
Adversarial Assertions
Prabhat Mishra

University of Florida, Gainesville, Florida, USA

Abstract—Assertions are statements that can be embedded
inside any software program or hardware implementation for
checking expected behaviors. They are widely used for validation
of functional behaviors as well as faster bug localization. There
are no prior efforts to investigate whether the assertions can
be exploited by an adversary. In this paper, we demonstrate a
timing side-channel attack by exploiting the assertion behaviors.
Specifically, we show that an adversary can get unauthorized
data by exploiting branch prediction methodologies as well as
exception handling delay in assertions. Experimental results
demonstrate that our attack is successful on multiple Intel
and AMD processors. State-of-the-art Spectre fuzzing tools
are unable to detect the attack from adversarial assertions.
Therefore, the designers should consider the security implications
before introducing assertions in their designs. We also propose
a mitigation technique to defend against adversarial assertions.

Index Terms—Assertion-based validation, side-channel vulner-
ability, transient execution attack, hardware security

I. INTRODUCTION

Assertion-based validation [1] is widely used for verifying
the implementation. Assertions are primarily used to verify
that the program operates as intended by checking for true
conditions at runtime. Assertions can also be extended for
formal verification to provide mathematical guarantees that
a condition will hold true. When these conditions fail, the
assertion triggers an exception or halts the program, thus
providing a clear signal of unexpected or erroneous behavior.
This mechanism is particularly useful during development and
testing phases for identifying and debugging errors. However,
assertions can also play a significant role in production
environments. They enhance system observability and are
crucial for diagnosing issues during the operational phase.
Specific assertions are retained in the production environment
for faster debugging during post-deployment failure analysis.
Therefore, it is important to ensure that the assertions do not
reveal sensitive data. If an assertion includes sensitive data
and this information is leaked through an error message or a
log, it could be considered an information leakage. Moreover,
behavior of an assertion can be exploited for side-channel
attacks.

Side-channel leakage refers to the disclosure of information
through indirect channels instead of direct data breaches.
These indirect channels may utilize physical side channels
(e.g., power, electromagnetic emanation, etc.) as well as
micro-architectural side channels. Unlike conventional attacks
that target data directly, micro-architectural side channels
exploit the inherent behaviors of a processor’s architectural

components, which are used for out-of-order or speculative
execution. These actions frequently result in instructions being
executed out of sequence, earlier than anticipated in-order
execution, with the aim of enhancing performance. Transient
execution occurs when instructions are executed out of order
due to an error or unexpected behaviour, leading to inadvertent
changes in the microarchitectural states of a CPU. While
the outcome of transient execution may not be apparent at
the architectural level, it has the capacity to alter microar-
chitectural states, including cache, load/store buffers, etc.
By analyzing the timing and resource utilization differences
caused by a transient execution, adversaries can recognize
sensitive information using CPU side-channel attacks such
as Spectre [2], [3], Meltdown [4], Foreshadow [5], [6] and
microarchitecture data sampling (MDS) [7], [8], [9], [10],
[11].

In this paper, we utilize assertions to generate a transient
execution scenario which leads to a side-channel attack. This
attack does not directly breach data but infers it through the
observation of system behavior such as computation timing.
In modern computing environments, where micro-architectural
features like speculative execution are used to enhance per-
formance, assertions could unintentionally facilitate transient
execution scenarios. These scenarios occur when instructions
are executed out of their intended sequence, potentially alter-
ing the state of CPU components like caches or buffers and
providing avenues for adversaries to gain access to sensitive
data.

Figure 1 illustrates how assertions can be exploited by an
adversary to orchestrate a timing attack. Assertion statements
inherently behave like conditional branches, which processors
must evaluate to determine the subsequent flow of execution.
When encountering a branch, the processor uses branch pre-
diction to anticipate the likely path and speculatively executes
the subsequent instructions. This speculative execution can
lead to transient execution scenarios, where operations are
performed on the basis of predictions rather than confirmed
outcomes. Such actions can expose sensitive data if the specu-
lative path affects the state of microarchitectural components,
such as cache lines. Moreover, when an assertion fails, it
triggers an exception, which is a significant deviation from
the normal execution flow, typically handled by specialized
exception handling routines. This exception handling often
incurs a latency penalty, prompting the processor to continue
speculatively executing other instructions rather than waiting
for the resolution of the exception. This behavior further ex-

assert

assert

Exploit Brach
Predictor

Exploit Exception
Handling delay

Speculative
Execution

secret

Timing Attack

As
se

rti
on

s
St

at
em

en
ts

Cache

secret

Victim Process Attacker Process

Fig. 1: Overview of our proposed attack using adversarial assertions. A cache timing attack can exploit branch prediction
mechanism as well as exception handling delay in assertions to leak unauthorized data.

