
Security Assertions for Trusted Execution Environments

Hasini Witharana, Hansika Weerasena and Prabhat Mishra
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, Florida, USA

Abstract—Trusted Execution Environment (TEE) provides a
secure and isolated execution environment for sensitive appli-
cations. In order to design secure and trustworthy TEE-based
systems, it is crucial to verify the trustworthiness of TEE
implementations. Property checking is a promising avenue to
guarantee that the TEE implementation satisfies the security
properties. In the presence of a vulnerability, property checking
will fail and provide a counterexample that can be utilized to fix
the vulnerability. A major challenge in TEE property checking
is that it relies on manual definition of the security properties,
which can be cumbersome and error-prone. In this paper, we
propose an efficient framework for automated generation and
verification of TEE specific properties. Specifically, we leverage
Finite State Machine (FSM) analysis to automatically derive and
validate security properties utilizing templates. The effectiveness
of the proposed method is demonstrated through experimental
evaluation of Intel Trust Domain Extension (TDX), highlighting
its potential for verifying security and trustworthiness of modern
trusted execution environments.

Index Terms—Security Verification, Property Checking,
Trusted Execution Environment, Confidential Computing

I. INTRODUCTION

Trusted execution is an important mechanism in modern
computing systems that offers an isolated and secure envi-
ronment for processing sensitive data and critical operations,
as shown in Figure 1. By creating a protected environment
that is shielded from potentially untrusted components (i.e.
Operating system), Trusted Execution Environments (TEEs)
ensure the confidentiality, integrity, and authenticity of data
in all forms including data in storage, in transit, and in use.
TEE solutions are used in many domains such as financial
transactions, cryptographic operations, cloud computing, etc.

TEE systems are complex due to the interactions between
multiple subsystems and layers of software, firmware, and
hardware. For example, a specific security guarantee may
involve interactions between secure enclaves, virtual machines,
trusted application manager, operating system, key manager,
and secure storage. Verifying the correctness of each subsys-
tem and its interactions becomes a non-trivial and challenging
task. There are promising formal methods, such as theorem
proving, equivalence checking, and property checking, for
verifying trustworthiness of TEEs [1], [2], [3], [4], [5], [6].

Property checking is one of the most widely used form of
formal verification. The security and functional correctness
of TEE can be verified by checking security properties.
Specifically, property checking helps identify and address
security vulnerabilities, verify compliance with specifications,

This work was partially supported by the Semiconductor Research Corpo-
ration (SRC) grant 2022-HW-3128.

Trusted Execution Environment
(Secure World)

Trusted
Application

Trusted
Application

Trusted OS
Components

Rich Execution Environment
(Non-Secure World)

Untrusted
Application

Untrusted
Application

Normal OS
Components

Trusted Hardware Components Hardware

Fig. 1: Overview of classical trusted execution environments.

and ensure that the TEE operates as intended. The TEEs are
designed to protect sensitive data and code, and therefore, their
security requirements are complex. Verifying these security
requirements using properties often involves capturing and
expressing complex security protocols. Ensuring that proper-
ties accurately capture the desired security behaviors can be
challenging and requires extensive manual effort from security
experts [7], [8], [9]. The manual property generation can be
cumbersome and error-prone. In this paper, we propose a
framework for automated generation of security properties.

Figure 2 shows an overview of our proposed framework.
Our automated property generation framework consists of four
steps. The first step involves the extraction of Finite State
Machine (FSM) from the TEE specification documents. These
FSMs capture the behavior of individual subsystems of a
TEE architecture. In the second step, the extracted FSMs are
integrated by combining their states and transitions to form a
unified FSM model that represents the collective behavior of
the subsystems. In the third step, we automatically generate
properties utilizing the FSMs and property templates. Finally,
we perform property checking of the TEE implementation
using the generated security properties. Specifically, this paper
makes the following major contributions:

• We extract FSMs from subsystems using decomposition
analysis of the TEE specification.

• We combine FSMs to construct an integrated FSM that
represents the TEE as a system

• Our framework automatically generates properties based
on FSM analysis utilizing property templates.

• We perform model checking of the TEE implementation
using the generated properties (assertions).

This paper is organized as follows. Section II surveys
related efforts. Section III describes our proposed property
generation framework. Section IV presents the experimental
results. Finally, Section V concludes the paper.



