
Accelerating Machine Learning Applications
through Optimized Tensor Decompositions

Emma Andrews and Prabhat Mishra
University of Florida, Gainesville, Florida, USA

Abstract—Tensors are fundamental in representing high-
dimensional data across various application domains, including
machine learning and quantum many-body simulation. Calcu-
lations on high-dimensional data represented as tensors are
costly in terms of memory, power, and computation time. Ten-
sor decomposition can reduce the dimensionality of the high-
dimensional tensors by representing them as a sum or product
of several low-dimensional tensors. In this paper, we present
an automated framework for tensor decomposition for a series
of operations in an application. Specifically, this framework
automatically determines the beneficial tensor decomposition
based on resource constraints. Experimental results demonstrate
that our framework can drastically reduce memory requirements
while providing accuracy comparable to state-of-the-art methods.

Index Terms—Tensor decomposition, machine learning

I. INTRODUCTION

Large-scale computations and big-data processing have be-
come essential across a wide variety of disciplines, including
machine learning and quantum many-body simulation. Unfor-
tunately, these computational efforts face the curse of dimen-
sionality where the computational complexity increases expo-
nentially with the linear growth of dimensionality [1]. There
are promising application-specific optimizations to reduce the
dimensionality of data, such as neural network pruning in
machine learning [2]. However, these techniques provide a
reduction in dimensionality with a decrease in overall model
accuracy or an increase in error rate.

The high-dimensional data is typically represented as ten-
sors, or a collection of matrices, which have many rigor-
ous properties. One such property is tensor decomposition
– breaking down a higher-order tensor into several smaller-
order tensors [3]. This decomposed format leads to signifi-
cantly less data with minimal information loss. For example,
Figure 1 showcases the reduction in memory requirement due
to tensor decomposition. The left tensor of shape (60, 80, 100)
containing 32-bit values requires approximately 1.92 MB of
memory. In contrast, tensor decomposition produces the right
result of one smaller-dimensional tensor and 3 matrices with
32-bit values, requiring approximately 2 KB of memory. These
smaller-dimensional tensors can be multiplied and summed
together in a specific order to reconstruct the original tensor.

While tensor decomposition is promising, it can be diffi-
cult to compute [3]. Tensors have many different ways to
potentially calculate the decomposition, depending on the
properties of the tensor, whereas their matrix counterparts
use singular value decomposition (SVD) [4]. Furthermore,

≈ 2 MB

60

80

100

≈ 2 KB

2
2

260
2

2
100

2
80decomposition

Fig. 1: Comparison of memory requirement between an orig-
inal tensor (left) and its decomposed version (right).

tensor decomposition relies on the rank of a tensor, which is
an NP-hard problem [5], causing the decomposition process
to involve extra computation to approximate the rank. As a
result, prior work focuses on using application-specific tensor
decomposition to optimally compress a specific neural network
architecture [6]–[9].

In this paper, we propose efficient tensor decomposition to
accelerate machine learning applications based on constraints.
Specifically, this paper makes the following contributions.

• Unlike existing methods that focuses on specific machine
learning (ML) models, our framework can automatically
determine the best-performing tensor decomposition for-
mat and rank and operation order for any ML model.

• Our framework can mitigate performance penalty by
mapping common operations over certain dimension
values to the best decomposition, without exhaustive
searches for the format and rank pair or optimal con-
traction path.

• Evaluation using CNN, VGG19 [10], and ResNet18 [11]
models demonstrate up to 2.9X reduction in memory
requirement with negligible impact on accuracy.

The rest of the paper is organized as follows. Section II
provides relevant background and surveys related efforts. Sec-
tion III presents our proposed framework. Section IV presents
experimental results. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Tensors

An order-n tensor is an n-dimensional multilinear array of
data. A tensor can also be viewed as a collection of matrices,
where a matrix is an order-2 tensor. Conversely, a vector is an
order-1 tensor. We briefly outline a few operations on tensors.

1) Tensor Addition: Tensor addition is the process of
adding a tensor with a scalar, vector, matrix, or other tensor.
The slices of a tensor are used as matrices to perform element-

wise matrix addition. The collection of matrix additions across
the slices results in the final value for the tensor addition.