tends the window for transient executions, potentially altering
the state of cache lines that store sensitive data. These transient
modifications to the cache state can be exploited through cache
timing attacks, such as the Flush and Reload technique [12]. In
such attacks, an adversary measures the time it takes to access
memory locations; vast differences in these timings can reveal
whether data was accessed from the cache.

In this paper, we present adversarial assertions that can
be used for side-channel attack to leak unauthorized data.
Specifically, this paper makes the following contributions.

• We have identified a new vulnerability in assertion-based
validation, referred as adversarial assertions.

• We present side-channel attacks by exploiting branch
predictor and exception handling delay in assertions. Our
proof-of-concept code is publicly available [13].

• Experimental evaluation demonstrates that our proposed
attack is successful on multiple machines with AMD and
Intel processors.

• We show that state-of-the-art Spectre fuzzing tools cannot
detect our attack using adversarial assertions.

• We explore potential countermeasures to defend against
adversarial assertions.

This paper is organized as follows. Section II provides
relevant background and surveys related efforts. Section III
defines the threat model for the attack. Section IV describes
the attack using adversarial assertions. Section V explores
potential countermeasures. Section VI presents experimental
results. Finally, Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

This section first provides relevant background on out-of-
order execution. Next, it surveys related efforts in transient
execution attacks and cache timing attacks. Finally, it moti-
vates the need for this work.

A. Background: Out-of-Order Execution

Out-of-order execution is a technique that allows a pro-
cessor to optimize throughput by rearranging the sequence
of instructions, provided the final results remain accurate.
The foundation of out-of-order execution lies in the Tomasulo
algorithm [14], [15], which utilizes a unified scheduler known

as the Reorder Buffer (ROB) to manage the original program’s
instruction sequence while preserving architectural registers.
This process consists of three primary stages. First, an in-
order register allocation and renaming phase mitigates Write-
after-Write (WAW) and Write-after-Read (WAR) hazards
through register renaming and dispatches micro-operations
(µ-operations) to the ROB. Next, an out-of-order instruction
execution phase addresses Read-after-Write (RAW) hazards by
stalling µ-operations until all necessary operands are available,
and then dispatches instructions to respective execution units.
Finally, an in-order retirement phase releases the instructions
in their original order, and writes the results to the respective
architectural registers. If transient execution occurs during the
retirement phase, the ROB detects it and halts the process,
resulting in the flushing of all instructions executed after the
transient event, followed by re-execution without speculative
actions.

B. Related Work

In this section, we survey related efforts in two broad areas:
transient execution attacks and cache timing attacks.

Transient Execution Attacks: Modern processors exhibit
security vulnerabilities in their microarchitectural features,
leading to the leakage of sensitive information through tran-
sient execution. Various attacks, such as Spectre [2], Melt-
down [4], Downfall [16] and microarchitecture data sampling
(MDS) [7], [8], [9], take advantage of these vulnerabilities.
Meltdown [4], is a security vulnerability that takes advantage
of out-of-order execution and side-channel attacks to access
the memory of the kernel space through a process operating in
user space. In contrast, Spectre [2], capitalizes on speculative
branch prediction to reach arbitrary memory within a victim
process Downfall [16] utilizes the gather instruction in high-
performance x86 CPUs to disclose data across user-kernel
boundaries, processes, virtual machines, and trusted execution
environments. MDS is a Meltdown-type attack that leaks
data through internal buffers like store [7] line-fill [8],
and load ports buffers [8]. A summary of existing work
on transient attacks across different architectures (Intel and
AMD) is provided in Table I. It is important to note that the
published results suggest the susceptibility of both AMD and

TABLE I: Different type of transient execution attacks on two architectures (AMD and Intel).
Spectre Meltdown Downfall Store Buffer-based Fill Buffer-based Load Buffer-based

Intel [2] [4] [16] [7], [17] [8], [9] [8], [18]
AMD [2] [17] [18]

Intel CPUs to Spectre attacks, whereas Meltdown and MDS
attacks are vulnerabilities that exclusively affect Intel CPUs.

