
Breaking On-Chip Communication Anonymity using Flow
Correlation Attacks
HANSIKA WEERASENA, University of Florida, USA

PRABHAT MISHRA, University of Florida, USA

Network-on-Chip (NoC) is widely used to facilitate communication between components in sophisticated

System-on-Chip (SoC) designs. Security of the on-chip communication is crucial because exploiting any

vulnerability in shared NoC would be a goldmine for an attacker that puts the entire computing infrastructure

at risk. We investigate the security strength of existing anonymous routing protocols in NoC architectures,

making two pivotal contributions. Firstly, we develop and perform a machine learning (ML)-based flow

correlation attack on existing anonymous routing techniques in Network-on-Chip (NoC) systems, reveal-

ing that they provide only packet-level anonymity. Secondly, we propose a novel, lightweight anonymous

routing protocol featuring outbound traffic tunneling and traffic obfuscation. This protocol is designed to

provide robust defense against ML-based flow correlation attacks, ensuring both packet-level and flow-level

anonymity. Experimental evaluation using both real and synthetic traffic demonstrates that our proposed

attack successfully deanonymizes state-of-the-art anonymous routing in NoC architectures with high accuracy

(up to 99%) for diverse traffic patterns. It also reveals that our lightweight anonymous routing protocol can

defend against ML-based attacks with minor hardware and performance overhead.

CCS Concepts: • Networks→ Network on chip; Security protocols; • Computing methodologies→
Neural networks; • Security and privacy→ Hardware attacks and countermeasures.

Additional Key Words and Phrases: System-on-chips, Network-on-chip Security, On-Chip Communication

Security, Anonymity, Deanonymization, Flow Correlation, Machine Learning, Anonymous Routing

1 Introduction
Advanced manufacturing technology allows the integration of heterogeneous Intellectual Property

(IP) cores on a single System-on-Chip (SoC). For example, Intel’s Xeon® Scalable Processor [23]

supports up to 64 cores. Traditional bus architectures fail to scale up with the communication

requirements of the increasing number of IP cores. Network-on-Chip (NoC) is the preferred

communication fabric to meet the high throughput and scalability requirements between these

IP cores. Due to time to market constraints and cost-effectiveness, SoC manufacturers tend to

use third-party vendors and services from the global supply chain [29]. Typically only a few IP

cores are designed in-house, while others are reusable IPs from third-party vendors. For example,

FlexNoc interconnect is used by four out of the top five fabless companies to facilitate their on-chip

communication [24]. A long and potentially untrusted supply chain can lead to the introduction of

malicious implants through various avenues, such as untrusted CAD tools, rogue designers, or at

the foundry. Furthermore, these sophisticated SoC designs make it harder to do complete security

verification [28]. While designing energy-efficient NoCs is a primary goal today, securing them is

equally crucial as exploiting an NoC could allow attackers to access communications between IP

cores and compromise the entire computing infrastructure’s security.

Figure 1 shows a 4 × 4 mesh NoC where mesh topology is the most commonly used topology in

NoC. A single tile consists of an IP core, Network Interface (NI), and Router. Security issues in a

typical NoC can be classified based on various security goals (confidentiality, integrity, anonymity,

authenticity, availability, and freshness) compromised by an attacker [44]. There are efficient

detection and mitigation of security vulnerabilities [4, 10, 12, 18, 21, 37] for securing NoC-based

SoCs. In a typical NoC, to enable fast packet forwarding, the header information is kept as plaintext

Authors’ Contact Information: Hansika Weerasena, University of Florida, Gainesville, FL, USA, hansikam.lokukat@ufl.edu;

Prabhat Mishra, University of Florida, Gainesville, FL, USA, prabhat@ufl.edu.

, Vol. 1, No. 1, Article . Publication date: November 2024.

R1 R2 R3 R4

IP

NI

IP core

Network
Interface

Router

Network
Link

Malicious
Router

NIS

IPS

NID

IPD

R13 R14 R15 R16

R6

R10R9 R11 R12

R5 R7 R8

Remote
Adversary

Fig. 1. In a 4x4 mesh NoC, each IP connects to NoC via a network interface and router. A malicious router
can intercept packets between 𝐼𝑃𝑆 and 𝐼𝑃𝐷 , forwarding them to a remote adversary for sophisticated attacks.

while the packet data is encrypted. An adversary can implant a hardware Trojan in a router (𝑅8 in

Figure 1), which can collect packets from the same source-destination pair and send them to a remote

adversary that can launch traffic and metadata analysis attacks [44]. For example, imagine a source

node (𝐼𝑃𝑆) is a cryptographic accelerator that needs to communicate with a memory controller,

destination node (𝐼𝑃𝐷), to facilitate memory requests for the cryptographic operation. An adversary

can use a malicious router in the middle to collect packets between 𝐼𝑃𝑆 and 𝐼𝑃𝐷 over a time interval

and recover the key by launching a ciphertext-only cryptanalysis attack [10, 31, 35]. Similarly, a

collection of packets belonging to the same communication session can also be analyzed to discover

what program is running at 𝐼𝑃𝑆 or reverse engineer the architectural design using a simple hardware

Trojan and powerful remote adversary [2, 3, 16]. Ensuring anonymity in NoC communication can

mitigate metadata and traffic analysis attacks since anonymity ensures that there is no unauthorized

disclosure of information about communicating parties. Recent literature features two anonymous

routing approaches for securing NoC traffic: ARNoC [10] and a stochastic anonymous routing (SAR)

protocol [31, 35]. Although these anonymous routing solutions provide packet-level anonymity,

we show that they fail to provide flow-level anonymity by breaking anonymity via flow correlation

attacks. After breaking anonymity, the adversary can launch various traffic and metadata analysis

attacks on the deanonymized communication session. Specifically, this paper evaluates the security

strength of anonymous routing protocols in NoCs and makes the following major contributions.

• We propose an attack on existing anonymous routing by correlating NoC traffic flows via

machine learning (ML).

• We show that ourML-based attack can break the anonymity of the state-of-the-art anonymous

routing (ARNoC [10] and SAR [31, 35]) and validates the need for flow-level anonymity.

• The robustness of the attack is assessed across diverse configurations and traffic patterns.

• We propose a novel anonymous routing protocol with outbound traffic tunneling and obfus-

cation as a lightweight countermeasure that ensures packet-level and flow-level anonymity.

• Experimental results demonstrate that our countermeasure can defend against flow correla-

tion attacks with minor hardware and performance overhead.

The remainder of this paper is organized as follows: Section 2 provides relevant background and

surveys related efforts. Section 3 describes our ML-based attack on anonymous routing. Section 4

proposes a lightweight protocol to defend against such attacks. Section 5 presents experimental

results and evaluation. Finally, the paper is concluded in Section 6.

2 Background and Related Work
This section provides the relevant background and surveys the related efforts to highlight the

novelty of this work.

2

2.1 Network-on-Chip (NoC) Traffic
NoC enables communication by routing packets through a series of nodes. There are two types of

packets that are injected into the network: control and data packets. Consider an example when a

processor (𝐼𝑃𝑆) wants to load data from a particular memory controller (𝐼𝑃𝐷), it will issue a control

packet requesting the data from memory. The packet travels through routers following a predefined

routing protocol. Upon reaching the destination IP, it responds with a data packet containing the

requested data. In general, header information is kept as plaintext and the payload data is encrypted.

At each source NI, the packets are divided into fixed-size flits, which is the smallest unit used for

flow control. There is a head flit followed by multiple body flits and tail flits. Routing in NoC can be

either deterministic or adaptive; both approaches use header information to make routing decisions

at each router. XY routing is the most commonly used routing in mesh-based traditional NoCs,

which basically takes all the X links first, followed by Y links. NoC uses links to connect different

components of the interconnects. Links can be either internal or boundary. A boundary link is a

link that connects a router to a network interface, while internal links connect two routers. Our

ML-based attack on anonymous routing makes use of the flow of flits (inter-flit delays), whereas

our countermeasure manipulates routing decisions to create virtual tunnels.

2.2 Attacks on Anonymity and Anonymous Routing
In the context of communication, anonymity refers to the quality of being unidentifiable within a

set of subjects. The primary goal of anonymity is to protect the privacy of communicating parties.

Traffic andmetadata analysis are two types of attacks that compromise the lack of anonymity in NoC

communication [44]. A traffic analysis attack collects packets in a particular communication session

between parties and analyzes them to deduce various aspects, such as what type of application is

running in an SoC. Similarly, metadata analysis attacks use ancillary data of communications, such

as sender and receiver information, time stamps, and packet sizes, to compromise the privacy of

communication parties. Anonymous routing hides the identity of the communicating parties from

anyone listening in the middle and hinders the effectiveness of these attacks. In this context, we

consider two types of anonymity: packet-level and flow-level anonymity. Packet-level anonymity

focuses on concealing individual data packets’ origin, destination, and content, while flow-level

anonymity aims to obscure the relationship between packets in a communication session.

The Tor network [17], based on onion routing, and the I2P network [47], based on garlic routing,

are key examples of anonymous routing in traditional networks. Onion routing creates tunnels

through multiple hops, encrypting the message in layers equal to the number of hops. Each hop

peels off a layer to gradually reveal the original message. Garlic routing extends onion routing

by bundling and encrypting multiple messages together, similar to garlic cloves. Many attacks

target Tor network anonymity, such as the flow correlation attack [30], but they cannot be directly

applied to NoC for three key reasons. (1) Traffic characteristics differ significantly between NoC and

traditional network due to varying use cases. NoC is used for routing simple on-chip communication

traffic, such as cache coherence, memory accesses, and inter-processor communications. In contrast,

traditional networks handle complex use cases, such as enterprise data services, cloud computing

tasks, and multimedia streaming. (2) The existing attack relies heavily on packet size as a feature,

whereas NoC flits are the fundamental unit of flow control, and they are of fixed size. (3) In NoCs, all

nodes function as onion routers, unlike traditional networks which mix normal and onion routers.

2.3 Related Work
The security of on-chip communication has been extensively studied, encompassing a wide range

of attacks and countermeasures, including eavesdropping attacks [4, 12, 32, 37, 41], spoofing

attacks [4, 26, 43], denial of service (DoS) attacks [8, 24, 27, 38, 39], side-channel attacks [9, 15, 33, 42],

3

and packet tampering attacks [10, 37, 40]. Anonymity is crucial for secure on-chip communication,

but solutions in the traditional networks are too expensive for resource-constrained NoCs. An

anonymous routing protocol (SAR) that needs NoC packets to be identified as secure and non-secure

packets is presented in [31, 35]. This approach stochastically selects a routing scenario for each

packet out of three scenarios available to confuse adversaries. Charles et al. [10] presented an

anonymous routing solution (ARNoC) for NoC based on onion routing [17] to ensure the anonymity

of a communication session. ARNoC creates an on-demand anonymous tunnel from the source to

the destination where intermediate nodes know only about the preceding and succeeding nodes.

Our proposed ML-based attack can break the anonymity of both ARNoC and SAR.

A threat model based on the insertion of Hardware Trojans (HTs) in network links is addressed

in [7, 46]. Yu and Frey [46] show that the Trojans can be inserted in boundary links and center

links that can do bit flips in the header packet that can lead to deadlock, livelock, and packet

loss. Boraten and Kodi [7] discuss the DoS attacks that can be launched by malicious links. This

specific Trojan performs packet injection faults at the links, triggering re-transmissions from the

error-correcting mechanism. Ahmed et al. [2] introduce the concept of Remote Access Hardware

Trojan (RAHT), where a simple HT in NoC can leak sensitive information to an external adversary

who can launch complex traffic analysis attacks. These RAHTs are hard to detect due to negligible

area, power, and timing footprint. Recent efforts [3, 16] utilize a similar threat model that can

reverse engineer applications through traffic analysis attacks. A threat model where an HT in

NoC collaborates with a colluding application is used to launch multitudes of attacks in the NoC

literature [8, 10, 22, 25, 32, 37]. Our proposed attack assumes malicious boundary links as the points

of data collection that gets remote access to external adversary through a colluding application.

