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Abstract

Classic generalized subdivision, such as Catmull-Clark subdivision, as well as recent subdivision algorithms for high-quality sur-
faces, rely on slower convergence towards extraordinary points for mesh nodes surrounded by n > 4 quadrilaterals. Slow conver-
gence corresponds to a contraction-ratio of λ > 0.5. To improve shape, prevent parameterization discordant with surface growth, or
to improve convergence in isogeometric analysis near extraordinary points, a number of algorithms explicitly adjust λ by altering
refinement rules. However, such tuning of λ has so far led to poorer surface quality, visible as uneven distribution or oscillation of
highlight lines. The recent Quadratic-Attraction Subdivision (QAS) generates high-quality, bounded curvature surfaces based on
a careful choice of quadratic expansion at the central point and, just like Catmull-Clark subdivision, creates the control points of
the next subdivision ring by matrix multiplication. Unfortunately, QAS shares the contraction-ratio λCC > 1/2 of Catmull-Clark
subdivision when n > 4. This shortcoming is finally remedied by the presented improvement QAS+ of QAS. For n = 5, . . . , 10, the
convergence is made a uniform λ = 1

2 as in tensor-product case and without sacrificing surface quality.

.
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1. Introduction 1

Classical subdivision algorithms, and Catmull-Clark subdivi- 2

sion [1] in particular, generalize uniform B-spline or box-spline 3

refinement [2, Ch 7]. Notably, for tensor-product B-splines uni- 4

form refinement splits each parameter interval into two equal 5

parts by knot insertion, say by the Oslo algorithm [3], yield- 6

ing tensor-product B-spline subdivision with contraction-ratio 7

λ = 1/2. By contrast, currently available generalized subdi- 8

vision to mesh nodes surrounded by n > 4 quadrilaterals (an 9

extraordinary point, (eop)) either feature slower convergence 10

λ ∈ ( 1
2 ..1) or yield poor surface quality, visible as an uneven 11

distribution or oscillation of highlight lines. Slow convergence 12

distorts the parameterization near extraordinary points com- 13

pared to regular tensor-product neighborhoods: the parameter 14

range splits in a binary fashion, but the surface grows less than 15

half-ways towards its limit extraordinary point [4]. Moreover, 16

λ > 0.5 implies slower error reduction when computing func- 17

tions on surfaces, say as solutions to partial differential equa- 18

tions. 19

The new Quadratic-Attraction Subdivision (QAS+) with λ = 20

1
2 finally resolves the shape vs. speed trade off by combining 21

good shape with uniform convergence near the extraordinary 22

point. QAS+ is an improvement of the recent algorithm [5]. We 23

summarize the contributions. 24

• Explicit formulas for an implementation of QAS+ as ma- 25

trix multiplication to generate nested surface rings. 26

• The resulting uniform highlight line distribution indicate 27

high-quality surfaces. 28

• The surfaces are curvature-bounded at extraordinary 29

points and C2 everywhere else. 30
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• The improved QAS+ algorithm has λ = 1
2 everywhere.1

• The surfaces can be chosen either of degree bi-4 (bi-2

quartic) or, at the cost of more pieces, of degree bi-3.3

• A new technical approach: QAS+ bakes in the contraction4

speed λ = 1
2 by constructing a special characteristic bi-45

C2 map.6

• The approach renders the analysis of the limit properties7

simple.8

• QAS+ is more flexible than QAS by allowing the quadratic9

expansion q to be C0, apart from a well-defined tangent10

plane at the extraordinary point.11

(a) ring1 + q (b) ring2+ λq (c) ring3+ λ2q

(d) 3n bi-4 (e) 12n bi-3

Figure 1: Two new flavors of QAS: QAS4
+ of degree bi-4 and QAS3

+ of degree
bi-3. (a,b,c) share the connectivity of control nets and refined quadratic expan-
sions (generated from the input of Fig. 2(b,c)) but QAS4

+ and QAS3
+ generate

different contracting surface rings whose Bernstein-Bézier coefficient nets (BB-
nets) are shown in (d) 3n bi-4 patches and (e) 12n bi-3 pieces viewed as 3n 2×
macro-patches.