II. RELATED WORK

Prior TEE verification efforts can be broadly divided into
three categories: static analysis [10], simulation-based test-
ing [11], and formal verification [1], [2], [3], [4], [12], [5],
[6]. A recent security assessment by Google [10] on Intel
TDX employed static analysis, uncovering 81 attack vectors
and confirming 10 security issues. Also, Google conducted
simulation-based testing on AMD Secure Encrypted Virtual-
ization (SEV), employing various test vectors and manually
deriving security invariants [11]. Security vulnerabilities in
the code were also identified using fuzzing-based techniques.
The security assessment by Google [10] highlighted the need
for formal verification of TEE implementations. Moat [1]
introduced a formal abstraction for the Intel Software Guard
Extensions (SGX) model, forming the basis for theorem-based
confidentiality verification. Subramanyan et al. extend this
work to verify integrity, confidentiality, and secure measure-
ment for Intel SGX [2]. Similarly, ARM TrustZone [3], [4]
and Intel TDX [5] utilize formal verification approaches to
verify different security behaviours. In these works properties
and theorems are derived manually. A property checking
framework with design abstraction and manual property gen-
eration was proposed for verifying VM-based TEEs [6]. To
the best of our knowledge, there are no prior efforts in
automatically generating security properties (assertions) for
TEE-specific architectures.

III. AUTOMATED GENERATION OF TEE PROPERTIES

Figure 2 presents an overview of our approach for automatic
property generation to verify TEEs. The process involves four
key steps: (1) extracting local FSMs from TEE specifica-
tions, (2) composing a global FSM by identifying external
relations, (3) generating properties using the global FSM and
property templates, and (4) performing property checking on
TEE implementations. This section begins with key concept
definitions, followed by a detailed explanation of each step.

A. Definitions and Preliminaries

Definition 1: An FSM is a mathematical model that
consists of a finite set of states (Q), a finite set of input
symbols (Σ), an initial state from which the machine starts
(q0 ∈ Q), a transition function that maps the current state and
input symbol to the next state (δ : Q × Σ → Q), a finite set
of output symbols (Γ), and an output function that maps each
state to an output symbol (λ : Q→ Γ). Formally, an FSM can
be represented as a tuple (Q, q0,Σ, δ,Γ, λ).

Definition 2: A global FSM is constructed by composing n
local FSMs (FSM1, FSM2, . . . , FSMn), where each FSMi

is defined as (Qi, q0i,Σi, δi,Γi, λi). The global FSM behavior
is determined by interconnecting the local FSMs. The inter-
FSM transitions connecting local FSMs are defined using
the transition function δglobal based on external factors or
the behavior of other local FSMs. The inter-FSM transition
function is defined as: δglobal(qglobal, sglobal, external) = q′global,
where qglobal is the current state of the global FSM, sglobal is

FSM
Extraction

FSM
Composition 

Property
Generation

TEE Implementation

Properties
Property
Checking

Templates

TEE Specification

Fig. 2: Overview of our automated property generation frame-
work that consists of four major steps: (1) Finite State Machine
(FSM) extraction, (2) FSM composition, (3) property genera-
tion using templates, and (4) property checking.

an input symbol from the input alphabet Σglobal of the global
FSM, external represents any external context or influence on
the inter-FSM transition, and q′global is the next state of the
global FSM after the transition.

Definition 3: In the context of FSMs, an atomic proposi-
tion, denoted as ap, is a logical statement that evaluates to true
or false based on whether a certain condition holds regarding
the FSM’s current state. For example, an atomic proposition
could be defined as ap = “FSM.state is state A”, where ap
evaluates to true (T ) if the FSM’s current state is indeed state
A, and it evaluates to false (F ) otherwise.

Definition 4: We consider the following four attributes
while generating a TEE-specific security property φ.

• G (Globally): Gφ means that φ must hold true for all
future time steps.

• F (Finally): Fφ means that φ will become true at some
point in the future.

• U (Until): For the property ψ, φUψ means that φ must
hold true until ψ becomes true.

• X (Next): Xφ means φ must hold true in the next step.