ML-based techniques have been used to detect and mitigate attacks on NoCs in [38–40]. Sudus-

inghe et al. [39] used several ML techniques to detect DoS attacks on NoC traffic. Reinforcement

learning is used by [40] to detect HTs in NoC at run time. Sinha et al. [38] use an ML-based

approach to localize flooding-based DoS attacks. None of these approaches consider attacks or

countermeasures related to anonymous routing in NoC architectures. To the best of our knowledge,
our study is the first attempt to deanonymize exiting anonymous routing protocols via ML-based
flow correlation attack and propose a lightweight countermeasure with packet-level and flow-level
anonymity for NoC-based SoCs.

2.4 Flow Correlation Challenges
NoC traffic flow can be considered a time series data array with values of increasing timestamps

in order. For example, in a communication session, we can consider an array of time differences

between each packet coming into a node as a flow. Flow correlation is when we take two such pairs

and compare if they are correlated in some manner. For example, in a network link, the flow of

inter-flit delay entering and going out of the link are correlated. Though correlating outgoing and

incoming traffic on a link seems straightforward, correlating traffic between two nodes in a large

network with multiple hops in NoC is extremely difficult for the following reasons:

• Queuing delay at each hop is unpredictable and can interfere with traffic flow characteristics.

• A pair of correlated nodes may communicate with other nodes, which is considered as noise.

• The communication path of the correlated pair may be shared by other nodes in SoC, which

will interfere with the traffic flow characteristics between correlated pairs.

3 ML-based Attack on Anonymous Routing
We first outline the threat model used in the proposed attack. Next, we describe our data collection,

training, and application of the ML model to accomplish the attack.

4

NoC

MӨ

Attacking Phase

Breaks Anonymity

Training Phase Attacking Phase

Training Data Collection
(Section 3.2)

Training the DNN
(Section 3.4)

Potential communicating
pair < S, D >

Predicting Correlation
(Section 3.5)

(Section 3.3)

Fig. 2. Overview of our proposed ML-based attack that consists of two phases (training and attacking).

time

RS R2 R3 R4

Tunnel

time

IFDSo

IFDDiNIS

IPS

Malicious
Link

R13 R14 R15 R16

R5 R6 R7 R8

R9 R10 R11 RD
NID

IPD

Collector
ML-Model

Fig. 3. Malicious boundary links outside the anonymous tunnel extract flow pair (𝐼𝐹𝐷𝑜
𝑆
, 𝐼𝐹𝐷𝑖

𝐷
) and send

them to the collector. Then, collector sends them to ML-model.

3.1 Threat Model
The threat model considers an NoC that uses encrypted traffic and anonymous routing, either

ARNoC [10] or SAR [31, 35]. Thus, we consider traffic to have packet-level anonymity; attackers

cannot identify the sender/receiver due to anonymous routing. Furthermore, they cannot recover

the payload due to encryption. The threat model consists of three major components: (1) a malicious

NoC, (2) a malicious program (collector), and (3) a pre-trained ML model.

Malicious NoC: The malicious NoC has malicious boundary links with Hardware Trojan (HT). The

HT counts the number of cycles between incoming and outgoing flits (inter-flit delay) to and from

an IP. After specific intervals, HT gathers all inter-flit delay into an array and sends it to the IP

where the malicious program (collector) is running. HT can be inserted by various adversaries

in the extended supply chain, such as through untrusted CAD tools, rogue engineers, or at the

foundry via reverse engineering, and remain undetected during post-silicon verification [28]. A

similar threat model of inserting HT at NoC links has been discussed in [7, 46]. Note that the area

and power overhead of an HT is negligible in a large MPSoC [3].

Malicious Program: Cloud infrastructures use multi-core SoCs in multi-tenant platforms where they

are virtualized and allocated to various applications from different users. The attacker disguised as

one of the multiple users of this shared virtualized system can easily launch a malicious program

and stay undetected. The collector is such a malicious program; it activates/deactivates HT to keep

it hidden from any run-time HT detection mechanisms. The main functionality of the collector is to
collect inter-flit-delays from HT-infected links and send them to the ML model. This threat model,

where a malicious NoC with an HT collaborates with a colluding application in same SoC (i.e.

collector), is a well-documented approach in NoC security literature [13, 44].

ML Model: The pre-trained ML model runs in a remote server/cloud controlled by the adversary.

The flow correlation uses the attacking phase out of two phases (training and attacking) of the ML

model. The training phase is detailed in Section 3.4. The attacking phase classifies whether two

inter-flit delay arrays are correlated or not. Figure 2 shows a high-level overview of the proposed

5

C1
C2

FC1 FC2 FC3

time

IFDDi

time

IFDSo

p(y)

Fig. 4. DNN architecture has two convolution layers (C1, C2) and three fully connected layers (FC1 - FC3).

flow correlation attack from the perspective of the ML model. The training phase is performed

offline and is responsible for collecting training data and training of the ML model. The adversary

can use an emulator or simulator mimicking the target system to collect data. The adversary can

generate a large amount of trained data by changing process mapping, benchmarks, and other

traffic characteristics (as discussed in Section 5.1) to make the model generic. While training the ML

model for detecting correlation can be computationally expensive, it is not a limiting factor since

the training is a one-time activity. Note that the model can be retrained, if needed after specific

intervals, to ensure that it remains effective and up-to-date throughout its operational lifetime.

Figure 3 shows an example of the attacking phase on ARNoC. In ARNoC, a tunnel exists between

source and destination routers if their associated IPs are in a communication session. ARNoC

forms the tunnel to ensure anonymity by hiding the headers. The HTs in the links are in the

inactive state by default. The collector periodically checks the state of all infected boundary links

and flags communicating links as suspicious. This is done via monitoring a simple heuristic of

inbound/outbound packet counts between two nodes. The collector will examine these counts and

instruct the HT to start collecting inter-flit delays if the difference is within a specified threshold.

Imagine a scenario where an adversary suspects communication between the source (𝐼𝑃𝑆) and

destination (𝐼𝑃𝐷); the collector activates HT associated with the boundary links of 𝐼𝑃𝑆 and 𝐼𝑃𝐷 . On

activation, HTs start sending periodic inter-flit delay arrays to the collector. More specifically, the

Trojan will observe and leak both outbound (𝐼𝐹𝐷𝑜
𝑆
) and inbound (𝐼𝐹𝐷𝑖

𝐷
) traffic flows. Here, 𝐼𝐹𝐷𝑜

𝑆

refers to the outbound inter-flit delay arrays from the source IP, and 𝐼𝐹𝐷𝑖
𝐷
refers to the inbound

inter-flit delay arrays at the destination IP. Upon receiving inter-flit delay arrays, the collector is
responsible for sending collected data on inter-flit delay to the ML model. The adversary uses the

ML model to pinpoint two specific nodes that are communicating and breaks the anonymity.

After breaking anonymity through proposed flow correlation, an attacker can launch either

metadata or traffic analysis attacks [2, 3, 11, 16, 35], as discussed in Section 1 and 2. Breaking

anonymity can have significant consequences in scenarios where preserving the anonymity of

data traffic is critical. For example, in the case of confidential computing [14], it can leak the host

memory region of an application by breaking anonymity between the computing node and the

memory controller. Furthermore, after breaking anonymity, attackers can use it as a stepping stone

for more advanced attacks, such as targeted denial-of-service attacks.

3.2 Collecting Data for Training
Algorithm 1 outlines the training data collection when running ARNoC or SAR. We collect inbound

and outbound inter-flit delays for all source and destination IPs (line 4). Then, we label each flow pair

as either ‘1’ or ‘0’ according to the ground truth (line 5). If 𝐼𝑃𝑆 and 𝐼𝑃𝐷 of flow pair {𝐼𝐹𝐷𝑜
𝑆
, 𝐼 𝐹𝐷𝑖

𝐷
}

are correlated to each other (𝐼𝑃𝑆 and 𝐼𝑃𝐷 communicating in a session), the flow pair is tagged as

‘1’ and otherwise ‘0’. These tagged flow pairs are utilized as the training set. Note that only the

first 𝑙 elements of each flow of flow pair ({𝐼𝐹𝐷𝑜
𝑆
, 𝐼 𝐹𝐷𝑖

𝐷
}) will be used in the training and testing.

We model external traffic interference on correlated flows by considering two scenarios: other

nodes communicating with the correlated pair and with each other, reflecting shared resource

6

and resource path. We use a deep neural network (DNN) as the ML model for our proposed flow

correlation attack. To ensure a generic dataset and sufficient data for DNN training, we conduct

multiple iterations of data collection (Algorithm 1), varying the mapping of correlated pairs to

different NoC nodes each time. Section 5 elaborates on synthetic and real traffic data collection.

Algorithm 1 Data Collection

1: X, Y← ∅
2: procedure CollectData ()

3: for ∀ (𝑠, 𝑑) ∈ (𝑆 , 𝐷) do
4: 𝑋 ← 𝑋 ∪ { 𝐼𝐹𝐷𝑜𝑠 , 𝐼𝐹𝐷𝑖𝑑 }
5: 𝑌 ← 𝑌 ∪ 𝑐 : 𝑐 ∈ { 0, 1 }
6: return 𝑋 , 𝑌

3.3 DNN Architecture
We carefully examined various configurations and reached out to the final DNN architecture shown

in Figure 4. We selected Convolution Neural Networks (CNN) [36] as our model architecture for the

following reasons. First, since multivariate time series have the same 2-dimensional data structures

as images, CNN for analyzing images is suitable for handling multivariate time series [48]. Second,

recently published works using CNN for flow correlation [19, 30] has shown promising results. Our

final architecture has two convolution layers followed by three fully connected layers to achieve

promising performance. The first convolution layer (C1) has 𝑘1 number of kernels of size (2,𝑤1).

The second convolution layer (C2) has 𝑘2 number of kernels of size (2,𝑤2). The main intuition of C1

is to identify and extract the relationship between two traffic flows (𝐼𝐹𝐷𝑜
𝑆
, 𝐼𝐹𝐷𝑖

𝐷
), while we assign

the task of advancing features to C2. In our approach, both C1 and C2 have a stride of (2, 1). A

max-pooling layer immediately follows both convolution layers. Max pooling uses a max operation

to reduce the dimension of features, which also logically reduces overfitting. Finally, the result of

C2 is flattened and fed to a fully connected network with three layers. Additionally, the set (𝑘1,

𝑘2,𝑤1,𝑤2) are considered as hyper-parameters. We provide details on hyper-parameter tuning in

Section 5.2. We use ReLU as the activation function for all convolution and fully connected layers

to avoid the vanishing gradient problem and improve performance. Due to the fact that our task is

a binary classification, we apply a sigmoid function in the last output layer to produce predictions.

3.4 Training the DNN Model
Algorithm 2 outlines the major steps in the training process of the ML model. Specific sizes and

parameters used in training are outlined in Section 5. We train the DNN over multiple epochs (line

6) using labeled inter-flit delay distributions as the input. During the training phase, the stochastic

gradient descent (sgd) optimizer minimizes the loss and updates the weights in the DNN (line

10). To achieve this binary classification results from the last fully connected layer pass through a

sigmoid layer [20] (line 8) to produce classification labels.

