Formal Verification of Virtualization-based Trusted
Execution Environments

Hasini Witharana, Student Member, IEEE, Hansika Weerasena, Student Member, IEEE,
and Prabhat Mishra, Fellow, IEEE,

Abstract—Trusted Execution Environments (TEEs) provide a
secure environment for computation, ensuring that the code and
data inside the TEE are protected with respect to confidentiality
and integrity. Virtual Machine (VM)-based TEEs extend this
concept by utilizing virtualization technology to create isolated
execution spaces that can support a complete operating system
or specific applications. As the complexity and importance of
VM-based TEEs grow, ensuring their reliability and security
through formal verification becomes crucial. However, these
technologies often operate without formal assurances of their
security properties. Our research introduces a formal framework
for representing and verifying VM-based TEEs. This approach
provides a rigorous foundation for defining and verifying key
security attributes for safeguarding execution environments. To
demonstrate the applicability of our verification framework, we
conduct an analysis of real-world TEE platforms, including
Intel’s Trust Domain Extensions (TDX). This work not only
emphasizes the necessity of formal verification in enhancing
the security of VM-based TEEs but also provides a systematic
approach for evaluating the resilience of these platforms against
sophisticated adversarial models.

Index Terms—Property Checking, Confidential Computing,
Confidentiality, Integrity, Trusted Execution Environments

I. INTRODUCTION

As the nature of computing evolves, ensuring the security
and trustworthiness of sensitive data and critical applications
has become an important concern. With the rapid growth of
cloud computing, edge devices, and the Internet of Things
(I0T), the need for robust security measures has never been
more critical. Trusted Execution Environments (TEEs) emerge
as a promising solution to improve security by providing a se-
cure environment for the execution of sensitive code with sen-
sitive data and the protection of confidential information [1].
TEEs offer a secure execution environment that is isolated
from the rest of the system, safeguarding against various
threats such as malicious software, unauthorized access, and
hardware-based attacks. TEEs utilize hardware and software
components to establish a secure environment where crypto-
graphic operations, key management, and other critical and
confidential tasks can be performed with security assurance.

TEEs come in various forms, each tailored to meet specific
requirements and challenges. Figure 1 shows three types
of TEEs: Enclave-based TEEs (e.g., Intel Software Guard
Extensions (SGX) [2], Sanctum [3]), Virtual Machine (VM)-
based TEEs (e.g., Intel Trust Domain Extensions (TDX) [4],

H. Witharana, H. Weerasena, and P. Mishra are with the Department
of Computer & Information Science & Engineering, University of Florida,
Gainesville, Florida, USA.

TEE Categorization

y Y \ 4
VM- Enclave- Embedded
Based TEE| |Based TEE| | System TEE
A 4 A 4
- Intel TDX - Intel SGX - Keystone
-ARM CCA | |- Sanctum - Multizone

Fig. 1: Categories of trusted execution environments (TEE).

AMD Secure Encrypted Virtualization (SEV) [5]), ARM
Confidential Computing Architecture (CCA), and TEEs for
embedded systems (e.g., Keystone [6]). Enclave-based TEEs
leverage hardware-supported isolation to create secure en-
claves within a processor. These enclaves are isolated regions
of memory resistant to external tampering and surveillance,
ensuring the integrity and confidentiality of the code and
data. Intel SGX is a prime example of an enclave-based
TEE, allowing developers to create secure enclaves for the
execution of sensitive operations without revealing the data
to the underlying system. Virtual Machine-based TEEs take
advantage of virtualization technologies to create secure exe-
cution environments within virtual machines. Intel TDX and
AMD SEV are some examples of VM-based TEEs. They
extend security to the virtualization layer by protecting against
attacks even in the presence of compromised hypervisors.
Embedded system-based TEEs are designed to cater to the
unique constraints and requirements of embedded systems and
IoT devices. For example, Keystone integrates with RISC-V
architectures to provide hardware-enforced memory protection
and secure execution environments, making it well-suited for
resource-constrained embedded systems.

VM-based TEEs are important in cloud computing due to
their ability to offer scalable and flexible security solutions that
are well-suited to the dynamic nature of cloud services. Unlike
enclave-based TEEs, which are designed for securing small
pieces of sensitive code and data within tightly controlled
memory regions, VM-based TEEs can secure entire virtual
machines, offering a broader and more flexible approach to
isolation and security in cloud environments. In this paper, we
present a formal verification framework for VM-based TEEs
for confidentiality and integrity.

Figure 2 presents an overview of our formal verification
framework for security verification of TEE architectures. We

first conduct an abstraction of the TEE architecture that
accurately represents the TEE behavior by following the spec-
ification. This abstraction phase simplifies the specification,
focusing on the essential aspects relevant to confidentiality
and integrity. Next, we develop a formal model for VM-based
TEE architectures based on the abstraction. Then, we derive
properties related to confidentiality and integrity from the TEE
specification. Finally, we perform property checking to verify
whether the TEE formal model satisfies the specified proper-
ties, ensuring that the TEE architecture meets the predefined
security criteria on confidentiality and integrity. Specifically,
this paper makes the following major contributions:

1) We present a comprehensive formal model that defines
the security boundaries of confidential VMs, explicitly
considering the capabilities of adversaries with access to
advanced attack vectors.

2) We formally model confidentiality and integrity prop-
erties, tailoring them for VM-based trusted execution
environments.

3) We introduce a detailed formal model for the Intel TDX
architecture, developed using the Rosette language.

4) We formally verify the confidentiality and integrity of
Intel TDX for code and data in use.

}—) Model

Abstraction

Specification Checking

Properties
Fig. 2: Overview of our formal verification framework.

This paper is organized as follows. Section II provides
relevant background and surveys related efforts. Section III
defines the formal model for virtual machine and adversary.
Section IV provides formal definitions for both confidentiality
and integrity. Section V conducts a security analysis of Intel
TDX for confidentiality and integrity. Section VI and VII
provide details of formal modeling of TDX architecture and
cache. Section VIII discusses the results of the formal analysis.
Finally, Section IX concludes the paper.

II. BACKGROUND AND RELATED WORK

This section first provides relevant background on VM-
based TEEs. Next, it surveys related efforts in security ver-
ification of TEE architectures.

A. Background: VM-based TEEs

We first introduce virtual machines (VM). Next, we discuss
confidential VMs. Finally, we provide an overview of Intel
TDX, which implements confidential VM architecture.

1) Virtual Machine (VM): A VM enables software-based
emulation of physical computers. This technology allows for
running an operating system (OS) and applications within an
isolated and encapsulated environment. VMs facilitate multiple
OSes to operate concurrently on the same physical hardware.
This is achieved through virtualization, which significantly

enhances resource utilization, flexibility, and isolation in com-
puting environments. At the heart of a VM lies the hypervisor,
or Virtual Machine Monitor (VMM), a critical component
tasked with managing and allocating the physical resources
among VMs. Hypervisors come in two varieties: Type 1 (bare-
metal), which operates directly on the host hardware, and
Type 2 (hosted), which functions on top of an existing OS.

The VMM orchestrates access to hardware components such
as CPUs, memory, storage, and network interfaces, enabling
the seamless and concurrent operation of multiple VMs on
a single physical machine. The core virtualization concept:
hardware abstraction allows each VM to operate as though it
has its own dedicated hardware. Each VM hosts its own guest
operating system, providing an independent operating environ-
ment that interacts with the virtualized hardware, ensuring that
applications run in a manner that is both efficient and isolated
from the host system and other VMs. Even though VMs are
isolated from each other, they are not entirely separate entities
in terms of security. The shared use of the hypervisor, un-
derlying hardware, memory subsystem, and other components
of the virtualization stack introduces potential vulnerabilities.
These shared resources can become attack vectors, where a
malicious entity might exploit one VM or host system to gain
unauthorized access to or influence over others or the host
system itself. This inherent risk highlights the critical need
for confidential VMs.