B. FSM Extraction

FSM extraction from the TEE specification involves the
systematic analysis and abstraction of the TEE’s behavior
into a structured representation. There are typically several
local FSMs or subsystems that work together to ensure the
security and functionality of the TEE. These local FSMs
are responsible for various aspects of TEE operation and
security. The behavior of FSMs can vary depending on the
TEE subsystems. For instance, in a typical TEE we can
extract FSMs for the core subsystems, such as the security
monitor that is responsible for overseeing the overall security
posture, secure boot which ensures a trusted boot process, TEE
application lifecycle which manages the lifecycle of trusted
applications within the TEE, key management system that
manages keys to ensure confidentiality, secure storage man-
agement which governs secure data storage and access control,
cryptographic operations handle cryptographic functions, the
attestation process is essential for providing evidence of the
TEE’s security state to external entities, etc. For all these
sub-systems, the local FSMs can be extracted by analyzing



 tdh.mng.key.freeid

HKID Assigned

Teardown

Keys Configured
 tdh.mng.create

 tdh.mng.vpflush

Blocked

tdh.phymem.page.reclaim

 mng.key.config

 tdh.mng.vpflush

Fig. 3: Local FSM for Trust Domain (TD) life cycle

the specification. These local FSMs work together to create a
secure and controlled environment within the TEE.

Figure 3 shows an example of a local FSM of a TEE
application lifecycle. This is extracted from the Intel TDX
specification [13]. TDX possesses the ability to instantiate
hardware-isolated virtual machines, known as trust domains
(TD). Intel TDX employs a combination of multi-key total
memory encryption (MKTME) and hashing techniques to
ensure the confidentiality and integrity of code and data within
TDs. Every key that MKTME supports is uniquely identified
by a Host Key Identifier (HKID). The local FSM presents
the TD life cycle. There are four TD life cycle states: (1)
HKID assigned, (2) keys configured, (3) blocked, and (4)
teardown. HKID assigned state is reached through the use of
the tdh mng create API, where a new TD is created. In this
state, the hypervisor first flushes the cache, ensuring there are
no modified cache lines for the physical pages. Subsequently,
it generates the Trust Domain Root (TDR) and creates a
random ephemeral key for the TD. An HKID is generated,
and the KeyID Ownership Table (KOT) for each package is
updated. The majority of the TD’s lifetime is spent in the keys
configured state. The TD’s ephemeral key is configured in the
Key Encryption Table (KET). In the event of an interruption
or fault, the TD transitions into the blocked state. Access
to the TD’s private memory is blocked, and relevant caches
are flushed. The tdh mng vpflushdone API is employed
to verify whether all cache lines associated with the address
or HKID have been flushed. During the teardown state, the
host Virtual Machine Monitor (VMM) reclaims the HKID and
performs TLB and cache flushes. All TD private and control
pages are removed using tdh phymem page reclaim API.

C. FSM Composition

FSM composition integrates multiple local FSMs that col-
lectively represent the behavior and interactions of different
components within the TEE. In a TEE, various subsystems,
such as secure boot, memory protection, and cryptographic
operations, operate concurrently but in a coordinated manner
to ensure security and isolation. FSM composition enables the
creation of a global FSM that captures the synchronized behav-
ior of these subsystems. Each subsystem within the TEE can
be abstracted as a local FSM with its own states, transitions,
inputs, and outputs. FSM composition brings these individual
FSMs together, combining their states and transitions to form
a unified representation of the TEE’s behavior.

The inter-FSM transition function denoted as δglobal, serves
as the mechanism for defining how transitions between states

in the global FSM occur based on external factors and the be-
havior of other local FSMs. It takes into account the following
components: qglobal, sglobal, external, and q′global. As outlined in
Definition 2, qglobal represents the current state of the global
FSM. It is crucial because it reflects the current state of the
TEE as a whole. Similarly, sglobal symbolizes an input or event
originating from the global input alphabet Σglobal. These inputs
could include external commands, sensor data, communication
signals, or other events that trigger transitions in the global
FSM. Likewise, external captures any external factors, such
as security events, system interrupts, communication with
external entities, or environmental conditions. q′global denotes
the TEE’s state after processing the inputs and external factors.