Formally, the sigmoid layer is a normalized exponential function 𝑓 (𝑥) = 1

1+𝑒−𝑥 , which aims at

mapping the given vector to a probability value that lies in [0, 1]. The value of the output of the
last layer is the predicted label 𝑝 (𝑦) which can be denoted as:

𝑝 (𝑦) = 1

1 + 𝑒−(𝑀 (𝑠,𝑑))
where 𝑠 and 𝑑 denote the source and destination input distribution respectively, and 𝑀 denotes

a function map for the entire DNN model. Since it is a binary classification task, for given input

7

Algorithm 2ML Model Training

1: 𝑋 : [𝑥1, ..., 𝑥 𝑗 , ..., 𝑥𝑁] where 𝑥 𝑗 = { 𝐼𝐹𝐷𝑜𝑠 , 𝐼𝐹𝐷𝑖𝑑 } 𝑗
2: 𝑌 : [𝑦1, ..., 𝑦 𝑗 , ..., 𝑦𝑁] where 𝑦 𝑗 ∈ {0, 1}
3: procedure TrainModel (𝑋 , 𝑌)

4: 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑋 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙𝑠 𝑌

5: 𝑀𝑜𝑑𝑒𝑙 𝑀Θ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

6: for 𝑒𝑝𝑜𝑐ℎ ∈ [1, ..., 𝑁𝑜𝑂𝑓 𝐸𝑝𝑜𝑐ℎ𝑠] do
7: for 𝑥 𝑗 ∈ 𝑋 and 𝑦 𝑗 ∈ 𝑌 do
8: 𝑜𝑢𝑡 𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑀Θ (𝑥 𝑗))

9: 𝑙𝑜𝑠𝑠 =
𝑁∑
𝑗

cross_entropy(𝑜𝑢𝑡 𝑗 , 𝑦 𝑗)

10: Θ = sgd(Θ,∇𝑙𝑜𝑠𝑠)
11: Return𝑀Θ

(𝑠, 𝑑) pairs’ labels, their probability distributions are either (1, 0) for ‘true’ (correlated) and (0, 1)
for ‘false’ (uncorrelated). Therefore, we choose binary cross-entropy (line 9) as the loss function as

follows:

𝑙𝑜𝑠𝑠 (𝑝 (𝑦)) = − 1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 · 𝑙𝑜𝑔(𝑝 (𝑦𝑖)) + (1 − 𝑦𝑖) · 𝑙𝑜𝑔(1 − 𝑝 (𝑦𝑖))

where 𝑦 is the label (1 for correlated pairs and 0 for uncorrelated pairs), and 𝑁 is the total number of

training samples. The goal of model training is to minimize the loss function by gradient descent for

multiple iterations, where in each step the model parametersΘ are updated byΘ′ = Θ+∇𝑙𝑜𝑠𝑠 (𝑝 (𝑦)).
3.5 Predicting Correlation
The trained model is used in attacking phase as shown in Algorithm 3. During the attacking phase,

we feed the two inter-flit delay arrays from a suspicious source (𝑆) and destination (𝐷) of the

ongoing communication session to the ML model (lines 4-5). The ML model will output 1 if the

source and destination are communicating, and 0 otherwise (lines 5). If 𝑆 and 𝐷 are communicating

and the ML model output is 1, our attack has successfully broken the anonymity.

Algorithm 3 Attack on Anonymous Routing

1: 𝐼𝐹𝐷𝑜
𝑆
: outbound inter-flit delay array of S

2: 𝐼𝐹𝐷𝑖
𝐷
: inbound inter-flit delay array of D

3: 𝑀Θ : pre-trained model

4: procedure Attack ({𝐼𝐹𝐷𝑜
𝑆
, 𝐼 𝐹𝐷𝑖

𝐷
},𝑀Θ)

5: 𝑝 (𝑦) ← predict({𝐼𝐹𝐷𝑜
𝑆
, 𝐼 𝐹𝐷𝑖

𝐷
},𝑀Θ)

6: return 𝑝 (𝑦)

4 Defending against ML-based Attacks
In this section, we propose a novel lightweight anonymous routing protocol as a countermeasure

against the ML-based attack described in Section 3. Figure 5 shows an overview of our proposed

anonymous routing that consists of two phases: 1) outbound tunnel creation and 2) data transfer

with traffic obfuscation. We utilize two obfuscation techniques (chaffing of flits and random delays).

4.1 Outbound Tunnel Creation
An outbound tunnel (𝑂𝑇 𝑖

𝑆
) is a route created from the source router (𝑆) of the tunnel to an arbitrary

router called tunnel endpoint (𝐸𝑖
𝑆
). Here, 𝑖 indicates the parameter for each tunnel instance. Figure 6

8

Phase 1 Phase 2

Traffic Obfuscation

Chaffing
(Section 4.3.1)

Tunnel Creation

Tunnel Initialization
(Section 4.1.1)

Tunnel Acceptance
(Section 4.1.2)

Tunnel Confirmation
(Section 4.1.3)

Data Transfer
(Section 4.2) Random Delay

(Section 4.3.2)

Fig. 5. Overview of the proposed lightweight anonymous routing to defend against flow correlation attack. It
has two phases: tunnel creation and data transfer with traffic obfuscation.

time

NIS

IPS

NID

IPD

S/R1 R2 R3 Esi/R4

R5 R6 R7 R8

R9

R13

R10

EDj/R14

R11

R15

RD

R16

OTsi

time

IFDSo

IFDDiOTDj
Flit

Chaffed
Flit

Normal
Routing
Path

Random
Delay

Fig. 6. Two separate outbound tunnels 𝑂𝑇 𝑖
𝑆
and 𝑂𝑇 𝑗

𝐷
are used by 𝐼𝑃𝑆 and 𝐼𝑃𝐷 for communication. In 𝐼𝑃𝑆 to

𝐼𝑃𝐷 communication, chaffed flit is inserted at 𝑁𝐼𝑆 and winnowed at 𝐸𝑖
𝑆
(𝑅4). 𝐸𝑖𝑆 adds random delay to the

flit sequence. The packet follows normal routing after an outbound tunnel ends.

shows how outbound tunnels,𝑂𝑇 𝑖
𝑆
and𝑂𝑇 𝑖

𝐷
, are used when 𝐼𝑃𝑆 and 𝐼𝑃𝐷 are injecting packets to the

network. It is important to highlight that these 𝑂𝑇 𝑖s are only bound to their source router and are

independent of any communication session. Each tunnel is associated with a timeout bound. After

the timeout, the tunnel that belongs to a particular source 𝑆 will cease to exist and a new tunnel

will be created with a different endpoint (𝐸𝑖+1
𝑆

). 𝐸𝑖
𝑆
of an 𝑂𝑇 𝑖

𝑆
is randomly selected from any router

that is ℎ𝑚𝑖𝑛 to ℎ𝑚𝑎𝑥 hops away from the source of the tunnel. We use ℎ𝑚𝑖𝑛 = 3 because a minimum

of three nodes are needed for anonymous routing and increasing it further will negatively affect the

performance [17]. ℎ𝑚𝑎𝑥 can be configured to balance the performance and the number of endpoints.

Figure 7 zooms into the tunnel creation phase. A summary of notations used in tunnel creation

can be found in Table 1. Tunnel creation is a three-way handshake process. The source broadcasts

a Tunnel Initialization (TI) packet to all the routers and only 𝐸𝑖
𝑆
responds back to the source with a

Tunnel Acceptance (TA) packet. Once the source receives an 𝐴𝐶𝐾 from 𝐸𝑖
𝑆
, it sends the Tunnel

Confirmation (TC) packet to 𝐸𝑖
𝑆
. After these three steps, each router in the tunnel has two random

Virtual Circuit Identifiers (VCI) saved in their routing table to define the succeeding and preceding

hops representing the tunnel. For the rest of the section, we refer to 𝐸𝑖
𝑆
as just 𝐸.

4.1.1 Tunnel Initialization. In the example (Figure. 6), 𝑆 sends a TI packet as:

{𝑇 𝐼 | |𝑂𝑃𝑢𝐾𝑖𝑆 | |𝐸�̂�𝑃𝑢𝐾𝐸
(𝑂𝑃𝑢𝐾𝑖𝑆 | |𝑟) | |𝑇𝑃𝑢𝐾

𝑖
𝑆 } (1)

𝑇 𝐼 identifies the packet as a Tunnel Initiation packet.𝑂𝑃𝑢𝐾𝑖
𝑆
is the sources’ one-time public key for

the 𝑖𝑡ℎ tunnel and 𝑂𝑃𝑟𝐾𝑖
𝑆
is the corresponding private key. In other words, an 𝑂𝑇 𝑖

𝑆
can be uniquely

identified by this key pair. 𝑃𝑢𝐾𝐸 and 𝑃𝑟𝐾𝐸 are the global public and private keys of 𝐸, respectively.

They will not be changed with each tunnel creation. 𝑂𝑃𝑢𝐾𝑖
𝑆
and a randomly generated value 𝑟 is

concatenated and encrypted through public-key encryption using the key 𝑃𝑢𝐾𝐸 (𝐸�̂�𝑃𝑢𝐾𝐸
). Only 𝐸

can decrypt this encryption because only E has the corresponding private key (𝑃𝑟𝐾𝐸). Finally, the

temporary public key (𝑇𝑃𝑢𝐾𝑖
𝑆
) is concatenated at the end of the packet. TI packet is broadcasted

instead of directly routed to avoid anonymity being broken at its birth.

9

S/R1 Es
i/R4R3R2

Index out VCI
source nR2

Index out VCI
nR2 nR3

Index out VCI
nR3 nS

Eq. (1)

Eq. (3)

Eq. (2)

Eq. (4)

Eq. (5) Eq. (6) Eq. (7)

Index out VCI
nR2 endpoint

: TI Packet

: TA Packet

: TC Packet

Fig. 7. Message transfer in a three-way handshake to create an outbound tunnel between router 𝑅1 and 𝑅4
and final state routing tables of each router representing the outbound tunnel.

Algorithm 4 TI Packet handling at 𝑅

1: 𝑝𝑘𝑡 :A TI packet

2: procedure HandleTI (𝑝𝑘𝑡)
3: if 𝑂𝑃𝑢𝐾𝑖

𝑆
in TL table then

4: discard 𝑝𝑘𝑡

5: else
6: store 𝑂𝑃𝑢𝐾𝑖

𝑆
and 𝑇𝑃𝑢𝐾𝑖

𝑝𝑟𝑒 (𝑅)

7: if 𝐷𝑒𝑃𝑟𝐾𝑅
(𝑝𝑘𝑡 [3]) is successful then

8: GenerateTA (𝐷𝑒𝑃𝑟𝐾𝑅
(𝑝𝑘𝑡 [3]), 𝑝𝑘𝑡 [4])

9: else
10: 𝑝𝑘𝑡 [4] ← 𝑇𝑃𝑢𝐾𝑖

𝑅

11: forward 𝑝𝑘𝑡

Any Router (𝑅) receiving a TI packet will follow Algorithm 4. Tunnel Lookup (TL) table has

unique entries for every TI packet comes to the router. First, it tries to match 𝑂𝑃𝑢𝐾𝑖
𝑆
with the

existing entries in the TL table. On match, the message will get discarded to avoid any duplication

Table 1. Notations used in tunnel creation.

𝐸�̂�𝐾 Encrypts message𝑀 using key 𝐾

𝐷𝑒𝐾 Decrypts message𝑀 using key 𝐾

𝑂𝑃𝑢𝐾𝑖
𝑆

One-time public key used by source 𝑆

𝑂𝑃𝑟𝐾𝑖
𝑆

Corresponding private key to 𝑂𝑃𝑢𝐾𝑖
𝑆

𝑃𝑢𝐾𝐸 Global public key of 𝐸

𝑃𝑟𝐾𝐸 Corresponding private key to 𝑃𝑢𝐾𝐸
𝑇𝑃𝑢𝐾𝑖

𝑅
Temporary public key of node 𝑅

𝑇𝑃𝑟𝐾𝑖
𝑅

Corresponding private key to 𝑇𝑃𝑢𝐾𝑖
𝑅

𝐾𝑆−𝑅 Symmetric key shared between 𝑆 and 𝑅

𝑛𝑅 Random nonce generated by node 𝑅

𝑟 Random number generated by 𝑆

𝑝𝑘𝑡 [𝑖] 𝑖𝑡ℎ element of a packet 𝑝𝑘𝑡

𝑝𝑟𝑒 (𝑅) Previous router (in upstream direction)

𝑛𝑒𝑥𝑡 (𝑅) Next router (in downstream direction)

𝑟𝑎𝑛𝑑 (𝑎, 𝑏) Generates random number between 𝑎 and 𝑏

10

Algorithm 5 TA packet generation at 𝐸

1: 𝑝𝑎𝑟𝑚1 : parameter resolved to 𝑂𝑃𝑢𝐾𝑖
𝑆
| |𝑟

2: procedure GenerateTA (𝑖𝑛1, 𝑇𝑃𝑢𝐾𝑅)

3: if 𝑝𝑎𝑟𝑚1 [1] ≠ 𝑂𝑃𝑢𝐾𝑖𝑆 then
4: discard the 𝑝𝑘𝑡

5: else
6: generate and store 𝑛𝐸 and 𝐾𝑆−𝐸
7: 𝑒𝑛𝑐 ← 𝐸�̂�𝑇𝑃𝐾𝑖

𝑛𝑒𝑥𝑡 (𝐸)
(𝐸�̂�𝑂𝑃𝑢𝐾𝑖

𝑆
(𝑟 | |𝑛𝐸 | | 𝐾𝑆−𝐸))