Although both Intel and AMD are architectures that belong
to the x86 family of instruction set architectures, their imple-
mentations differ significantly [19]. Due to this reason, Intel
CPUs are more susceptible to MDS/Meltdown-type attacks
than AMD CPUs. The major distinction lies in Intel CPUs
not flushing underprivileged TLB hits, a characteristic absent
in AMD’s load execution units/TLB design, where privilege
checking for loads is applied differently. This design choice
makes AMD architecture show more resistance to Meltdown
attack comapred to Intel. MDS attempts to leak data through
microarchitectural structures, and while Intel CPUs use vari-
ous approaches like TSX, simultaneous multithreading, and
microcode assists faults for MDS attacks, such errors are
handled differently by AMD CPUs, rendering MDS attacks
more challenging on AMD machines. Techniques employed
by AMD to prevent MDS include TLB flushes across kernel
and userspace. Prior efforts have attempted Meltdown/MDS-
type attacks on AMD CPUs [17], [18]. Even without the secret
residing cache, there are instances where secret can be leaked
through buffers. For example, [17] shows leaking of data
through store buffer while [18] shows leaking through the
load queue.

Cache Timing Attacks: Processors use memory buffers,
known as caches, to minimize memory latency, utilizing the
spatial and temporal patterns of accessed data. These caches
consist of multiple levels, including L1 (primary cache) and
L2/L3 (secondary cache), each possessing distinct speed and
size attributes. CPU cache timing attacks have emerged due to
the significant difference in access cycles between the cache
and main memory [20]. These attacks, such as Flush+Reload
and Prime+Probe, exploit timing information to distinguish
whether data comes from the cache or main memory. In
the Flush+Reload method [12], the attacker initiates a cache
flush to remove existing data, then reloads the data, and
finally measures the cache access time for a cache hit, en-
abling the identification of data accessed by the victim. In
Prime+Probe [21], the attacker fills all cache ways without
flushing the cache, subsequently computing the access time to
recognize a cache miss, thereby revealing data accessed by the
victim. There are variations introduced to Flush+Reload such
as Evict+Reload [22] and Flush+Flush [23]. Evict+Reload
technique is a modification of the flush process where a
specific memory is removed from the cache by accessing
addresses mapped to the same cache set. However, a drawback
of this method is the prerequisite knowledge of virtual-
to-physical address mapping. If the victim has loaded the

memory line into the cache, flush takes longer to complete.
By substituting Reload with Flush in Flush+Flush, reduces
the number of cache misses incurred by reload and avoids
triggering prefetching, thereby enabling the attack to evade
certain detection mechanisms. In this paper, we employ the
Flush+Reload method combined with the speculative execu-
tion of an adversarial assertion attack to identify the leak.

To the best of our knowledge, there are no prior efforts
to exploit assertions for leaking sensitive data through cache
timing attacks. This paper is the first attempt at timing side-
channel attack by exploiting branch prediction and exception
handling delay in assertions.

C. Motivation: Spectre Fuzzing Fails to Detect Adversarial
Assertions Attacks

SpecFuzz [24] uses a fuzzing methodology for the dynamic
detection of Spectre attacks. This approach introduces specula-
tive execution to the fuzzing process by integrating speculative
execution logic into the program during compilation. Subse-
quently, it relies on the random mutation of program inputs to
identify speculative execution errors as they manifest during
program execution.

Since the branch prediction exploitation is similar to Spectre
attack, we applied the SpecFuzz to detect our attack. When
the SpecFuzz is applied to the adversarial assertions attack
code, it was not able to detect the branch predictor exploita-
tion behavior. SpecFuzz creates mispredictions by compelling
the application to make incorrect branch decisions at each
conditional jump. For our attack, this creates an exception
with abnormal termination. Unfortunately, SpecFuzz did not
handle this termination correctly, resulting in false-negative
results even when the adversarial attack was present. While
SpecFuzz is effective for identifying Spectre attacks in certain
scenarios, it was not able to detect our attack of adversarial
assertions.