1.1. Literature: classical, guided and augmented subdivision12

There is a rich choice of surface constructions, ranging13

from rational blending constructions [6, 7], to manifold splines14

[8], geometrically continuous surfaces [9, 10, 11, 12] singu-15

lar [13, 14] and rational singular [15] constructions and even16

curved knotline splines [16]. A recent survey, [17] provides17

both an overview and a classification. Here we focus on a18

class of singular surface parameterizations known as subdivi-19

sion surfaces. Due to their intuitive simplicity as local mesh re-20

finement while generalizing B-splines, subdivision algorithms21

are widely used in shape modelling. Near extraordinary points,22

[18] showed that subdivision can be expressed and (partly) ana-23

lyzed as multiplication with a sparse matrix (see also [19]). Var-24

ious optimizations strategies, called ’tuning’, and based on rules25

with a larger footprint have been proposed to address shape26

problems, such as pinching of highlight lines of the dominant27

Catmull-Clark subdivision [1] near the extraordinary point, and28

to achieve bounded curvature. However such local tuning typi-29

cally results in oscillating curvature, and negatively affects the30

visual quality in the vicinity of the extraordinary point, or gen- 31

erates noticeable artifacts in the transition from the regular sur- 32

rounding surface, see e.g. [20] which summarizes [21, 22]. In 33

particular, moving the subdominant eigenvalue λ close to 1
2 or 34

even to 0.4 in order to improve the convergence rate for iso- 35

geometric analysis, [21, 22] sacrifice shape good shape in the 36

larger neighborhood of the extraordinary point, and are not of 37

bounded curvature for n > 7. Generalizing Catmull-Clark sub- 38

division for irregular knot spacings, [23] and [24] present a sim- 39

ilar loss in highlight line uniformity when λ is decreased. 40

Guided Subdivision harnesses a larger number of degrees of 41

freedom than most tuned approaches by first computing a fixed 42

surface prototype, called the guide surface, from a control net. 43

Each refinement step adds a surface ring into a nested sequence 44

whose limit converges to the guide. While the shape is typi- 45

cally very good, the separate construction of the guide makes 46

this approach more complex than standard subdivision. In re- 47

sponse, starting with Point-Augmented Subdivision (PAS) [25], 48

newer algorithms combine the superior shape of guided sub- 49

division with the simplicity of classical subdivision. The aug- 50

mented subdivision steps are formulated, just as classical subdi- 51

vision algorithms, as matrix multiplication. This simplifies im- 52

plementation, and public code is available, e.g. [26]. PAS sur- 53

faces exhibit considerably better curvature distribution than op- 54

timized classical algorithms, both in-the-large and in the vicin- 55

ity of the extraordinary point. However, PAS algorithms are 56

not curvature bounded. This shortcoming was remedied by 57

Quadratic-Attraction Subdivision [5] (QAS) by prescribing a 58

central quadratic expansion. The approach leverages the key 59

advantage of guided over conventional subdivision: decoupling 60

shape finding from enforcing smoothness and curvature prop- 61

erties in vicinity of extraordinary point. QAS refinement can 62

be implemented as matrix multiplication. The QAS curvature 63

is bounded at extraordinary point and the shape quality is good 64

both in vicinity of extraordinary point and in-the-large. Since a 65

rigorous measure of surface quality remains illusive, and since 66

highlight lines and curvature distribution are the established 67

analysis tools in industrial shape design, we declare shape good, 68

if, empirically and unless wanted as part of the design intent, the 69

surfaces have uniform highlight lines and non-oscillating curva- 70

ture. 71

e

(a) c-net

ds ds+1

q

(b) bi-4 d-net + q

q

(c) bi-3 d-net + q

Figure 2: Control nets. (a) c-net (thick lines) with irregular node e for Catmull-
Clark subdivision (CC), extended by one surrounding quad ring. While the
c-net suffices to define QAS+, the surrounding quads are needed by the latest
tuned subdivision methods that we compare to, and serve to gauge the transi-
tion to a regular C2 tensor-product spline surface. (b) A d-net with 12n nodes.
Different node fill (black, gray, white) indicates different knot multiplicity. The
quadratic q, defined by bi-4 QAS4 of [5]. (c) 12n node d-net and quadratic q
that define QAS3 of [5].
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2. Framework of improved QAS+ quadratic-attraction1

subdivision2

Before diving into the technical details, we provide a step by3

step overview of the approach:4

1 Transform the input c-net (thick lines in Fig. 2a) into a5

d-net, Fig. 2b exactly as for bi-4 quadratic-attraction sub-6

division (QAS), or, alternatively bi-3 QAS, Fig. 2c.7

2 Initialize the quadratic expansion q, central in Fig. 2b,c.8

3 Special QAS4
+ rules for n > 4 define the innermost 6n9

nodes of the refined net (magenta nodes in Fig. 3; the re-10

maining 24n black nodes stem from uniform refinement of11

C2 bi-4 splines).12

4 The entire refined net in Fig. 3 is converted to the ring of13

3n C2-connected bi-4 patches displayed in Fig. 1d.14

5 Iterate, see Fig. 1(a,b,c): Restriction of q over a scaled sub-15

domain defines the new quadratic expansion q̃. Steps 3,416

produce another bi-4 ring C2-connected to its predecessor.17

For n = 3, the subdominant eigenvalue λ of QAS is less than18

1/2 and the shape is very good. So there is no need to derive19

new QAS+ formulas for n = 3 (that would slow down conver-20

gence).21

Figure 3: Once-
refined QAS4

+ net; cf.
Fig. 2b.

While bi-3 patchworks, i.e. conven-22

tional bi-3 subdivision, is more popular23

than bi-4 counterparts, bi-4 QAS4
+ takes24

the lead, because the derivation of bi-25

4 refinement rules is considerably easier26

than for the split bi-3 alternative. Sec-27

tion 6 exhibits a simple symbolic proce-28

dure that transforms the refinement rules29

of QAS4
+ to those of QAS3

+, and one30

QAS3
+ step produces 12n bi-3 patches31

that can be viewed as 3n 2 × 2 macro-32

patches, see Fig. 1e. That is, a layout of QAS3
+ is the same as33

for the curvature-bounded subdivision in the literature.34

2.1. Technical Tools35

To emphasize that the tools of this section are known and al-36

ready well-expressed, for completeness we closely replicate the37

following techniques from [5], with permission of the authors.38

It is convenient to represent subdivision surface rings by tensor-39

product patches in Bernstein-Bézier form (BB-form, [27, 28])40

of bi-degree d (bi-d):41

p(u, v) :=
d∑

i=0

d∑
j=0

pi jBd
i (u)Bd

j (v), 0 ≤ u, v ≤ 1,

where Bd
k (t) :=

(
d
k

)
(1 − t)d−ktk Bernstein polynomials. As usual,42

the BB-coefficients pi j ∈ R3 are connected to pi+1, j and pi, j+143

wherever possible to form the BB-net.44

The coordinate-wise order 3 Taylor expansion of a map f at45

a corner of the unit square can be expressed as a 3 × 3 BB-net46

(right of ∼ in Fig. 4) of degree bi-d. Three such corner jets47

↗
→
↘

(
∂2

v f ∂u∂
2
v f ∂2

u∂
2
v f

∂v f ∂u∂v f ∂2
u∂v f

f ∂u f ∂2
u f

)
∼

Figure 4: Three corner jets (rotated by π/2 for • and −π/2 for • so that the
corner BB-coefficient is f evaluated at the corresponding corner of the unit
square) assembled into an L-net of degree bi-4.

(cyan, orange and blue) of degree bi-4 can be merged into an L- 48

net by averaging the BB-coefficients at overlapping locations, 49

see Fig. 4, right. The expansion across a boundary is called 50

a tensor-border (and is called ‘ribbon’ in other publications). 51

A bijection, whose formulas are given in [5, Sect 3], between 52

the control nets of bi-4 and bi-3 tensor-borders (of QAS4 and 53

QAS3) is illustrated in Fig. 5: 54

−→
T 4

3

00 10 30 40

01 11 31 41

02 12 32 42

(a) d of QAS4

00 10 30 40

01 11 31 41

02 12 32 42

(b) d of QAS3

Figure 5: The bijective transformation T 4
3 from a bi-4 to a bi-3 tensor-border.

Another bijection is the change of bases from B-spline to BB- 55

form, called B-to-BB conversion. See [29, Eq. 6] for B-to-BB 56

conversion of bi-4 C2 splines. 57

3. The bi-4 characteristic map χ 58

A carefully constructed C2 bi-4 characteristic map χ with a 59

scaling factor λ = 1
2 is the technical achievement at the core 60

of QAS+. Characteristic maps are usually determined by the 61

subdivision rules, as eigenfunctions of the subdominant eigen- 62

value λ. By contrast, here χ governs the refinement rules – and 63

the calculation of eigenspectrum and eigenfunctions become a 64

confirmation of expected properties. Since well-behaved char- 65

acteristic maps can also be used for other subdivision and finite 66

polynomial constructions, we describe χ in detail. The charac- 67

teristic map of QAS4
+ is visually identical to χ but uses truncated 68

numbers, see Section 4. 69

As for Catmull-Clark subdivision, χ is rotationally symmet- 70

ric and symmetric with respect to the sector bisectrix (the bi- 71

sectrix is the x-axis in the illustration Fig. 6a). This imposes the 72

Ansatz 73

χ̄40 :=(ĉ, ŝ), χ̄41 := (z0ĉ, z0ŝ), χ̄42 := (z1ĉ, z1ŝ),
χ̄00 :=(z2, 0), χ̄11 := (z3, 0), χ̄22 := (z4, 0),
χ̄10 :=(z5, z6), χ̄20 := (z7, z8), χ̄21 := (z9, z10),

α :=
2π
n
, c := cosα, s := sinα, ĉ := cos

α

2
, ŝ := sin

α

2
.