A simplified version of the global FSM for Intel TDX
is shown in Figure 4. The global FSM is composed us-
ing two local FSMs corresponding to the TD life cycle
and key management in TDX architecture. FSM1 can be
defined as (Q1, q01,Σ1, δ1,Γ1, λ1). Q1 represents the states
in FSM1 where Q1 = (q0, HKID Assigned, Keys Con-
figured, Blocked, Teardown). The initial state of the FSM
is represented by q01 and the initial state of Q1 by q0.
Σ1 have the input symbols which are the API functions
that are used to transition from one state to another (Σ1

= (create, config, vpflush, freeid, reclaim)). Γ1 shows the
output symbols such as whether an HKID is reserved or
not. If the reserved bits of HKID are all zeros, that HKID
is inactive. If the reserved bits of HKID are not all zeros,
that HKID is active. Therefore, Γ1 = (Active, Inactive).
Similarly, FSM2 can be defined as (Q2, q02,Σ2, δ2,Γ2, λ2)
where Q2 = (Free, Assigned, Flushed), q02 = Free, Σ2 =
(config, vpflush, freeid) and Γ2 = (Active, Inactive). The
global FSM combining FSM1 and FSM2 can be represented
by (Qglobal, q0global,Σglobal, δglobal,Γglobal, λglobal) where Qglobal
= (q0, HKID Assigned, Keys Configured, Blocked, Teardown,
Free, Assigned, Flushed), q0global = (q0, Free), Σglobal = (create,
config, vpflush, freeid, reclaim) and Γglobal = (Active, Inactive).

D. Property Generation using Templates

The composed FSM provides a comprehensive view of how
different components within the TEE interact and respond
to various inputs and events. Based on this understanding,
properties can be derived that express critical conditions such
as safety, liveness, reachability, concurrency, confidentiality,
and integrity. Property generation involves translating high-
level security goals into temporal logic, often using Linear
Temporal Logic (LTL) or Computation Tree Logic (CTL).
The composed FSM serves as the foundation for specifying
these properties, as it accurately represents the coordination
and interactions of TEE components. We utilize templates to
derive properties from the composed FSM.

Table I presents the templates for six types of properties that
are generated using the FSM analysis. Each row represents
a specific property type along with its associated template
and an explanation. In the templates, q1, q2, . . . , qn ∈ Q,
σ1, σ2 ∈ Σ, and γ1 ∈ Γ. Note that all the phrases in the tem-
plate are atomic propositions (q1, q2, σ1, σ2, γ1 ∈ ap). Safety



TABLE I: Templates for different types of properties.
Property Template Explanation

Safety G(q1 → X(¬(q2Uσ1))) In state q1, input σ1 should never lead to state q2.
Liveness G((q1 & σ1) → F q2) In state q1, input σ1 should eventually lead to state q2.

Concurrency G((q1 & q2 & · · · & qn) → γ1) Concurrent execution of states q1, q2, . . . , qn should result in
output γ1.

Reachability G(q1 → q2) There exists a valid path to reach q2 starting from q1.
Confidentiality G(q1 → X(¬(q2Uσ))) In state q1, input σ should never lead to state q2, where q2

represents an data leakage (unauthorized access) state.
Integrity G(q1 → X(¬(q2Uσ))) In state q1, input σ should never lead to state q2, which

indicates a compromised/tampered integrity state.

FS
M

2:
 K

ey
 M

an
ag

em
en

t

 vpflush

reclaim

 freeid

 vpflush

 cre
ate

 freeid
Blocked
Active

HKID Assigned
Active

Keys Configured
Active

q0
Inactive 

config

Teardown
Inactive

 vp
flu

sh

Flushed
Active

Free
Inactive

Assigned
Active

 config

FS
M

1:
 T

D
 L

ife
 C

yc
le

 

Fig. 4: A sample global FSM for TDX by composing the TD life cycle FSM with key management FSM

property, represented by the template G(q1 → X(¬(q2Uσ1))),
ensures that in state q1, input σ1 should never lead to state
q2. It emphasizes system safety and prevents unauthorized
execution or unwanted behavior. Liveness property, given by
G((q1 & σ1) → F q2), guarantee that in state q1, input
σ1 should eventually lead to state q2. Liveness properties
focus on the assurance of desirable future states or behaviors.
Reachability property, captured by G(q1 → q2), asserts that
there exists a valid path to reach state q2 starting from q1.
It addresses the accessibility of specific states. The template
G((q1 & · · · & qn) → γ1) describes concurrency
properties, where concurrent execution of states q1, q2, . . . , qn
should result in output γ1. The concurrency properties ensure
parallelism without conflicts.

