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Abstract—The increasing complexity and heterogeneity of
programmable hardware accelerators, such as Graphics Pro-
cessing Units (GPUs) and Tensor Processing Units (TPU), pose a
significant challenge for automated test generation and functional
validation. Traditional validation techniques often struggle to
scale with architectural diversity and cannot effectively exploit
the semantic relationships between instructions and data. Valida-
tion using large language models (LLMs) is a promising avenue
for generating assembly programs (test vectors) for processor
verification since LLMs are trained with diverse general-purpose
processor designs. Unfortunately, LLMs are unsuitable for vali-
dation of programmable hardware accelerators since there is a
lack of training data for such implementations. In this paper,
we propose an automated framework that fine-tunes LLMs to
generate semantically correct test cases directed toward improved
design coverage while monitoring the functional correctness
of the outputs. The generated test cases are evaluated by a
compiler for correctness before using them for validation of
hardware accelerators. We facilitate a mechanism for the LLM
to observe the design coverage on the implementation based on
the previously generated test patterns. Extensive experimental
evaluation demonstrates that our framework can achieve 33%
improvement in design coverage compared to state-of-the-art test
generation with the added advantage of monitoring the functional
correctness of the design. Our framework has identified several
functional bugs in the open-source tiny-gpu implementation.

I. INTRODUCTION

Programmable hardware accelerators, which extend beyond
traditional general-purpose computing, offer a promising ap-
proach to building reconfigurable accelerators while preserving
overall system flexibility [1]. Cryptographic instruction sets
(CISE) [2], Graphics Processing Units (GPU) [3], and Tensor
Processing Units (TPU) [4], all of which rely on dedicated
instruction sets executed by specialized hardware functional
units through custom machine code (firmware). Usually these
machine codes are generated via programming frameworks,
such as CUDA [5] and ROCm [6] for GPUs, XLA [7] for
TPUs, and OpenCL [8] for cross-platform acceleration, to
enable execution on specialized hardware functional units. Fig-
ure 1 illustrates the architectural differences between general-
purpose computing and application-specific harwdare accel-
eration. Figure la shows a typical processor (CPU) design,
which includes memory elements (e.g., registers), an instruc-
tion processing unit (fetch/decode), and functional units, such
as Arithmetic Logic Units (ALUs). In contrast, Figure 1b
depicts a GPU architecture, featuring a hardware scheduler
and multiple processing cores. Each core contains its own
instruction processing unit, local memory elements (registers
and cache), and multiple ALUs for parallel execution.
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Fig. 1: Comparison between (a) general-purpose computing
architectures and (b) programmable hardware platforms.

Verifying heterogeneous hardware implementations is chal-
lenging due to the interaction between the custom hardware
and the reconfigurability introduced through the machine code.
With recent advances in Large Language Models (LLMs) [9],
research efforts have demonstrated their potential in validating
general-purpose processors by leveraging well-defined instruc-
tion set architecture (ISA) specifications [10]-[12]. In these
efforts, LLMs are able to generate input programs, in some
cases with minimal modifications, often outperforming tra-
ditional constrained-random techniques and requiring signifi-
cantly less manual effort than directed testing. However, LLMs
are not suitable for the validation of programmable hardware
accelerators for several reasons. First, due to the application-
specific nature of hardware accelerators, formal specifications
(training data) are often unavailable. As a result, LLMs lack
the semantic understanding of the instruction-data relation-
ships unique to these implementations. Second, unlike general-
purpose processors where thread and scheduling mechanisms
are managed by the operating system kernel, many accelerator
systems implement these mechanisms directly in hardware.
This hardware-level control must be captured in the LLM’s
prompting or training to generate valid programs, including
instruction sequences and data layouts. Moreover, accelera-
tor systems often involve complex execution pipelines, such
as host-device coordination or hardware-managed multistage



workflows, which require awareness of multimodal execution
semantics. Furthermore, many validation-relevant behaviors in
these systems are closely tied to micro-architectural details,
such as memory hierarchies, caching policies, or specialized
functional units, that are not visible from the software or
instruction stream alone. Without explicit modeling or access
to such low-level details, LLMs are likely to miss subtle but
critical corner cases during test generation.