(1)

The remaining BB-coefficients χ̄3 j ∈ R2, j = 0, 1, 2, of the 74

tensor-border χ̄ of χ are defined by requirement that the adja- 75

cent sectors of χ̄ be C2-connected. 76
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O 22 11 00

32 21 10

42 31 20

41 30

40

χ̄α

x

y

O

(a) bi-4 tensor-border χ̄

O

(b) split, scale. merge

O

(c) χ + 1
2 χ

Figure 6: (a) Structure and labeling of χ̄. (b) Uniform split (the •s) of χ̄ and
scaled 1

2χ (edges) followed by C2 extension (◦), backwards. (c) C2 connected
light gray χ and darker gray 1

2χ.

Next, χ̄ is evenly split into two pieces along the boundary1

segments, see the •s in Fig. 6b. Then χ̄ is scaled with respect2

to the origin O by 1
2 ( in Fig. 6b 1

2 χ̄ is the magenta quadrant at3

O). Joining the scaled copy C2 with the split outer copy, defines4

the BB-coefficients marked ◦ and requires the overlapping BB-5

coefficients (marked by both ◦ and •) to match. This is enforced6

by solving a system of linear equations with respect to the free7

scalars zi, i = 0, . . . , 10 and determines z0, z5, zi, i = 7, . . . , 108

in terms of the remaing scalars z1, z2, z3, z4, z6. To set the9

unconstrained z1, z2, z3, z4, z6, we compared minimization of10

the functional Fk f :=
∫ 1

0

∫ 1
0

∑
i+ j=k,i, j≥0

k!
i! j! (∂

i
s∂

j
t f (s, t))2 ds dt11

for k = 2, . . . , 7 over the 3 bi-4 patches of one sector. For all12

k, the distributions of BB-coefficients looks visually acceptable.13

The most uniform distribution is obtained when k = 4. For all14

k, z1 is very close to 1
2 and z2 is very close to

√
2. Therefore we15

set: z1 := 1
2 (implying z0 := 3

4 ) and z2 :=
√

2 which implies for16

i = 5, 7, . . . , 1017

zi :=
1
ki

(
νi2z2 + ν

i
3z3 + ν

i
4z4 + ν

i
6z6 + ν̇

i),
k5 := 4k̄, k7 := 2k̄, k8 := k̄, k9 := 4k̄, k10 := k̄, (2)
k̄ := 123199 + 64716c

where the scalars νij, ν̇
i
j are listed in Appendix A. The functional18

F4 need now only be minimized with respect to z3, z4, z6. Ap-19

pendix B lists their values for valencies n = 5, . . . , 10 with 1020

digits after the decimal point.21

In summary, scaling χ by 1
2 yields a sequence of C2 rings22

that are C2 joined. Fig. 6c displays one sector each, of two23

consecutive rings.24

We note that the choice z0 := 3
4 , z1 := 1

2 and z2 :=
√

225

matches the exact values for the regular case of valence n = 4,26

but that nevertheless, derivation by analogy fails. For example, 27

setting z6 so that the χ̄ edges (30, 31), (31, 32), (20, 21), (21, 22) 28

become parallel to the sector separating line O, and the resulting 29

χ̄40 yields decidedly worse quality than our default choice based 30

on optimizing F4. We also caution that, while different choices 31

of k for the functional lead to visually almost identical bi-4 χ 32

and similar-looking rings, quality deteriorates with iteration for 33

k , 4. 34

Fig. 7 juxtaposes the tensor-border χ̄ and its sibling, the 35

tensor-border χ̄CC of the characteristic map of Catmull-Clark 36

subdivision. For better comparison the χ̄CC is degree-raised to 37

bi-4 and normalized so that χ̄CC
40 = χ̄40. We observe that χ̄

(a) n = 5 (b) n = 6 (c) n = 7 (d) n = 8

Figure 7: Black bi-4 characteristic tensor-border χ̄ and brown characteristic
tensor-border χ̄CC of Catmull-Clark subdivision degree-raised to bi-4 for va-
lencies n = 5, 6, 7, 8.

38

is more pointed and covers larger area than degree-raised χ̄CC , 39

due to the geometry of faster contraction. 40

4. QAS4
+

: improved Quadratic-Attraction Subdivision of 41

degree bi-4 42

Here we focus on the new aspects that distinguish QAS4
+ 43

from its ancestor QAS4. For completeness, we explain tech- 44

nical details akin to QAS in Appendix D. 45

4.1. Overview: structure and refinement of the bi-4 d-net 46

The input of QAS4
+ are a d-net and a quadratic expansion 47

q, see Fig. 9a. Since the surface rings are of degree bi-4 and 48

the smoothness is C2, the corresponding B-spline representa- 49

tion has alternating double and single knots in each of the pa- 50

rameter directions. In Fig. 9a nodes corresponding to double 51

knots in both parameters are marked •, single are marked the ◦ 52

and control nodes corresponding to a single knots in one and a 53

double in the other are circled •. 54

Fig. 9b shows the 6n magenta control points generated by the 55

new refinement rules. Combined with those obtained by uni- 56

form B-spline refinement rules, one refinement step produces 57

30n new nodes. 58

4.2. Choice and initialization of the quadratic expansion q at 59

the extraordinary point 60

The quadratic expansion at the eop defines f (p), ∂u(p), ∂v(p), 61

∂uu(p), ∂uv(p), ∂vv(p). A C2 limit surface requires that all sectors 62

share the same expansion (using the labels of Fig. 29e), i.e. 63
qs+1

1
qs+1

2
qs+1

3
qs+1

4
qs+1

5
qs+1

6

 := A


qs

1
qs

2
qs

3
qs

4
qs

5
qs

6

 , A :=


1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

2(1−c) −1 0 2c 0 0
0 0 0 2(1−c) −1 2c

4(1−c)2 4(c−1) 1 8c(1−c) −4c 4c2

 . (3)

4



(a) χ̄CC (b) λCC χ̄CC

(c) χ̄ (d) 1
2 χ̄

Figure 8: Comparison (a,c) of the green BB-nets of the characteristic tensor-
borders χ̄CC and χ̄. (b,d) scaled tensor-borders, in magenta.

ds ds+1

ds−1

q

00 10 20 30
01 11 21 31

02 12 22 32

0002

30

12

32

22
31

00

30 31 32

(a) QAS4
+: d-net + q

d̃s d̃s+1

q̃

(b) QAS4
+ refinement

Figure 9: QAS4
+: (a) Bi-4 d-net labels. (b) The nodes marked as •, ◦ and

the circled • are obtained from the d-net by regular C2 bi-4 refinement; new
refinement rules define the 6 magenta nodes per sector; the 12n cyan-underlaid
nodes, d̃s, s = 0, . . . , n − 1, represent the refined d-net for the next refinement
step.