III. THREAT MODEL

Our threat model assumes that an attacker aims to exploit
vulnerabilities in a target system’s microarchitecture and spec-
ulative execution mechanisms. The goal of the attacker is to
gain unauthorized access to sensitive data, by exploiting the
speculative execution behavior of the processor. The threat
model assumes that attackers possess knowledge of adversarial
assertions in the target system and can use this understanding
to craft and execute attacks. The attack can occur within the
same user space when an attacker exploits assertions in one
process to gain access to sensitive information from another
process running under the same user account. The attack can
also cross user space boundaries, where an attacker would like

1 if (x <= buffer_size)
2 int y = buffer[x];

(a) Simple if statement

1 assert(x <= buffer_size);
2 int y = buffer[x];

(b) If statement in Listing 2a converted to an assertion

1 jg .L2
2 movl -24(%rbp), %eax
3 cltq
4 movl -16(%rbp,%rax,4), %eax
5 movl %eax, -20(%rbp)

(c) Assembly conversion of Listing 2a

1 jle .L2
2 leaq __PRETTY_FUNCTION__.2331(%rip), %rcx
3 movl $8, %edx
4 leaq .LC0(%rip), %rsi
5 leaq .LC1(%rip), %rdi
6 call __assert_fail@PLT

(d) Assembly conversion of Listing 2b

Fig. 2: An if statement and its equivalent assertion represented using both C and assembly language. (a) and (b) show an if
statement and its assertion equivalent, respectively, is C language. (c) and (d) show the assembly versions of the C specifications
of (a) and (b).

to leak information from a different user’s space or a system
process, potentially targeting shared hardware resources.

IV. ADVERSARIAL ASSERTIONS ATTACK

In this section, we present our side-channel attack using
adversarial assertions. Listing 1 shows a sample code snippet
of an adversarial assertion. The second line is an assertion
statement which checks if the value of the index x is less
than or equal to the size of the array1. If x is less than or
equal to array1 size, the assertion passes, and the program
continues execution. If the assertion condition is not met,
where x exceeds the size of array1, and the assertion will
fail and raise an exception. The third line retrieves an element
from array2 using the value of x to index an element in
array1 and multiplying it by page size.

Listing 1 An example code snippet to illustrate the assertion
exploitation for side-channel attack.

1 void victim_function(size_t x) {
2 assert(x <= array1_size);
3 val = array2[array1[x] * PG_SIZE];
4 }

In Listing 1, the assertion statement can be considered as a
speculative gadget where the functionality of the assertion can
be exploited to a transient execution behavior, converting the
assertion to act as an adversary. The third line of the Listing 1
can be considered as the disclosure gadget which enables
access of a victim’s confidential information and transmit that
information discreetly over a covert communication channel.
We first provide insights into the assertion behavior that
involves two components: branch prediction and exception
handling. Next, we describe how an attacker can exploit
branch prediction as well as exception handling of assertions.

A. Assertion Insights

Figure 2 shows the underlying details of an assertion and a
simple if statement. Figure 2a shows a conditional statement

that checks if the value of the variable x is less than the size
of a buffer. If this condition is met, y is assigned the value
of the element at index x within the buffer. Figure 2c shows
the assembly version of the code in Figure 2a. The first line
in Figure 2c is a conditional jump instruction. It checks the
greater condition and jumps to the label L2 if the condition
is true. In this case, it checks whether the x value is greater
than the buffer size and if the condition is true, jumps to
L2. Otherwise, the instructions from line 2 - 5 (Figure 2c)
are executed, which corresponds to the line 2 in Figure 2a.

Figure 2b illustrates a comparable functionality of the if
statement in Figure 2a using an assertion. Figure 2d shows
the assembly representation of the assertion statement in
Figure 2b. The first line (Figure 2d) is a conditional jump
instruction. It checks the less than or equal condition and
jumps to the label L2 if the condition is true. In this case,
it checks whether the x value is less than and equal to
buffer size. If the condition is true, it jumps to L2 (assertion
condition is met). If the assertion fails, it executes line 2 - 6
in Figure 2d. The line 2, 4 and 5 are instructions to gather
useful information for debugging, such as function name, line
number, etc. The instruction in line 6 calls a function named
assert fail, that is used for handling assertion failures.

In other words, this function is invoked when an assertion
fails in the program. The specific parameters (arguments) to
this function are set up in the previous instructions, which
include the condition being tested, the function name, and
related information.