A. Programmable Logic in Hardware Accelerators

Traditional hardware design has largely revolved around
general-purpose processors like CPUs and Microcontroller
Units (MCUs), and standalone hardware modules with well-
understood, often monolithic, execution models. These de-
signs typically follow deterministic control-flow structures
and adhere to standardized instruction sets, making them
more amenable to existing test generation and validation
techniques [13]. In contrast, hardware accelerators, such as
GPUs, vector engines [14], [15], and custom instruction set
extensions [2], [16], [17], exhibit complex execution behaviors
in various domains, including cryptography and artificial intel-
ligence. These may include wide SIMD parallelism [18], asyn-
chronous execution, memory model variations [19], and tightly
coupled instruction-data semantics [20] that are context-
dependent. Moreover, accelerator components are designed
to interact with general-purpose cores, co-processors, and
accelerators in loosely or tightly integrated pipelines, leading
to non-uniform behavior across the system. They rely on
architecture-specific behaviors and optimizations and may not
follow standardized ISA conventions.

B. Validation of Hardware Accelerators

Validation of programmable hardware accelerators require
new test generation strategies that go beyond syntax or control
flow and instead focus on architectural intent, data transfor-
mation patterns, and instruction dependencies. Traditional test
generation techniques, such as random or constraint-random
methods are not designed to handle such cases. They often
miss important behaviors because they do not model the
specific ways these systems execute instructions and move
data. As a result, validation frameworks must be able to model
and stimulate these heterogeneous execution pathways, which
general-purpose techniques are not built to handle.

Verification becomes even harder when both the machine
code (firmware) and the hardware are customized. One major
challenge is how to generate valid test cases that follow the
specification of the custom hardware. Writing such test cases
manually is time-consuming, especially when the machine
code includes custom instructions that do not follow standard
ISA rules. Another problem is how to improve the quality
of test cases so they can reach complex corner cases while
monitoring the functional correctness of the implementation.
Random and constrained-random test generation often fail to
expose these cases because they are not guided by architecture-
specific knowledge. Existing tools and methods cannot be
reused easily in this setting because they were designed for

standard processors and assume uniform behavior, which is
not true for heterogeneous hardware accelerators.

C. Contributions

To address these challenges, we introduce Semantic-Guided
Test Generation (SGTG), a framework that fine-tunes LLMs
on previously unknown architectures to generate test cases
aimed at maximizing design coverage and ensuring functional
correctness in hardware implementations. Specifically, in this
paper, we make the following major contributions:

o Developed a framework to incorporate the hardware
prototype into a verification model that can be evaluated
for the design coverage as well as functional correctness.

o Proposed a method to fine-tune LLMs with the knowl-
edge of the hardware to generate valid input programs.

o Designed an automated compilation method that verifies
the semantics of the generated programs and converts
them into machine code.

o Automated feedback based on the design coverage in the
form of a prompt engineering approach to improve the
LLM’s generated code output for the next iteration.

The remainder of the paper is organized as follows. Sec-
tion II provides necessary background and surveys related
efforts. Section III describes our test generation framework.
Section IV presents the experimental results. Finally, Sec-
tion V concludes the paper.

II. RELATED WORK

LLMs are a variant of transformer models [21] designed
to generate text in response to input prompts. Depending
on the specific LLM, these prompts can take many forms,
with conversational chat interfaces being among the most
common. LLMs encode a vast knowledge base during pre-
training by learning statistical patterns and associations from
large-scale text corpora. Although this knowledge is general-
purpose, task-specific behavior can be guided or enhanced
using carefully constructed prompts—a process often referred
to as “prompt engineering” or “in-context learning”, which
allows the model to specialize for tasks such as test genera-
tion, specification interpretation, or hardware-aware reasoning
without retraining. In this section, we first review application
of LLMs for implementing hardware designs. Next, we survey
prior research efforts in using LLMs for hardware validation.