2) Confidential Virtual Machines: Confidential VMs are
designed to protect against threats, including malicious insid-
ers, compromised hypervisors, and other potential vulnerabili-
ties in the virtualization stack. Confidential VMs use memory
encryption with a unique key for each VM to protect the
contents of the VM’s memory from unauthorized access. This
ensures confidentiality by ensuring the memory contents re-
main inaccessible and secure from external threats and internal
attackers gaining access to physical memory. Furthermore,
they also provide integrity protection mechanisms to verify
that data and code have not been tampered with. The creation
of confidential VMs often utilizes hardware-based security
features offering a level of protection that extends even to
the host hypervisor. Confidential VMs often use secure boot
mechanisms and attestation processes. A secure boot ensures
that only authenticated and trusted code is executed during
the VM’s startup. This works against malicious software and
rootkits that might attempt to load during the boot process.
Attestation verifies the integrity and authenticity of the VM for
external entities. Specifically, attestation allows a third party
to confirm that the VM is running the expected software stack.

Secure Boot

Machine] (Virtual Machine

I

Virtual Confidential
Root-of-Trust

Bootloader :
4 > Hyp eiwsor —> Security
Firmware oS <« Monitor

Fig. 3: Overview of VM-based confidential computing.

Figure 3 shows the basic building blocks required for VM-
based TEE architecture. It starts with a secure boot process;
the system relies on a foundational security mechanism known
as the Root of Trust (RoT), complemented by the principle of
a chain of trust. The RoT is pivotal for ensuring that only
authenticated and integrity-verified firmware and software are
loaded for execution. It achieves this through the provision
of essential cryptographic functions and services. Initially, the
RoT verifies the integrity and authenticity of the bootloader
and establishes the first link in the chain of trust. Once the
bootloader is authenticated, it securely loads and verifies the
firmware, setting the stage for the execution environment.
Hypervisor can create and manage VMs. In a type 2 hypervisor
configuration, a host OS will work alongside the hypervisor,
while type 1 will have only a hypervisor. A fundamental ele-
ment of a VM-based confidential computing framework is the
security monitor. It operates at a low level, closely interacting
with the hypervisor and host operating system to monitor and
control access to resources, manage permissions, and ensure
isolation between different confidential VMs. The security
monitor’s primary objectives include preventing unauthorized
access to sensitive data, ensuring that software components
cannot interfere with each other maliciously, and enforcing
compliance with security protocols. Intel TDX module [4] is
one of the examples of a secure monitor.

3) Intel TDX: Intel TDX [4] is an example of a confidential
VM architecture. TDX provides the infrastructure to create
hardware-isolated virtual machines known as trust domains
(TDs), which are designed to operate securely within a system,
separate from the virtual machine monitor or hypervisor and
any other unrelated software entities. To protect the confi-
dentiality and integrity of the code and data within a TD,
Intel TDX uese technologies such as Multi-Key Total Memory
Encryption (MKTME) and hashing techniques. Figure 4 shows
an overview of the Intel TDX architecture. Intel TDX is
engineered to function within a Secure Arbitration Mode
(SEAM), which is an extension to the prior Virtual Machine
Extension (VMX) architecture. SEAM introduces a new VMX
root operation mode, referred to as SEAM root, specifically
constructed to support CPU-attested modules that establish
Trust Domains for virtual machine guests. The SEAM oper-
ation is divided into two logical modes: TDX non-root mode
for the TD guest operations and TDX root mode, which is
reserved for host-side activities.

________ SEAMMode _______
VM 5 D E
= 2 : g =l
= 1 1
= = g > 5
E > .‘Af?f{\’on-R oof E E E
: DXR(?()}-----.A,, ‘‘‘‘‘ X
VMM (MM) TDX Module !
SEAM Ret e ;

Fig. 4: An overview of Intel TDX architecture.
B. Related Work

This section surveys related efforts, including static analysis,
simulation-based testing, and formal verification.

1) Static Analysis: Google’s security review of Intel TDX
employed static analysis tools to uncover numerous attack
vectors and security issues [7]. Security review discovered
81 potential avenues for attacks, confirmed 10 security flaws,
and made 5 modifications to enhance the code’s defense
mechanisms. The review assessed four components of Intel
TDX, including the MCHECK mechanism in BIOS, the non-
persistent SEAM loader, the persistent SEAM loader, and the
design of the TDX module. However, this approach did not
provide formal security guarantees. In fact, this security review
highlights the need of formal verification.

2) Simulation-based Validation: Simulation-based testing
methodologies have been used to evaluate the security
of TEEs. Google’s examination of AMD SEV technology
through simulation-based testing uncovered critical vulnera-
bilities [8]. This hands-on approach allows for a practical as-
sessment of TEE security. Simulation-based verification faces
the exponential input space complexity to cover all possible
scenarios [9], [10]. Nevertheless, the lack of formal security
guarantees limits the ability of simulation-based testing to
guarantee the security properties of TEE systems.

3) Formal Verification: ProveriT [11] provides a theorem
proving solution to formally verify Global Platform TEE com-
mon criteria. The authors in [12] develop a formal model for
memory isolation that includes a detailed formalization of the
ARMVS architecture’s hardware components associated with
memory isolation, as well as the formalization of a TrustZone
monitor that facilitates switching between secure and non-
secure worlds. A recent study [13] introduces a verification
methodology for ARM TrustZone using property checking
techniques. Sardar et al. [14], [15] formally specifies the
attestation mechanism using ProVerif’s specification language.
This work only focuses on the attestation process, whereas
our work focuses on memory confidentiality and integrity
of Intel TDX. The authors in [16] present a methodology
for formally modeling and proving the security of a security
monitor, which is a key component of VM-based confidential
computing systems.

While there are promising efforts for formally verifying
different types of TEE architectures, including verification
of Intel SGX [17], verification of ARM Trustzone [12], and
verification of RISC-V based TEEs [16]), existing formal
verification solutions cannot be directly applied to the TDX
architecture due to their inherent differences in the implemen-
tation of the TEE architecture.

III. FORMAL MODELING OF VM AND ADVERSARY

In this section, we first define a formal model for virtual
machine, including VM state, VM inputs, and VM outputs.
Next, we define a formal model for the adversary. Throughout
the paper, the symbol = is used to denote intensional equality,
which asserts that two expressions or variables are equivalent
in all respects, including their state, value, or configuration.
Similarly, the symbol < represents an equivalence relation or
extensional equality in our context.

A. Formal Model for Virtual Machines

A VM is initiated with a specific allocation of resources,
including CPU cores, memory, and storage. The virtualization
platform often uses a unique identifier or configuration snap-
shot of the foundational state, enabling users to guarantee that
the VM was initialized according to the predefined settings.
The VM’s configuration includes the boot sequence with OS
image, and the virtual hardware components assigned to the
VM, such as memory size, and disk space.

VM: A user deploys a virtual machine denoted as v. The
attributes of this virtual machine include a unique identifier
for the VM (v.id), the VM’s OS image (v.os), VM’s virtual
address list (v.valist), VM’s memory size (v.mem), and VM’s
data and code pages (v.data). These attributes define the
configuration of the virtual machine, enabling it to perform
designated computing tasks within a virtualized environment.

