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Abstract

Rapid reduction in the number of quad-strips, to accommodate narrower surface passages or reduced shape fluctuation, leads to
configurations that challenge existing spline surface constructions. A new spline surface construction for fast contracting polyhedral
control-nets delivers good shape. A nestedly refinable construction of piecewise degree (2,4) is compared with a uniform degree (3,3)
spline construction.
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(b) T0-gon cas-
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T1-gon
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Figure 1: Configurations for rapid contraction: (a) shows fast contraction ‘in the
wild’. (b) cascading triangles (T0-gons), (c) T0-gon + T1-gon (a pentagon with
3-valent vertex), (d) new △2-net with triangulated gray core as generalization of
(b) and (c): removing one edge yields (b), while removing both bottom edges
yields (c).

1. Introduction1

Quadrilateral control-nets for surfaces typically follow a sam-2

pled or imagined cross field to capture two orthogonal directions3

of shape variation. Where such regular, tensor-product nets meet,4

n-gons, polar or star-like configurations arise. These configura-5

tions have been the focus of numerous surface constructions (see6

the review in Section 1.1). By contrast, when the goal is to ac-7

commodate narrower surface passages or reduced shape fluctu-8

ation, a rapid reduction in the number of parallel quad-strips is9

needed. Patterns like Fig. 2 b,c achieve slow contraction. How-10

ever, fast re-meshing algorithms such as [1, 2] and some hand-11

made quad-dominant meshes implement rapid contraction, see12

Fig. 5 , and pack contracting mesh configurations too tightly for13

the meshes to serve as control nets for the existing slow contrac-14

tion spline surface algorithms: typically, irregular net configura-15

tions need to be separated by a border of quadrilaterals. Available16

mitigation range from ad hoc designer intervention, to an im-17

proved Doo-Sabin refinement step [3, 4], to special re-meshing18

rules for T0- and T1-locations, [5]. The drawback of these ap-19

proaches is not just an increase in the number of patches, but a20
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(a) 5-3 neighborhood (b) τ0-net (c) τ1-net

Figure 2: (a) Diagonal 5-3 contraction in quad mesh design. (b,c) Single,
direction-aligned contraction.

decrease in the surface quality as the natural cross field (flow) 21

of the geometry is altered to enforce the necessary combinato- 22

rial structure. Fig. 3 a illustrates, for simplicity in a regular B- 23

spline mesh, how a change of connectivity causes oscillation in 24

the highlight line distribution. This change of flow is also a draw- 25

back of the frequently employed configuration with the nodes of 26

valencies 5 and 3 in one quad, e.g. Fig. 2 a. 27

(a) (b) (c) (d)

Figure 3: A re-connection (a) → (b) that ignores the flow of the principle cur-
vature cross field can lead to surface artifacts (c) → (d) already for a regular
tensor-product control net.
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Figure 4: Rapid contraction △2-net with the labels of its 20 nodes di j.

This paper offers a new, rapid contraction option to the set 28
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of admissible irregular control nets within a bi-quadratic (bi-2)29