A. Hardware Design and Validation using LLMs

LLMs are widely used for generating hardware implemen-
tations. Wang et al. [22] propose ChatCPU, an agile platform
that integrates large language models into the early stages of
RISC-V CPU development. Bhandari et al. [11] and Firouzi et
al. [23] investigate LLM-assisted hardware generation, where
prompts help generate Verilog modules from natural language
descriptions. Similarly, Huang et al. [24] and Liu et al. [25]
propose frameworks that use LLMs to automate RTL gener-
ation and provide suggestions for hardware design, offering
varying degrees of interactivity and customization through
prompt templates. Ma et al. [26] extends this idea to parsing
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Fig. 2: Overview of our proposed methodology. Conversations are carried out between the SGTG framework and the LLM as
multiple conversation instances. Initial Prompt is common for all the instances, while Test Scenarios Prompts initialize each
of the conversations. Interactions between conversation instances are outlined by =, while other interactions are outlined by
—. Error Feedback and Coverage Feedback prompts are continuously applied until the design coverage is met.

and understanding Verilog code using LLMs, enabling natural
language queries over hardware modules. There are recent ef-
forts using prompt engineering with LLMs for test generation
for general-purpose hardware implementations. Deng et al.
introduce LLM-TG [10], an automated test generation frame-
work that utilizes large language models, particularly GPT-
4 [9], for validating processor designs. While this approach
is promising for validating known processor architectures,
the automated prompting is not helpful when dealing with
unknown architectures (e.g., GPU with new code syntax).
Hassan et al. [27] presented an approach that integrates LLMs
into formal verification by coupling them with mutation testing
techniques. AutoBench can automatically generate Verilog
testbenches based on the description of an RTL design [28].
However, Verilog testbenches are not suitable for accelerator
architectures that need to run assembly programs.

B. Limitations of Existing Test Generation Efforts

While existing test generation techniques have shown
promise in generating input programs for validating general-
purpose processor designs, they are not suitable for validation
of programmable hardware accelerators for the following
reasons. Most existing approaches focus on single-core pro-
cessors and do not extend to multicore architectures or parallel
execution environments. Moreover, directly applying existing
LLM-based techniques to heterogeneous hardware validation
has limited effectiveness. This is primarily due to the lack
of formal, standardized specifications for application-specific
hardware accelerators, which prevents LLMs from learning
or reasoning about the nuanced instruction-data semantics.
Moreover, while threads are handled by operating systems
in general-purpose processors, modern accelerators often im-
plement thread scheduling and management at the hardware
level, requiring this behavior to be explicitly captured through
prompts or auxiliary context. The complexity further increases
with host-device coordination, hardware-managed pipelines,

and specialized microarchitectural features such as memory
hierarchies or caching policies. These factors introduce subtle
behaviors that are difficult for LLMs to infer without explicit
modeling. As a result, without a customized prompting strat-
egy or architectural guidance, existing LLM-based methods
are not able the generate valid input (test) programs. As
demonstrated in Section IV, even if existing efforts generate
valid test cases, they cannot cover corner cases, leading to
inferior coverage of heterogeneous hardware platforms.