VM State: At any given moment, the host machine exists in a
certain state (m). The state of the VM, S, (m), can be seen as
a specific instance of the overall system state, capturing key
operational data. This includes the virtual memory mapping
Vmem : Va — W, which represents a function from virtual
addresses (Va) to their corresponding values in machine words
(W); a set of general-purpose registers regs : N — W indexed
by natural numbers; the program counter pc : Va, indicating the
VM’s current execution point; and the VM’s attributes, which
are established at the VM’s creation and remain unchanged
during its operation. The initial state init, defines the starting
condition of the VM’s memory (Vmem) at the time of its
instantiation. For simplicity, init, (S, (m,)) denotes that S, (m,)
is in its initial state, as configured before any operations have
been executed within the VM.

VM Inputs: The inputs to the VM, I,(m) = (I°(m) +
IE(m)), can be categorized into two main types: external
inputs and internal inputs. External Inputs (I (m)) can change
the state of a VM, such as initializing it to runnable. These
inputs are received from the external environment and, given
the VM operates in a potentially hostile environment, may
come from sources under adversarial control. However, they
consist of a pre-defined set of instructions, making the impact
of these inputs deterministic. On the other hand, internal inputs
(IE(m)) run inside the VM, such as code and data, where the
impact of the internal inputs can be variable.

VM Outputs: The outputs of the VM, O, (m), project the
machine state of the VM. VM output can have both encrypted
data in memory and decrypted data inside the processor.
Specifically, O,(m) focuses on memory elements while data
is in use.

VM Execution: The execution of a VM is modeled as a
deterministic process with respect to input I,,(m), where the
next state of the VM, is a function of its current state, .S,(m),
and its inputs, I,,(m). We assume that one virtual CPU for
each VM and single thread is used per applications in the VM.
We also assume that code and data running inside the VM is
not malicious. Therefore, it is safe to assume that I7(m) does
not lead to non-deterministic process. Given the deterministic
assumption, the VM’s execution at any step can be defined

by the transitive closure of the transition relation m; ~» m;,
indicating that the VM can transition from state m; to state
m; based on the operational semantics of its instruction set.
This transition relation implies a set of all possible states
that can be reached from a given state, directly or indirectly,
through multiple steps or transitions. It essentially expands the
basic transition relation to include not just direct successors
but all reachable states. This transition process involves first
identifying the next instruction to execute based on the current
state of the virtual memory (Vmem) and the program counter
(pc). Following this, the identified instruction is executed,
which may involve bitvector operations, memory accesses,
and interactions with VM-specific primitives for security,
randomness, and I/O operations.

B. Formal Model for Adversary

A confidential VM operates under the assumption of a
privileged adversary who has compromised all software layers
except for the confidential VM platform itself (security moni-
tor). This section defines the adversary’s potential actions and
their implications for the VM.

Adversary State: The privileged adversary is capable of paus-
ing the VM at any moment, executing arbitrary instructions
that can modify the adversary’s state (A4, (m)), the VM’s inputs
(I,(m)), and can initiate or terminate VM instances. We show
the adversary’s influence through the atfack relation over pairs
of states: (my,mz) € attack if the attacker can transition
the system’s state from mj to msy. A key constraint is that
the attack operation cannot alter the confidential VM state,
ensuring S,(m1) = S,(m2). This maintains the integrity of
the VM despite the adversary’s actions.

Here, attack is a subset of the transition relation ~-, indi-
cating that an adversary’s actions are confined to utilizing the
platform’s instructions to alter the system’s state. Furthermore,
the attack relation is reflexive, denoting that the adversary
might choose not to alter the state: Vm.(m, m) € attack. This
model allows the adversary to operate concurrently with the
VM, with the capability to modify the machine’s state before
the VM’s launch and to alter the VM’s initial state.

Adversary Monitoring: In a confidential VM environment,
untrusted software, including potential adversaries, may ob-
serve aspects of the VM’s execution. These observations are
contingent on the confidentiality protections enforced by the
VM platform. While explicit outputs are invariably observable,
adversaries might also detect patterns through indirect means
such as side channels, including memory access patterns and
computational timing.

The capability for an adversary to make observations is
formalized through the execution of arbitrary instructions or
the utilization of platform primitives. These actions allow the
adversary to monitor the effects of their operations on the
VM’s state. Let monitor,(m) denote the result of an observa-
tion for the machine state m. For instance, an attacker that only
observes outputs enjoys the monitor function monitor,(m) =
O,(m). Observations by an adversary may include explicit
data produced by the VM’s computational results intended

for external consumption. Also the observations may include
indirect information that can be inferred from the VM’s opera-
tion, such as timing information, power consumption patterns,
or memory access patterns. These observations require more
sophisticated analysis and may reveal sensitive information
without direct access to the VM’s data.

VM Execution with an Attacker: An execution trace of the
VM is an unbounded-length sequence of states, denoted by
o = (mg,m,...,my,), satisfying the condition Vi.m; ~-
m;y1; here, o[i] refers to the i-th element of the trace.
Considering the ability of the attacker to pause and resume
the VM at any time, we define the VM’s execution as the
sequence of states from o where the VM is actively executing.

To identify when the VM is executing, we use the function
curr(m) to denote the current mode of the platform, with
curr(m) = v if the platform is executing the VM (v) in
state m. Using this function, we can extract the steps in
o where the VM is executing, resulting in a subsequence
(mg,mh,...,ml,) where init(S,(my)) A Vi.curr(m}) = v.
This subsequence represents the VM’s execution trace, in-
cluding inputs, execution states, and outputs at each step.
Given the VM’s execution trace, the attacker may perform
attack actions between any two consecutive steps, represented
as Vi.(mj, mj,) € attack. This action effectively introduces
uncertainty in the VM’s state and inputs, providing the VM
with potentially fresh inputs at each step.

The semantics of a VM, denoted by [v], is defined as the
set of all possible finite or infinite execution traces, capturing
every possible input sequence. Formally:

[v] = {(1(mp), Sv(mpy), O (M), - .- linit(Sy(mo)) }

This model accounts for all potential input sequences
because the VM may receive any value of input at any
step. Furthermore, [v] is prefix-closed, acknowledging that the
attacker can pause and terminate the VM’s execution at any
time. The determinism of the VM’s program means that a
specific sequence of inputs uniquely identifies a trace from
[v] and determines the expected execution trace under that
sequence of inputs.

Table I provides a summary of notation used in defining
formal models for both virtual machines and adversary.

IV. FORMAL MODELING OF CONFIDENTIALITY AND
INTEGRITY PROPERTIES

In this section, we provide the formal definition for confi-
dentiality and integrity properties with respect to VM-based
trusted execution.

Let A(v) denote the measurement of a VM instance v, com-
puted upon its launch. This measurement process guarantees:

Vmy, ma. init,1 (Sy1(ma)) A inity(Sy2(ms2))
= A(vl) = A(v2)
& Sy1(my) = Sp2(ma)
This measurement process involves computing a cryptographic

hash of the VM’s initial content and configuration, providing
a unique identity for the VM that serves as the basis for

TABLE I: Table of notations for defining formal models for
virtual machines and adversary.

Symbol Description

v A virtual machine instance.

v.id Unique identifier for the VM.

V.08 The operating system image used by the VM.

v.valist List of virtual addresses assigned to the VM.

v.mem The allocated memory size for the VM.

v.data The data and code pages within the VM.

Sy(m) The state of the VM at a given moment m.

I,(m) Inputs to the VM at moment m, comprising external
(IP(m)) and internal (IF(m)) inputs.

Oy(m) Outputs from the VM at moment m.

~ The transition relation for the VM’s execution.

Ay(m) The state of the adversary with respect to VM v at
moment m.

monitor,(m) The result of an adversary’s observation at machine
state m.

o An execution trace of the VM.

curr(m) A function denoting the current execution mode of
the platform at state m.
[v] The semantics of a VM, representing the set of all

possible execution traces.

authenticating its legitimacy. This hash serves as a fingerprint
of the VM at a particular point in time. The measurement
process asserts that any two VM instances with the same
measurement must have identical initial states, ensuring that
any deviation from the expected VM program is detectable by
the user. This assertion is based on the cryptographic property
of collision resistance, which implies that it is computationally
infeasible to find two distinct inputs (in this case, VM states)
that result in the same hash output.