spline control net. The resulting Fast Contraction (FC) surface30

pieces join abutting regular tensor-product surface with an em-31

pirically good highlight line distribution [6].32

The underlying fast-contracting net, typeset as △2-net, is33

shown in Fig. 4 . The internal partition of the △2-core (gray in34

Fig. 1 ) can be and is ignored, because the interior partition does35

not enter into the constraints for a smooth join of the FC surface36

with the surrounding surface. Ignoring the interior partition al-37

lows for a joint treatment of the configurations Fig. 1 b,c,d. Since38

the outer nodes of the △2-net can have any valence, △2-nets can39

share quad facets with other irregular configurations and the re-40

sulting FC surface can share points or boundary segments with41

those of other overlapping non-regular net configurations. Fig. 542

shows some cascade-nets arising ‘in the wild’ as output from43

quad-dominant meshing methods [1, 7, 2].44

In summary, the contributions are45

• a C1 surface FC4 for △2-nets consisting of three degree (2,3)46

patches and six degree (2,4) patches, forming together a 3×347

macro-patch. FC4 joins by default G1 with any surrounding48

bi-2 (B-)splines or polyhedral-net splines [8];49

• a proof that no analogous surface construction exists that50

uses 3 × 3 pieces of degree bi-3;51

• an alternative 11-piece FC3 surface construction of degree52

bi-3, suitable for extending the range of polyhedral-net53

splines [8].54

Figure 5: Cascading triangles from quad-dominant meshing methods [1, 7, 2].
Colors indicate valence 5 and valence 4 triangle vertices.