III. SEMANTIC-GUIDED TEST GENERATION USING LLMSs

Figure 2 provides an overview of our proposed method-
ology for validating programmable hardware accelerators.
Our framework assumes the availability of the specification
document containing the architectural design details and the
initial test plan. We construct the Initial Prompt (denoted
as (D) based on the architectural specification. Similarly, we
create multiple conversation instances based on the test plan,
each conversation is isolated from the others and assigned a
distinct task using Test Scenarios Prompts (denoted as (2)).
Each conversation instance generates input assembly programs
targeting the design under test. The generated assembly test
cases are passed to a custom compiler, which analyzes the
code for syntax and semantic errors. If any issues are found, an
Error Feedback Prompt (denoted as (3)) is generated using
predefined templates; otherwise, the compiler translates the
code into machine instructions. The compiled program is then
simulated on the hardware design, during which both coverage
and functional correctness are assessed. Based on the coverage
results, we generate Coverage Feedback Prompts (denoted as
@), which guide the LLM to improve the generation of future
test programs and enhance design coverage. The remainder of
this section describes each of these steps in detail.

A. Construction of Initial Prompts based on Specification

LLMs typically possess general knowledge of assembly
instructions for general-purpose architectures, such as x86,



ARM, and RISC-V. However, as discussed in Section II, they
lack awareness of the specialized characteristics of heteroge-
neous accelerators. Therefore, to enable accurate code genera-
tion, it is necessary to introduce the LLM to the programmable
hardware accelerators and their instruction sets.

Since the LLM begins with no prior knowledge of the target
architecture, the initial prompt must establish all essential ar-
chitectural features and include representative examples of the
code syntax. Given the model’s familiarity with conventional
ISAs, it is crucial that the prompt clearly emphasizes the
unique nature of the target architecture, explicitly outlining
only the valid components, instruction semantics, and data
conventions, to prevent confusion with known general-purpose
systems. For this purpose, we construct the initial prompt such
that it contains the following four attributes.

Design Purpose: Heterogeneous computing architectures are
designed for specific application domains to accelerate targeted
computations. As a result, the initial prompt must clearly
communicate the design intent and distinguish it from general-
purpose CPU-based architectures. For example, in a SIMD-
based design, generating tests that only involve scalar op-
erations is inadequate. By explicitly instructing the LLM to
test multi-threaded scenarios using vectors or matrices, the
model can produce more appropriate test cases, mirroring how
domain experts would manually construct tests to validate
parallel execution paths.

Functional Units: The prompt should include detailed infor-
mation about the different functional units in the architecture,
such as their quantity, supported operations, and placement
within the design. For instance, in a GPU architecture, multiple
functional units are present, each serving a distinct purpose.
ALUs handle arithmetic operations, while Load and Store
Units (LSUs) manage memory operations such as reading from
and writing to global memory.

Valid Registers: Different architectures impose varying con-
straints on how their components are implemented and uti-
lized. For instance, the number of available registers and
their usage across instructions can differ significantly. Some
architectures may include fixed-value registers that cannot be
modified through machine code. To capture such constraints,
we define a valid registers attribute that encapsulates this
information and explicitly include it in the initial prompt to
the LLM. This ensures that the model adheres to the design-
specific register semantics during code generation.

Valid Instructions: Finally, the initial prompt must include a
detailed description of the instruction set used by the acceler-
ator hardware implementation. Since these instructions differ
significantly from those of general-purpose architectures, they
must be explicitly defined in relation to the hardware features
they target. In particular, the mapping between instructions and
their corresponding registers should be clearly specified. Given
the potential size of the instruction set, this portion of the
prompt is often the most extensive. To manage this complexity,
the instruction definitions can be introduced iteratively, divided

across multiple prompt segments.

Figure 3 (item (D)) shows an illustrative example of an initial
prompt created for testing a GPU hardware implementation.

B. Test Generation with Conversation Instances

Once the LLM has a basic understanding of the architecture,
it can be prompted to generate test cases aimed at improv-
ing design coverage and verifying functional correctness. To
streamline this process, test generation is organized into multi-
ple conversational instances with the LLM, each treated as an
independent session, with no shared memory between them.
The purpose of using separate conversation instances is to
focus each one on a distinct high-level functionality supported
by the accelerator hardware outlined by the test plan in the
specification. Figure 3 (item (2)) shows an illustrative example
of a conversation prompt used for starting a conversation
instance with the computing task of an elementwise matrix
addition. In practice, multiple conversation instances can run
in parallel, with each instance focusing on a different com-
putation task, for example, one may target simple arithmetic
operations such as elementwise matrix addition, while another
may handle more complex tasks like matrix multiplication.