A. Confidentiality

Confidentiality ensures that a privileged software attacker
cannot distinguish between the executions of two VMs, except
for what is revealed through observable outputs. An attacker
cannot gain information about the VM’s execution state or
internal processes beyond what is explicitly allowed through
the monitoring function, denoted as monitor. This function
provides all observations, including initial configurations, out-
puts to non-VM memory, and any potential side channel
leakages. To formally assert the confidentiality guarantee, we
propose the following:

—

V0'170'2.(Av1 o [0]) = Ayg(Uz[O])/\
Vi. (curr(o [1]

Vi (curr(o[1]

(
) = curr(og[i]) A Ivl(Ul[i]) = vg(O’Q[iD)/\
)=v) =

monitor, (o1[¢ + 1]) = monitor,s(o2[i + 1]))

= <W.Av1(al [i]) = A,Uz(aa[i])>

This formulation implies that for any two traces, o1 and oo,
that exhibit equivalent attacker operations and observations
(as permitted by monitor) but may differ in their private VM
states and internal executions, the observable outcome to the
attacker must be identical. Here o[i] means the i-th index
of the execution trace. The input that is responsible for i-th
state in the trace is denoted as I(o[i]) and the corresponding

output is denoted as O(co[i]). By adhering to this model, a VM
platform ensures that all potential traces of VM execution,
which may yield the same observable outputs but originate
from distinct internal states, remain indistinguishable to an ex-
ternal observer. This guarantees that the VM’s confidentiality
is preserved, preventing attackers from leveraging observable
information to infer sensitive internal states or execution paths.

Figure 5 shows the confidentiality property. Let’s assume
that the two traces start with an equivalent state and differ
from state m;. This is because the two VMs can perform
different computations. Adversary monitoring is assumed to be
the same in both traces. Also, adversary actions are assumed
to be the same in both traces. This should lead to the
adversary state being identical in each step. The confidentiality
property implies that the adversary state only depends on the
adversary’s actions and the initial state. Therefore, whatever
the VM state is, it should not affect the adversary state. This
shows that the adversary can only know information through
the monitor function and not more.

thereby guaranteeing that the execution outcomes are solely
the result of the provided inputs and the VM’s deterministic
behavior. The determinism and equivalence of VM execution
can be formalized as:

V01,02.<Su1(01[o]) = Su2(02[0])A
Vi. (curr(01 =)

1) = Ivl(Ul[i]) - UQ(UQ[]))

= (W-Svl(ﬁm) = Sua(02[i]) A Ovi(o1[i]) = Ow("ﬂﬂ))

(curr o9li]) = 1)2)/\

Vi.(curr(oq[i]) = v

This formalism establishes that if two VM instances start
with the same initial state and receive identical input se-
quences, then their execution traces, including state transitions
and outputs, will be equivalent. This equivalence emphasizes
the determinism property of the VM platform’s execution
model, ensuring that VM programs operate predictably and
securely even in the presence of potential attackers.

V| Lmo T Pofme s [m - ST mi - | oy by P g | <[]2 |-
(1]
Mogtor OUEpUt
va) [0 Pof iy Pofty o [|- Bnf b | o Py Py P o, |- -
Fig. 5: An overview of confidentiality property. Fig. 6: Overview of integrity property.
B. Integrity

The integrity property states that the execution trace of
the VM is solely determined by the sequence of inputs,
independent of any interference by privileged software at-
tackers beyond the provision of inputs. The integrity of a
VM execution ensures that the VM’s operational sequence
and its resultant states and outputs are determined solely by
its sequence of inputs. Operations by an attacker, such as
manipulation of I/O peripherals or execution of privileged
instructions, should not deviate the VM’s execution from its
intended path. The integrity property can be formalized as:

(Sv(01 0]) = Sy (@2[0])A
Vi. (curr(o [i])

VO’l, 9.
=V) & (curr(oa[i])

Vi.(CllI‘I'(Oj [ZD = V) = Iv(O'l [’L]) = Iv(Og[i]))

=V)A

> (w.svwl i]) = Su(02li]) A Oy (o1 [i]) = ov<azm>)

This states that if two execution traces, o; and o9, begin
with identical initial states and receive the same sequence of
inputs, then despite any differences in the attacker’s operations
across the traces, the VM’s state transitions and outputs will
remain consistent across both traces.

This integrity model emphasizes a crucial aspect of VM
security: the system’s ability to maintain a predictable and
reliable execution path, even when under adversarial influence.
It ensures that the VM’s computation integrity is preserved,

Figure 6 shows the integrity property. Actions by the
adversary are marked as A; and As. Let’s assume that the
VM’s inputs and actions remain consistent across both traces.
Similarly, the initial conditions of the VMs are identical. The
adversary’s actions are specified through the attack function,
allowing for possible variations between the traces. The in-
tegrity verification necessitates demonstrating that the state
and outputs of the VM remain unchanged in spite of these
differences. The assumption that the adversary operates for
an equal number of steps in both traces does not limit their
capability, as any attack necessitating a variable number of
steps across traces can be replicated within this model by
extending the shorter trace of the adversary with a series
of non-operative steps. According to this theorem, under the
specified assumptions, the state and outputs of the VM at every
step are guaranteed to be the same across both traces.

V. ANALYSIS OF TDX ARCHITECTURE

This section provides a security analysis for data confiden-
tiality and integrity of Intel TDX [4] architecture, which is an
example of a VM-based TEE architecture.

A. Intel TDX: Ensuring Data Confidentiality

Intel TDX safeguards the confidentiality of Trusted Domain
(TD) data across memory, the processor, and the bus by
encrypting data during transmission from the processor back to
memory. This encryption uses the MKTME (Multi-Key Total

Memory Encryption) system, employing AES-XTS with 128-
bit encryption for each cache line. The unique keys for each
TD, identifiable through a Host KeyID (HKID), are generated
and managed securely, with encryption keys stored internally
and not disclosed to unauthorized entities.

Upon activation of TDX, physical memory is partitioned
into secure (private) and normal (shared) regions, with the
former designated for sensitive TD data and the latter for
interactions with non-trusted entities. The allocation to either
region is determined by the state of the highest order bit of
the Guest Physical Address (GPA), ensuring a clear separation
and safeguarding of confidential data.

The life cycle of a TD includes several key states, from cre-
ation and key configuration to potential blocking and eventual
teardown, each facilitated by specific API calls. This process
begins with the creation of a new TD and the generation of an
ephemeral key, followed by its configuration and operational
management through the Key Encryption Table (KET) and
KeyID Ownership Table (KOT), ensuring secure and efficient
key management throughout the TD’s existence.

tdh.key.config
(non-last package)
‘O TD Keys Configured
o

tdh.mng.create .
N
O
TD HKID Assigned
P tdh.mng.addcx
Uninitialized
tdh.mng.ini

£
tdh.mng.vpflush &

TD Blocked

tdh.mng.key.freeid tdh.vp.create
(non-TDR) tdh.vp.addcx
, Initialized tdh.vp.int
TD Teardown tdh.mem.sept
tdh.mng_finalize tdh.mem.page.add

tdh.mr.extend
tdh.phymem.page.reclaim

(TOR) Runnable

Fig. 7: Trust domain (TD) life cycle state diagram with host
keyID (HKID) states.

In this section, we briefly describe the functionality of
different HKID states in Figure 7.