(yielding a 3-fold subsubdominant eigenvalue λ2). Another1

novel aspect of QAS4
+ is the relaxation of the smoothness of2

q. QAS4
+ retains curvature-boundedness at extraordinary point3

even if q is C1 or, parts only C0. This provides wider choice of4

shape and reproduction near the extraordinary point, with the5

quadratic-attraction approach maintaining the high quality of6

resulting surfaces.7

Here is a list of three choices for q, , see Fig. 10:8

• C2 quadratic q9

The constraints (3) for the sectors of q to be C2-connected10

imply that a quadratic expansion is fully defined by 6 BB-11

coefficients of one sector, as marked as •, ◦, ◦ in Fig. 10a.12

• C1 quadratic q13

To obtain C1-connected sectors, the last constraint in (3) is14

replaced by qs
3 := 1

2c

(
qs

5 + qs+1
5 − 2(1 − c)qs

4
)
. This leaves15

free for design or computation, an additional n coefficients16

(marked ◦ in Fig. 10b).17

• C1-C0 quadratic q18

qs qs+1

p

(a) C2 (b) C1 (c) C1-C0

Figure 10: Three types of quadratic expansion p at the extraordinary point (eop)
: the p is a central point of q, i.e. p:=qs

1, s = 0, . . . , n − 1. The •, ◦ and ◦ mark
the unconstrained BB-coefficients; the • and ◦ define a tangent plane at p. (the
labeling of the sectors qs and of their entries is the same as in Fig. 29e).

Only the constraints ensuring a well-defined tangent plane 19

at p remain in (3). The sectors are only C0-connected, 20

leaving as free 2n coefficients (marked ◦ in Fig. 10c). 21

A careful initialization of q is crucial for the quality of the 22

resulting surfaces. Fortunately, the C2 initialization of q in [5] is 23

a good starting point to perturb coefficients for design intent or 24

computational application: The increased number of degrees of 25

freedom near the extraordinary point, stemming from the C1 or 26

the C1-C0 q, provides good handles for the direct modification 27

of surfaces and for computation on those surfaces. 28

4.3. Surface ring construction 29

Appendix C provides explicit formulas of the special refine- 30

ment rules of the innermost sub-net d̃s
i j, i = 1, 2, 3, j = 1, 2 (see 31

magenta nodes in Fig. 9b) in terms of d, q and p. Fig. 11a 32

groups the so-obtained 45 refined nodes as three 5 × 5 sub- 33

arrangements, delineated by red, green and blue loops. Ap- 34

plying B-to-BB conversion to each, one at a time, yields three 35

bi-4 patches that form one sector of a new ring, as illustrated in 36

Fig. 11b. 37

(a) 45 refined nodes (b) 3 bi-4 sector patches

Figure 11: (a) An arrangement of 45 refined nodes for B-to-BB conversion to
(b) three bi-4 patches of one sector.

We can now summarize the QAS4
+ algorithm. The d-net 38

is either directly created by the designer or derived from a 39

Catmull-Clark net according to [29, Fig. 5]. With p either 40

given or set by [29, Eq. 4], the central q can be directly 41

designed or obtained algorithmically by [5, (S1–S3)]. Then the 42

algorithm consists of repeated application of the 43

44

QAS4
+ Iteration Step: Refine d-net to d̃, see Fig. 9 or 45

Fig. 11, the center quadratic and generate a surface ring. 46
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1. Compute 24n nodes marked •, ◦ and • by uniform subdivi-1

sion (knot doubling in each variable) of the bi-4 C2 spline2

in B-spline form.3

2. Compute 6n nodes • by (6) and (7) of Appendix C.4

3. B-to-BB convert the 30n refined nodes to 3n bi-4 patches5

forming a new surface ring as in Fig. 1c.6

4. Define q̃ from q by formula (8) of Appendix D.7

5. Update q̃→q and d̃→ d.8

In Appendix C and D, we truncate the weights involved into9

refinement rules to 5 decimals since this yields a compact form10

and does not affect the surface quality. The truncated rules are11

the ‘official’ QAS4
+ rules and provide the following limit analy-12

sis.13

5. Subdivision limit analysis14

For each choice of q, the subdivision matrix M splits into15

four submatrices, see Fig. 12. One submatrix has only zero16

entries, and Md ∈ R12n×12n does not depend on q.17

For the C2 choice of q Mq = S of (8). That is Mq displayed18

in Fig. 12a has eigenvalues 1, λ (2-fold ), λ2 (3-fold).19

For a C1 quadratic q, see Fig. 12b, the free entries are ordered20

as21

p,q0
1,q

0
4,q

0
5,q

1
5, . . . ,q

n−1
5 ,

and the submatrix Mq is zero above the main diagonal22

1, λ, λ,

n times︷     ︸︸     ︷
λ2, . . . , λ2 .

Therefore the eigenvalues of Mq are 1, 2-fold λ, n-fold λ2.23

For a C1-C0 quadratic q, see Fig. 12c, with free entries or-24

dered as25

p,q0
1,q

0
4,q

0
3,q

0
5,q

1
3,q

1
5, . . . ,q

n−1
3 ,q

n−1
5 ,

the submatrix Mq above main diagonal has only zero entries26

and the main diagonal is27

1, λ, λ,

2n times︷     ︸︸     ︷
λ2, . . . , λ2 .

Therefore the eigenvalues of Mq are 1, 2-fold λ, 2n-fold λ2.28

Numerical calculation shows that for n = 5, . . . , 10 the largest29

absolute value of eigenvalues of Md is less than 0.13621. Since30

we fix λ := 1
2 , we have 0.13621 < 0.25 = λ2. This implies that31

QAS4
+ generates surfaces of bounded curvature.32

Denote by χtr the characteristic map based truncation to 533

digits after the decimal point. χtr is visually identical to χ in34

Section 3 and the numerically checked ∂uχ
tr × ∂vχ

tr > 0 con-35

firms injectivity of χtr. Increasing the calculation accuracy in36

the refinement derivation of Appendix D, and subsequent limit37

analysis without truncating yields a sequence of maps converg-38

ing to χ.39

0Mq

Md

q0 d
q̃0

d̃

(a) C2 q (b) C1 q (c) C1-C0 q

Figure 12: Matrix M. In all three cases the submatrix Md is of size 12n × 12n.
The submatrix Mq is of size: (a) 6×6, (b) (3+n)× (3+n), (c) (3+2n)× (3+2n).

6. QAS3
+

: degree bi-3 improved Quadratic-Attraction Sub- 40

division 41

Fig. 13 shows that the control net refinement of QAS3 has 42

the same structure as QAS4, Fig. 9. That is, the 6n • in Fig. 13b 43

stem from new refinement rules, and, including those defined by 44

regular, uniform bi-3 C2 spline refinement rules, one refinement 45

step produces 30n new control nodes. For the degree bi-3 there 46

are now 16 4×4 sub-arrangements of the 45 refined nodes to be 47

considered (displayed in Fig. 14a: one of these is surrounded 48

by a red loop, the remaining 15 are obtained by the shifts in one 49

or another direction.) Applying B-to-BB conversion to each of 50

these 16 sub-arrangements yields three 2×2 bi-3 macro-patches, 51

forming one sector of the new ring, see Fig. 14b.

ds ds+1

ds−1

q

00 10 20 30
01 11 21 31

02 12 22 32

0002

30

12

32

22
31

00

30 31 32

(a) QAS3: d-net + q

d̃s d̃s+1

q̃

(b) QAS3 refinement

Figure 13: QAS3
+: (the only difference to Fig. 9 is the lack of distinction be-

tween the control nodes). (a) Labeling of the bi-3 d-net. (b) The nodes marked
as • stem from the d-net by regular refinement; new refinement rules define
the 6 • nodes per sector. The cyan-underlaid 12n nodes d̃s, s = 0, . . . , n − 1,
represent the refined d-net for the next refinement step.