Conversation instances streamline the validation process in
two main ways. First, automated feedback prompts within each
instance allow iterative refinement, continuing the dialogue un-
til the generated programs improve design coverage. If a con-
versation becomes misaligned or diverges from the intended
architecture, it can be terminated early without affecting other
instances. Additionally, this instance-based structure supports
functional correctness validation, as discussed in Section III-D.

C. Compilation, Simulation and Error Correction

The generated input programs from the LLM are in the
form of assembly instructions. To execute these on the target
hardware, the assembly code must be translated into machine
code (binary representation). Since programmable hardware
accelerators are often designed with compiler integration in
mind, we modify the associated compiler to assess the cor-
rectness of the generated programs in the following two ways:

Syntax Errors: These refer to violations of the instruction
set’s grammar, such as invalid opcodes, incorrect operand for-
mats, or misuse of pseudo-instructions. The compiler frontend
detects these issues during the parsing and code generation
stages. Providing feedback on syntactical constraints to the
LLM helps it learn valid instruction patterns and structure.

Architectural Issues: These arise when the generated program
exceeds architectural limits or misuses hardware resources.
Examples include referencing non-existent registers, exceeding
immediate value ranges, or triggering illegal memory access
patterns. These violations are typically detected during register
allocation, instruction scheduling, or linking.

The compiler detects any violations of syntax or architec-
tural constraints. These violations are incorporated into the
subsequent prompts via the automatic feedback generation
process outlined in Section III-E. This validation loop ensures
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addition. Can you write a test for matrix addition?
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Fig. 3: Illustrative examples of four types of prompts used in our framework: (D) initial prompt created in Section III-A, 2
prompt that initialize each conversation instance in Section III-B, 3) sample prompt that contains errors of the generated
program found by the compiler in Section III-C, and &) prompt that contains the coverage feedback in Section III-D.

that the test programs satisfy to both the syntax and archi-
tectural constraints of the target architecture. The compiler
translates the assembly code into machine (binary) code and
simulates it on the hardware design. The absence of compiler
errors does not guarantee logical correctness, as programs
may still exhibit issues such as race conditions or infinite
loops. To detect such cases, a timeout monitor is integrated
into the simulation environment, which terminates execution if
it exceeds a predefined duration. Timeout-related failures are
also mapped to predefined error templates and incorporated
into the error feedback prompts for iterative refinement.

D. Coverage Analysis and Functional Correctness

To evaluate the effectiveness of the generated test cases,
we perform RTL coverage analysis using a coverage-driven
workflow that supports incremental aggregation across mul-
tiple simulation runs. This allows us to measure how each
newly generated test case contributes to exercising the design.
The coverage analysis is performed across multiple standard
metrics, including line coverage, toggle coverage, and combi-
national logic coverage.

e Line coverage measures whether each line of RTL code
has been executed during simulation, helping identify
unreachable code or unused logic.

o Toggle coverage tracks changes in the value of individual
signals (from 1 — 0 and 0 — 1) across clock cycles,
which is useful for detecting static or unused signal paths
that may not be activated by existing tests.

o Combinational logic coverage observes the activation of
unique input combinations to combinational blocks, al-
lowing for a fine-grained view of how thoroughly the
logic expressions have been exercised.

Once the coverage reports for each of the simulations are
obtained, we merge them incrementally over successive sim-
ulation runs with the updated input programs generated from
the LLM to monitor the coverage improvement. In addition
to design coverage, functional correctness is evaluated after
each simulation run to ensure the design performs as intended
according to the specification. As described in Section III-B,
tests are generated through separate conversation instances
focused on different computation tasks. Functional correctness
is assessed by comparing the simulation output against a
golden reference model (specification). Any test that fails to
produce the expected result is flagged for manual analysis.
Such failures may indicate either incorrect test generation, due
to misinterpretation of instruction semantics, or a functional
bug in the hardware design that requires correction.