1) HKID Assigned State: Achievable through the
tdh_mng_create API, this state marks the initialization
of a new Trust Domain (TD). Initially, the hypervisor
ensures that any changes in the cache related to the
TD’s physical pages are committed. Following this, it
establishes the Trust Domain Root (TDR) and creates a
unique, temporary key for the TD. An HKID is generated
and recorded in the KOT for each involved package.

2) Keys Configured State: This state occupies the majority of
a TD’s operational lifespan. The TD’s temporary key is
set up in the Key Encryption Table, with a secondary
state machine managing the TD’s activities. The TD
transitions through several sub-states: from ‘uninitialized’
to ‘initialized’, and finally to ‘runnable’. To incorporate
the necessary Trust Domain Control Extension (TDCX)
pages, the tdh_mng_addcx API is utilized. The TD’s
state within the TDR is initialized using tdh_mng_init,

and achieving the ‘runnable’ state is finalized with
tdh_mng_finalize.

3) Blocked State: Any interruptions or faults prompt the TD
to move into the blocked state, during which access to
the TD’s private memory is suspended, and related caches
are cleared. The tdh_mng_vpflushdone API checks for
the complete flushing of cache lines associated with the
TD’s address or HKID.

4) Teardown State: In this final phase, the host’s Vir-
tual Machine Monitor reclaims the HKID and clears
both the Translation Lookaside Buffer (TLB) and cache.
It proceeds to remove all private and control pages
of the TD through tdh_phymem_page_reclaim, with
tdh_phymem_page_wbinvd being employed to ensure
any modified cache lines are flushed.

These states highlight the dynamic and secure manage-
ment of TDs within the TDX framework, emphasizing data
confidentiality through stringent key control and memory
encryption practices, as shown in Figure 8.

HKID | Lifecycle State Key
— 6 Key Configured Ephemeral Key
TDR
. Scope
HKID | Lifecycle State Key
4 HKID Assigned Ephemeral Key
KET
KOT
[mein T wau

HKID | State HKID [Key —
0 N/A 0 TME Key 1
1 N/A 1 MKTME Key [
—» 4 HKID Assigned 4 N/A —
5 HKID Free 5) N/A —
» 6 HKID Assigned 6 TDX Key -

Fig. 8: Key management with trust domain root (TDR), KeyID
ownership table (KOT), and key encryption table (KET).

B. Intel TDX: Guaranteeing Memory Integrity

Intel TDX maintains memory integrity via a dual approach,
incorporating a TD owner bit and a Message Authentication
Code (MAC), both embedded within ECC memory. A 128-bit
MAC key is created during system initialization, with a 28-bit
MAC generated for each memory write. This MAC, alongside
the TD owner bit, aids in verifying data integrity during reads,
with discrepancies indicating potential integrity breaches and
resulting in the marking of compromised cache lines.

The TD owner bit serves as a gatekeeper, controlling access
based on whether a physical address is associated with a
private HKID. This mechanism ensures that only authorized
SEAM mode operations can access secured memory segments,
with all other requests being denied and returned as null,
thereby preserving the integrity of sensitive data.

Furthermore, any attempt to write to a protected memory
segment outside of SEAM mode triggers the reset of the cor-
responding TD owner bit, marking the segment as poisoned.
This serves as a critical fail-safe, triggering a TD exit and,

if necessary, transitioning the TD to a fatal state for security,
thereby emphasizing the robust measures in place to maintain
memory integrity within the TDX architecture.

VI. FORMAL MODELING OF INTEL TDX ARCHITECTURE

The formal model is developed following the Intel TDX
module specification. We model the Intel TDX architecture us-
ing Rosette [18] to enable symbolic simulation of the complex
mechanisms, including TDX tables, Application Binary Inter-
faces (ABIs), and other configurations essential for ensuring
memory confidentiality and integrity within trusted domains.
This section details the formal modeling, highlighting only the
key components that form the backbone of TDX security.

A. Defining TDX Tables

The TDX specification has various tables, each serving a
unique purpose in the security architecture. Among these, the
Extended Page Table (EPT), Key Encryption Table (KET), and
KeyID Ownership Table (KOT) are foundational elements for
confidentiality.

1) Extended Page Table (EPT): The EPT maps Guest
Physical Addresses (GPAs) to Host Physical Addresses (HPAs)
and maintains the page state, incorporating a shared bit to
differentiate between secure and shared memory spaces. This
mapping is crucial for memory isolation and confidentiality.

Listing 1: Extended Page Table

(define sec_ept (make—hash))
(define—struct sec_ept_entry (hpa gpa_shared
(define/contract sec_ept—contract
(hash/c integer? sec_ept_entry? #:flat? #t)
sec_ept)

state))

B. Trust Domain Management

The management of Trust Domains (TD) includes TD cre-
ation, key configuration, handling exceptions, and teardown.
We implemented structures to facilitate this, the Trust Domain
Root (TDR) and Trust Domain Control Structure (TDCS),
which maintain state and control information for each TD.

1) TD Creation: TDs are instantiated and assigned unique
HKIDs, with their ephemeral keys generated and stored se-
curely. This process involves interactions with the Physical
Address Metadata Table (PAMT) for memory allocation and
the cache to ensure confidentiality during TD operations.
Listing 3 shows the Application Binary Interface (ABI) for
TDH_MNG_CREATE, which manages creating and initial-
izing a Transactional Data Handler (TDH) by mapping hpa to
HKID. Initially, it checks the current state of the given HKID
and the hpa in two hash tables (KOT for HKIDs and PAMT
for physical addresses) to determine if the HKID is private,
not yet assigned, or if the hardware page is not yet allocated
or is in a non-disclosure agreement state (P7_N D A). If these
conditions are met, the function proceeds to mark the HKID as
assigned (HKID_ASSIGNED) in the KOT table and creates
anew PAMT entry with initial parameters. Finally, it initializes
a new TDR with default or initial values. This setup indicates
a mechanism for managing access and operations on hardware
resources, ensuring data privacy and integrity through proper
handling of hardware keys and memory pages.

Listing 3: TDH_MNG_CREATE ABI

Listing 1 shows a hash table sec_ept created using make-
hash, which serves as a repository for managing EPT entries,
and a custom-defined structure sec_ept_entry, which keep
track of the essential attributes of each entry, including Host
Physical Address (hpa), Guest Physical Address shared status
(gpa_shared), and the entry’s current state (state). This ap-
proach enables efficient tracking and manipulation of memory
addresses between the host and virtual machines, facilitating
a streamlined mechanism to oversee the shared or exclusive
access to physical memory resources.

2) Key Encryption Table (KET) and KeyID Ownership Table
(KOT): The KET (Listing 2) associates each TD’s ephemeral
encryption key with its corresponding HKID, playing a pivotal
role in encrypting memory access and safeguarding data in
transit. The KOT, on the other hand, tracks the lifecycle state of
each HKID, ensuring proper key management and assignment.
Two hash table structures are used to represent the two tables:

Listing 2: Key encryption table and key ownership table

(define (TDH_MNG_CREATE hpa HKID)
(define hkid_state (hash-ref KOT HKID #f))
(define page_state (hash-ref PAMT hpa #f))
(when (and (is_hkid_private HKID)
(or (equal? hkid_state #f)
(equal? hkid_state HKID_FREE))
(or (equal? page_state #f)
(equal? page_state PT_NDA)))
(begin
(hash-set! KOT HKID HKID_ASSIGNED)
(hash-set! PAMT hpa
(make-PAMT_entry PT_TDR 0 0))
(make-TDR #f #f 0 0 O
HKID_ASSIGNED HKID 0 #f #f))))

(define KET (make—hash))

(define/contract KET-contract
(hash/c integer? bitvector? #:flat? #t)
KET)

(define KOT (make—hash))

(define/contract KOT-contract
(hash/c integer? integer? #:flat? #t)
KOT)

2) Key Configuration: TDH_MNG_KEY_CONFIG
(Listing 4) is designed to configure keys for a TDR
associated with a specific hpa. It begins by retrieving the
current entry for the given PAMT and determining its state,
specifically checking if it matches the expected type for
transactional data records (P1_T DR). It then checks the tdr
for a fatal error condition (td_fatal) and its lifecycle state to
ensure it is in the HKID_ASSIGNED state, indicating that
a HKID has been assigned but not yet configured with keys.