8: return {𝑇𝐴| |𝑒𝑛𝑐}

due to TI packet broadcasting (line 4). Otherwise,𝑂𝑃𝑢𝐾𝑖
𝑆
and𝑇𝑃𝑢𝐾𝑖

𝑝𝑟𝑒 (𝑅) are stored in the TL table

(line 6). Next, 𝑅 will try to decrypt the message and if it is successful, it should recognize itself as

the intended endpoint and run Algorithm 5 (line 8). If not, 𝑅 will replace 𝑇𝑃𝑢𝐾𝑖
𝑝𝑟𝑒 (𝑅) with its own

temporary key 𝑇𝑃𝑢𝐾𝑖
𝑅
and forward the TI packet to the next hop (𝑛𝑒𝑥𝑡 (𝑅))(line 10 and 11). For

example, in figure 6, after receiving a TI packet from 𝑅2, 𝑅3 will generate and forward the following

TI packet to 𝑅4:
{𝑇 𝐼 | |𝑂𝑃𝑢𝐾𝑖𝑆 | |𝐸�̂�𝑃𝑢𝐾𝐸

(𝑂𝑃𝑢𝐾𝑖𝑆 | |𝑟) | |𝑇𝑃𝑢𝐾
𝑖
𝑅3
} (2)

4.1.2 Tunnel Acceptance. Upon receiving the TI packet, 𝐸 runs Algorithm 4 first and then calls

Algorithm 5 as the endpoint of the tunnel. Algorithm 5 shows the outline of TA packet generation

at any endpoint router (𝐸). First, 𝐸 validates the integrity of the packet by comparing decrypted

𝑂𝑃𝑢𝐾𝑖
𝑆
value and plaintext 𝑂𝑃𝑢𝐾𝑖

𝑆
value (line 3). If the packet is validated for integrity, Algorithm

5 will execute the following steps. First, it will generate random nonce 𝑛𝐸 which will be used as

VCI. Next, it will generate a symmetric key 𝐾𝑆−𝐸 to use between 𝑆 and 𝐸. Then it will log both 𝑛𝐸
and 𝐾𝑆−𝐸 in the TL table and 𝑛𝐸 in the routing table as indexed VCI (line 6). Next, it will perform

encryption of the concatenation of 𝑛𝐸 , 𝐾𝑆−𝐸 and 𝑟 using the key 𝑂𝑃𝑢𝐾𝑖
𝑆
which will allow only 𝑆 to

decrypt the content (line 7). Finally, the resultant encryption is encrypted again by the𝑇𝑃𝑢𝐾𝑛𝑒𝑥𝑡 (𝐸)
(line 7). In the figure 6, 𝐸𝑖

𝑆
will generate the following TA packet:

{𝑇𝐴| |𝐸�̂�𝑇𝑃𝑢𝐾𝑖
𝑅
3

(𝐸�̂�𝑂𝑃𝑢𝐾𝑖
𝑆
(𝑟 | |𝑛𝐸 | |𝐾𝑆−𝐸))} (3)

When a router 𝑅 receives a TA packet, it will execute Algorithm 6. If the router is the source of

the𝑂𝑇 𝑖 , it will execute Algorithm 7 (line 4). Otherwise, it will go through the following steps. First,

it decrypts the packet using the temporary private key (𝑇𝑃𝑟𝐾𝑖
𝑅
) (line 6) and generates a random

nonce and symmetric key (𝑛𝑅 , 𝐾𝑆−𝑅). This generated 𝑛𝑅 and 𝐾𝑆−𝑅 are stored in 𝑅’s TL table (line

Algorithm 6 TA packet handling at R

1: 𝑝𝑘𝑡 : A TA packet

2: procedure HandleTA (𝑝𝑘𝑡)

3: if 𝑅 is 𝑆 of 𝑂𝑇 𝑖 then
4: GenerateTC (𝑝𝑘𝑡)

5: else
6: 𝑑𝑐𝑡 ← 𝐷𝑒𝑇𝑃𝑟𝐾𝑖

𝑅
(𝑝𝑘𝑡 [2])

7: generate and store 𝑛𝑅 and 𝐾𝑆−𝑅
8: 𝑒𝑛𝑐 ← 𝐸�̂�𝑂𝑃𝑢𝐾𝑖

𝑆
(𝑑𝑐𝑡 | |𝑛𝑅 | |𝐾𝑆−𝑅)

9: 𝑒𝑛𝑐 ← 𝐸�̂�𝑇𝑃𝑢𝐾𝑖
𝑛𝑒𝑥𝑡 (𝑅)

(𝑒𝑛𝑐)
10: return {𝑇𝐴| |𝑒𝑛𝑐}

11

Algorithm 7 TC packet generation at S

1: 𝑝𝑘𝑡 :A TA packet

2: procedure GenerateTC (𝑝𝑘𝑡)

3: 𝑑𝑒𝑐 ← 𝐷𝑒𝑇𝑃𝑟𝐾𝑖
𝑆
(𝑝𝑘𝑡 [2])

4: for no of hops in OT do
5: 𝑑𝑒𝑐 ← 𝐷𝑒𝑂𝑃𝑟𝐾𝑖

𝑆
(𝑑𝑒𝑐)

6: 𝑒𝑛𝑐 ← 𝑟

7: for R = E to next(S) do
8: 𝑒𝑛𝑐 ← 𝑛(𝑅) | |𝐸�̂�𝐾𝑆−𝑅 (𝑒𝑛𝑐)
9: return {𝑇𝐶 | |𝑒𝑛𝑐}

7). The nonce and symmetric key pair is concatenated to the decrypted packet (𝑑𝑐𝑡) (line 7 and 8),

which will be encrypted using source public key (𝑂𝑃𝑢𝐾𝑖
𝑆
) to add another layer of security (line

8). Finally, 𝑅 will encrypt the content with the public key of the next hop 𝑛𝑒𝑥𝑡 (𝑅) (line 9). In the

example, 𝑅2 forwards the following TA packet to 𝑅1:

{𝑇𝐴| |𝐸�̂�𝑇𝑃𝑢𝐾𝑖
𝑅
2

(𝐸�̂�𝑂𝑃𝑢𝐾𝑖
𝑆
(𝐸�̂�𝑂𝑃𝑢𝐾𝑖

𝑆
(𝐸�̂�𝑂𝑃𝑢𝐾𝑖

𝑆
(𝑟 | |𝑛𝐸 | |𝐾𝑆−𝐸) | |𝑛𝑅3 | |𝐾𝑆−𝑅3) | |𝑛𝑅2 | |𝐾𝑆−𝑅2))} (4)

4.1.3 Tunnel Confirmation. Algorithm 7 depicts the TC packet generation at the source router 𝑆 .

𝑇𝑃𝑟𝐾𝑖
𝑆
is used to decrypt the outermost encryption (line 3), then each layer of the inner encryption

is peeled away using the 𝑂𝑃𝑟𝐾𝑖
𝑆
(loop from line 4 to 5). 𝑆 extracts information of all the VCIs and

symmetric keys. 𝑟 is used to check the authenticity of the packet received (make sure the TA is

a packet from the actual endpoint 𝐸). Finally, starting from 𝐸 to 𝑝𝑟𝑒 (𝑆) (reverse order of routers
in tunnel excluding 𝑆), 𝑟 is encrypted by the respective symmetric key and concatenated with

the respective nonce iteratively (loop from line 7 to 8). In the figure 6, 𝑆 generates the TC packet

structured as:

{𝑇𝐶 | |𝑛𝑅2 | |𝐸�̂�𝐾𝑆−𝑅
2

(𝑛𝑅3 | |𝐸�̂�𝐾𝑆−𝑅
3

(𝑛𝐸 | |𝐸�̂�𝐾𝑆−𝐸 (𝑟)))} (5)

𝑇𝐶 denotes the packet type. The packet is layered and encrypted using the symmetric keys

distributed in the previous stage. Here, 𝑛∗ represents the outgoing VCI at each router from 𝑆 to

𝑝𝑟𝑒𝑣 (𝐸). For example, 𝑛𝑅2 defines outgoing VCI of 𝑆 and 𝑛𝑅3 defines outgoing VCI for 𝑅2. After the

TC packet is received by each node, it decrypts the outermost layer and stores the corresponding

outgoing VCI value in the routing table indexed as incoming VCI. For example, when 𝑅2 receives

the packet it will decrypt the content using key 𝐾𝑆−𝑅2 and store the outgoing VCI as 𝑛𝑅3 in the

routing table indexed as 𝑛𝑅2 . Similarly, all the routers in between 𝑆 and 𝐸 will update the routing

table entry corresponding to the tunnel. In the example, 𝑅2 will send 𝑇𝐶 packet to 𝑅3 structured as

follows:

{𝑇𝐶 | |𝑛𝑅3 | |𝐸�̂�𝐾𝑆−𝑅
3

(𝑛𝐸 | |𝐸�̂�𝐾𝑆−𝐸 (𝑟))} (6)

Finally, 𝑅3 will send the TC packet to 𝐸 (𝑅4) structured as:

{𝑇𝐶 | | (𝑛𝐸 | |𝐸�̂�𝐾𝑆−𝐸 (𝑟)} (7)

The packet transfers during the tunnel creation is inherently secure. This is because the tunnel

creation phase ensures the transfer of only publicly available information as plaintext, while all

sensitive data (including VCIs) are encrypted using symmetric or asymmetric methods. The only

way an attacker can break anonymity of a packet is by knowing all the VCIs of the tunnel. This is

not possible since the asymmetric and symmetric cryptography are computationally secure.

12

4.2 Data Transfer
A previously created outbound tunnel (𝑂𝑇 𝑖

𝑆
) is used to transfer messages anonymously from 𝐼𝑃𝑆 to

𝐼𝑃𝐷 . Before transferring the packet, the source will encrypt the actual destination header using the

key 𝐾𝑆−𝐸 which is the symmetric key shared between the source and endpoint during the tunnel

creation. When we consider the data transfer through tunnel 𝑂𝑇 𝑖
𝑆
, a Data Transfer (DT) packet is

injected into the tunnel by S structured as:

{𝐷𝑇 | |𝑛𝑅2 | |𝐸�̂�𝐾𝑆−𝐸 (𝐷) | |𝐸�̂�𝐷 (𝑀)} (8)

Here, DT is the packet type identifier, 𝑛𝑅2 is the outgoing VCI, and 𝐸�̂�𝐷 (𝑀) is the encrypted
payload of the packet. At the router, 𝑅2, the outgoing VCI is identified through a simple routing

table lookup on the incoming VCI of the packet. Then 𝑅2 replaces the outgoing VCI of the packet

(𝑛𝑅2) with the next outgoing VCI, which is 𝑛𝑅3 , and routes the packet to the next hop. Similarly, 𝑅3
replaces the outgoing VCI of the packet to 𝑛𝐸 . Note that any intermediate node including 𝐸 does

not know both source and destination of a single packet which ensures anonymity.

4.3 Traffic Obfuscation
The main intuition behind the traffic obfuscation is to add noise to inbound and outbound flows

(𝐼𝐹𝐷𝑜
𝑆
, 𝐼𝐹𝐷𝑖

𝐷
), so it will be harder for ML-model to do accurate flow correlation. Section 4.3.1 and

4.3.2 introduce two traffic obfuscation techniques.

4.3.1 Obfuscation with Chaffs. We introduce a chaffing scheme as our first obfuscation technique.

Chaff is a dummy flit with no usable data. Specifically, we insert chaff/chaffs in outbound tunnel

traffic at the network interface of the source and filter out chaffs at the endpoint of the tunnel. The

outbound flow (𝐼𝐹𝐷𝑜
𝑆
) will have inter-flit delay data relevant to both chaffs and legitimate flits but

inbound flow (𝐼𝐹𝐷𝑖
𝐷
) will have inter-flit delay data relevant only to legitimate flits. Algorithm 8

describes the chaffing process at the NI of the source. Wakeup procedure (Line 1 - 4) is the periodical

function called by every NI in every clock cycle. We introduce a procedure named AddChaff (Line

5 - 23) to obfuscate traffic through chaffing.