Confidentiality properties, captured by the template G(q1 →
X(¬(q2Uσ))), ensure that in state q1, input σ should never
lead to an unauthorized access state q2. These properties
focus on preventing unauthorized entities from accessing sen-
sitive data. Integrity properties, also represented by G(q1 →
X(¬(q2Uσ))), ensure that in state q1, input σ should never
lead to state q2, which indicates a compromised integrity
state.These properties ensure that TEE data and code remain
untampered by unauthorized processes. Note that safety, con-
fidentiality, and integrity properties share the same template,
however, the template’s meaning depends on the specific states
and transitions being modeled. While the logical structure
remains consistent, the context of the states (e.g., preventing
unauthorized access for confidentiality or ensuring data im-
mutability for integrity) differentiates the properties.

Algorithm 1 shows the automated property generation using
templates. The algorithm iterates through each state in the
global FSM, starting from the initial state (q0). For each
state, the algorithm identifies its next local states (LS), which

Algorithm 1 Automated generation of security properties

Require: FSM (Q, q0,Σ, δ,Γ, λ)
Ensure: Set of properties of various types: P

1: P ← ∅
2: for q ∈ Q do
3: LS ← q.next local states (LS ∈ Q)
4: for ls ∈ LS do
5: lt← local transition(q, ls)
6: P ← liveness property(q, ls, lt)
7: IT ← Σ \ {lt}
8: for it ∈ IT do
9: P ← P ∪ safety property(q, ls, it)

10: P ← P ∪ confidentiality property(q, ls, it)
11: P ← P ∪ integrity property(q, ls, it)
12: end for
13: end for
14: GS ← q.next global states (GS ∈ Q)
15: o← q.output (o ∈ Γ)
16: P ← P ∪ concurrency property(q, GS, o)
17: V S ← Q \ {q}
18: P ← P ∪ reachability property(q, V S)
19: end for
20: Return P

represent potential future states within the same local FSM.
It calculates the local transition (lt) between the current state
and each next local state. Subsequently, it generates liveness
properties for these transitions, ensuring that the FSM will
eventually reach the identified next local states. Next, we
calculate a set of invalid transitions (IT ) excluding the current
local transition (lt). Then we iterate through the remaining
invalid transitions in IT and generate safety properties for



TABLE II: Sample properties generated for the FSM presented in Figure 4.
Type # Prop. Example Property
Safety 36 G((FSM1.state == HKID Assigned) → X(¬((FSM1.state == Keys Configured)U(transition == create))))

Liveness 9 G(((FSM1.state == HKID Assigned) & (transition == config)) → (FSM1.state == Keys Configured))
Reachability 56 G((FSM1.state == HKID Assigned) → (FSM1.state == Blocked))
Concurrency 6 G(((FSM1.state == HKID Assigned) & (FSM2.state == Assigned)) → Active)

Confidentiality 8 G(((FSM1.state == HKID Assigned) & (transition == read)) → FSM1.KOT == Accurate)
Integrity 7 G(((FSM1.state == TDR Finalized) → ¬((FSM1.state == INIT) ∨ (FSM1.state == FATAL)))

each one. While still focused on the current state, the algorithm
determines the next global states (GS) from the current state,
accounting for transitions that may lead to other FSMs in a
global context. Simultaneously, it retrieves the output symbol
(o) associated with the current state. Using this information,
the algorithm generates a concurrency property for the current
state, ensuring that its output allows for concurrent execution
with other states in the system. Finally, the algorithm creates a
set of all other valid local states (V S) in the FSM, excluding
the current state. It generates reachability properties for the
current state to verify the existence of valid paths to all other
states in the local FSM. These reachability properties confirm
that the FSM can access all its states.

E. Property Checking

The properties are converted to assert statements and in-
cluded in the implementation. Then, we use bounded model
checking to verify specified properties. Bounded model check-
ing explores all execution paths up to a defined bound, con-
structing Boolean formulas for both the implementation and
properties. An Satisfiability Modulo Theories (SMT) solver
validates these formulas, confirming property verification or
generating counterexamples for debugging in case of failure.
This approach helps identify security vulnerabilities in TEE
implementations.