Listing 4: TDH_MNG_KEY_CONFIG ABI

(define (TDH_MNG_KEY_CONFIG hpa tdr)
(define page_entry (hash-ref PAMT hpa #f))
(define page_state
(if (PAMT_entry? page_entry)
(PAMT _entry-PAGE_TYPE page_entry) #f))
(define td_fatal (TDR-FATAL tdr))
(define hkid_state (TDR-LIFECYCLE_STATE tdr))
(when (and (equal? page_state PT_TDR)
(not td_fatal) (equal? hkid_state HKID_ASSIGNED))
(begin

(hash—set! KET (TDR-HKID tdr) key_val)
(struct—copy TDR tdr
[LIFECYCLE_STATE KEYS_CONFIGURED]))))

If the page is correctly prepared for transactional data,
no fatal errors are present, and the TDH is ready for key
configuration, the function proceeds to update KET with the
hardware key ID extracted from TDR and sets a new key
(key_val). It then updates the tdr structure itself to reflect that
the keys have been configured, changing its lifecycle state to
KEYS CONFIGURED.

3) Handling Interrupts and Exceptions: Handling of in-
terrupts and exceptions is crucial for the secure and stable
operation of TDs. This involves saving the current TD state,
scrubbing the VCPU state, and executing a cache flush to
maintain data integrity.

Listing 5: TDH_MNG_VPFLUSH ABI

(equal? hkid_state TD_BLOCKED)
(equal? kot_entry HKID_FLUSHED))

(begin (hash-set! KOT hkid HKID_FREE)
(struct—copy TDR tdr
[LIFECYCLE_STATE TD_TEARDOWN]

[HKID 0]))))

(define (TDH_MNG_VPFLUSH pa tdr)
(define page_entry (hash-ref PAMT pa #f))
(define page_state
(if (PAMT_entry? page_entry)
(PAMT _entry-PAGE_TYPE page_entry)#f))
(define td_state (TDR-LIFECYCLE_STATE tdr))
(define hkid_state (hash-ref KOT (TDR-HKID tdr)))
(if (and (equal? page_state PT_TDR)
(or (equal? td_state TD_HKID_ASSIGNED)
(equal? td_state TD_KEYS_CONFIGURED))
(equal? hkid_state HKID_ASSIGNED))
(begin
(flush_cache (TDR-HKID tdr))
(hash-set! KOT (TDR-HKID tdr)
HKID_FLUSHED) (struct—copy TDR tdr
[LIFECYCLE_STATE TD_BLOCKED]))#f))

The function TDH_MNG_VPFLUSH (Listing 5) is re-
sponsible for securely flushing a virtual page from the cache.
The function starts by looking up the state of the page
associated with the given physical address in PAMT. It as-
sesses the lifecycle state of the tdr to ensure it is either in
the HKID_ASSIGNED or KEYS_CONFIGURED state,
and verifies that the HKID related to the tdr is marked as
assigned in KOT. If these conditions are met, the ¢dr is in an
appropriate state for flushing. This is critical for maintaining
data consistency and security, ensuring that no sensitive data
remains in the cache that could be accessed inappropriately.
After flushing the cache, the function updates the state of the
HKID in the KOT to HKID_FLUSHED, indicating that the
flush operation has been completed. Finally, it updates the
lifecycle state of the tdr to TD_BLOCKED, indicating that
the tdr is in a state where it cannot perform regular operations.

4) TD Teardown: TDH_MNG_KEY_FREEID (List-
ing 6) function is designed for releasing or freeing HKIDs
that are no longer in use.

Listing 6: TDH_MNG_KEY_FREEID ABI

It first verifies that the specified physical address is asso-
ciated with a page prepared, that the TDR is in a blocked
state (T'D_BLOCK ED), and that the HKID has been flushed
(HKID_FLUSHED). This ensures the function operates
under safe conditions where the data associated with the
tdr and HKID has been securely managed and is ready for
cleanup. Upon confirming these prerequisites, the function sets
the HKID’s state to HKID_FREF in the KOT, marking it
available for future assignments. Additionally, it updates the
tdr to reflect a teardown lifecycle state (TTD_TEARDOW N)
and resets the HKID within the tdr, effectively clearing the
association and preparing the system for new transactions. This
process is essential for the secure and efficient reuse of hard-
ware resources, ensuring that data integrity and confidentiality
are maintained throughout the lifecycle of a TD.

VII. FORMAL MODELING OF CACHE FOR TDX SYSTEMS

When the cache is unencrypted, the data stored within
remains in plaintext, posing significant risks to both data
integrity and confidentiality. Such a scenario lays the ground-
work for multiple security vulnerabilities, as unauthorized
access to this unencrypted data can lead to information leakage
or manipulation. In this section, we evaluate how the Intel
TDX module addresses these critical security concerns within
the context of a shared cache environment. This ensures
that even in a shared cache scenario, where multiple pro-
cesses or virtual machines might access the same physical
cache resources, data remains secure, isolated, and impervious
to unauthorized access or tampering, thereby upholding the
highest standards of integrity and confidentiality. We model
and formally evaluate two distinct cache types, each capable
of enhancing security in TDX environments independently:
HKID-tagged cache and TD-owner-bit cache.

A. Basic Cache Structure and Initialization

The cache model in Listing 7 is designed to simulate a 4-
way associative cache, a common setup in modern computing
systems. This setup is characterized by a finite number of
cache sets, each with multiple ways to store data. The model
initializes hash maps to track the validity, tag, data, and HKID
of each cache line, providing a foundational structure for
simulating cache operations:

Listing 7: Cache configuration

(define (TDH_MNG_KEY_FREEID pa tdr)

(define page_entry (hash-ref PAMT pa #f))

(define page_state

(if (PAMT_entry? page_entry)

(PAMT_entry-PAGE_TYPE page_entry)
#1))
hkid_state (TDR-LIFECYCLE_STATE tdr))
(define hkid (TDR-HKID tdr))
(define kot_entry (hash-ref KOT hkid #f))
(when (and (equal? page_state PT_TDR)

(define

(define
(define

kmax—cache—set—index—t 256)
kmax—cache-way—index—t 4)

(define
(define
(define
(define

cache—valid—map (make—hash))
cache—tag—map (make—hash))
cache—data—map (make—hash))
cache—hkid-map (make—hash))

The init-cache function (Listing 8) populates these struc-
tures, initially setting all cache lines to an invalid state and

assigning default values to the tags, data, and HKIDs. This
ensures a clean state from which cache operations can start:

Listing 8: Cache initialization

(define (init—cache)
(for ([i (in-range kmax-cache—set—index—t)]
(for ([j (in-range kmax—cache—way-index—t)]

)
)

(let ([key (comns i j)])

(hash-set! cache-valid—-map key #false)
(hash—set! cache—data—map key 0)
(hash-set! cache—-tag—map key 0)
(hash-set! cache—hkid—-map key 0))))

B. HKID Tagged Cache

Integrating HKID into the cache model adds a layer of
security by ensuring that cache lines are accessible only by
the appropriate Trusted Domain (TD). Listing 9 shows our
modeling of HKID tagged cache. This approach leverages
HKIDs to tag cache lines, thus facilitating the validation of
access requests based on the TD’s identity. HKID tagging
is implemented by extending the cache model to include a
mapping of cache lines to HKIDs. This extension allows the
cache to check not only the validity and tag match for cache
hits but also the HKID, ensuring that only requests from the
owning TD can access the cached data.