We insert chaffs in two specific scenarios to ensure the obfuscation scheme works with the

majority of traffic patterns: (i) first scenario: insert chaffs in the long gap between flits (line 6 - 13),

and (ii) second scenario: insert chaff flit in middle of closely packed flits (line 14 - 21). When the

outbound link of source NI is idle for more than 𝑇𝑐 cycles (Line 6, the first scenario is considered.

The intuition behind this method is to hinder the possibility of ML-model using long inter-flit

delays of inbound and outbound flows in sparse traffic scenarios. In order to control overhead, we

use a percentage threshold (𝑃𝑐) and ensure only 𝑃𝑐 of idle gaps between packets get obfuscated

(line 8 - 9). If chosen to be obfuscated, a dummy packet of is created and is enqueued to the output

queue of the NI (line 10 - 13). At the endpoint of the tunnel, the dummy flits are filtered out

and discarded. The chaffId header is used to identify chaffed flit or packet. In the first scenario,

a hash of the NI identification number is used as chaffed id. Unlike other headers, this header

is encrypted by 𝐾𝑆−𝐸 which is the symmetric key shared between the source (𝑆) and endpoint

(𝐸) during the tunnel creation (line 12). Therefore, only endpoint can filter chaffed packets by

decrypting 𝐸�̂�𝐾𝑆−𝐸 (hash(𝑁𝐼𝐼𝐷).
When the input queue of source NI received a packet (line 14), the first scenario is considered

(line 15 - 21). The intuition behind this scenario is to hinder the possibility of ML-model using burst

of small inter flits delays of inbound and outbound flows in heavy traffic. The example shown in

Figure 6 demonstrates the chaffing in second scenario and removing that chaff. Here, 𝑃𝑐 limits the

number of packets being obfuscated (line 16 - 17). If chosen to be obfuscated, chaff is inserted in

13

Algorithm 8 Add Chaff at source NI

1: procedureWakeup ()

2:

3: AddChaff(𝑐 𝑓 𝑙𝑎𝑔)
4:

5: procedure AddChaff(𝑐 𝑓 𝑙𝑎𝑔)
6: if 𝑐 𝑓 𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒 and getIdleCy(𝑙𝑖𝑛𝑘𝑜) > 𝑇𝑐 then
7: 𝑐 𝑓 𝑙𝑎𝑔 = True
8: 𝑟𝑎𝑛𝑑𝑁𝑜 ← 𝑟𝑎𝑛𝑑 (0, 99)
9: if 𝑟𝑎𝑛𝑑𝑁𝑜 ≤ 𝑃𝑐 then
10: 𝑛𝐹𝑙𝑖𝑡𝑠 ← 𝑟𝑎𝑛𝑑 (4, 5)
11: 𝑑𝑃𝑘𝑡 ← 𝑛𝑒𝑤 𝑃𝑎𝑐𝑘𝑒𝑡 (𝑛𝐹𝑙𝑖𝑡𝑠)
12: 𝑑𝑃𝑘𝑡 .𝑐ℎ𝐼𝑑 ← 𝐸�̂�𝐾𝑆−𝐸 (ℎ𝑎𝑠ℎ(𝑁𝐼𝐼𝐷))
13: 𝑜𝑢𝑡𝑝𝑢𝑡𝑄𝑢𝑒𝑢𝑒.𝑒𝑛𝑞𝑢𝑒 (𝑑𝑢𝑚𝑚𝑦𝑃𝑘𝑡)
14: if 𝑖𝑛𝑝𝑢𝑡𝑄𝑢𝑒𝑢𝑒.𝑟𝑒𝑐𝑖𝑣𝑒𝑑𝑃𝑎𝑐𝑘𝑒𝑡 () = 𝑇𝑟𝑢𝑒 then
15: 𝑐 𝑓 𝑙𝑎𝑔 = True
16: 𝑟𝑎𝑛𝑑𝑁𝑜 ← 𝑟𝑎𝑛𝑑 (0, 99)
17: if 𝑟𝑎𝑛𝑑𝑁𝑜 ≤ 𝑃𝑐 then
18: 𝑐ℎ𝐼𝑑 ← 𝑟𝑎𝑛𝑑 (0, 𝑙𝑒𝑛(𝑖𝑛𝑝𝑢𝑡𝑃𝑘𝑡))
19: 𝑑𝐹𝑙𝑖𝑡 = 𝑛𝑒𝑤 𝑓 𝑙𝑖𝑡 ()
20: 𝑒𝑛𝑐𝐶ℎ𝐼𝑑 ← 𝐸�̂�𝐾𝑆−𝐸 (ℎ𝑎𝑠ℎ(𝑁𝐼𝐼𝐷) |𝑐ℎ𝐼𝑑)
21: 𝑝𝑘𝑡 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑐ℎ𝐼𝑑, 𝑒𝑛𝑐𝐶ℎ𝐼𝑑, 𝑑𝐹𝑙𝑖𝑡)
22: if 𝑜𝑢𝑡𝑝𝑢𝑡𝑄𝑢𝑒𝑢𝑒.𝑠𝑒𝑛𝑑𝑃𝑎𝑐𝑘𝑒𝑡 () = 𝑇𝑟𝑢𝑒 then
23: 𝑐 𝑓 𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒

the middle of legitimate packets at a random position (Line 18 - 21). 𝐾𝑆−𝐸 is used to encrypt chaffId,
represents the position of chaff flit, which is used by the endpoint to filter the chaffed flit.

A random number generator is already in the NI for cryptographic process. Therefore, the same

generator is used for random number generation in line 8, 10 and 16. If the cflag (line 3, 6, 7, 15

and 23) variable is true, it indicates the current gap between flits was already checked for insertion

of packet. It is important to note that, (1) the dummy flits are added only when outbound link is

idle, therefore, it has less impact on the program running on source IP, and (2) the dummy flits will

only impact at most 3 internal links associated with the tunnel, therefore, it has less impact on the

other traffic in the network. The scenario two inserts relatively less number of dummy flits and

they will only impact at most 3 internal links. Experimental results in Section 5.8 validate that our

obfuscation technique only results in negligible overhead.

4.3.2 Obfuscation with Random Delay. The second obfuscation technique adds random delays

to selected flits and tries to tamper with the timing aspect of the traffic flow. Flits belonging to

only 𝑃𝑑 percentage of packets are subject to added delays. The tunnel endpoint is responsible for

adding delays. Traveling through the rest of the hops the flit propagates the delay to the destination

tampering with timing features of the inbound flow (𝐼𝐹𝐷𝑖
𝐷
). Figure 6 demonstrates the effect of

added delay in traffic flows. It is clear that chaffing and random delays obfuscate the actual traffic

between source and destination. Both of these techniques can be used simultaneously or in a

standalone manner depending on the requirement. Experimental results (Table 11 and 12) show

that both techniques effectively defend against ML-based flow correlation attacks.

14

Table 2. System and interconnect configuration

Parameter Details
Processor configurations X86, 2GHz

L1 I & D cache 64KB, 64KB (64B block size)

Coherency Protocol MI

Topology 8×8 Mesh

Chaffing rate (𝑃𝑐) and delay addition rate (𝑃𝑑) 50%

5 Experimental Evaluation
We model our proposed ML-based attack and countermeasures on a cycle-accurate Gem5 [6], a

multi-core simulator, with Garnet 2.0 [1] for the interconnection network modeling. We use a

64-core system and the detailed system configuration is given in Table 2. Splash-2 [34] benchmark

applications as well as multiple synthetic traffic patterns were used in evaluation. We used Pytorch

library to implement the proposed DNN architecture. First, we show the results of the flow corre-

lation attack in existing anonymous routing (ARNoC [11] and SAR [31, 35]). Later, we show the

robustness of the proposed anonymous routing protocol to mitigate the attack. In order to evaluate

the area and energy overhead of our approach against state-of-the-art anonymous routing, we

implemented ARNoC and our approach in Verilog and synthesized both designs using Synopsys

Design Compiler with 32nm Synopsys standard cell library.

5.1 Data Collection
This section demonstrates the data collection on Gem5 for the training of DNN. Although the input

to DNN is in the same structure, the inherent differences in synthetic traffic and real benchmarks

led us to two ways of collecting flow pairs for training.

5.1.1 Synthetic Traffic. We performed data collection using Uniform-Random synthetic traffic with

the following modification. All IPs send packets to randomly selected IPs except two (𝐼𝑃𝑆 and 𝐼𝑃𝐷).

These two IPs are the correlated pair communicating in a session. From all the packets injected

from the source IP (𝐼𝑃𝑆), only 𝑝 percent of packets are sent to the destination IP (𝐼𝑃𝐷), and the

remaining packets ((100 − 𝑝)%) are sent to other nodes. For example, 𝑝 = 80% means 80% of the

total outbound packets from 𝐼𝑃𝑆 will have 𝐼𝑃𝐷 as the destination, while the other 20% can have any

other IP except IP 𝐼𝑃𝑆 and 𝐼𝑃𝐷 as the destination. Note that this 20% can be viewed as noise from the

perspective of communication between 𝐼𝑃𝑆 and 𝐼𝑃𝐷 . Here, traffic between correlated pair models

concentrated point-to-point traffic between two nodes (e.g., processing core and memory controller).

The random point-to-point traffic models other NoC traffic in a heterogeneous SoC other than cache

coherence traffic such as monitoring and management traffic, inter-process communication and

message passing between heterogeneous IP cores. This randomized traffic between uncorrelated

pairs introduces uncontrolled noise to correlated traffic flow. Therefore, random point-to-point

synthetic traffic models worst-case-scenario for flow correlation attack.

To make the dataset generic, for a single 𝑝 value, we conduct experiments covering all possible

mapping of correlated pairs to NoC nodes, which are 8064 mappings (64×63×2). We consider four

traffic distributions with 𝑝 value of 95%, 90%, 85%, and 80%. In other words, we consider four

different noise levels (5%, 10%, 15% and 20%) for our data collection simulations. The full dataset for

a certain 𝑝 value contains 24192 flow pairs ({𝐼𝐹𝐷𝑜
𝑆
, 𝐼𝐹𝐷𝑖

𝐷
}) which consists of 8064 correlated traffic

flow pairs and 16128 uncorrelated traffic flow pairs. Note that for each correlated flow pair, we

selected two arbitrary uncorrelated flow pairs. To evaluate our countermeasures, when collecting

obfuscated traffic, we kept both 𝑃𝑐 and 𝑃𝑑 at 50% to ensure uniform distribution of obfuscation.

When obfuscating traffic using added delay, we vary the delay between 1 − 5 cycles because a

15

higher delay may lead to unacceptable performance overhead. We collected three categories of data

sets: one with chaffing only, one with random delay only, and one with applying both chaffing and

delaying simultaneously.

5.1.2 Real Traffic. Here, we collect response cache coherence traffic from memory controller to

requester. This is done via filtering out using virtual network (vnet) used for memory response

traffic to requester which is vnet 4. We consider five Splash-2 benchmark application pairs running

on two processors (𝑃1 and 𝑃2) where two memory controllers (𝑀𝐶1 and𝑀𝐶2) are serving memory

requests. The benchmark pairs used are {fft, fmm}, {fmm, lu}, {lu, barnes}, {barnes, radix}, {radix, fft},
where the first benchmark runs on 𝑃1 and the second runs on 𝑃2. The selected benchmarks have

the diversity to make the dataset generic (for example, fft and radix are significantly different [5]).

The address space of the benchmark running in 𝑃1 is mapped only to𝑀𝐶1. Therefore, 𝑃1 only talks

with the𝑀𝐶1, and they are the correlated pair. The address space of the benchmark running in 𝑃2
is assigned to both 𝑀𝐶1 and 𝑀𝐶2 in a way that, the ratio between memory request received by

𝑀𝐶1 from 𝑃1 to memory request received by𝑀𝐶1 from 𝑃2 to be 𝑝 : (100 − 𝑝). This percentage 𝑝 is

similar to that of synthetic traffic and (100 − 𝑝)% is the noise. For example, when 𝑝 = 85%, 𝑀𝐶1

serves 15% packets to 𝑃2 when it severs 85% packets to 𝑃1.

Similar to synthetic traffic, we considered four values for 𝑝 which are 95%, 90%, 85%, and 80%.