IV. EXPERIMENTS

A. Experimental Setup

We use state-of-the-art TEE architecture, the implementa-
tion of the Intel TDX module [13]. Table III shows the number
of files and line of code for different languages used in the
TDX implementation. Total of 8741 files and 867303 number
of lines are considered for the evaluation platform. The FSM
analysis and FSM composition are conducted utilizing the
TDX specification documentations [13]. Then the global FSM
is encoded in the formal verification model using Python and
the property generation algorithm is applied to the global FSM
model. For property checking, we use CBMC [14] bounded
model checking with its built-in SMT solver. Our experiments
were conducted on a machine with Intel i7-5500U @ 3.0GHz
CPU with 16GB RAM. For the property verification, our
primary focus was verification of firmware properties, given
the public release of the TDX module code.

TABLE III: Intel TDX module implementation
C Assembly C++ Python Total

No. of Files 7725 711 281 24 8741
Line of Code 575937 238098 51073 2195 867303

B. Property Generation Results

Algorithm 1 generated 122 properties for TDX module
(Figure 4) that includes 36 safety properties, 9 liveness prop-
erties, 56 reachability properties, 6 concurrency properties, 8
confidentiality properties, and 7 integrity properties. Table II
shows one example property for each property type. The
example safety property ensures that if the state is “HKID
Assigned”, it is guaranteed that the state will not transition
to “Keys Configured” until a specific condition (“create”
transition) is met. The example liveliness property states that
in FSM1, if the state is “HKID Assigned” and a “config”
transition occurs, it is guaranteed that the state will eventually
reach “Keys Configured”. The example reachability property
asserts that in FSM1, if the state is “HKID Assigned”, the
FSM can reach the state “Blocked”. The example concurrency
property states that in FSM1 and FSM2, if “HKID Assigned”
and “Assigned” states are concurrently active, an “Active” state
should be maintained. The example confidentiality property
ensures that once the state is “HKID Assigned” and a “read”
transition occurs, the HKID’s state remains confidential and
accurately reflects its assigned status within the Key Own-
ership Table (KOT). This ensures that the system does not
transition to an inaccurate or exposed state in relation to the
HKID assignment. The example integrity property asserts that
once the state is “TDR Finalized” and a “finalize” transition
occurs, the TDR’s lifecycle state cannot return to “INIT”
or “FATAL”. This guarantees that the integrity of the TDR
lifecycle is maintained and that the finalized state cannot be
compromised by reverting to an initial or fatal state.

Listing 1 Assertion for the concurrency property in Table II

assert((global_data->kot[hkid].state==ASSINED)

&& (tdr->lifecycle_state==HKID_ASSIGNED)

&& (hkid.reserved!=0));

The generated properties are converted to assertions and
placed in appropriate APIs in the TDX module implementation
for verification. Listing 1 shows an assertion that represents
the concurrency property shown in Table II. This assertion is
placed in the tdh mng create API after TD creation. The as-
sertion checks the TDR life cycle is in the “HKID Assigned”
state and KOT entry is “Assigned” at the same time. Also, it
checks whether the HKID is active concurrently with the other
two conditions. Similarly, all 122 properties are converted to
assert statements and inserted in the implementation. Next, we
used CBMC [14] to verify the assertions.



TABLE IV: Property Generation and Verification Results for Intel TDX. The presented numbers are average for each property.
Type # of Properties Verification Results per API

Avg. Line Coverage Avg. Functional Coverage Avg. Time (s) Avg. Memory (MB)
Safety 36 62.34% 63.56% 5.64 244.1

Liveness 9 78.07% 79.82% 7.05 305.5
Reachability 56 74.09% 75.37% 6.08 457.8
Concurrency 6 54.62% 48.39% 6.34 312.6

Confidentiality 8 66.26% 67.69% 6.02 361.5
Integrity 7 67.56% 68.57% 5.54 322.7

C. Property Checking Results

Table IV presents an overview of the property verification
results. The first column shows the property type from the six
templates. The second column indicates the number of prop-
erties generated within each property type for TDX module.
The third and fourth columns reveal the average line coverage
and functional coverage achieved during the verification. The
fifth and sixth columns provide insights into the computational
resources required during verification, with the average time
and memory consumption using the CBMC bounded model
checker [14]. These results collectively demonstrate the effec-
tiveness of the generated properties and their ability to assess
various aspects of the Intel TDX implementation.