E. Automated Generation of Feedback Prompts

Feedback prompts for each of the conversation instances
are generated automatically based on the outcomes of Sec-
tion III-C and Section III-D, eliminating the need for manual
intervention. Our framework supports two types of feedback
prompts: error feedback and coverage feedback.

Error Feedback: The compiler identifies issues such as syntax
errors, invalid registers, and unsupported instructions in the
generated program. Similarly, run-time logical errors are cap-
tured by the simulation environment. To address these issues,
we define a set of prompt templates corresponding to each type
of issue. When an error is detected by either the compiler or
the simulation environment, the system selects a corresponding
template and generates a tailored feedback prompt. If multiple
issues are identified, their respective prompts are concatenated



into a single, consecutive prompt message and routed back
to the relevant conversation instance for correction. Figure 3
(item (@) shows an illustrative example of an error feedback
prompt created for testing a GPU hardware implementation.

Coverage Feedback: The second type of automated feedback
prompt is based on design coverage metrics. It informs the
LLM about which specific coverage metric is lacking. This
feedback can be provided with granularity down to the module
level in the hardware description. Figure 3 (item (@)) shows an
illustrative example of a coverage feedback prompt created for
testing a GPU hardware implementation.

Both feedback prompts conclude with asking the LLM to
incorporate the feedback into the program created under the
current conversation. This process is repeated until the design
coverage reaches a desired percentage or remains stagnant.

IV. EXPERIMENTS

In this section, we first outline our experimental setup. Next,
we discuss the failure rate (compiler errors and logical errors)
of the generated programs. Then, we discuss the results in
terms of the design coverage improvement. Finally, we discuss
the functional bugs identified by our framework.

A. Experimental Setup

To evaluate the effectiveness of the proposed framework,
we selected a GPU architecture as a case study. While this
evaluation focuses on a GPU, the framework is generalizable
to other heterogeneous accelerator architectures, provided a
simulatable hardware implementation is available. For our case
study, we used a SystemVerilog implementation of the tiny-gpu
architecture [29], a fully functional GPU that supports SIMD
instructions. This implementation includes two compute cores,
each featuring four threads with dedicated functional units.
This reconfigurable architecture is widely used in academic
settings for both teaching GPU architecture and conducting
experimental research. The version we selected for our evalu-
ation expands to 20,272 lines of unrolled Verilog code.

In order to evaluate our methodology against different LLMs
with varying parameters, we have selected GPT-40 and GPT-
4.1 mini models from OpenAl [9]. We have used Sv2V [30]
to convert the SystemVerilog implementation of the tiny-gpu
architecture [29] to a Verilog implementation. We have used
Icarus Verilog [31] for simulation of the implementation.
We have utilized Python v3.13.3 and cocotb v1.9.2 [32] for
developing scripts for automated feedback generation and
management of the testbenches for simulation. All code cov-
erage metrics are calculated with covered v0.7.10 [33].

We have compared our semantic-guided test generation
(SGTG) framework with the following three approaches.

« Baseline: We use GPT-40 without any feedback prompts.
« Random: Implemented a random program generator that
randomly chooses a valid instruction and randomly as-
signs valid registers appropriate to the instruction. For
branch instructions, the branch condition code is also
chosen at random, with the jump to location chosen

as one of the lines in the active program. The random
program always concludes with the “RET” instruction.

o LLM-TG [10]: State-of-the-art LLM-based test genera-
tion for validation of general-purpose processors.

¢ SGTG-GPT-40: Our proposed approach that guides
GPT-40 with feedback prompts as outlined in Figure 2.

e SGTG-GPT-4.1-mini: Our approach that guides GPT-4.1
mini with feedback prompts as outlined in Figure 2.