2) Tensor Rank: Rank is an important measurement for
both matrices and tensors as it is the minimum number of
components required to express the matrix or tensor as a
sum of those components [12]. Matrix rank can be easily
computed, as it is the number of linearly independent rows
or columns in the matrix. However, for tensors of order-3
or greater, determining the rank is an NP-hard problem [5].
Tensor decomposition (see Section II-B) is able to approximate
the tensor rank while decomposing the original tensor as they
need to determine a collection of components to represent the
tensor.

3) Tensor Product: Tensor product involves multiplying a
tensor by a scalar, vector, matrix, or other tensor. Often, the
tensor is sliced into a matrix to perform the multiplication part
and summed with the other slices to get the final product.

4) Tensor Contraction: Tensor contraction, also known as
einsum, is an operation between tensors over a specified
index [13]. As a result of the contraction, the size of the
resulting tensor is the size of the remaining indices. For
example, einsum for two order-2 tensors being contracted is
ik,kj->ij, which means the two tensors are contracted over
index k. This is equivalent to Cij =

∑
k AikBkj . For multiple

terms, the order of operations is known as the contraction path.

B. Tensor Decomposition

Tensor decomposition breaks a tensor into smaller dimen-
sional tensors to simplify calculations [3]. There are three
popular tensor decomposition methods: canonical polyadic
(CP) [14], Tucker [15], [16], and tensor train (TT) [17].

1) Canonical Polyadic (CP) Decomposition: CP decom-
position [14] aims to decompose a high-order tensor into a
sum of rank-1 tensors. A rank-1 tensor is represented by a
factor matrix, where each column is a vector of the rank-
1 tensor, such as A = [a1 a2 ... aR]. For an order-3 tensor
X ∈ RI×J×K , we can express its CP decomposition as the
outer product of each mode from the rank-1 tensors, such that

X ≈
R∑

r=1

λrar ⊗ br ⊗ cr, (1)

where R is the rank of the tensor and λ ∈ RR is a
weight vector, assuming the columns of each factor matrix
are normalized.

For an order-n tensor X ∈ RI1×I2×···×IN , the CP decom-
position can be expressed as

X ≈
R∑

r=1

λra
(1)
r ⊗ a(2)r ⊗ · · · ⊗ a(N)

r , (2)

where a(n) is a column vector for the factor matrix A(n) ∈
RIn×R. For example, Figure 2 shows that tensor X is repre-
sented by the sum of the rank-1 tensors, displayed in vector
form for each factor matrix.

+ + ... +

Fig. 2: CP decomposition for an order-n tensor X .

2) Tucker Decomposition: Tucker decomposition [15], also
known as the higher-order singular value decomposition [16],
expresses an order-d tensor as a smaller order d core tensor
G and d factor matrices. For an order-3 tensor X ∈ RI×J×K ,
the corresponding Tucker decomposition is

X ≈
P∑
p

Q∑
q

R∑
r

gpqrap ⊗ bq ⊗ cr, (3)

where ap, bq , and cr are the modes for each of the factor
matrices A ∈ RI×P , B ∈ RJ×Q, and C ∈ RK×R, similar to
CP decomposition. gpqr is an entry in the core tensor G ∈
RP×Q×R.

An order-n tensor X ∈ RI1×I2×···×IN can be decomposed
as

X ≈
R1∑

r1=1

R2∑
r2=1

· · ·
RN∑

rN=1

gr1r2...rNa(1)r1 ⊗a(2)r2 ⊗· · ·⊗a(N)
rN , (4)

where a(n) is a column vector for the factor matrix A(n) ∈
RIn×R. For example, Figure 3 shows a sample Tucker decom-
position for a tensor X , consisting of core tensor G and factor
matrices A, B, and C. Each factor matrix corresponds with a
specific mode of the core tensor G.

Fig. 3: Tucker decomposition for an order-n tensor X .

3) Tensor Train (TT): Tensor train [17] decomposes an
order-n tensor into n order-3 tensors, which are chained
together through a product operation, typically matrix multipli-
cation. Formally, given an order-n tensor X ∈ RI1×I2×···×IN ,
TT is approximated by

X ≈ G(1)
i1

G(2)
i2

. . .G(N)
iN

, (5)

where G(j)
ij

is an rj−1×rj matrix. Figure 4 shows an example
of a tensor being decomposed into TT format to the smaller
factor matrices. Each line between tensors indicates the shared
index between the two tensors. TT is often used for calculating
the matrix product state in quantum computing.