For a single 𝑝 value and a single benchmark pair, we conducted experiments covering all possible

mapping of correlated pairs to NoC nodes, which are 4032 mappings (64×63). The 𝑀𝐶2 and 𝑃2
were randomly chosen in all these mappings. The full dataset for a certain 𝑝 value and benchmark

pair contains 16128 flow pairs (4032 correlated pairs and 12096 uncorrelated pairs). To evaluate

our countermeasures, we collect obfuscated data similar to synthetic traffic. We automated data

collection using the gem5 simulator with a shell script that simulates different benchmarks and

application mappings. This process produces traffic traces from gem5 as textual logs. We then

developed a Python script to pre-process these traces into 2D numpy arrays of inter-flit delays,

serving as input for the DNN.

5.2 Hyperparameter Tuning
Hyperparameters are parameters set before training to improvemodel performance, such as learning

rate and filter size. We rigorously tested various hyperparameter combinations to achieve superior

attack success rates. The training process consists of 10-20 epochs with a consistent learning rate

of 0.0001. We performed batch normalization and adjusted the batch size to 10 for the training set.

As for convolution layers (C1 and C2 in Figure 4), the channel size is selected as 𝑘1 = 1000 and

𝑘2 = 2000, with𝑤1 = 5 and𝑤2 = 30, for C1 and C2, respectively. As for fully connected layers, sizes

are selected as 3000, 800, and 100 for FC1, FC2, and FC3, respectively.

There are a lot of challenges in tuning since the finalized parameters reflect a trade-off between

cost and effectiveness. First, the learning rate of the raining was reduced from 0.001 to 0.0001

which increases the training time but successfully avoids the Local Minima problem. Our decision

to limit training to 10-20 epochs was primarily based on initial experiments that employed early

stopping based on validation error. This approach consistently showed that performance stabilized

within this range. Additionally, restricting the number of epochs to 10-20 served as a regularization

technique to further mitigate the risk of overfitting. Batch size is also decreased from 50 to 10. In this

way, fewer samples are provided for one iteration of training, but it improves the stability of training

progress. Additionally, the selection of parameters for convolution layers properly addressed their

responsibilities. As discussed in Section 3.3, C1 focuses on extracting rough relationships while C2

on advancing features. Therefore, C2 possesses two times of channels of C1, and a wider stride

(30:5) to improve efficiency.

16

Table 3. Performance of ML-based attack on existing anonymous routing (ARNoC [10]) for different traffic
distributions.

𝑝 Accuracy Recall Precision F1 Score
95 97.16% 91.98% 99.47% 95.58%

90 97.04% 93.35% 97.50% 95.38%

85 94.64% 91.32% 92.30% 91.81%

80 91.70% 80.02% 94.10% 86.60%

5.3 Training and Testing
In our study, we randomly divided a dataset of flow pairs for a specific configuration into a 2:1 ratio

for the training and testing sets. Flow pairs were labeled as ‘1’ for correlated and ‘0’ for uncorrelated.

We assessed our experiments using following four evaluation metrics.

• Accuracy: 𝑡𝑝+𝑡𝑛
𝑡𝑝+𝑡𝑛+𝑓 𝑝+𝑓 𝑛

• Recall: 𝑡𝑝

𝑡𝑝+𝑓 𝑛

• Precision: 𝑡𝑝

𝑡𝑝+𝑓 𝑝
• F1 Score: 2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

Here, 𝑡𝑝 , 𝑡𝑛, 𝑓 𝑝 and 𝑓 𝑛 represent true positive, true negative, false positive, and false negative,

respectively. Intuitively, recall is a measure of a classifier’s exactness, while precision is a measure

of a classifier’s completeness, and F1 score is the harmonic mean of recall and precision. The reason

for utilizing these metrics comes from the limitation of accuracy. For imbalanced test cases (e.g.,

> 90% positive labels), a naive ML model which gives always-true output can reach > 90% accuracy.

The goal of the attacker is to identify correlating node pairs and launch complex attacks. Here,

𝑓 𝑛 is when an actual correlating pair is tagged as non-correlating by the DNN. 𝑓 𝑝 is when an

actual non-correlating pair is tagged as correlating by the DNN. From an attacker’s perspective,

the negative impact of wasting time on launching an unsuccessful attack on 𝑓 𝑝 is relatively low

compared to an attacker missing a chance to launch an attack due to a 𝑓 𝑛. Therefore, recall is the

most critical metric compared to others when evaluating this flow correlation attack.

5.4 ML-based Attack on Synthetic Traffic
We evaluated the proposed attack for all four traffic distributions. The traffic injection rate was

fixed to 0.01, and the IFD array size to 250. Table 3 summarizes the results of the attack on ARNoC.

All the considered traffic distributions show good metric numbers. We can see a minor reduction

in performance with a reducing value of 𝑝 . This is expected because of the increase in the number

of uncorrelated packets in correlated flow pairs, making the correlation hard to detect. Even for

the lowest traffic distribution of 80% between two correlating pairs, the attacking DNN is able to

identify correlated and uncorrelated flow pairs successfully with good metric values.

Table 4 summarizes the attack results on SAR, showing trends similar to those in the attack

on ARNoC (Table 3). The main reason for this similarity is that our attack focuses on correlating

inbound and outbound flows rather than focusing on breaking obfuscation techniques to hide

communicating parties. Even though SAR uses packet-wise path diversity for anonymous routing,

the proposed flow correlation attack performswell due to two reasons: (1) packet-level path diversity

will not affect inter-flit delay inside the packet which is the fundamental feature of the proposed

ML-based attack, and (2) since there are only three path scenarios (XY, YX, and XYX) with a

subtle variation, the variation of delay between flits of two adjacent packets is negligible to affect

flow correlation adversely. These results confirm that our attack is realistic and can be applied on

state-of-the-art anonymous routing (both ARNoC and SAR) to break anonymity across different

traffic characteristics with varying noise. Due to the similarity of the attack performance in both

anonymous routing protocols, we only consider ARNoC for the subsequent experiments.

17

Table 4. Performance of ML-based attack on existing anonymous routing (SAR [31, 35]) for different traffic
distributions.

𝑝 Accuracy Recall Precision F1 Score
95 96.91% 91.61% 99.07% 95.19%

90 96.67% 92.78% 96.90% 94.80%

85 94.59% 91.96% 91.53% 91.74%

80 92.30% 81.21% 94.97% 87.55%

Table 5. Performance of ML-based attack on existing anonymous routing for different traffic injection rates.

TIR Accuracy Recall Precision F1 Score
0.001 95.32% 92.29% 93.51% 92.89%

0.005 94.72% 90.14% 93.98% 92.02%

0.01 94.64% 91.32% 92.30% 91.81%

0.05 93.86% 88.56% 92.67% 90.56%

5.5 Stability of ML-based Attack
In this section, we assess the stability of the proposed ML-based attack by varying configurable

parameters. For experiments in this section, we use synthetic traffic with the value of 𝑝 as 85% and

the rest of the parameters as discussed in the experimental setup except for the varying parameter.

5.5.1 Varying traffic injection rates (TIR). We collected traffic data for four traffic injection rates:

0.001, 0.005, 0.01 and 0.05, and conducted the attack. Table 5 provides detailed results on metrics

over selected values. We can see a small reduction in overall metrics including recall, with the

increase in injection rate. This is because, higher injection rates will create more congestion and

buffering delays on NoC traffic. The indirect noise from congestion and buffering delays makes it

slightly hard for the ML model to do flow correlation. Overall, our proposed ML model performs

well in different injection rates since all the metrics show good performance.

5.5.2 Varying IFD Array Size. We collected traffic data by varying the size of IFD array size (𝑙) in

the range of 50 to 550 and conducted the attack on existing anonymous routing. Table 6 shows

detailed results on metrics over selected values. For a lower number of flits, the relative values of

the recall and other metrics are low. However, with the increasing number of flits, the accuracy

also improves until the length is 250. This is due to the increase in the length of the IFD array the

ML model has more features for the flow correlation. After the value of 250, the accuracy saturates

at around 94.5%. In subsequent experiments, we kept 𝑙 to 250 because ML-based attack performs

relatively well with less monitoring time.

Table 6. Performance metrics of ML-based attack on existing anonymous routing for varying number of flits.

IFD Array size(l) Accuracy Recall Precision F1 Score
50 83.53% 96.45% 67.96% 79.74%

100 90.92% 96.17% 80.28% 87.51%

150 90.93% 74.10% 98.32% 84.51%

250 94.64% 91.32% 92.30% 91.81%

350 94.71% 86.21% 97.39% 91.46%

450 94.58% 93.21% 90.58% 91.87%

550 94.66% 88.97% 94.30% 91.56%

5.5.3 Varying Network Size. To evaluate the stability of the ML model on varying network sizes,

we analyzed the model on 16 core system with 4×4, 64 core system with 8×8, and 256 core system

18

Table 7. Performance of ML-based attack on existing anonymous routing for different mesh sizes.

Mesh Size Accuracy Recall Precision F1 Score
4×4 94.76% 91.86% 92.63% 92.24%

8×8 94.64% 91.32% 92.30% 91.81%

16×16 92.72% 80.28% 96.98% 87.84%

Table 8. Performance of ML-based attack on ARNoC [10] using MI protocol for different noise levels in real
benchmarks.

𝑝 Accuracy Recall Precision F1 Score
95 99.43% 99.79% 98.01% 98.89%

90 99.11% 99.84% 96.75% 98.27%

85 98.76% 98.16% 97.01% 97.58%

80 96.08% 98.79% 87.15% 92.61%

with 16×16 mesh topology. Table 7 shows the performance results of the ML model for different

network sizes. Attack on 4×4 mesh shows slightly good metric values compared to 8×8. The attack
on a 16×16 network shows relatively low accuracy and recall, due to the network’s larger size,

which alters the temporal characteristics of the traffic. With four times as many nodes and roughly

double the average hops (10.67 compared to 5.33 in the 8x8 mesh), the 16x16 mesh experiences

more congestion. These conditions introduce additional noise, such as queuing delays, which affect

the communication patterns observable through inter-flit delays. Despite these challenges, the

achieved recall of 80.28% is sufficiently high for a successful attack. Considering good accuracy and

other metrics, our ML-based attack shows stability across different mesh sizes.

5.6 ML-based Attack on Real Benchmarks
We trained and tested the model using two techniques. In the first technique, we merge datasets

of a single 𝑝 value across all 5 benchmark combinations outlined in Section 5.1 to create the total

dataset. Therefore, the total dataset has 80640 flow pairs before the 2:1 test to train split. Table 8

summarizes the results for the first technique across all 𝑝 values. Good metric numbers across all

traffic distributions show the generality of the model across different benchmarks. In other words,

our attack works well across multiple benchmarks simultaneously. Even 20% noise (𝑝 = 80) shows

recall value just remains robust around 98%. While lower precision may lead to resources being

spent on false positives, this issue is relatively minor compared to the potential harm posed by high

recall rates. From an adversarial perspective, recall is the critical metric, as discussed in Section 5.3.

To evaluate our attack success across cache-coherence protocols, we trained and test model

using MOESI-hammer protocol using first technique. To enable a fair comparison with previous MI

protocol experiments, we kept the MOESI protocol private cache size for each node the same as

that of the MI protocol. Specifically, we kept L1 instruction and data cache size 32KB and L2 cache

size 64KB per node. Table 9 summarizes the attack results on systems with MOESI-hammer cache

coherence protocol. Since we only focus on first 𝑙 = 450 inter-flit delays, the less cache coherence

traffic of MOESI-hammer protocol does not affect the training of the ML model. Comparable results

across all traffic distributions similar to MI protocol demonstrate that our attack is successful across

multiple cache coherence protocols. Therefore, for simplicity, we only consider MI cache coherence

protocol for experiments involving real traffic in the remainder of this paper.