1.1. FC4 and FC3 surfaces in the zoo of surface constructions55

An irregular configuration within an otherwise regular, grid-56

like, tensor-product net, can be associated with a variety of sur-57

face representations. The three major families of surface con-58

structions are singular surface parameterizations, rational multi-59

sided surfaces such as [9, 10, 11], and geometrically continuous60

surfaces. Singular surface parameterizations include both classic61

subdivision surfaces [3, 12, 13] and recent algorithms built on62

the idea of a guide shape [14, 15]; alternative singular parame-63

terizations use edge collapse, e.g. polar surfaces [16, 17, 18], and64

vertex singularity [19, 20, 21, 22]. Other surface algorithms use65

rational singularities [23, 24].66

FC surfaces fall into the family of geometrically smooth sur- 67

face constructions. Geometrically smooth surface constructions 68

assemble a finite number of polynomial pieces to join smoothly 69

after a change of variables. Smoothness ranges from curvature 70

continuous surfaces of degree bi-7 [25] or degree bi-6 [26], to 71

lower-degree tangent-continuous splines [27, 28, 29, 30]. Note 72

that satisfying the algebraic smoothness constraints does not by 73

default yield surfaces with acceptable highlight line distributions. 74

Consequently, several publications focus on empirically good 75

highlight lines. Examples of bi-5 caps are [31], and the macro- 76

patch bi-4 caps of [32, 33]. There are even bi-3 caps with very 77

small normal mismatch [34] that result in good highlight line dis- 78

tributions. Additionally, there is a hybrid family that combine a 79

finite number of subdivision rings with a cap to serve as nestedly 80

refined space for engineering analysis, e.g. [35]. 81

We focus on geometrically smooth constructions for irregu- 82

larities in a C1 bi-quadratic (bi-2) tensor-product surface. Bi-2 83

splines have minimal polynomial bi-degree for smoothing out a 84

quadrilateral mesh. The classic generalization of bi-2 splines [3] 85

consists of an infinite sequence of nested (contracting) bi-2 poly- 86

nomial surface rings but fails to yield good shape due to artifacts 87

generated already in the first steps. Augmented Subdivision [4] 88

improves shape by adding a carefully chosen central guide point. 89

Polyhedral-net splines [8] generalize tensor-product bi-quadratic 90

(bi-2) splines by combining algorithms from [36, 37, 18] that use 91

a finite number of polynomial pieces of degree at most bi-cubic 92

(bi-3). The degree bi-2 construction [38] is degree-wise optimal, 93

but has unsatisfactory shape. 94

Another type of non-regular mesh configurations are τ0-, τ1- 95

nets [39, 40], see Fig. 2 b,c. Their cores, displayed in grey, 96

are called T0-gon (a triangle, but with particular vertex valences 97

4,4,5), respectively T1-gon (a pentagon with vertex valences 98

3,4,4,4,4). For the treatment of τ1-nets T-splines [41] come to 99

mind, but T-splines are primarily useful to refine an existing quad 100

partition, and are known to fail, due to their global parameteri- 101

zation requirement for the prescribed reductions in the number 102

of quad strips, see [42, Fig 2], [43, Fig 6]. For τ-nets, smooth 103

surfaces of bi-degree (2, 4) ([39]) or bi-3 ([40]) can be produced 104

that, together with a surrounding spline, form a smooth surface 105

of good quality. 106

The △2 algorithm is partly motivated by the output of quad- 107

dominant meshing algorithms such as [1, 2], that avoid the com- 108

plexity and higher quad-count of strict quad-meshing algorithms 109

by introducing (fast) mesh contractions: while high resolution 110

meshes are almost always avoid rapid contraction, the desirable 111

low quad-count typically results in △2 configurations. 112

2. Setup 113

Classic tensor-product spline control nets have two distin- 114

guished directions, and so do τ0, τ1 and △2 nets. However, for 115

the latter three, in one direction (vertical in Fig. 6 ) the number of 116

mesh lines is reduced or expanded. (In the following, ’vertical’ 117

and ’horizontal’ refer to the standard layout in Fig. 6 .) Although 118

the output of the △2 construction are tensor-product macro- 119

patches, the changing number of mesh lines forces a change of 120

parameterization to achieve geometric continuity. Compared to 121

τ0 and τ1 constructions, the △2 construction is more challenging 122

due to an increased number of coefficients that do not enter for- 123

mal smoothness constraints but whose careful choice is crucial 124

for good final shape. The △2 macro-patch partion for the main 125

algorithm, FC4, is shown in Fig. 6 b: patches 1,2,3,7,8,9 are of 126

bi-degree (2, 4), patches 4,5,6 are of bi-degree (2, 3) where the 127

first degree, 2, refers to the degree in the horizontal direction. 128
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(a) Extended net

1 2 3

4 5 6

7 8 9

(b) Surface pieces

Figure 6: (a) A △2-net surrounded by a ring of quads.The △2 construction requires
only the △2-net (inner mesh). The ring of quads is used to additionally generate
(b) a ring of uniform bi-quadratic (bi-2) C1 spline patches to allow judging the
quality of transition to the regular spline complex. The inner, red 9-piece macro-
patch corresponds to the FC surface.

2.1. Parameterization129

The macro-patch FC surfaces consist of tensor-product pieces130

of polynomial bi-degree (d, d′) in Bernstein-Bézier form (BB-131

form, [44]). That is, for Bernstein polynomials Bd
k (t) :=

(
d
k

)
(1 −132

t)d−ktk, the patch p of bi-degree (d, d′) is defined as133

p(u, v) :=
d∑

i=0

d′∑
j=0

pi jBd
i (u)Bd′

j (v), 0 ≤ u, v ≤ 1.

With the convention that d denotes the polynomial degree in the134

parameter tracing out the horizontal direction, the bi-degrees in135

addition to the regular bi-2 uniform B-spline patches are (2, 4),136

(2, 3) for FC4 and (3, 3) for FC3. Connecting the BB-coefficients137

pi j ∈ R3 to pi+1, j and pi, j+1 wherever well-defined yields the BB-138

net.139

(a) bi-2

’

t

(b) tensor-border

Figure 7: B-to-BB conversion and tensor-borders t as Hermite input data. Circles
◦ mark B-spline control points, solid disks • mark BB-coefficients of the full
patch, respectively tensor-border.

2.2. Conversion from B- to BB-form and tensor-borders140

Any 3×3 grid can be interpreted as the control net of a uniform141

bi-2 spline in uniform knot B-spline form. In Fig. 7 the B-spline142

control points are marked ◦. The B-to-BB conversion (e.g. by143

knot insertion) expresses the spline in bi-2 BB-form illustrated144

by the green BB-nets in Fig. 7 . Conversion of a partial sub-145

grid yields a partial BB-net t, called tensor-border, that defines146

position and first derivatives across an edge.147

2.3. Geometric continuity and reparameterization148

Two polynomial pieces p and q join G1 along the common149

sector-separating curve p(u, 0) = q(u, 0) with BB-coefficients150

pi0 = qi0 if, see e.g. [45],151

p(u, v) := q ◦ ρ(u, v), ρ(u, v) := (u + b(u)v, a(u)v) (1)