Fig. 4: An original tensor and its corresponding tensor train.

4) Other Variants: There are variations of the major three
decomposition formats. One such variant is the non-negative
versions of CP and Tucker, where the tensor to be decomposed
must contain only non-negative values. Other variants include
PARAFAC2, CANDELINC, INDSCAL, and DEDICOM [3].

C. Related Work

Prior work focuses on compressing a specific model archi-
tecture by using tensor decompositions, tailoring the tensor
decomposition method to fit the mathematical properties of
the model [6]–[9]. Other work focuses on determining the
best decomposition format for a specific model architecture
and the given number of parameters. HEAT is an automated
framework for producing tensor decomposition specifically for
transformer architectures and their attention mechanisms [18].
Applicability is a major limitation of prior efforts since they
focus on specific aspects of the model architecture that may
not be shared across ML models. Our work addresses this
problem by providing a universal framework for optimized
tensor decomposition for a wide variety of machine learning
models and associated applications.

III. OTD: OPTIMIZED TENSOR DECOMPOSITION FOR
MACHINE LEARNING APPLICATIONS

We present Optimized Tensor Decomposition (OTD), a
framework for optimizing a list of tensor operations by using
tensor decompositions. OTD picks a format and rank pair-
ing that would achieve the best performance given several
tradeoffs, such as memory cost vs. computational time. Our
primary application is machine learning, such as optimizing
the calculations within the layers of a neural network.

Given a list of operations, such as the layers of a neural
network, our objective is to optimize these operations for
the best possible accuracy, memory usage, and computational
time under various resource constraints. For each operation,
we take each tensor operand and compute the possible tensor
decomposition formats, calculating hardware metrics such as
run time and memory. From these options, we analyze the
operation, estimating the best tensor decomposition format and
contraction path for the given operation. While this is done
at an operation level, considerations are taken to ensure that
the remaining operations, whether sequential or parallel opera-
tions, also have effective decompositions and contraction paths
given their operands and the overall hardware constraints.
These hardware constraints are based on the architecture of the
hardware that is being used to calculate the list of operations.

Figure 5 provides an overview of our framework. First, the
list of operations is broken into individual operations, and then
each operation’s operands. These operands are decomposed
into different decomposition format and rank pairs, calculating
several cost metrics related to the decomposition process and
the resulting decomposed tensors. Next, different combinations
of the format and rank pairs for each operand are tested within
the current operation. Cost metrics are also calculated at this
level. Finally, all the operations are put together, optimizing

for any intermediate calculations between the individual oper-
ations and retrieving the best possible order of operations with
the most optimized tensor operands based on their format and
rank pair and the cost metrics.

As more operations are examined, OTD learns consistencies
between tensor shapes and their related operations, and when
it encounters a learned consistency, it will automatically deter-
mine the best decomposition format and rank without having
to reproduce the costs, saving performance.

A. Optimization of Cost Metrics

We measure cost in three distinct scenarios: (1) performing
the decomposition and its resulting tensors, (2) individual
tensor operations, and (3) a holistic view of all operations.
Each operation must factor in the cost of performing the
operation between two tensors, such as the optimal contraction
path, and determine what decomposition formats are the best
performing within the constraints of the operation. The choice
between decomposition formats must also consider the cost
of decomposing the original tensor into each of the formats,
as well as the storage requirements to store each of the
decomposed formats. The operations must be mapped in an
optimized order given all the contraction paths and individual
operation costs. Algorithm 1 outlines the major steps in our
framework. The remainder of this section describes these steps
in detail.