This analysis reveals that the functional behavior of an
assertion consists of both branch condition and exception
handling. The next two sections describe how an attacker
can exploit branch condition as well as exception handling
in assertions to mount a timing side-channel attack.

B. Attack Utilizing Branch Predictor

This section explores the power of adversarial assertions
in exploiting the branch behavior. There can be two types

of conditional branches in a design: direct branch and indi-
rect branch. A direct branch is an instruction that explicitly
specifies the jump destination address, either in full or as
an offset from a register, within the instruction itself. In
contrast, an indirect branch is an instruction that contains a
reference to a register or memory address, which, in turn,
holds the information about the jump destination address.
The assertion statement can be considered as a direct branch
and this behavior can be exploited to perform a side-channel
attack.

n+1

Assertion
<Branch Condition>

Pass

Fail

[1...n
]

Branch Predictor
[Assertion: Pass]

Train

Attack

Fig. 3: Use of assertion to train the branch predictor for
speculative execution

Figure 3 shows how an assertion can be used to train the
branch predictor. First, we repeatedly (1 to n times) execute
the assertion such that the condition is correct. The branch
predictor learns that this specific branch (the one where the
assertion passes) is taken most of the time. After training the
branch predictor, we intentionally attempt to access memory
beyond the bounds. Since the branch predictor is trained to
assume the assertion will pass, we are able to access the
out-of-bound memory location. This out-of-bound memory
location value will be fetched to the cache, where we can
perform a cache timing attack [20].

Listing 2 A sample code snippet that can be used to train the
branch predictor [2].

1 train_x = rounds % array1_size;
2 for (int i = tries; i >= 0; i--) {
3 x = ((i % 6) - 1) & ˜0xFFFF;
4 x = (x | (x >> 16));
5 x = train_xˆ(x&(malicious_xˆtrain_x));
6 victim_function(x);
7 }

Listing 2 shows a procedure to train the branch predictor
for several times and then exploit the branch predictor. The
attack can be performed for several rounds to get accurate
results. The train x value is derived by getting the modulo
of rounds divided by array1 size. The value tries decides
how many times to train the branch predictor for each round.
In line 3 of Listing 2, if i is divisible by 6, the value of x is
assigned as 0xFFFF0000; otherwise, x is set to 0. Line 4
sets x to -1 if i is divisible by 6; otherwise, it sets x to 0. Line
5 sets value of x to malicious x value if i is divisible by 6;
otherwise, x is set to train x. Finally, the victim function is
called with the x value.

Table II provides an overview of Listing 2 with example
values. When rounds is set to 1 and array1 size is 10, the

TABLE II: Training branch predictor using Listing 2
i 5 4 3 2 1 0
x 1 1 1 1 1 0xDFF0

Assertion Pass Pass Pass Pass Pass Fail

value of train x is determined to be 1. If tries is configured
as 5, the variable i ranges from 5 down to 0. For each i value
that is not divisible by 6 (e.g., i = 5, 4, 3, 2, 1), the value of x
is set to 1 (which corresponds to train x). However, when i
is 0, x is assigned the value of malicious x (0xDFF0), which
surpasses the boundary of array1 size. For values of i from
5 to 1, the assertion is successful, leading to the training of
the branch predictor to choose the branch where the assertion
passes. However, when i equals 0, the assertion actually
fails. Despite this, the branch predictor incorrectly anticipates
the assertion to be true, which results in a miss prediction.
This miss prediction allows access to array1[malicious x],
an out-of-bounds memory location, causing the data from
this location to be loaded into the cache. A cache timing
attack [20] can then be used to identify the accessed value.
We use Flush+Reload [12] to identify the values in the cache.

C. Attack Utilizing Exception Handler

This section explores the power of adversarial assertions
in exploiting the exception handling time. We are using the
exception handling time to speculatively get out-of-bound
memory into the cache. In this case, we do not train the branch
predictor. We only use the assertion exception as the window.
Figure 4 illustrates our proposed attack strategy employing
assertion failure. When an assertion failure is triggered, the
control flow is directed to an exception handler. Ideally, execu-
tion should halt at the time of assertion failure. However, due
to the inherent out-of-order execution, instructions after the
assertion may still get executed. Importantly, these instructions
won’t affect architectural states, but they can alter micro-
architectural states like the cache. Utilizing this phenomena,
we can execute a cache timing attack to find the sensitive data
processed post-assertion failure.