We consistently achieve an average line coverage of around
70%, indicating that a significant portion of the code has
been effectively examined. This level of coverage not only
ensures that critical code paths are analyzed but also provides
a high degree of confidence in the correctness of the API’s
implementation. Furthermore, the functional coverage, which
measures how well the functionality of the API has been
explored, also attains an average of approximately 70%. This
demonstrates that our properties have the ability to delve deep
into the API’s behavior. Both the average verification time and
memory consumption are notably low.

Fig. 5: Total line coverage for different API modules for the
assertion shown in Listing 1.

The activation of an assertion not only contributes to the
coverage of the specific API within which the assertion is
embedded but can also serve to verify other modules as-
sociated with the functionality. In Figure 5, we present the
coverage results for various modules in the TDX implemen-
tation resulting from the activation of the assertion depicted
in Listing 1. The assertion activation triggered activity in
six different modules. The figure illustrates two key metrics:
the percentage of lines that were activated (hits), shown in

blue, and the percentage of lines that remained untouched
despite the assertion activation (miss), indicated in red. The
results highlight the effectiveness of the assertion activation,
achieving an average line coverage of 58% across the six
modules. This highlights the effectiveness of the generated
properties in comprehensive testing of TEE implementations.

V. CONCLUSION

TEEs safeguard sensitive data and critical operations, mak-
ing their security verification essential. However, verifying
TEEs is challenging due to the complex interactions between
their subsystems. Existing TEE verification approaches rely
on manual generation of security properties. In this paper,
we proposed a framework for automated property generation
as well as efficient verification of TEE implementations. We
derived local FSMs from the TEE specification and composed
the local FSMs to construct a global FSM representing the
behaviour of TEEs. The properties are automatically generated
from the global FSMs based on templates representing various
scenarios, including safety, liveness, reachability, concurrency,
confidentiality, and integrity. Our experimental results using
Intel TDX architecture demonstrate that our framework can
achieve high line and functional coverage with low time and
memory requirements.

REFERENCES

[1] R. Sinha et al., “Moat: Verifying confidentiality of enclave programs,”
in ACM Conference on Computer and Communications Security, 2015.

[2] P. Subramanyan et al., “A formal foundation for secure remote execution
of enclaves,” in CCS, 2017, pp. 2435–2450.

[3] Y. Ma et al., “Formal verification of memory isolation for the trustzone-
based tee,” in Asia-Pacific Software Engineering Conference, 2020.

[4] H. Sun and H. Lei, “A design and verification methodology for a
trustzone trusted execution environment,” IEEE Access, vol. 8, 2020.

[5] M. Sardar, S. Musaev, and C. Fetzer, “Demystifying attestation in intel
trust domain extensions via formal verification,” IEEE access, 2021.

[6] H. Witharana et al., “Formal verification of virtualization-based trusted
execution environments,” IEEE Trans. on CAD, 2024.

[7] ——, “A survey on assertion-based hardware verification,” ACM Com-
puting Surveys (CSUR), vol. 54, no. 11s, pp. 1–33, 2022.

[8] ——, “Automated generation of security assertions for rtl models,” ACM
JETC, vol. 19, no. 1, pp. 1–27, 2023.

[9] ——, “Directed test generation for activation of security assertions in
rtl models,” ACM TODAES, vol. 26, no. 4, pp. 1–28, 2021.

[10] “Intel TDX Security Review,” https://services.google.com/fh/files/misc/
intel tdx - full report 041423.pdf.

[11] “AMD SEV,” https://storage.googleapis.com/gweb-uniblog-publish-
prod/documents/AMD GPZ-Technical Report FINAL 05 2022.pdf.

[12] D. C. G. Valadares et al., “Formal verification of a trusted execution
environment-based architecture for iot applications,” IEEE IoT, 2021.

[13] “Intel TDX,” https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-trust-domain-extensions.html.

[14] D. Kroening and M. Tautschnig, “Cbmc–c bounded model checker,” in
TACAS, 2014, pp. 389–391.