Algorithm 1: Optimization of All Cost Metrics
Data: Zu: list of operations with tensor operands, F :

format set, R: rank set
Result: Zd, optimized operations using decompositions

1 for o ∈ Zu do
2 for p ∈ o do
3 dg = memory(p);
4 for (f, r) ∈ F,R do
5 x = decompose(p, f, r);
6 dp(f, r) =

time(x) + memory(x) + error(x);
7 if dp(f, r) > dg then
8 dp(f, r) = dg;
9 end

10 end
11 end
12 od = mini=1,...,q;j=1,...,m(di((f, r)j) + time(o));
13 end
14 Zd = reduction(od);

1) Tensor Decomposition Cost: Each of the three for-
mats calculates the decomposed tensor in different ways (CP,
Tucker, and TT), as detailed in Section II-B, and are based
on the tensor’s approximate rank value. Since our objective
is to reduce the tensor based on hardware constraints, we can
instead choose the rank for decomposition. Therefore, given a
tensor operand p from an operation o, we must determine the
best tensor decomposition based on the possible format and

Operation A
Operation A

Operation A
Operation A

List of
Operations

Operand 2

Operand 1 Decomposition

Decomposition

Decomposition
Cost Metrics

Operation Cost
Metrics

All Operation Cost
Metrics

Optimized Operations
using Decompositions

Fig. 5: OTD architecture. Cost metrics are gathered at three different levels: decomposition, individual operation, and all
operations. Based on the metrics and given constraints, an optimized order of operations using decomposition is produced.

CNN

input
(4, 3, 32, 32)

output
(4, 10)

convolution1
(4, 6, 32, 32)

pool
(4, 6, 16, 16)

convolution2
(4, 16, 16, 16)

pool
(4, 16, 8, 8)

flatten
(4, 1024)

linear1 (fc1)
(4, 120)

linear2 (fc2)
(4, 84)

linear3 (fc3)
(4, 10)

Fig. 6: Shapes for each layer are the resulting output after that layer has calculated its results. This is the input to the next layer,
except for the final layer where it contains the probability percentages for each input image as to the class label it belongs to.

rank (f, r) pairs from the overall format F and rank R sets.
The format set F contains the three popular formats. The rank
set R contains the rank values to test, which is any positive
integer. However, we can reduce the total number of members
of the rank set, and thus overall pairs, by testing a subset of
ranks. For example, we can omit testing rank 3 if we test rank
2 given a large original tensor since there will be a negligible
cost difference between the two results.

Once the set of format and rank pairs (f, r) are determined,
we decompose the tensor p with each pair value. Taking the
result of the decomposition operation, we examine the time
it took to decompose the tensor, the memory requirement
to store all components of the decomposed tensor, and the
error rate induced from decomposition, as shown in Line 6
of Algorithm 1. The error rate is calculated by taking the
mean squared error between the reconstructed version of the
decomposed tensor and the original tensor.

The original tensor may perform better than its decomposed
version. Therefore, we check the resulting cost metrics after
decomposing against the original tensor’s memory cost. This
is prevalent when the rank chosen results in components that
consist of more total maximum memory than the original
tensor. For example, given a (2, 3, 4) size tensor, decomposing
in Tucker format with rank 9 results in components totaling
memory of 3296 bytes, which is more total memory than the
original tensor of 3000 bytes (see Table I). If the original
tensor performs better, we omit the specific format and rank
pair from consideration (Line 8).

2) Individual Operation Cost: For each individual opera-
tion o, we gather the tensor decomposition metrics dp(f, r) for
each tensor operand p. With q total operands and m pairs for
each operand, Line 12 chooses the most suitable pair for every
operand given the computation time of the operation using the
decomposed operand variants.

Each operation is computed with the corresponding einsum
between all operands. This einsum is optimized to ensure
the maximal performance given the necessary contraction

paths for the desired result. When the einsum operands are
decomposed in a specific format, the einsum also optimizes
the intermediate steps performed between the factor matrices
of the decomposed tensor in the full operation. For example,
an original order-4 tensor decomposed using CP format will
have the einsum ar,br,cr,dr->abcd to be reconstructed
to the original shape. If this decomposed tensor were to be
contracted with a tensor of ebcd to get a result of eacd, the
einsum would be ar,br,cr,dr,ebcd->eacd, which can
then be optimized further. The resulting optimized operation
is denoted as od.

Optimizing the contraction path of each einsum is a neces-
sary step due to the potential differences in speed based on
the contraction path taken to get to the same result [19]. With
multiple components, a new contraction path may be available
that can result in faster execution time in comparison to the
optimal contraction path for the original tensor. Therefore, we
aim to include this beneficial speedup where possible.