<Instruction>
<Instruction>

.

.

.

<Instruction>
<Instruction>

<Assertion>
[Failure]

Executed

Executed
Out-of-Order

Exception
Handler

Fig. 4: Assertion failure creates an exception. Modern proces-
sors execute instructions (after the assertion statement) out-of-
order because the exception handling is delayed. This delay
provides an window of opportunity for attackers.

TABLE III: Experimental setup details about the computers and associated microarchitectures
CPU Year Microcode Environment µ-Arch. OS
Intel(R) Xeon(R) CPU E5-1620 2012 0x49 Lab Haswell-EP Ubuntu 20.04.6 LTS
Intel(R) Core(TM) i7-10510U 2019 0xf4 Lab Comet Lake Ubuntu 18.04.6 LTS
AMD Ryzen Threadripper PRO 39995WX 2019 0x830107a Cloud Zen+ Arch Linux - rolling
AMD Ryzen 9 5900X 2019 0xa201016 Lab Zen+ Arch Linux - rolling

We modified the code in Listing 2 to always make assertion
failure so that an exception will happen. The for loop in
Listing 2 can be updated such that the i value is always
divisible by 6. This can be achieved by iterating the for loop
such as “for (int i = tries; i¿=0; i-=6)”. For all the i values
this will assign x as malicious x. This will generate an
assertion failure which will lead to “abort” exception. Usually
exception handling takes more time to process. The processor
executes the instructions after the assertion statement out-of-
order without waiting for the exception handling result. This
temporal window grants an opportunity for an attacker to
access the ‘array1[x]’ value, which resides in an out-of-bound
location.

Listing 3 Exception handling for assertion failure

1 void unblock_signal(int signum) {
2 sigset_t sigs;
3 sigemptyset(&sigs);
4 sigaddset(&sigs, signum);
5 sigprocmask(SIG_UNBLOCK, &sigs, NULL);
6 }
7 void trycatch_exception_handler() {
8 unblock_signal(SIGABRT);
9 longjmp(trycatch_buf, 1);

10 }

When the execution pipeline detects the exception, it
would normally result in program termination. However,
we prevent program termination by capturing and handling
the exception, as demonstrated in Listing 3. The func-
tion unblock signal is responsible for unblocking a spe-
cific signal, specified by the signum parameter. In signal
handling, processes can block certain signals to prevent
them from interrupting or terminating the program’s exe-
cution. The function trycatch exception handler calls the
unblock signal function with SIGABRT as the signal to
unblock. SIGABRT is typically used to trigger an abnormal
termination of a process and is often used in assertions. By
unblocking this signal, the code ensures that it can be delivered
and caught in the next step. longjmp function performs a non-
local jump. It jumps back to a previously established point in
the code.

V. POTENTIAL COUNTERMEASURES

In this section, we outline potential mitigation techniques
for adversarial assertions. Both branch prediction and excep-
tion handling delay create speculative behaviour. Therefore,

side-channel attacks can be stopped using LFENCE instruc-
tion. The LFENCE instruction is a memory fence or a load
fence instruction in x86 assembly language. It is used to
enforce memory ordering by ensuring that all loads before the
LFENCE instruction are fully executed and completed before
allowing any subsequent instructions to begin execution. It
effectively acts as a barrier that prevents the reordering of
memory reads with respect to other instructions, particularly
in the context of out-of-order execution. Listing 4 shows the
LFENCE mitigation for assertions.

Listing 4 LFENCE mitigation for adversarial assertions.

1 void victim_function(size_t x) {
2 assert(x <= array1_size);
3 _mm_lfence();
4 val = array2[array1[x] * PG_SIZE];
5 }

VI. EXPERIMENTS

This section shows the effectiveness of the proposed attack.
First, we present our experimental setup. Next, we describe
the attack results using both branch predictor and exception
handling. Finally, we discuss the mitigation results.

A. Experimental Setup

To demonstrate that adversarial assertions are exploitable
in many architectures, we performed our attack on various
machines from Intel and AMD, as outlined in Table III.
The attack codes, as outlined in Listings 1, 2 and 3, are
implemented in C and compiled without any optimization
using the GCC compiler. We have made the proof-of-concept
code publicly available in [13]. While our attack is successful
for all machines in Table III, we have only shown the attack
and mitigation results on the Intel Xeon machine.

