Markovian,

thereby excluding non-Markovian influences such as cross-
talk, leakage, or drift. Furthermore, the models consider gate
errors to arise solely from incoherent noise processes, which
may not capture all sources of error accurately.

IV. CONCLUSIONS AND FUTURE OUTLOOK

In this work, we introduced a benchmarking protocol
for quantum computers utilizing random dynamical quantum
maps to simulate an open quantum system undergoing non-
unitary dynamics. The protocol captures intrinsic errors from
qubit gates, measurements, and resets through sequences of
random gates, steering the system towards a steady-state
characterized by random Wishart matrices. Our theoretical
analysis, numerical simulations, and empirical validation on
IBM Quantum computers demonstrated that the protocol’s
measure of quantum system performance based on the steady-
state distribution of open quantum systems dynamics aligns
with theoretical predictions and practical expectations.

There are numerous promising avenues for future research.
Additional research is required to establish the relationship
between alternative benchmarks and the performance of error-
correcting codes. Another important avenue is further analysis
of various noise sources, including the role of non-Markovian
processes. Furthermore, it is interesting to understand the role
of random dynamical quantum circuits, where gates change
depending on the outcome of mid-circuit measurement. We
believe that such future avenues, and our present work, provide
a promising path to characterize quantum systems and their
suitability for error correction and fault tolerance.
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[29] L. Sá, P. Ribeiro, and T. Prosen, “Spectral and steady-state properties
of random Liouvillians,” J. Phys. A: Math. Theor., vol. 53, no. 30, p.
305303, Jul. 2020.

[30] K. Wang, F. Piazza, and D. J. Luitz, “Hierarchy of Relaxation Timescales
in Local Random Liouvillians,” Phys. Rev. Lett., vol. 124, no. 10, p.
100604, Mar. 2020.

[31] S. Denisov et al., “Universal Spectra of Random Lindblad Operators,”
Phys. Rev. Lett., vol. 123, no. 14, p. 140403, Oct. 2019.

[32] R. Hamazaki et al., “Universality classes of non-Hermitian random
matrices,” Phys. Rev. Res., vol. 2, no. 2, p. 023286, Jun. 2020.

[33] G. Akemann, M. Kieburg, A. Mielke, and T. Prosen, “Universal Signa-
ture from Integrability to Chaos in Dissipative Open Quantum Systems,”
Phys. Rev. Lett., vol. 123, no. 25, p. 254101, Dec. 2019.
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[45] H.-J. Sommers and K. Życzkowski, “Statistical properties of random
density matrices,” J. Phys. A: Math. Gen., vol. 37, no. 35, p. 8457,
Aug. 2004.
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