3) Total Operation Cost: Along with optimizing at the
individual operation level, we analyze all operations with their
order of operation to verify that they are being executed in an
optimized order, with no potential reductions across different
individual operations. Any extra computational cost as a result
of performing this operation is added onto the overall cost
metric. After this cost is calculated, Algorithm 1 returns the
optimized list of operations with the best decomposed tensor
operands given the hardware constraints.

B. Application: Machine Learning

Machine learning utilizes high-order tensors as the main
data structure for different operations. Due to this, we provide
an example of OTD being used to optimize the performance
of a basic convolutional neural network (CNN). The CNN
consists of several layers, each containing an operation be-
tween tensors. For example, the linear layer is computed as
the multiplication between the weight tensor of the layer and
the input tensor. The 2D convolution layer is a specific sliding

window multiplication between the weight tensor and the input
tensor, using a small matrix called a kernel as the window.

Figure 6 contains a breakdown of an example CNN, dis-
playing the layers that an input is calculated to reach the
classification prediction. In this example, the CNN contains
convolutional and linear layers as described previously, with
the layers acting as the set of operations to optimize in
Algorithm 1. The pool layer reduces the shape of the input
tensor by taking the max of the inputs. The flatten layer
reshapes the tensor, in this case, by removing two dimensions,
reducing it from an order-4 tensor to a matrix. As these two
layers do not involve any direct matrix or tensor multiplication,
tensor decomposition is not applicable and will function as
normal. For the convolution and linear layers, each layer
contains a weight matrix or tensor that is multiplied by the
input matrix or tensor. This weight tensor is a candidate for
tensor decomposition, with our framework determining the
appropriate format and rank to decompose with for the best
accuracy, memory requirements, and computational time.

We do not decompose the input to each layer due to
the drastic increase in time. The weight tensors can remain
decomposed after initial decomposition, however, the inputs
would have to be decomposed again at the beginning of each
layer. This results in an exponential time cost during training
as these layers are calculated over 12,000 times in the case
of CIFAR-10 with batches of 4 images in one training epoch.
Moreover, due to each layer feeding its result into the next
layer, there is negligible optimization that can be done at a
total operation level.

IV. EXPERIMENTS

In this section, we present experimental results using our
framework, OTD. First, we look at finding effective tensor
decompositions based on Algorithm 1. We then examine using
these selections for a CNN, showcasing its impact on machine
learning applications. Finally, we briefly examine our frame-
work being used with other machine learning architectures.

A. Experimental Setup

All experiments were run on Linux using an Intel 13900K,
NVIDIA RTX 4090, and 64GB of RAM. The framework uses
Python v3.11, PyTorch v2.2, tensorly v0.8.2, and opt einsum
v3.3 [20], [21]. We use the traditional PyTorch implementa-
tions of the models as our baseline. We adjust these models
with our decomposition layers to provide a comparison be-
tween the traditional approach and our decomposed approach.

B. Selection of Tensor Decomposition Parameters

With tensor decompositions, there are many possible for-
mat and rank pairings, each potentially giving a different
decomposition in terms of component size and number of
overall components. Tensors decomposed at rank 2 result
in the smallest memory footprint. Table I shows a variety
of different format and rank pairings and the corresponding
memory, time taken, and overall error rate versus the original
tensor. In this specific case, our selection parameters indicate

that the smallest memory savings is through CP with rank 2,
resulting in 5 tensors of varying sizes totaling 192 bytes. This
contrasts with the original tensor requiring 3,000 bytes.

While we can get the largest reduction in memory, this does
result in large error rates between the original tensor, meaning
information that was lost during the decomposition process.
For more error-sensitive applications, one may wish to have
a decomposition that has less error rate between the original
tensor, at the tradeoff of requiring more memory, however, this
memory will still be less than the total memory of the original
tensor. For example, Tucker rank 4 results in 5 component
tensors totaling 1,124 bytes of memory, but with a much lower
error rate compared to CP rank 2.

TABLE I: Decompositions for a (2, 3, 4) tensor.