B. Attack Exploiting Branch Predictor

We have verified that assertion can be used as adversaries.
In the attack we conducted, victim has an assertion to check
the array size. Attacker train this assertion to pass all the
time and then access out-of-bound values as described in
Section IV. Finally, the attacker uses Flush+Reload [12]
technique to expose the secret value.

Figures 5 shows the average access time (cycles) of the 256
elements after running the attack for 10 rounds and 30 tries
per round for 6 bytes. In this scenario, the victim process has
a passphrase “Attack”, and we are able to identify this phrase

0 255 255 255 255 255 255
Values

100

200

300

400

500

600

Ac
ce

ss
 C

yc
le

A(65) t(116)
t(116) a(97)

c(99)

k(107)

Byte-1
Byte-2
Byte-3

Byte-4
Byte-5
Byte-6

Fig. 5: Access time for the characters in the passphrase (‘A’,
‘t’, ‘t’, ‘a’, ‘c’, ‘k’) is drastically small compared to the others.

successfully. Figure 5 illustrates that only for characters in the
passphrase (‘A’, ‘t’, ‘t’, ‘a’, ‘c’, and ‘k’), the access time is
drastically small compared to the other values in the buffer.
Therefore, it is easy to recognize the values of the bytes. We
are able to leak 846 bytes per second with only a 0.1% error
rate in byte detection by exploiting the branch prediction.

C. Attack Exploiting Exception Handling

Table IV displays the results of an attack that exploits
the delay in exception handling during assertions. In this
experiment, the objective is to identify a single byte by
executing the attack method described in Section IV. The first
column in the table represents the number of rounds used
in the experiment. The second column indicates how many
of these rounds successfully identified the secret byte out of
the total number of rounds. The third column provides the
average access time in cycles required to access the value
of the secret byte. We are able to leak 12 bytes per second
with 6.1% average success rate in byte detection by exploiting
the exception handling. In comparison to the results obtained
by exploiting the branch prediction behavior of an assertion,
this method does not yield consistently persistent results. This
is primarily because the delay in exception handling time can
be relatively short. Consequently, training the branch predictor
has a more substantial impact on the success of the attack.

TABLE IV: Successful attack (wins) per rounds for exploiting
exception handling delay for one byte

Rounds Wins Average Access Time
10 1 290

100 8 312
1000 69 260
10000 390 272

100000 2171 282

D. Mitigation Results

We examined the inclusion of the LFENCE instruction
following the assertion statement as a mitigation against side-
channel attacks. Figure 6 shows the average access time for
the values without LFENCE and with LFENCE for the byte 1
in Figure 5. The use of LFENCE following the assertion
stops the information leakage. Since using LFENCE after the
adversarial assertion serializes the instructions and puts an end
to speculation.

0 50 100 150 200 250
Values

100

200

300

400

500

600

Ac
ce

ss
 C

yc
le

Without LFENCE With LFENCE

Fig. 6: Average access time with the LFENCE mitigation

To assess the performance impact of using LFENCE, we
conducted an experiment and the findings are presented in
Figure 7. We computed the average time (cycles) required to
execute assertions, both with and without LFENCE following
assertions, while systematically increasing the number of
assertions using rounds. As illustrated in the figure, adding
LFENCE after an assertion leads to an increase in execu-
tion time compared to regular execution. According to the
experiment, the average performance impact is 3.48 times.
It’s important to note that the overall performance impact
would probably be lower in real-world scenarios, as not all
designs involve numerous assertions. Nonetheless, in cases
where a design includes a considerable number of assertions,
inserting LFENCE between all assertions to safeguard against
our attack may not be practical due to the significant perfor-
mance impact. Therefore, the strategic placement of LFENCE
instructions should be performed manually, with a focus on
identifying the most vulnerable assertion scenarios.

VII. CONCLUSION

Assertions are widely used for faster bug localization in
software as well as hardware designs. However, the potential
for exploitation of assertions by adversaries has not been
explored in the literature. We demonstrated a timing side-
channel attack on various AMD and Intel machines utilizing
assertion behavior via manipulation of branch prediction and
exception handling. The state-of-the-art Spectre fuzzing tools

0 20000 40000 60000 80000 100000
Rounds

0

200

400

600

800

Ex
ec

ut
io

n
Ti

m
e

(C
yc

le
s)

3.0

3.2

3.4

3.6

3.8

4.0

Pe
rfo

rm
an

ce
 Im

pa
ct

Without LFENCE
With LFENCE
Performance Impact

Fig. 7: Performance impact of using LFENCE mitigation

are not able to identify our attack based on adversarial
assertions. The developers should be aware of the security
implications when incorporating assertions into their designs.
Our studies also reveal that lfence-based mitigation can defend
against adversarial assertions.