52

(a) ring1 (b) ring2

Figure 14: QAS3
+: (a) An arrangement of 45 refined nodes whose B-to-BB

conversion yields (b) three 2 × 2 bi-3 macro-patches of one sector.

We can now summarize the QAS3
+ algorithm. The d-net 53

is either directly created by the designer or derived from a 54
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Catmull-Clark net according to [5, Fig. 3]. With p either given1

or set by [25, Eq. 2], the central q can be directly designed or2

obtained by applying (T 4
3 )−1 of Fig. 5 to [5, Sect 4.2].3

4

QAS3
+ Iteration Step. Refine the d-net, see Fig. 13, the5

center quadratic and generate one surface ring.6

1. Compute 24n nodes marked • by uniform by uniform bi-37

C2 (B-)spline knot insertion.8

2. To compute 6n nodes •,9

(a) transform the bi-3 d-net to the bi-4 net d̄ with (T 4
3 )−1;10

(b) apply formulas (6) and (7) of Appendix C to d̄. This11

yields ˜̄d12

(c) transform bi-4 net ˜̄d to the bi-3 d̃ by T 4
3 .13

3. B-to-BB convert the 30n refined nodes to 12n bi-3 pieces14

forming a new surface ring of 2 × 2 macro-patches as in15

Fig. 1b.16

4. Define q̃ from q by formula (8) of Appendix D.17

5. Update q̃→ q and d̃→ d.18

Subdivision Analysis. Since the subdivision matrix M has the19

same structure as QAS4
+, the analysis is analogous to Section 5.20

Numerical calculation for n = 5, . . . , 10 shows the largest abso-21

lute eigenvalue of Md to be less than 0.13626. Therefore QAS3
+22

is curvature bounded. For the characteristic map χ3 of QAS3
+,23

numerical computation confirms positivity of ∂uχ
3 × ∂vχ

3, i.e.24

an injectivity. We also note that each 2 × 2 bi-3 macro-patch of25

χ3 is very similar but not equal to the 2 × 2 bi-3 macro-patch26

obtained from one bi-4 patch of χ (Section 3) split into 2 × 227

sub-patches, extracting the 3 × 3 jets at the four patch corners28

in bi-3 form, and completing the bi-3 macro-patch by C1 aver-29

aging. The so-derived bi-3 ring is C2.30

7. Acceleration of QAS4
+

and QAS3
+

to λ < 1
231

QAS4 inherits the subdominant eigenvalue λ = 1
2 from the32

refinement of q in (8), and the same holds for QAS3
+. If the33

contraction is accelerated to λ < 1
2 , so that 0.13626 < λ2,34

the subdivision surface remains curvature bounded and, e.g. for35

λ := 0.4, the characteristic map remains injective. However,36

with decreasing λ, the highlight line distribution becomes less37

uniform although still better than [20] for λ = 0.4: Fig. 15 com-38

pares the characteristic maps of the λ = 0.4-accelerated QAS3
0.439

(black) to [20] (red) for n = 5, . . . , 10. Visually both BB-nets40

look acceptable, but the subdivision surfaces reveal stark differ-41

ences that increase with valence n. That is, good planar shape42

is necessary but not sufficient for high surface quality.43

In subdivision, the first few rings can be treated as determin-44

ing macroscopic shape. Since already λ = 0.4 impairs the sur-45

face quality, we change λ gradually, for always two steps, from46

λ = 0.5 to λ = 0.475 to λ = 0.45 before settling for λ = 0.4 in47

subsequent steps. The resulting QAS4
0.5..0.4 and QAS3

0.5..0.4 have48

only subtly worse shape than QAS4
+ and QAS3

+.49

(a) n = 5 (b) n = 6 (c) n = 7

(d) n = 8 (e) n = 9 (f) n = 10

Figure 15: The characteristic maps: black of QAS3
0.4 red of [20].

8. Comparisons and Discussion 50

Subdivision ‘tuning’, i.e. the adjustment of refinement rules 51

to set eigenvalues, typically neglects the (visually dominant) 52

global surface shape in order to improve limit behavior at the 53

extraordinary point. By contrast, guided surfacing prioritises 54

global shape and obtains good limit properties as a by-product. 55

In the following examples an extended c-net, displayed in 56

Fig. 2a, forms the input. Fig. 16 shows a gallery of challenge 57

nets and the outcome, the surrounding bi-3 ring plus the sub- 58

division surface of 10 contracting rings. Note that (colored) 59

shading is not a good surface analysis tool since it does not re- 60

liably reveal shape artifacts. Since [22] and [20] are bicubic, 61

we compare to QAS3
+ that has the same layout and bi-degree. 62

QAS4
+ generates still slightly better highlight line distributions. 63

Highlight lines, [30], are a common tool to asses surface 64

quality. The more uniform, apart from explicit design features, 65

the better. Fig. 18 through Fig. 24 show the highlight line dis- 66

tribution of the surfaces in Fig. 16. A second row zooms in on 67

rings 7–10, unless the quality comparison is obvious already in 68

the large. Since curvature distribution is typically less infor- 69

mative than highlight line distribution, we mostly omit a third 70

row that visualizes curvature (Gauss curvature in Fig. 18 and 71

mean curvature in Fig. 22) but in some cases provide the range 72

to indicate fluctuation bounds. 73

Fig. 18 through Fig. 24 support the quality ranking from best 74

to worst as: QAS3
+,QAS3

0.5..0.4, [22], with QAS3
0.4 and [20] often 75

equally poor. An exception are 5-valent configurations, such 76

as Fig. 16a: Fig. 17 shows [22] perform on par with QAS3
+. 77

Fig. 18 reveals perfectly uniform highlight lines, even in zoom, 78

for QAS3
+, while [20] and QAS3

0.4 have pinching highlight lines 79

near the extraordinary point. Zooming in towards the extraordi- 80

nary point reveals slight, undesirable highlight line oscillations 81

also for [22]. These observations are reinforced by the shape in- 82

terrogation in Fig. 19 and Fig. 20 and are so evident in Fig. 21 83

that a comparison the last four rings can be omitted. Fig. 22 84

shows QAS3
0.4 performing slightly better than [20] and this im- 85

pression is confirmed by higher valences in Fig. 23 and Fig. 24. 86

8.1. Discussion 87

Empirically, QAS4
+ and QAS3

+ have uniform highlight line 88

distributions often in the large and typically in the limit, yet 89

slightly worse than QAS [5]. Here we investigate, whether and 90

how this is an unavoidable price to pay for accelerating con- 91

vergence. Analogous to the reduction of λ below 0.5, we can 92

7



n = 5 (a) (b) (c) (d)

n = 6 (e) (f) (g) (h)

n = 7 (i) (j) (k) (l)

(m) n = 8 (n) n = 8 (o) n = 10 (p) n = 10

Figure 16: A gallery of extended c-nets and the corresponding surface layout.
Colored-shading is not a reliable to reveal shape blemishes.