When we compare the performance of attack on real traffic against synthetic traffic (Table 3),

attack on real traffic shows better performance. This is primarily for two reasons. (a) The synthetic

traffic generation is totally random. More precisely, the interval between two packets is random

19

Table 9. Performance of ML-based attack on ARNoC [10] using MOESI-hammer protocol across different
traffic distributions with real benchmarks

𝑝 Accuracy Recall Precision F1 Score
95 99.46% 99.85% 98.08% 98.96%

90 99.07% 99.81% 97.61% 98.18%

85 98.81% 98.45% 96.94% 97.69%

80 96.45% 98.81% 88.48% 93.36%

Table 10. Performance of ML-based attack on ARNoC [10] using when p=85 across real benchmark combina-
tions. benchmark Accuracy Recall Precision F1 Score

{fft, fmm} 98.29% 99.11% 94.42% 96.71%

{fmm, lu} 99.32% 97.63% 99.70% 98.65%

{lu, barnes} 97.84% 91.60% 99.76% 95.51%

{barnes, radix} 96.14% 84.59% 99.73% 91.54%

{radix, fft} 96.62% 97.05% 90.66% 93.75%

Table 11. Performance metrics of ML-based attack on proposed lightweight anonymous routing for different
traffic distributions when trained with non-obfuscated traffic and tested with obfuscated traffic

Chaffing Delay Chaffing + Delay
𝑝 Acc. Rec. Prec. F1. Acc. Rec. Prec. F1. Acc. Rec. Prec. F1.
95 66.55% 0.3% 33.33% 0.6% 81.32% 56.70% 81.67% 66.93% 63.36% 14.37% 37.18% 20.70%

90 66.59% 25.68% 49.78% 33.88% 71.73% 66.15% 56.48% 60.94% 56.47% 42.27% 40.45% 41.34%

85 61.2% 2.6% 12.4% 4.4% 72.57% 50.59% 60.61% 55.15% 66.33% 40.50% 49.39% 44.51%

80 72.76% 26% 77.16% 38.89% 73.41% 34.97% 70.37% 46.72% 60.34% 30.72% 39.75% 34.65%

and the next destination of a specific source is random. This level of randomness is not found in

real traffic making flow correlation in real traffic relatively easy. (b) In synthetic traffic all 64 nodes

talk with each other making higher buffering delays eventually making flow correlation harder.

However, buffering delays have a minor impact compared to randomness. The second technique

uses dataset of a single 𝑝 value and single benchmark pair. Table 10 summarizes the results for the

second technique when 𝑝 = 85 across five benchmark pairs. All benchmarks display strong metrics,

though accuracy and recall slightly decrease in the 3rd and 4th rows. Both benchmark pairs have

barnes benchmark, which has lowest bytes per instruction in all benchmarks [45]. This results in

sparse inter-flit array, eventually making it relatively harder to do flow correlation.

Misclassifications can have significant implications, and it is important to consider them from

the perspective of an attacker. Misclassifications can be divided into two types: false positives and

false negatives. False positives occur when uncorrelated traffic is incorrectly identified as correlated.

In this scenario, an adversary would wastefully allocate resources to act upon these false leads to

launch further attacks, ultimately yielding no actual threat. While pursuing false leads might seem

inefficient, adversaries usually have sufficient resources and can inflict significant damage when

they correctly identify correlated nodes. This potential for harm outweighs the minor setbacks

caused by occasional false positives. On the other hand, false negatives represent a critical error

from the attackers standpoint. This type of error occurs when actual correlated communicating

pair go undetected. Missing such opportunities can be detrimental to the adversary’s objectives,

particularly if the goal is to cause maximum disruption.

20

Table 12. Performance metrics of ML-based attack on proposed lightweight anonymous routing for different
traffic distributions when trained and tested with non-obfuscated traffic

Chaffing Delay Chaffing + Delay
𝑝 Acc. Rec. Prec. F1. Acc. Rec. Prec. F1. Acc. Rec. Prec. F1.
95 76.64% 33.60% 84.67% 48.11% 94.22% 87.31% 94.99% 90.99% 73.80% 25.49% 80.70% 38.75%

90 79.45% 43.71% 87.39% 58.28% 93.58% 93.42% 87.66% 90.45% 77.95% 46.9% 78.14% 58.69%

85 78.75% 38.93% 93.16% 54.92% 90.65% 86.83% 84.99% 85.90% 77.06% 48.85% 74.65% 59.05%

80 79.75% 74.41% 67.58% 70.83% 87.70% 80.32% 82.08% 81.19% 77.56% 74.41% 64.13% 68.89%

Table 13. Performance metrics of ML-based attack on proposed lightweight anonymous routing different for
noise levels on real benchmarks.

𝑝 Accuracy Recall Precision F1 Score
95 89.93% 76.67% 82.44% 79.45%

90 88.78% 77.08% 78.30% 77.69%

85 87.63% 62.04% 84.34% 71.49%

80 85.89% 76.85% 70.23% 73.39%

Table 14. Performance metrics of ML-based attack on proposed lightweight anonymous routing for real
benchmarks. benchmark Accuracy Recall Precision F1 Score

{fft, fmm} 87.64% 65.91% 80.24% 72.37%

{fmm, lu} 90.67% 83.03% 80.20% 81.59%

{lu, barnes} 84.98% 57.75% 76.19% 65.70%

{barnes, radix} 84.24% 40.35% 97.59% 57.10%

{radix, fft} 82.60% 37.67% 82.66% 51.79%

5.7 Robustness of the Proposed Countermeasure
We evaluate the robustness of our lightweight anonymous routing in two ways. First, we assess our

countermeasure (Section 4) against the ML-based attack (Section 3) on synthetic and real traffic.

Second, we examine the overall effectiveness of our attack in breaking anonymity.

We evaluate our countermeasure against ML-based attacks in three configurations for synthetic

traffic: (1) using chaffing, (2) using a delay, and (3) using both chaffing and delay to obfuscate

traffic. For each of the three configurations, we evaluate the ML-based attack on two scenarios: (1)

train with non-obfuscated traffic and test with obfuscated traffic (Table 11), and (2) train and test

with obfuscated traffic (Table 12). In all three configurations, the attack on the first scenario has

performed poorly (the proposed countermeasure defends very well). This is expected because the

attacking DNN has not seen any obfuscated data in the training phase. If we focus on the scenario

of using a delay to obfuscate traffic (Table 12), we can see a significant reduction in all the metrics.

Large drops in recall when using chaffing as the obfuscation technique validate that the proposed

countermeasure produces a significant negative impact on attackers’ end goals. Adding random

delay reduces accuracy and recall by about 3% compared to non-obfuscated traffic in all the traffic

distributions. Whereas, combining chaffing with delay reduces accuracy and recall by about 3% as

compared to chaffing alone. In other words, combining two obfuscation techniques did not seem

to have any synergistic effect. We recommend chaffing as a good obfuscation configuration since

adding delay has only a small advantage despite its overhead. Note that the poor performance

of added random delay as a countermeasure validates the fact that our proposed attack is robust

against inherent random network delays in the SoC.

When evaluating the performance of countermeasures using benchmark applications, we consider

only chaffing to obfuscate traffic. Furthermore, we only train and test with obfuscated traffic which

21

guarantees to give a strong evaluation of the countermeasure. As discussed in section 5.6 we evaluate

the countermeasure using two techniques, (1) merged datasets across benchmarks (Table 13) and

(2) datasets per benchmark when 𝑝 value is fixed (Table 14). When we focus on Table 13, we see an

overall reduction of metric values compared to the attack without countermeasure. Even though

the accuracy reduction is around 10%, the countermeasure has reduced recall value drastically. This

will negatively affect the attacker due to missing a chance to launch an attack due to higher 𝑓 𝑛.

When we compare the performance of the countermeasure on real traffic against synthetic traffic

(Table 12), the countermeasure on synthetic traffic has performed relatively better. This is due to

the same two reasons mentioned in section 5.6 briefly, the randomness of synthetic traffic and

increased buffer delay because every node communicates.

We evaluate the anonymity of proposed lightweight anonymous routing in three attacking

scenarios. The first scenario is when one of the intermediate routers in the outbound tunnel is
malicious. The malicious router only knows the identity of the preceding and succeeding router, so

the anonymity of the flits traveling through the tunnel is secured. The second scenario is when

the tunnel endpoint is malicious. The router will have the actual destination of the packet but not

the source information; therefore by having a single packet, the malicious router cannot break

the anonymity. This scenario is also considered secure in the traditional onion routing threat

model [17]. Complex attacks in malicious routers need a considerable number of packets/flits to be

collected. It is hard due to two following reasons: (1) Our proposed solution changes the outbound

tunnel of a particular source frequently. (2) Since the source and destination have two independent

outbound tunnels, it is infeasible to collect and map request/reply packets. The final scenario is

when an intermediate router in a normal routing path is malicious. This scenario arises when flits

use normal routing after it comes out of the outbound tunnel. Similar to the previous scenario, the

packet only knows about the true destination, and anonymity is not broken using a single packet.

In other words, outbound tunnels change frequently, and the source and destination have different

tunnels making it hard to launch complex attacks to break anonymity by collecting packets.

The robustness of our approach can be evaluated in terms of deadlock handling. We have

implemented our model using Garnet 2.0, where the XY routing mechanism is used to guarantee

deadlock-free communication. When we focus on our countermeasure, the first step of tunnel

creation (Tunnel Initialization) uses the existing XY routing protocol to broadcast TI packets. The

path of the TI packet determines the tunnel shape. Since a TI packet cannot take a Y to X turn, any

tunnel created on XY routing inherently uses only XY turns inside the tunnel. Hence, in the data

transfer phase, all the communication inside and outside the outbound tunnel will only take X to Y

turns, ensuring deadlock-free communication.

5.8 Overhead of the Proposed Countermeasure
Figure 8a shows the average packet latency for our proposed lightweight countermeasure over

ARNoC [10] and SAR [31, 35] in the data transmission phase. Obfuscating with chaff flit, which

is the recommended obfuscation technique from Section 5.7, has only a 13% and 11% increase in

performance overhead compared to ARNoC and [35], respectively. Our approach reduces tunnel

creation overhead by 35.53% compared to ARNoC, as shown in Figure 8b, due to our strategy of

creating shorter, outbound-only tunnels from the source to the random router (tunnel endpoint),

unlike ARNoC’s longer source-to-destination tunnel for outbound and inbound traffic. SAR does

not have a tunnel creation phase. A key aspect of our approach is that tunnel creation occurs in the

background, ensuring it does not directly impact data transfer performance. Overall, our approach

is lightweight compared to ARNoC and has negligible performance overhead against [35] while

delivering both packet-level and flow-level anonymity.

22

Pa
ck

et
 L

at
en

cy
 (C

yc
le

s)

0

10

20

30

40

ARNoC SAR Chaffing Delay
Chaffing + Delay

(a) Packet latency

Ex
ec

ut
io

n
tim

e
(C

yc
le

s)

0

100

200

300

400

500

Our Approch ARNoC

(b) Execution time
Fig. 8. Comparison of proposed countermeasure versus ARNoC and SAR: (a) average packet latency of data
transfer, and (b) average execution time for tunnel creation (SAR does not have tunnel creation phase).

Table 15. Comparison of area and energy overhead between ARNoC and proposed countermeasure in NoC.

ARNoC Our Approach Overhead
Area(𝜇𝑚2

) 2914300 2957429 + 1.47%

Energy(𝑚𝐽) 54.04 55.45 + 2.6%

In addition to low-performance overhead, our lightweight anonymous routing has the inherent

advantage of utilizing any adaptive routing mechanisms supported by NoC architectures (endpoint

of output tunnel to the destination), while ARNoC cannot accommodate adaptive routing proto-

cols because of having a pre-built tunnel from the source to destination. Similarly, SAR cannot

accommodate adaptive routing due to its anonymous routing solution tightly bound to XY, YX,

and XYX routing patterns. Table 15 compares the area and energy overhead of our lightweight

countermeasure against ARNoC in 8×8 mesh topology. In the implementation, our approach uses

only the chaffing obfuscation. The energy consumption was calculated by averaging the energy

consumption of running the FFT benchmark across all possible mappings of the processing node

and memory controller in mesh NoC-based SoC as discussed in Section 5.1.2. We observe a 1.47%

increase in area and a 2.6% increase in energy. The area and energy overhead are negligible consid-

ering the performance improvement and additional security provided by our proposed anonymous

routing compared to the state-of-the-art anonymous routing ARNoC.