VIII. DISCLOSURE

We submitted proof-of-concept (PoC) exploit for the adver-
sarial assertions to AMD and Intel on October 18, 2023.

REFERENCES

[1] Hasini Witharana, Yangdi Lyu, Subodha Charles, and Prabhat Mishra.
A survey on assertion-based hardware verification. ACM Computing
Surveys (CSUR), 54(11s):1–33, 2022.

[2] Paul Kocher et al. Spectre attacks: Exploiting speculative execution. In
40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[3] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song,
and Nael Abu-Ghazaleh. Spectre returns! speculation attacks using
the return stack buffer. In 12th USENIX Workshop on Offensive
Technologies (WOOT 18), 2018.

[4] Moritz Lipp et al. Meltdown: Reading kernel memory from user space.
In 27th USENIX Security Symposium (USENIX Security 18), 2018.

[5] Jo Van Bulck et al. Foreshadow: Extracting the keys to the intel {SGX}
kingdom with transient {Out-of-Order} execution. In 27th USENIX
Security Symposium (USENIX Security 18), pages 991–1008, 2018.

[6] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F
Wenisch, and Yuval Yarom. Foreshadow-ng: Breaking the virtual
memory abstraction with transient out-of-order execution. 2018.

[7] Claudio Canella et al. Fallout: Leaking data on meltdown-resistant cpus.
In ACM Conference on Computer and Communications Security (CCS),
2019.

[8] Stephan van Schaik. RIDL: Rogue in-flight data load. In Security &
Privacy, 2019.

[9] Michael Schwarz et al. Zombieload: Cross-privilege-boundary data
sampling. In ACM Conference on Computer and Communications
Security (CCS), pages 753–768, 2019.

[10] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. CrossTalk: Speculative Data Leaks Across Cores Are Real.
In S&P, May 2021.

[11] Jo Van Bulck et al. LVI: Hijacking Transient Execution through
Microarchitectural Load Value Injection. In 41th IEEE Symposium on
Security and Privacy (S&P’20), 2020.

[12] Yuval Yarom and Katrina Falkner. Flush+reload: A high resolution, low
noise, l3 cache side-channel attack. In USENIX Security, 2014.

[13] https://anonymous.4open.science/r/Assertion-Exploits-1166/, 2024.
[14] Robert M Tomasulo. An efficient algorithm for exploiting multiple

arithmetic units. IBM Journal of research and Development, 1967.
[15] Chao Wang et al. Mp-tomasulo: A dependency-aware automatic parallel

execution engine for sequential programs. ACM Transactions on
Architecture and Code Optimization (TACO), 2013.

[16] Daniel Moghimi. Downfall: Exploiting speculative data gathering. In
32th USENIX Security Symposium (USENIX Security 2023), 2023.

[17] Saidgani Musaev and Christof Fetzer. Transient execution of non-
canonical accesses. arXiv preprint arXiv:2108.10771, 2021.

[18] Hasini Witharana and Prabhat Mishra. Speculative load forwarding
attack on modern processors. In Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design, pages 1–9, 2022.

[19] Agner Fog. The microarchitecture of intel, amd and via cpus: An
optimization guide for assembly programmers and compiler makers.
Copenhagen University College of Engineering, 2, 2012.

[20] Yangdi Lyu and Prabhat Mishra. A survey of side-channel attacks on
caches and countermeasures. HASS, 2018.

[21] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. A high-resolution side-channel attack on last-level cache. In
Design Automation Conference, pages 1–6, 2016.

[22] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive {Last-Level} caches. In 24th
USENIX Security Symposium (USENIX Security 15), pages 897–912,
2015.

[23] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+ flush: A fast and stealthy cache attack. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 279–299, 2016.

[24] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetser.
{SpecFuzz}: Bringing spectre-type vulnerabilities to the surface. In
USENIX Security 20, 2020.