[22] [20] QAS3
+ QAS3

0.4 QAS3
0.5..0.4

Figure 17: Input net: Fig. 16(a), asymmetric two-beam corner. Row 1: high-
light line distribution of the view of Fig. 16(b) Row 2: zoom to inner rings
7–10.

gradually transition from λCC to λ = 1
2 , i.e.1

λs :=
(
1 −

s
K + 1

)
λCC +

s
K + 1

1
2

for s = 1, . . . ,K (4)

and λs := 1
2 for s > K. The refinement rules rs at step s are an2

average of rC of Appendix C ((6) and (7)) and the rule rQ of3

[5]:4

rs := ωsrC + (1 − ωs)rQ, ωs :=
λCC − λs

λCC −
1
2

. (5)

The convex parabolic net Fig. 25a with planar sectors brings5

out the subtle improvement: Fig. 26a,b display a top view of6

surface Fig. 25b to show how QAS3
+ contracts slightly faster7

than [5]. Focusing on Fig. 26 the highlight line distribution of8

(d) reveals slight oscillations already in the first ring, whereas9

those of (c), according to [5], are perfect. The average rule (g)10

with K = 6 steps improves on (d), but not on (c) [5]. That is, the11

higher speed still exerts a cost, although much diminished. The12

middle row of Fig. 26 demonstrates the importance of averaging13

the rules: the surfaces are the result of gradual change of λs14

according to (4) and setting, for s > K, rs := rC . but with15

[22] [20] QAS3
+ QAS3

0.4 QAS3
0.5..0.4

[20.4557 . . . 38.4520] [29.4124 . . . 117.7662] [25.6783 . . . 29.3760] [47.1327 . . . 143.7433] [24.8400 . . . 54.0622]

Figure 18: Input net: Fig. 16(c) Row 1: highlight line distribution of the view
of Fig. 16(d) Row 2: zoom to inner rings 7–10. Row 3: Gauss curvature with
range below.

[22] [20] QAS3
+ QAS3

0.4 QAS3
0.5..0.4

[≈ (−105) . . . ≈ 105] [17.6389 . . . 139.9183] [23.8715 . . . 30.4453] [55.2961 . . . 152.5243] [24.3759 . . . 57.5958]

Figure 19: Input net: Fig. 16(e) Row 1: highlight line distribution of the view
of Fig. 16(f) Row 2: zoom to inner rings 7–10, rotated by π2 . Row 3: Gaussian
curvature ranges (no figures).

different settings of r for s ≤ K as follows: (e) uses fixed rQ, 16

(f) uses fixed rC , (g) uses rules rs averaged according to Eq. (5). 17

(g) has clearly the best highlight line distribution. The bottom 18

row shows the poorer quality of the alternative approaches. 19

The subtle price paid by accelerating contraction is also the 20

topic of Fig. 27, for surfaces obtained from Fig. 25c. The high- 21

light lines of QAS3 in Fig. 27b are perfect but those of QAS3
+ 22

oscillate near the extraordinary point. Averaging with K = 3 23

improves the quality. The number K of modified rings de- 24

pends on application. Empirically, K = 6 is sufficient even 25

for extreme configurations. Throughout, the Algorithm is un- 26

changed except for substituting λs and rs. The bi-4 surfaces 27

QAS4
+ can be improved analogously. 28

9. Conclusion 29

A subdominant eigenvalue of λ > 0.5 is observed both for 30

n > 4 and classic generalized subdivision, as well as high- 31

quality modern subdivision. Compared to uniform tensor- 32

product spline refinement, where λ = 0.5, the larger λ reduces 33

convergence and creates a mismatch between binary refinement 34

and contraction of the surface rings. Direct tuning of the sub- 35

dominant eigenvalue λ as contraction speed results in poorer 36

8



[22] [20] QAS3
+ QAS3

0.4 QAS3
0.5..0.4

Figure 20: Input net: Fig. 16(g). Row 1: highlight line distribution of the view
of Fig. 16(h) Row 2: zoom to inner rings 7–10.

[22] [20] QAS3
+ QAS3

0.4 QAS3
0.5..0.4

Figure 21: Input net: Fig. 16(i). highlight line distribution.

surfaces, characterized by an uneven distribution and oscilla-1

tion of highlight lines. These shortcomings are remedied by the2

improvement QAS+ of QAS. QAS+ provides good shape with3

the uniform λ = 1
2 contraction of the tensor-product case. An4

implementation of QAS3
+ is available at [26] under the branch5

‘equi-spaced’.6

Acknowledgements Kyle Lo helped with the code distribu-7

tion.8

References9

[1] E. Catmull, J. Clark, Recursively generated B-spline sur-10

faces on arbitrary topological meshes, Computer-Aided11

Design 10 (1978) 350–355.12
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Appendix A: The scalars ν1

The Table below lists:2

from left to right the coefficients νi2, νi3, νi4, νi6, ν̇i;3

from top to bottom i = 5, 7, 8, 9, 10.4

5
127(1571+1320c) 4(70789+18832c) −(5977+14260c) −19824s 2ĉ(24779+1240c)
−2667(793+40c) 3116(793+40c) 7(35871−6548c) −316848s 4ĉ(18027+586c)
−53340s 62320s 9440s 42(7733+3772c) −ŝ(15837−1172c)

−2667(1387+132c) 3116(1387+132c) 3(177155−804c) −501984s 14ĉ(80389−372c)
−88011s 102828s 15576s 21(13199+5976c) −7ŝ(4613+186c)

6

Appendix B: The scalars z3, z4, z67

In Table below lists:8

from left to right n = 5, 6, 7, 8, 9, 10;9

from top to bottom z3, z4, z6.10

11
1.0523486064 1.0479628065 1.0453666602 1.0437024506 1.0425713792 1.0417674430
0.6835325141 0.6712282471 0.6639841979 0.6593541908 0.6562128317 0.6539824091
0.1409618117 0.1171902825 0.1002802002 0.0876392989 0.0778325682 0.0700027016

12

Appendix C: Explicit formulas of the refined net: d̃s
i j

, i =13

1, 2, 3, j = 1, 2 in terms of d, q and p14

Note, that the structure of Tables K and T is the same as in15

[5]. For s = 0, . . . , n − 1 and j = 1, 2,16

d̃s
3 j :=

2∑
r=−1

2∑
m=0

3∑
l=0

κs
lmds+r

lm +
1
2

6∑
k=2

τ3 j,kqs
k +

1
2
(
τ3 j,2qs+1

4 +

τ3 j,3qs+1
6 + τ3 j,4qs+1

2 + τ3 j,5qs+1
5 + τ3 j,6qs+1

3
)
+

(1 −
2∑

r=−1

2∑
m=0

3∑
l=0

κs
lm −

6∑
k=2

τ3 j,k)p .