B. Success Rate of Generated Programs

We have generated 110 test programs for each of the five ap-
proaches (Baseline, Random, LLM-TG [10], and our approach
with GPT-40 and GPT-4.1 mini), totaling 550 test programs.
Figure 4 presents the success rate. Our proposed approach
achieved significantly higher success rate compared to random,
LLM-TG, and baseline. Specifically, GPT-4o0 achieved the
highest success rate at 87.3%, followed by GPT-4.1 mini at
60.0%. In contrast, random generation resulted in a 35.5%
success rate; while many of them were syntactically valid,
they frequently encountered issues such as race conditions
or infinite loops, ultimately failing during execution due to
timeouts. LLM-TG generated many invalid test cases (11.8%
success rate), primarily because it attempted to use instructions
and assumptions from general-purpose architectures, failing to
align with the semantics of the GPU architecture. Baseline
lacked any feedback mechanism, had a 100% failure rate.

100 -
B Success
80+ mm Failure
(]
= 60
5
5 40+
a
204
SGTG- SGTG- Random LLM-TG Baseline-
GPT-40 GPT-4.1 mini GPT-40

Fig. 4: Comparison of test program generation success rate
across five approaches. The first two columns show that our
approaches (SGTG-GPT-40 and SGTG-GPT-4.1 mini) achieve
the highest success rates. Randomly generated programs and
LLM-TG exhibit low success rates. The baseline results in a
100% failure rate due to its lack of architectural knowledge.

C. Design Coverage Results

Based on the test plan, more than eight conversation in-
stances were carried out during our experiments, including
operations such as elementwise matrix addition, elementwise
matrix subtraction, elementwise matrix multiplication, regular
matrix multiplication, and elementwise matrix division. Fig-
ure 5 contains a sample test case produced by SGTG with
GPT-4o for elementwise matrix addition on 8 threads between
two 4 x 2 matrices. From prior feedback, the LLM learned that
achieving high code coverage requires all possible instruc-
tions, especially the branch instruction to cover the branch
functionality for both the state registers and threads coverage.
Without the code coverage feedback, the branch instruction



.threads 8 Data Memory
.data 0 255 1 128 64 32 0 1 »

.data 1 1 254 128 0 224 255 1 _
MUL RO, %blockIdx, $blockDim

ADD RO, RO, S%threadIdx Thread Indexing
CONST R1, #0

coner o [ scheduter ]
CONST R3, #16

CONST R4, #128

CONST R5, #0

ADD R6, R1, RO Logic Operations
LDR R6, R6

ADD R, R2, RO —>
on 21, 57 FEEE
CMP R6, R4

Bz SIKIE_INOP Logic Operations
NOP

sre_yoe: > EEEE
ADD R8, R6, R7

ADD B8, R6, K7
ADD R9, R3, RO

STR R9, RS8 Finalizing

RET

Fig. 5: Sample program generated by GPT-40 with our pro-
posed approach for elementwise addition of two 4 x 2 matrices.

(BRnzp) would not have been used, as the minimal viable
product for elementwise matrix addition does not require a
branch instruction.

To demonstrate the effectiveness of code coverage improve-
ment and error handling, we analyzed each conversation in-
stance in detail. Table I shows a detailed view of the coverage
progression from one such randomly selected conversation
instance. The table shows the improvement of accumulated
coverage for four coverage metrics (line, 0—1, 1—0, and
combinational) with our framework using GPT-40. It can
be observed that LLM starts generating programs with four
threads and quickly realizes it needs to increase the thread
number to achieve better coverage. In the third test, it produces
an invalid program, however, the feedback mechanism quickly
rectifies it in the next iteration. Similar adaptive behavior is
observed across other conversation instances as well.