6 Conclusion
Network-on-Chip (NoC) is a widely used solution for on-chip communication between Intellectual

Property (IP) cores in System-on-Chip (SoC) architectures. Anonymity is a critical requirement for

designing secure and trustworthy NoCs. In this paper, we made two important contributions. We

proposed a machine learning-based attack that uses traffic correlation to break the state-of-the-art

anonymous routing for NoC architectures. We developed a lightweight and robust anonymous

routing protocol to defend against ML-based attacks. Unlike existing anonymous routing protocols

that only offer anonymity at the packet level, our proposed protocol enhances security by providing

anonymity at both the packet level and the flow level. Extensive evaluation using real as well as

synthetic traffic demonstrated that our ML-based attack can break anonymity with high accuracy

(up to 99%) for diverse traffic patterns. The results also reveal that our lightweight anonymous

routing protocol that uses chaffing as traffic obfuscation is robust against ML-based flow correlation

attacks with minor performance and hardware overhead.

Acknowledgments
This work was partially supported by National Science Foundation (NSF) grant SaTC-1936040.

23

References
[1] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K Jha. 2009. GARNET: A detailed on-chip network model

inside a full-system simulator. ISPASS (2009).
[2] M Meraj Ahmed, Abhijitt Dhavlle, Naseef Mansoor, Sai Manoj Pudukotai Dinakarrao, Kanad Basu, and Amlan Ganguly.

2021. What Can a Remote Access Hardware Trojan do to a Network-on-Chip?. In 2021 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 1–5.

[3] M Meraj Ahmed, Abhijitt Dhavlle, Naseef Mansoor, Purab Sutradhar, Sai Manoj Pudukotai Dinakarrao, Kanad Basu,

and Amlan Ganguly. 2020. Defense against on-chip trojans enabling traffic analysis attacks. In 2020 Asian Hardware
Oriented Security and Trust Symposium (AsianHOST). IEEE, 1–6.

[4] Dean Michael Ancajas, Koushik Chakraborty, and Sanghamitra Roy. 2014. Fort-NoCs: Mitigating the threat of a

compromised NoC. In Proceedings of the 51st Annual Design Automation Conference. 1–6.
[5] Christian Bienia, Sanjeev Kumar, and Kai Li. 2008. Parsec vs. splash-2: A quantitative comparison of two multithreaded

benchmark suites on chip-multiprocessors. In 2008 IEEE International Symposium on Workload Characterization. IEEE,
47–56.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,

Derek R Hower, Tushar Krishna, and Somayeh Sardashti. 2011. The gem5 simulator. SIGARCH Computer Architecture
News (2011).

[7] Travis Boraten and Avinash Karanth Kodi. 2016. Mitigation of denial of service attack with hardware Trojans in NoC

architectures. In Parallel and Distributed Processing Symposium, 2016 IEEE International. IEEE, 1091–1100.
[8] Travis Boraten and Avinash Karanth Kodi. 2016. Packet security with path sensitization for nocs. In 2016 Design,

Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1136–1139.
[9] Travis H Boraten and Avinash K Kodi. 2018. Securing NoCs against timing attacks with non-interference based

adaptive routing. In 2018 Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS). IEEE, 1–8.
[10] Subodha Charles, Megan Logan, and Prabhat Mishra. 2020. Lightweight anonymous routing in NoC based SoCs. In

2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 334–337.
[11] Subodha Charles and Prabhat Mishra. 2020. Lightweight and trust-aware routing in NoC-based SoCs. In 2020 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI). 160–167.
[12] Subodha Charles and Prabhat Mishra. 2020. Securing network-on-chip using incremental cryptography. In 2020 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 168–175.
[13] Subodha Charles and Prabhat Mishra. 2021. A survey of network-on-chip security attacks and countermeasures. ACM

Computing Surveys (CSUR) 54, 5 (2021), 1–36.
[14] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology ePrint Archive (2016).
[15] Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John McCalpin, and Mengjia Yan. 2022. Don’t Mesh

Around:{Side-Channel} Attacks and Mitigations on Mesh Interconnects. In 31st USENIX Security Symposium (USENIX
Security 22). 2857–2874.

[16] Abhijitt Dhavlle, M Meraj Ahmed, Naseef Mansoor, Kanad Basu, Amlan Ganguly, and Sai Manoj PD. 2023. Defense

against On-Chip Trojans Enabling Traffic Analysis Attacks based on Machine Learning and Data Augmentation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (2023).

[17] Roger Dingledine, Nick Mathewson, Paul F Syverson, et al. 2004. Tor: The second-generation onion router. Technical
Report. Naval Research Lab Washington DC.

[18] Amlan Ganguly, Paul Wettin, Kevin Chang, and Partha Pande. 2011. Complex network inspired fault-tolerant NoC

architectures with wireless links. In Proceedings of the fifth ACM/IEEE International Symposium on Networks-on-Chip.
169–176.

[19] Shengnan Guo, Youfang Lin, Shijie Li, Zhaoming Chen, and HuaiyuWan. 2019. Deep spatial–temporal 3D convolutional

neural networks for traffic data forecasting. IEEE Transactions on Intelligent Transportation Systems 20, 10 (2019),

3913–3926.

[20] Jun Han and Claudio Moraga. 1995. The influence of the sigmoid function parameters on the speed of backpropagation

learning. In From Natural to Artificial Neural Computation: International Workshop on Artificial Neural Networks
Malaga-Torremolinos, Spain, June 7–9, 1995 Proceedings 3. Springer, 195–201.

[21] Yuanwen Huang, Prabhat Mishra, and Farimah Farahmandi. 2019. System-on-Chip Security: Validation and Verification.
Springer Nature.

[22] Mubashir Hussain, Amin Malekpour, Hui Guo, and Sri Parameswaran. 2018. EETD: An Energy Efficient Design for

Runtime Hardware Trojan Detection in Untrusted Network-on-Chip. In 2018 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI). IEEE, 345–350.

[23] Intel. 2024. 5th Gen Intel® Xeon® Processors. https://www.intel.com/content/www/us/en/products/docs/processors/

xeon/5th-gen-xeon-product-brief.html. [Online].

24

https://www.intel.com/content/www/us/en/products/docs/processors/xeon/5th-gen-xeon-product-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/5th-gen-xeon-product-brief.html

[24] Rajesh JS, Dean Michael Ancajas, Koushik Chakraborty, and Sanghamitra Roy. 2015. Runtime detection of a bandwidth

denial attack from a rogue network-on-chip. In Proceedings of the 9th International Symposium on Networks-on-Chip.
1–8.

[25] Manoj Kumar JYV, Ayas Kanta Swain, Sudeendra Kumar, Sauvagya Ranjan Sahoo, and Kamalakanta Mahapatra. 2018.

Run time mitigation of performance degradation hardware trojan attacks in network on chip. In 2018 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI). IEEE, 738–743.

[26] Brian Lebiednik, Sergi Abadal, Hyoukjun Kwon, and Tushar Krishna. 2018. Spoofing prevention via rf power profiling

in wireless network-on-chip. In Proceedings of the 3rd International Workshop on Advanced Interconnect Solutions and
Technologies for Emerging Computing Systems. 1–4.

[27] R Manju, Abhijit Das, John Jose, and Prabhat Mishra. 2020. SECTAR: secure NoC using Trojan aware routing. In

IEEE/ACM International Symposium on Networks-on-Chip (NOCS).
[28] Prabhat Mishra, Swarup Bhunia, and Mark Tehranipoor. 2017. Hardware IP security and Trust. Springer.
[29] Prabhat Mishra and Subodha Charles. 2021. Network-on-Chip Security and Privacy. Springer Nature.
[30] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2018. Deepcorr: Strong flow correlation attacks on Tor using

deep learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. 1962–1976.
[31] Ahmad Patooghy, Mahdi Hasanzadeh, Amin Sarihi, Mostafa Abdelrehim, and Abdel-Hameed A Badawy. 2023. Securing

Network-on-chips Against Fault-injection and Crypto-analysis Attacks via Stochastic Anonymous Routing. ACM
Journal on Emerging Technologies in Computing Systems 19, 3 (2023), 1–21.

[32] Venkata Yaswanth Raparti and Sudeep Pasricha. 2019. Lightweight mitigation of hardware Trojan attacks in NoC-based

manycore computing. In 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.
[33] Cezar Reinbrecht, Altamiro Susin, Lilian Bossuet, and Johanna Sepúlveda. 2016. Gossip noc–avoiding timing side-

channel attacks through traffic management. In 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE,
601–606.

[34] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. 2016. Splash-3: A properly synchronized

benchmark suite for contemporary research. In 2016 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE, 101–111.

[35] Amin Sarihi, Ahmad Patooghy, Mahdi Hasanzadeh, Mostafa Abdelrehim, and Abdel-Hameed A Badawy. 2021. Securing

network-on-chips via novel anonymous routing. In Proceedings of the 15th IEEE/ACM International Symposium on
Networks-on-Chip. 29–34.

[36] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural networks 61 (2015), 85–117.
[37] Johanna Sepúlveda, Andreas Zankl, Daniel Flórez, and Georg Sigl. 2017. Towards protected MPSoC communication

for information protection against a malicious NoC. Procedia computer science 108 (2017), 1103–1112.
[38] Mitali Sinha, Setu Gupta, Sidhartha Sankar Rout, and Sujay Deb. 2021. Sniffer: A machine learning approach for DoS

attack localization in NoC-based SoCs. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 11, 2
(2021), 278–291.

[39] Chamika Sudusinghe, Subodha Charles, and Prabhat Mishra. 2021. Denial-of-service attack detection using machine

learning in network-on-chip architectures. In Proceedings of the 15th IEEE/ACM International Symposium on Networks-
on-Chip. 35–40.

[40] Ke Wang, Hao Zheng, and Ahmed Louri. 2020. Tsa-noc: Learning-based threat detection and mitigation for secure

network-on-chip architecture. IEEE Micro 40, 5 (2020), 56–63.
[41] Hansika Weerasena, Subodha Charles, and Prabhat Mishra. 2021. Lightweight Encryption using Chaffing and Win-

nowing with All-or-Nothing Transform for Network-on-Chip Architectures. In 2021 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE, 170–180.

[42] Hansika Weerasena and Prabhat Mishra. 2023. Revealing CNN Architectures via Side-Channel Analysis in Dataflow-

based Inference Accelerators. arXiv preprint arXiv:2311.00579 (2023).
[43] Hansika Weerasena and Prabhat Mishra. 2024. Lightweight Multicast Authentication in NoC-based SoCs. In 2024 25th

International Symposium on Quality Electronic Design (ISQED). IEEE, 1–8.
[44] Hansika Weerasena and Prabhat Mishra. 2024. Security of Electrical, Optical, and Wireless On-chip Interconnects: A

Survey. ACM Transactions on Design Automation of Electronic Systems 29, 2 (2024), 1–41.
[45] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. 1995. The SPLASH-2

programs: Characterization and methodological considerations. ACM SIGARCH computer architecture news 23, 2 (1995),
24–36.

[46] Qiaoyan Yu and Jonathan Frey. 2013. Exploiting error control approaches for hardware trojans on network-on-chip

links. In International symposium on defect and fault tolerance in VLSI and nanotechnology systems (DFTS). 266–271.
[47] Bassam Zantout and Ramzi Haraty. 2011. I2P data communication system. In Proceedings of ICN. Citeseer, 401–409.
[48] Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya Wu. 2017. Convolutional neural networks

for time series classification. Journal of Systems Engineering and Electronics 28, 1 (2017), 162–169.

25

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Network-on-Chip (NoC) Traffic
	2.2 Attacks on Anonymity and Anonymous Routing
	2.3 Related Work
	2.4 Flow Correlation Challenges

	3 ML-based Attack on Anonymous Routing
	3.1 Threat Model
	3.2 Collecting Data for Training
	3.3 DNN Architecture
	3.4 Training the DNN Model
	3.5 Predicting Correlation

	4 Defending against ML-based Attacks
	4.1 Outbound Tunnel Creation
	4.2 Data Transfer
	4.3 Traffic Obfuscation

	5 Experimental Evaluation
	5.1 Data Collection
	5.2 Hyperparameter Tuning
	5.3 Training and Testing
	5.4 ML-based Attack on Synthetic Traffic
	5.5 Stability of ML-based Attack
	5.6 ML-based Attack on Real Benchmarks
	5.7 Robustness of the Proposed Countermeasure
	5.8 Overhead of the Proposed Countermeasure

	6 Conclusion
	References