(6)

17

d̃s
i j :=

1∑
r=−1

2∑
m=0

3∑
l=0

κs
lmds+r

lm +

6∑
k=2

τi j,kqs
k+

(1 −
1∑

r=−1

2∑
m=0

3∑
l=0

κs
lm −

6∑
k=2

τi j,k)p, i = 1, 2.

(7)

Here the index r enumerates the sectors with respect to the18

current sector s, namely s for r = 0 and the previous one for19

r = −1. Since only information from some of the neighboring20

sectors is needed, r remains in {−1, 0, 1, 2}. The tables Tn21

Tn := 105


τ11,2 τ11,3 τ11,4 τ11,5 τ11,6
τ22,2 τ22,3 τ22,4 τ22,5 τ22,6
τ21,2 τ21,3 τ21,4 τ21,5 τ21,6
τ12,2 τ12,3 τ12,4 τ12,5 τ12,6
τ31,2 τ31,3 τ31,4 τ31,5 τ31,6
τ32,2 τ32,3 τ32,4 τ32,5 τ32,6

 .
encode the stencil weights τi j,k, where i j indicates a location22

of refined node d̃s
i j in sector s and k labels the weights of the23

quadratic expansion coefficient qs
k.24

For the tables K see Fig. 28. Fig. 28a displays K consisting25

of the four groups κri j, r = −1, 0, 1, 2 in formulas (7) and (6)26

arranged around a filler 0 in the center. Since even in this com-27

pact grouping many weights κri j (scaled by 105) are 0, we focus28

on pieces of K. For l = 1, 2, Fig. 28b displays the only nonzero29

5×5 matrices Kn
lm, where lm, m = 1, 2 is the index of the refined30

node d̃s
lm. For l = 3, Fig. 28c shows the only nonzero entries31

dark and light underlaid. The weights are symmetric across the32

00 10 20 30

01 11 21 31

02 12 22 32

κ0i j
0002

3032

κ1i j

00

02

30

32

κ2i j

00

30

02

32

κ−1
i j

0

(a) labels of coefficients κki j (b) 5 × 5 K (c) 5 × 4 K

Figure 28: Structure of matrices Kn, n > 4. (a) Labels of all coefficients κki j,
i = 0, . . . , 3, j = 0, 1, 2, k = −1, 0, 1, 2. (b) Kn

11, Kn
21, Kn

12, Kn
22. (c) left darker:

Kn
31, Kn

32.

center line so that only the left (darker underlaid) 5×4 matrices 33

Kn
3m, m = 1, 2, are given. 34

T5 :=


−3715 9388 −3715 6533 9388
10340 17595 10340 30888 17595
−134 3365 −5290 17973 28682
−5290 28682 −134 17973 3365
4650 −3365 10871 2079 48454
24316 −17595 38634 10874 42415


K5

11 :=

 −18 −183 −1601 0 0
92 2414 5374 0 0
47 8756 50302 5374 −1601
10 1690 8756 2414 −183
10 10 47 92 −18

 , K5
22 :=

 1 135 −1383 0 0
2 245 1635 0 0
−5 81 11827 1635 −1383
0 35 81 245 135
1 0 −5 2 1


35

K5
21 :=

 −2 −61 −886 0 0
0 398 1106 0 0
−12 606 30422 13539 −523
−4 113 6524 4546 1073
2 14 −31 12 17

 , K5
12 :=

 17 1073 −523 0 0
12 4546 13539 0 0
−31 6524 30422 1106 −886
14 113 606 398 −61
2 −4 −12 0 −2


36

K5
31 :=

 1 30 443 0
0 −199 −553 0
6 −303 3800 23960
2 −56 2450 7953
−1 −7 6 −12

 , K32 :=

 0 −67 691 0
−1 −122 −817 0
2 −40 −3659 1489
0 −17 −108 −245
0 0 2 −2


T6 :=


−3323 9745 −3323 6690 9745
13325 14205 13325 30135 14205
957 2442 −3220 18647 27112
−3220 27112 957 18647 2442
2442 −2442 11808 2442 45676

14205 −14205 39279 14205 36540


K6

11 :=

 −15 −239 −1766 0 0
138 2858 5297 0 0
64 8487 48965 5297 −1766
13 1753 8487 2858 −239
15 13 64 138 −15

 , K6
22 :=

 1 179 −986 0 0
2 311 1558 0 0
−8 98 10646 1558 −986
0 52 98 311 179
1 0 −8 2 1



K6
21 :=

 0 −98 −891 0 0
3 557 1027 0 0
−14 871 29275 13151 −403
−6 166 6276 4465 1212
3 21 −46 9 22

 , K6
12 :=

 22 1212 −403 0 0
9 4465 13151 0 0
−46 6276 29275 1027 −891
21 166 871 557 −98
3 −6 −14 3 0



K6
31 :=

 0 49 445 0
−1 −278 −513 0
7 −435 4313 24348
3 −83 2505 8034
−1 −10 11 −9

 , K6
32 :=

 0 −89 493 0
−1 −155 −779 0
4 −49 −3267 1566
0 −26 −138 −311
0 0 3 −2


T7 :=


−3144 10071 −3144 6885 10071
14803 12463 14803 29570 12463
1416 2179 −1760 18891 25990
−1760 25990 1416 18891 2179
1641 −2179 12550 2718 43869
9385 −12463 41671 15542 32325


37

K7
11 :=

 −10 −263 −1877 0 0
163 3113 5196 0 0
72 8339 48055 5196 −1877
13 1789 8339 3113 −263
19 13 72 163 −10

 , K7
22 :=

 2 198 −778 0 0
1 334 1488 0 0
−9 100 9952 1488 −778
0 62 100 334 198
2 0 −9 1 2


38

K7
21 :=

 1 −122 −922 0 0
8 638 944 0 0
−13 1015 28614 12936 −315
−7 196 6134 4411 1289
3 25 −54 4 23

 , K7
12 :=

 23 1289 −315 0 0
4 4411 12936 0 0
−54 6134 28614 944 −922
25 196 1015 638 −122
3 −7 −13 8 1
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1

K7
31 :=

 0 61 461 0
−4 −319 −472 0
6 −507 4600 24563
3 −98 2538 8088
−1 −12 15 −4

 , K7
32 :=

 −1 −99 389 0
0 −167 −744 0
4 −50 −3024 1636
0 −31 −149 −334
−1 0 3 −1


T8 :=


−3049 10311 −3049 7030 10311
15648 11438 15648 29171 11438
1649 2105 −748 18994 25206
−748 25206 1649 18994 2105
1233 −2105 13108 2977 42590
6700 −11438 43807 16176 29412


2

K8
11 :=

 −6 −274 −1951 0 0
179 3271 5120 0 0
77 8249 47436 5120 −1951
13 1811 8249 3271 −274
21 13 77 179 −6

 , K8
22 :=

 2 208 −653 0 0
1 343 1435 0 0
−10 99 9510 1435 −653
−1 69 99 343 208
2 −1 −10 1 2


3

K8
21 :=

 2 −137 −952 0 0
11 686 880 0 0
−13 1102 28198 12803 −252
−8 214 6044 4375 1335
4 27 −59 0 23