Format Rank Memory (bytes) Time (s) Error Rate

Original - 3000 - -

CP 2 [8, 80, 24, 40, 40] 0.482 0.0421
CP 4 [16, 160, 48, 80, 80] 0.450 0.0838
CP 7 [28, 280, 84, 140, 140] 0.409 0.122
CP 9 [36, 360, 108, 180, 180] 0.382 0.146
Tucker 2 [64, 80, 24, 40, 40] 0.476 0.00345
Tucker 4 [768, 160, 36, 80, 80] 0.385 0.00175
Tucker 7 [2100, 280, 36, 100, 100] 0.213 0.00211
Tucker 9 [2700, 360, 36, 100, 100] 0.111 0.00223
TT 2 [80, 48, 80, 40] 0.478 0.000545
TT 4 [160, 192, 320, 80] 0.424 0.000239
TT 7 [280, 588, 700, 100] 0.337 0.000332
TT 9 [360, 972, 900, 100] 0.279 0.00029

C. Explorations of Tensor Decompositions for CNNs

We provide results for the CNN described in Section III-B,
creating the CNN in PyTorch to classify CIFAR-10 im-
ages [22]. Images can be represented as a tensor of size
(H,W,C), where H is the height of the image, W the width,
and C the number of channels. For CIFAR-10, these tensors
are of shape (32, 32, 3), with 3 channels to represent the
color. Additionally, training and testing data are often batched
together in a single call to the neural network to save time at
the cost of working with higher-dimensional data. Batching of
data results in multiple (32, 32, 3) images stacked together. If
4 images were batched together, the resulting batched tensor
would be of shape (4, 32, 32, 3).

The 2D convolutional layer takes an input consisting of
3 channels and produces an output with 6 channels. The
convolution operation is performed with a kernel size of 5.
Therefore, the input of size (4, 3, 5, 5), using the batch of
4 inputs as described earlier, is convoluted with the layer’s
weight tensor of size (6, 3, 5, 5). As the neural network stores
its layers’ weights in full form, we do not decompose the
weight tensor. The resulting output is of size (4, 6, 5, 5), which
is used as input to the next layer of the CNN.

The linear layer takes an input consisting of either a vector
or matrix, depending on if the original input is batched. If
batched, the input matrix will be of size (N, I), where N is
the batch size and I the number of in channels (features) of
the layer, with the output matrix being of size (N,O), where

TABLE II: Results for CNN. Italicized layers are decomposed layers. Bold values are the chosen best variant.

Classification Time (µs) Layer Memory (KB)

Framework Accuracy Training Time (s) conv1 conv2 fc1 fc2 fc3 total conv1 conv2 fc1 fc2 fc3 total

Traditional 65.47% 357.75 29.1 24.3 17.4 8.8 7.9 87.5 4.8 51.2 983.0 40.3 3.4 1082.7
OTD-Opt 61.10% 615.58 635 41.7 15.7 8.3 8.3 709 1.2 51.2 983.0 40.3 3.4 1079.1
OTD-Opt 65.29% 452.08 30.3 25.0 162 15.0 8.3 240.6 4.8 51.2 277.5 40.3 3.4 377.2
OTD-Opt 68.17% 447.17 28.8 24.6 17.2 8.6 160 239.2 4.8 51.2 983.0 40.3 2.3 1081.6
OTD-Opt 68.11% 598.82 31.7 25.5 166 114 124 461.2 4.8 51.2 277.5 26.2 2.3 362.0
OTD-Opt 54.88% 1175.98 455 898 148 116 252 1869 1.2 12.1 277.5 26.2 2.3 319.3
OTD-Low 59.85% 659.04 592 38.6 15.5 8.8 7.4 662.3 0.2 51.2 983.0 40.3 3.4 1078.1
OTD-Low 50.71% 457.11 32.2 26.5 164 15.0 8.6 246.3 4.8 51.2 17.3 40.3 3.4 117.0
OTD-Low 63.71% 467.81 29.1 24.6 18.4 8.3 166 246.4 4.8 51.2 983.0 40.3 0.8 1080.1
OTD-Low 52.86% 622.69 32.9 25.3 167 116 123 464.2 4.8 51.2 17.3 1.6 0.8 75.7

TABLE III: Comparison between traditional models and best-performing OTD models.

Accuracy Classification Time (µs) Layer Memory (KB)

NN Traditional OTD Loss Traditional OTD Increase Traditional OTD Reduction

CNN 65.47% 65.29% 0.18% 87.5 240.6 153.5 1,082.7 377.2 2.9x
VGG19 80.88% 80.32% 0.56% 39.6 217 177.4 478.3 MB 411.2 MB 1.2x
ResNet18 74.54% 74.44% 0.10% 18.4 154 135.6 20.5 12.6 1.6x

O is the number of out channels (features). The weight matrix,
regardless if the input is batched, is always of size (I,O). If
the input is not batched, the input and output matrices become
vectors, removing the first dimension of size N .