Listing 9: HKID tagged cache model

(for/or ([way (in-range kmax—cache—way—index—t)])
(let ([key (cons set way)])
(and (hash-ref cache-valid—map key #false)
(= (hash-ref cache-tag—map key) tag)
(= (hash-ref cache-hkid-map key) hkid)
(or seam-mode? (mot (hash-ref
cache—td—owner—map key))) way))))
(if hit-way
(let ([key (cons set hit—way)])
(if (or seam—mode? (mnot (hash-ref
cache—td—owner—-map key)))
(values #true hit—way (hash-ref
cache—data—map key))
(values #true hit—way 0)))
(begin
(let ([key (cons set repl-way)])

(hash—set! cache-valid—map key #true)
(hash—set! cache—-tag—map key tag)
(hash-set! cache—data—map key 0)
(hash—set! cache—hkid—map key hkid)
(hash-set! cache-td—owner—-map key

(if (> hkid 0) #true #false)))
(values #false repl-way 0))))

(define (query—-cache pa repl-way hkid)
(define set (paddr2set pa))
(define tag (paddr2tag pa))
(define hit—way
(for/or ([way (in-range kmax—cache—-way—index—t)])
(let ([key (cons set way)])
(and (hash-ref cache-valid—map key #false)
(= (hash-ref cache-tag—map key) tag)
(= (hash-ref cache-hkid-map key) hkid)
way))))
(if hit-way
(let ([key (cons set hit—way)])
(values #true hit—-way (hash-ref
cache—data—map key)))
(begin
(let ([key (cons set repl-way)])

(hash-set! cache—valid—-map key #true)
(hash-set! cache—tag—map key tag)
(hash-set! cache—data—map key 0)
(hash-set! cache—-hkid—-map key hkid))

(values #false repl-way 0))))

C. TD Owner Bit

By using a TD Owner bit in access control, TDX enforces
strict access policies, allowing only SEAM mode processes
to read secure cache lines, thereby significantly mitigating
the risk of unauthorized data access. Listing 10 shows our
modeling of TD Owner bit cache. This cache management
strategy not only enhances data security by providing fine-
grained access control based on hardware-level identifiers but
also introduces a flexible framework for managing cache data
across multiple Trusted Domains.

Listing 10: TD owner bit cache model

(define (query—cache pa repl-way hkid seam-mode?)
(define set (paddr2set pa))
(define tag (paddr2tag pa))
(define hit-way

VIII. EXPERIMENTS

This section demonstrates the effectiveness of our proposed
VM-based TEE verification framework to verify the Intel TDX
module. First, we describe our formal verification setup. Next,
we present the formal verification results of our framework.

A. Experimental Setup

Our model for Intel TDX and caches and properties for
formal security verification is constructed using Rosette [18]
formal verification language. We used the publicly avail-
able specification as well as implementation for the TDX
module [4] to derive the formal model. The Rosette model
has assertions, symbolic variables, and solver-aided functions.
The correctness of these elements is verified using Rosette’s
symbolic execution engine, which internally uses Z3 [19] SMT
solver to check the feasibility of paths and the satisfaction
of constraints. We ran our experiments on Intel i7-5500U @
3.0GHz CPU with 16GB RAM machine. We have developed
15 confidentiality properties and 9 integrity properties for two
cache models: HKID-tagged and TD-owner-bit-tagged cache.

B. Generation of Confidentiality Properties

The properties for confidentiality and integrity are defined
based on the threat model outlined in the TDX specification.
We have developed 15 confidentiality properties.

1) cP;: Assert that any guest physical address (GPA)
mapped to a specific host physical address (HPA) within
the secure EPT maintains confidentiality, meaning no
other GPA can map to this HPA.

2) cPs: Assert that the ephemeral encryption key associated
with a specific HKID in the KET table remains confi-
dential and is not leaked or accessible to unauthorized
entities.

3) cPs: Assert that once an HKID is assigned, its state
remains confidential and accurately reflects its assigned
status within the KOT table.

4) cPy: Assert that the lifecycle state of a Trust Domain
Root (TDR) remains confidential and can only be one of

the predefined states (INIT, FATAL, RUNNING), safe-
guarding the state transitions from unauthorized access.

5) cPs: Assert that the page state of any entry in the
secure EPT is limited to predefined states, protecting the
confidentiality of page mappings.

6) cPs: Assert that the key configuration state for a given
HKID remains confidential and accurately reflects the
TD_KEYS_CONFIGURED state, protecting the key
configuration status from unauthorized changes.

7) cPy: Assert that the finalization status of a Trust Domain
Control Structure (TDCS) remains confidential and is
always set to true after finalizing.

8) cPg: Assert that the confidentiality of the shared bit status
for any given entry in the secure EPT.

9) cPy: Assert that the package configuration bitmap of a
Trust Domain Root (TDR) remains confidential, ensuring
that the configuration details are protected from unautho-
rized disclosure.

10) cPyo: Assert that the association between a VCPU and
its corresponding HKID is kept confidential.

11) cPy;: Assert that querying the cache with an incorrect
HKID results in a cache miss.

12) cPio: Assert that after querying with the correct HKID, a
subsequent query with the same HKID and address results
in a cache hit.

13) cPi3: Assert that querying with a different HKID (assum-
ing unauthorized access) after a cache line is populated
does not provide access to the data.

14) cPy4: Assert that after updating a cache line with a new
HKID and data, the previous HKID no longer has access.

15) cP;5: Assert that once data is written to a cache line, it
remains unchanged unless explicitly modified through a
valid cache update.

C. Generation of Integrity Properties

We have developed 9 integrity properties.

1) ¢P;: Assert that the integrity of the EPT mappings by
asserting that any entry mapping a GPA to a HPA cannot
be in a “blocked” state.

2) 1P5: Assert that the integrity of the TDR lifecycle by
asserting that once a TDR is finalized, its lifecycle state
cannot be “INIT” or “FATAL”.

3) iP5: Assert that the integrity of key state transitions
within the TDX module by providing consistent transi-
tions for a HKID based on its current state. Specifically,
it asserts that an HKID assigned state can only move
to the keys configured state, a keys configured state can
transition to either blocked or teardown, and a blocked
state can only move to teardown.

4) 1Py: Assert that if a cache entry is marked as valid, it
must have a corresponding tag and data in the cache.

5) ©P5: Asserts that within a single set in a set-associative
cache, all valid entries must have unique tags.

6) iPs: Asserts that each valid cache entry, the correspond-
ing HKID is correctly mapped to the same set and way
in the cache-hkid-map.

7) 1P7: Assert that any cache entry from SEAM mode
marked as valid has a corresponding and correct TD
owner bit set.

8) iPs: Assert that for any two valid cache entries in
the same set but in different ways, their tags must be
different.

9) iPy: Assert that if two cache entries have the same tag
and are valid, they must have the same TD owner bit.

Listing 11 shows sample confidentiality property (cP;3) of

a cache system through symbolic execution. Initially, symbolic
variables pal and pa2 with a bit-vector size of 28 (bv28)
representing physical addresses are initialized. Then symbolic
integers repl-wayl, reply-way2, hkidl, and hkid2 are intro-
duced, with the latter two representing replacement cache
element. Sample assertion queries the cache twice, using the
same physical address (pal) but different key identifiers (hkid1
and hkid2), and stores the results (hit flags, ways, and data)
in (hitl, wayl, datal) and (hit2, way2, data2), respectively.
The confidentiality assertion checks if, hkidl and hkid2 are
different, both cannot have cache hits for the same physical
address that could violate confidentiality. The assertion is
then solved, and the result is displayed, indicating whether
the cache system maintains confidentiality across the given
symbolic inputs.