 , K8
12 :=

 23 1335 −252 0 0
0 4375 12803 0 0
−59 6044 28198 880 −952
27 214 1102 686 −137
4 −8 −13 11 2


4

K8
31 :=

 −1 68 476 0
−5 −343 −440 0
6 −551 4776 24696
4 −107 2559 8124
−2 −13 17 0

 , K8
32 :=

 −1 −104 326 0
0 −171 −717 0
5 −49 −2866 1689
0 −34 −153 −343
−1 0 4 −1


T9 :=


−2991 10484 −2991 7133 10484
16180 10778 16180 28886 10778
1782 2092 −31 19042 24647
−31 24647 1782 19042 2092
979 −2092 13544 3205 41642

5043 −10778 45481 16513 27359


5

K9
11 :=

 −2 −281 −2001 0 0
190 3377 5066 0 0
81 8189 47001 5066 −2001
13 1826 8189 3377 −281
22 13 81 190 −2

 , K9
22 :=

 2 213 −571 0 0
1 347 1395 0 0
−10 98 9210 1395 −571
−1 73 98 347 213
2 −1 −10 1 2


6

K9
21 :=

 3 −147 −976 0 0
13 718 833 0 0
−12 1160 27919 12714 −207
−8 227 5983 4349 1366
4 28 −62 −2 23

 , K9
12 :=

 23 1366 −207 0 0
−2 4349 12714 0 0
−62 5983 27919 833 −976
28 227 1160 718 −147
4 −8 −12 13 3


7

K9
31 :=

 −1 73 488 0
−6 −359 −416 0
6 −580 4894 24785
4 −113 2574 8150
−2 −14 19 2

 , K9
32 :=

 −1 −106 285 0
0 −173 −697 0
5 −49 −2756 1729
0 −36 −155 −347
−1 0 4 −1


T10 :=


−2954 10611 −2954 7208 10611
16538 10327 16538 28676 10327
1865 2100 490 19066 24237
490 24237 1865 19066 2100
802 −2100 13893 3399 40920
3944 −10327 46764 16710 25870


8

K10
11 :=

 0 −285 −2037 0 0
197 3451 5026 0 0
83 8147 46686 5026 −2037
12 1836 8147 3451 −285
23 12 83 197 0

 , K10
22 :=

 2 217 −515 0 0
0 348 1365 0 0
−11 96 8997 1365 −515
−1 76 96 348 217
2 −1 −11 0 2


9

K10
21 :=

 4 −154 −995 0 0
15 739 798 0 0
−12 1200 27722 12651 −174
−9 236 5940 4330 1387
4 29 −64 −5 23

 , K10
12 :=

 23 1387 −174 0 0
−5 4330 12651 0 0
−64 5940 27722 798 −995
29 236 1200 739 −154
4 −9 −12 15 4


10

K10
31 :=

 −2 77 497 0
−7 −369 −399 0
6 −600 4975 24848
4 −118 2585 8169
−2 −14 20 5

 , K10
32 :=

 −1 −108 257 0
0 −174 −682 0
5 −48 −2678 1759
0 −38 −156 −348
−1 0 4 0


Appendix D: QAS derivation11

For completeness,and to motivate the formulas of the refined12

d-net, we summarize the derivation of QAS in [5], using, as13

much as possible, the same notation to indicate that this part14

of the QAS+ derivation does not differ from QAS, except for15

the replacement of χCC by χ. All calculations of the derivation16

were performed in symbolic form, since we aim to derive for-17

mulas for arbitrary input d-nets, not numbers for specific input.18

Fig. 29 outlines the derivation steps.19

(a) input bi-4
tensor-border

q

(b) intermediate
degree 5 guide g△ (c) bi-5 guide g

↔

(d) linear transformation L

q
q̃

→
λ

112
3

5
4 2

6 3

4
6

5
qs qs+1

(e) q̃:=λq

Figure 29: Sketch of derivation.

1. An intermediate guide g△ of total degree 5 is constructed, 20

see Fig. 29b: the red-underlaid BB-net corresponds to the 21

C2 quadratic expansion in degree-raised to 5 form; the 22

gray-underlaid BB-coefficients insure C1 join of adjacent 23

sectors. The 6n linearly independent BB-coefficients in the 24

gray part are fixed to match 6n linearly independent BB- 25

coefficients of the input bi-4 tensor-border, gray-underlaid 26

inFig. 29a, defined by the d-net. (By ’matching’, we mean 27

a comparison of the input bi-4 data to the tensor-border 28

obtained via sampling a guide with characteristic tensor- 29

border [5, Sect 3].) 30

2. The guide g△ is too rigid to properly join the input bi-4 31

tensor-border and the resulting subdivision surfaces have 32

poor highlight lines. Therefore g△ is reparameterized as a 33

bi-5 guide g over a larger domain formed by sector par- 34

allelograms (see Fig. 29c). Since this tensor-product map 35

is defined on the unit square, this is technically achieved 36

by applying a linear transformation L to the map and the 37

tensor-border χ̄ of the characteristic ring, see Fig. 29d. 38

The gray-underlaid BB-coefficients in Fig. 29c ensure G1- 39

continuity between sectors. 40

3. The new layout and the increased number of unconstrained 41

(unmarked) BB-coefficients compared to g△ allows match- 42

ing the unmarked BB-coefficients in Fig. 29a: the BB- 43

coefficients • of g in Fig. 29c are affine combinations of 44

BB-coefficients of q in Fig. 29e. Sampling the composi- 45

tion of the guide g yields the tensor-border of the charac- 46

teristic ring (χ̄CC in [5], see Fig. 8a, but here χ̄ see Fig. 8c). 47

This allows expressing the remaining BB-coefficients of g 48

as affine combinations of BB-coefficients of the quadratic 49

expansion q and the nodes of d-net. 50

4. Scaling χ̄ by the subdominant eigenvalue (see Fig. 8b,d) 51

yields the tensor-borders. Sampling and converting them 52

to B-spline form yields 6n new nodes in Fig. 9b; the re- 53

maining 6n sampled nodes are replaced by those obtained 54

from regular refinement (uniform knot insertion). 55

5. Sampling the guide g with λχ̄ is the same as restricting 56

12



the g to to its domain scaled (towards origin) by λ, re-1

calculating the BB-coefficients of the restriction, and then2

sampling so-’scaled’ guide using χ̄. Therefore the new3

quadratic expansion q̃ is defined as follows, see Fig. 29e.4

The q is restricted to the initial domain scaled by λ.5

Recalculating BB-coefficients of restriction we get new6

quadratic expansion q̃ of (8):7 
q̃s

1
q̃s

2
q̃s

3
q̃s

4
q̃s

5
q̃s

6

 := S


qs

1
qs

2
qs

3
qs

4
qs

5
qs

6

 , S :=


1 0 0 0 0 0

1−λ λ 0 0 0 0
(1−λ)2 2(1−λ)λ λ2 0 0 0

1−λ 0 0 λ 0 0
(1−λ)2 (1−λ)λ 0 (1−λ)λ λ2 0
(1−λ)2 0 0 2(1−λ)λ 0 λ2

 . (8)
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