To illustrate the effectiveness of our proposed approach
on design coverage, we explore various coverage metrics.
Among these, toggle coverage is particularly challenging to
achieve due to the data-dependent behavior of the imple-
mentation. Nevertheless, our technique significantly improves
toggle coverage compared to other methods. Figure 6 shows
the accumulated bit-level toggle coverage across all 110 test
cases compared to randomly generated test cases. Specifically,
toggle transitions from 0 — 1 and 1 — 0 are plotted in
Figure 6a and Figure 6b, respectively. Our approach with
GPT-40 achieved the highest toggle coverage: 83% for 0—1
transitions and 82% for 1—0. GPT-4.1 mini followed with

TABLE I: Accumulated coverage for four coverage metrics
(line coverage, 0—1 and 1—0 toggle coverage, and com-
binational logic coverage) based on a conversation in our
framework with GPT-4o0 that produced 12 test programs.

Test Line O0—1 1 — 0 Combinational Threads
1 93 32 30 78 4
2 96 42 39 83 4
3 invalid register 8
4 95 47 43 89 8
5 96 48 44 89 8
6 96 51 46 90 8
7 96 70 66 90 8
8 96 75 72 90 8
9 96 76 73 90 8
10 96 77 74 90 8
11 96 77 74 90 8
12 96 78 75 90 8

71% and 68%, respectively. In contrast, the random approach
only achieved 50% for 0—1 and 46% for 1—0. Similarly,
LLM-TG achieved only 50% toggle coverage. These results
demonstrate that our framework (with GPT-40 and GPT-4.1
mini) significantly outperform (33%) the existing approaches.

D. Analysis of Identified Functional Bugs

Our test generation framework successfully uncovered sev-
eral functional bugs in the hardware implementation of the
tiny-gpu architecture [29]. In this section, we discuss two
of them in detail. One critical issue involved thread-level
branching behavior within a single compute core. In the
design specification, each thread is expected to evaluate branch
conditions independently, allowing them to follow different
execution paths based on their own data. However, the actual
implementation incorrectly forced all threads in a compute
core to follow the same branch path—specifically, the path
chosen by a single thread—regardless of their individual
condition evaluations. For example, if a branch depends on
whether a thread’s register value is greater than zero, some
threads should execute the branch while others should not.
Instead, all threads were taking the same path as the first
thread that evaluated the branch, leading to incorrect behavior
and violating the expected semantics of per-thread execution.

Another functional bug identified through this process in-
volved incorrect register updates in certain threads. Specifi-
cally, some threads failed to correctly write values to their
destination registers. Specifically, a thread that is supposed
to store a computed value into a register leaves the register
unchanged. As a result, any subsequent operation or test that
relies on the expected value in that register would fail, reveal-
ing inconsistencies between intended and actual behavior.

V. CONCLUSION

LLMs are promising for validation of general-purpose pro-
cessors. However, LLMs are not suitable for verifying pro-
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Fig. 6: Accumulated code coverage of all test cases produced by the proposed methodology with GPT-40 and GPT-4.1 mini, as
well as LLM-TG and random test generation. Each method produced 110 assembly test cases. Test cases without a plot point
(e) indicate that the test case resulted in a compilation/logical error, and thus could not be simulated and scored for coverage.

grammable hardware accelerators due to the lack of training
data for such accelerator implementations. We presented an
automated test generation framework that guides LLMs with
feedback prompts based on coverage and errors for func-
tional validation of hardware accelerators. Our feedback-based
framework is able to generate test cases that can achieve a
33% increase in coverage over state-of-the-art for hardware
accelerated designs. These feedback prompts sufficiently in-
formed the LLM about the code choices it made, allowing
for it to expand on the code to improve coverage by testing
additional control paths or by correcting errors located within
the generated code. In addition to the improved coverage,
the test cases generated with our methodology can test for
functional correctness, allowing for the discovery of functional
bugs within the design. In fact, we were able to detect two
critical bugs within the hardware implementation of a widely
used open-source GPU architecture.
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