For our experiments, we analyzed different rank values for
each of the formats to determine its effect on the total memory,
training time, and accuracy. Table II consists of several of
these experiments, following the selection criteria outlined in
Section IV-B. Along with results for the most memory-saving
selections and a middle point in memory savings, we choose
different combinations of CNN layers to use the equivalent
decomposed layer. The CNNs with decomposed fc1, fc2, and
fc3 (CNN-fc123) and decomposed fc3 (CNN-fc3) performed
the best in terms of accuracy, with CNN-fc123 only 0.06% less
accurate. CNN-fc123 also further reduced the total amount of
required memory, needing a total of 362 KB in comparison
to CNN-fc3’s 1.1 MB. However, CNN-fc123 suffers from
much longer training and inference time. To get the benefits
of drastically reduced memory without a large time penalty,
we tradeoff some accuracy with decomposing the fc1 layer.

We have also included results from using decompositions
that provide the smallest memory footprint. In every config-
uration comparison, the smallest memory footprint performs
worse in time taken and accuracy. However, the smallest
memory footprint is able to drastically reduce the memory,
such as the fc1 layer going from 983 KB originally to only
needing 17 KB, a 98% decrease.

In general, as the memory decreases, the accuracy also
decreases. However, we see the opposite trend with time
and accuracy. When considered together, memory and time
are tradeoffs in terms of overall accuracy. Typically, as the
memory decreases, the timing increases due to needing more
time at the decomposed layers to compute the corresponding
einsum. This einsum, while operating between much smaller

tensors, requires several multiplication operations compared to
just one in the traditional layers.

There are some cases where the tensor decomposition leads
to better accuracy, despite having much smaller weight tensors
in the layers. This is likely due to the tensor decomposition,
through the reduction in dimensionality, reducing the sparsity
of the original weight tensor that can negatively impact the
accuracy of the model [23].

D. Tensor Decomposition Across Neural Networks

There are several architectural improvements on the basic
CNN for better accuracy and performance in generic cases. We
have tested OTD with two of these architectures, VGG19 [10]
and ResNet18 [11]. We compare the best-performing de-
composition combination with the traditional architecture in
Table III. For each model, our best performing decomposition
variant has comparable accuracy with less memory require-
ments. As a tradeoff, time is increased for classifying samples.
This classification time is short enough (a few µs) to be of any
practical concern.

V. CONCLUSION

Tensor decomposition is a promising technique for breaking
down a high-order tensor into smaller tensors and matrices.
While tensor decomposition is beneficial for machine learning
applications with high-dimensional data, there are cost and
performance trade-offs that must be considered for the most
appropriate format and rank. We proposed a framework that
can automatically find the optimal tensor decomposition for
all tensors as well as the optimal order of operations for given
a list of operations. The operation order is at the individual
operation layer, optimizing the decomposed form of the tensor
by the other operand, and also at the combined operation layer,
ensuring that operations cannot be reduced further for even

better performance. Extensive experimental evaluation using
diverse machine learning models demonstrated significant im-
provement in memory requirement with negligible impact on
prediction accuracy.

REFERENCES

[1] I. V. Oseledets and E. E. Tyrtyshnikov, “Breaking the Curse of Dimen-
sionality, Or How to Use SVD in Many Dimensions,” SIAM Journal on
Scientific Computing, vol. 31, no. 5, pp. 3744–3759, Jan. 2009.

[2] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the
State of Neural Network Pruning?” Proceedings of Machine Learning
and Systems, vol. 2, pp. 129–146, Mar. 2020.

[3] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applica-
tions,” SIAM Review, vol. 51, no. 3, pp. 455–500, Aug. 2009.

[4] D. Kalman, “A Singularly Valuable Decomposition: The SVD of a
Matrix,” The College Mathematics Journal, Jan. 1996.

[5] C. J. Hillar and L.-H. Lim, “Most Tensor Problems Are NP-Hard,” J.
ACM, vol. 60, no. 6, pp. 45:1–45:39, Nov. 2013.