Listing 11: Sample confidentaility assertion

(define—symbolic pal pa2 bv28)
(define—symbolic repl-wayl reply—way2 integer?)
(define—symbolic hkidl hkid2 integer?)

(define—values (hitl
(query—cache pal
(define—-values (hit2
(query—cache pal

wayl datal)
repl-way hkidl))
way2 data2)
repl-way hkid2))

(define confidentiality—assertion
(assert (or (mot (and hitl hit2)) (= hkidl hkid2))))
(define result (solve (confidentiality—assertion)))
(displayln result)

D. Verification Results

Table II provides a summary of the verification outcomes
for three distinct models: the TDX module, HKID-tagged-
cache, and TD-Owner-bit-cache. It details the number of lines
of code in each model, with the TDX module being the largest
at 400 lines, and the HKID-tagged-cache the smallest at 100
lines. The table also indicates the number of confidentiality
and integrity properties verified for each module. Verification
time, measured in seconds, showcases the efficiency of the
verification process for each model, demonstrating the practi-
cality and scalability of the verification process in evaluating
the reliability and robustness of the models.

Our work can be extended to other VM-based solutions.
For example, if we consider AMD SEV, which uses x86
architecture similar to Intel TDX, the changes needed are
minimal. Similarly, AMD SEV uses an VM address space
identifier (ASID) to uniquely identify the VM addresses, which
is similar to HKID used by Intel TDX. To extend our formal
model to AMD SEV, we need to model the ASID, but most
of the formal model of Intel TDX module can be reused.

IX. CONCLUSION

This paper has presented a comprehensive framework for
the formal verification of VM-based TEEs, addressing the

TABLE II: Rosette models and verification results

Description # Lines | Confidentiality Integrity %ﬁg?c(:t)lon
TDX Module | 400 10 properties 3 properties 12.86
(cP1 — cP1o) (P —iPs)
HKID-tagged | 100 5 properties 3 properties 5.37
cache (cP11 — cP15) | 1Py —iPg)
TD-Owner- 150 5 properties 6 properties 7.92
bit cache (cP11 — cPi5) (iPy — iPy)
Total 650 15 9 26.15

critical need for robust security mechanisms in the face
of evolving threats. We have developed a formalization of
confidentiality and integrity for confidential virtual machines
(VM), proposing a secure and verifiable model in the context
of powerful adversaries. Our contributions, including the for-
malization of a confidential VM, the establishment of formal
definitions for confidentiality and integrity within VM-based
TEEs, and the development of a refinement-based method-
ology, underline the importance and effectiveness of formal
verification in ensuring the security of VM-based trusted
execution environments. Our experimental results demonstrate
the applicability and resilience of our framework to analyze
sophisticated attack scenarios, highlighting its potential to
significantly enhance the security posture. By proving the con-
fidentiality and integrity guarantees of the Intel TDX platform
through machine-checked proofs, we not only validate our
approach but also pave the way for future research in securing
virtualized TEE environments.

ACKNOWLEDGMENTS

This work was partially supported by the Semiconductor
Research Corporation (SRC) grant 2022-HW-3128.

REFERENCES

[1] H. Witharana, D. Chatterjee, and P. Mishra, “Verifying memory con-
fidentiality and integrity of intel tdx trusted execution environments,”
in 2024 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). 1EEE, 2024, pp. 44-54.

[2] “Intel Software Guard Extensions (SGX),”
https://www.intel.com/content/www/us/en/developer/tools/software-
guard-extensions/overview.html.

[3] V. Costan, I. A. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation.” in USENIX Security Sympo-
sium, 2016, pp. 857-874.

[4] “Intel Trust Extensions

Domain (TDX),”

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-

trust-domain-extensions.html.

[5] “AMD Secure Encrypted
https://developer.amd.com/sev/.

[6] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovi¢, and D. Song, “Key-
stone: An open framework for architecting trusted execution envi-
ronments,” in Proceedings of the Fifteenth European Conference on
Computer Systems, 2020, pp. 1-16.

Virtualization (SEV),”

[7] “Intel Trust Domain Extensions (TDX) Security Re-
view,” https://services.google.com/th/files/misc/intel _tdx_-
_full_report_041423.pdf.

[8] “Amd secure processor for confidential computing security
review,” https://storage.googleapis.com/gweb-uniblog-publish-

prod/documents/AMD_GPZ-Technical_Report_FINAL_05_2022.pdf,
2023.

[9] H. Witharana, Y. Lyu, and P. Mishra, “Directed test generation for
activation of security assertions in rtl models,” ACM Transactions on
Design Automation of Electronic Systems (TODAES), vol. 26, no. 4, pp.
1-28, 2021.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

H. Witharana, Y. Lyu, S. Charles, and P. Mishra, “A survey on assertion-
based hardware verification,” ACM Computing Surveys (CSUR), vol. 54,
no. 11s, pp. 1-33, 2022.

J. Hu, F. Zeng, Y. Zhao, Z. Zhang, L. Zhang, J. Zhao, R. Chang, and
K. Ren, “Proverit: A parameterized, composable, and verified model of
tee protection profile,” IEEE Transactions on Dependable and Secure
Computing, 2024.

Y. Ma, Q. Zhang, S. Zhao, G. Wang, X. Li, and Z. Shi, “Formal
verification of memory isolation for the trustzone-based tee,” in 2020
27th Asia-Pacific Software Engineering Conference (APSEC). 1EEE,
2020, pp. 149-158.

H. Sun and H. Lei, “A design and verification methodology for a
trustzone trusted execution environment,” IEEE Access, vol. 8, pp.
33 870-33 883, 2020.

M. U. Sardar, S. Musaev, and C. Fetzer, “Demystifying attestation in
intel trust domain extensions via formal verification,” IEEE access,
vol. 9, pp. 83067-83079, 2021.

M. U. Sardar, T. Fossati, and S. Frost, “Comprehensive specification and
formal analysis of attestation mechanisms in confidential computing,”
ICE 2023 Pre-Proceedings, 2023.

W. Ozga, “Towards a formally verified security monitor for vm-based
confidential computing,” in Proceedings of the 12th International Work-
shop on Hardware and Architectural Support for Security and Privacy,
2023, pp. 73-81.

P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia,
“A formal foundation for secure remote execution of enclaves,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2435-2450.

“Rosette Language Guide,” https://docs.racket-lang.org/rosette-
guide/index.html.

L. De Moura and N. Bjgrner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337-340.

Hasini Witharana received her Ph.D. from the De-
partment of Computer & Information Science & En-
gineering at the University of Florida. She received
her B.Sc. in the Department of Computer Science
and Engineering from the University of Moratuwa,
Sri Lanka in 2018. Her area of research includes
hardware security and assertion-based verification.

Hansika Weerasena is a Ph.D. student in the De-
partment of Computer & Information Science &
Engineering at the University of Florida. He re-
ceived his B.Sc. in Department of Computer Science
and Engineering from university of Moratuwa, Sri
Lanka. His area of research includes cyber and hard-
ware communication security, computer architecture,
and applied machine learning.

Prabhat Mishra is a Professor in the Department of
Computer and Information Science and Engineering
at the University of Florida. He received his Ph.D. in
Computer Science from the University of California
at Irvine. His research interests include embedded
and cyber-physical systems, hardware security and
trust, and energy-aware computing. He currently
serves as an Associate Editor of IEEE Transactions
on VLSI Systems and ACM Transactions on Embed-
ded Computing Systems. He is an IEEE Fellow, an
AAAS Fellow, and an ACM Distinguished Scientist.