[6] Y. Pan, J. Xu, M. Wang, J. Ye, F. Wang, K. Bai, and Z. Xu, “Compressing
Recurrent Neural Networks with Tensor Ring for Action Recognition,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, pp. 4683–4690, Jul. 2019.

[7] A.-H. Phan, K. Sobolev, K. Sozykin, D. Ermilov, J. Gusak, P. Tichavský,
V. Glukhov, I. Oseledets, and A. Cichocki, “Stable Low-Rank Tensor
Decomposition for Compression of Convolutional Neural Network,” in
Computer Vision – ECCV 2020, 2020, pp. 522–539.

[8] A. Tjandra, S. Sakti, and S. Nakamura, “Tensor Decomposition for
Compressing Recurrent Neural Network,” in 2018 International Joint
Conference on Neural Networks (IJCNN), Jul. 2018, pp. 1–8.

[9] M. Yin, S. Liao, X.-Y. Liu, X. Wang, and B. Yuan, “Compressing
Recurrent Neural Networks Using Hierarchical Tucker Tensor Decom-
position,” May 2020.

[10] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” Sep. 2014.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[12] J. B. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear
decompositions, with application to arithmetic complexity and statistics,”
Linear Algebra and its Applications, vol. 18, no. 2, pp. 95–138, Jan.
1977.

[13] D. A. Matthews, “High-Performance Tensor Contraction without Trans-
position,” SIAM Journal on Scientific Computing, vol. 40, no. 1, pp.
C1–C24, Jan. 2018.

[14] F. L. Hitchcock, “The Expression of a Tensor or a Polyadic as a Sum
of Products,” Journal of Mathematics and Physics, vol. 6, no. 1-4, pp.
164–189, 1927.

[15] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, Sep. 1966.

[16] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the Best Rank-1
and Rank-(R1 ,R2 ,. . .,RN) Approximation of Higher-Order Tensors,”
SIAM Journal on Matrix Analysis and Applications, vol. 21, no. 4, pp.
1324–1342, Jan. 2000.

[17] I. V. Oseledets, “Tensor-Train Decomposition,” SIAM Journal on Scien-
tific Computing, vol. 33, no. 5, pp. 2295–2317, Jan. 2011.

[18] J. Gu, B. Keller, J. Kossaifi, A. Anandkumar, B. Khailany, and D. Z.
Pan, “HEAT: Hardware-Efficient Automatic Tensor Decomposition for
Transformer Compression,” Nov. 2022.

[19] E. Meirom, H. Maron, S. Mannor, and G. Chechik, “Optimizing Tensor
Network Contraction Using Reinforcement Learning,” in Proceedings of
the 39th International Conference on Machine Learning. PMLR, Jun.
2022, pp. 15 278–15 292.

[20] J. Kossaifi, Y. Panagakis, A. Anandkumar, and M. Pantic, “TensorLy:
Tensor Learning in Python,” Journal of Machine Learning Research,
vol. 20, no. 26, pp. 1–6, 2019.

[21] D. G. A. Smith and J. Gray, “Opt\ einsum - A Python package for
optimizing contraction order for einsum-like expressions,” Journal of
Open Source Software, vol. 3, no. 26, p. 753, Jun. 2018.

[22] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Im-
ages,” 2009.

[23] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity
in Deep Learning: Pruning and growth for efficient inference and training
in neural networks,” Journal of Machine Learning Research, vol. 22, no.
241, pp. 1–124, 2021.

	Introduction
	Background and Related Work
	Tensors
	Tensor Addition
	Tensor Rank
	Tensor Product
	Tensor Contraction

	Tensor Decomposition
	Canonical Polyadic (CP) Decomposition
	Tucker Decomposition
	Tensor Train (TT)
	Other Variants

	Related Work

	OTD: Optimized Tensor Decomposition for Machine Learning Applications
	Optimization of Cost Metrics
	Tensor Decomposition Cost
	Individual Operation Cost
	Total Operation Cost

	Application: Machine Learning

	Experiments
	Experimental Setup
	Selection of Tensor Decomposition Parameters
	Explorations of Tensor Decompositions for CNNs
	Tensor Decomposition Across Neural Networks

	Conclusion
	References