∂vq(u, 0) = a(u)∂vp(u, 0) + b(u)∂up(u, 0), (u, v) ∈ [0..1]2. (2)

Besides the shared BB-coefficients of the common boundary,152

only the layers of BB-coefficients pi1 and qi1 of adjacent patches153

enter the G1 continuity constraints. In the derivation, u-, v- 154

directions can be assigned as convenient. By default, u is used to 155

parameterize along the boundary and v in the orthogonal direc- 156

tion of the tensor-border, towards the interior or core. 157

3. The FC4 construction 158

FC4 consists of three layers: three patches of bi-degree (2, 4), 159

three of bi-degree (2, 3) and again three patches of bi-degree 160

(2, 4). This choice of layout (red pieces in Fig. 6 b) and degree 161

minimizes the number of free parameters that need to be care- 162

fully set for good surface quality as measured by uniformity of 163

highlight line distribution [46]. Moreover, degree 4 in the con- 164

tracting direction is least to obtain geometrically smooth splines 165

of good quality that are nestedly refinable, see [47, 39] and Sec- 166

tion 5. 167

3.1. Tensor-border frame from input Hermite data 168

t0 t1 t2

t̄

t0

t1

t2

t3

t4

t5

⃝ ⃝

⃝ ⃝

ρ̂0

ρ̂1

ρ̂2

ρ̂0

ρ̂1

ρ̂2

(a) input bi-2 data

u
v

u
v

ˆ̄t
0 ˆ̄t

1 ˆ̄t
2

t̂0 t̂1 t̂2

t̂0

t̂1

t̂2

t̂3

t̂4

t̂5

(b) final frame

Figure 8: (a) △2-net and input bi-2 tensor-border frame obtained from the △2-net
by B- to BB-conversion; (b) (left, right) blue reparameterization with ρ̂s. The
bottom green tensor-border is obtained by degree-raising, the top green by split
and degree-raising. Here and in the following figures the u- and v-arrows indicate
the bi-2 tensor-border reparameterization directions.

In the following let s = 0, 1, 2. The bi-2 tensor-borders are 169

initialized by partial B-to-BB conversion from control-net points 170

di, j whose indices are shown in Fig. 4 : 171

left di,s+ j, i = 1, 2, j = 1, 2, 3 → ts,
right symmetric to left → ts+3,
top di,5− j, i = 1, 2, 3, j = 0, 1 → t̄,

bottom ds+i, j, i = 1, 2, 3, j = 1, 2 → ts.

172

Since they stem from C1 splines, the resulting adjacent bi-2 173

tensor-borders are C1-connected, and their 2×2 overlapping BB- 174

coefficients agree at the four corners, marked in Fig. 8 a by ⃝. 175

While left and right sides of the tensor-border frame have match- 176

ing 3 pieces, the bottom consists of 3 but the top of only one 177

piece. To match the bottom structure, the top must be split, hor- 178

izontally, into 3 pieces. This destroys consistency with the left 179

and right tensor-border, to be re-established by reparameterizing 180

the tensor-borders ts and ts+3, with ρs(u, v) := (u, as(u)v) where, 181

to match the maximum degree of the FC4, a0 and a2 can be at 182

most quadratic and so have BB-coefficients 183

[a0
0, a

0
1, a

0
2] := [1, 1,

5
6

]; [a2
0, a

2
1, a

2
2] :=[

1
2
,

1
3
,

1
3

]

while a1(u) is linear, [a1
0, a

1
1] := [

5
6
,

1
2

].
(3)

Since the functions as are C1-connected, so are the tensor- 184

borders t̂s := ts ◦ ρs, t̂3+s := t3+s ◦ ρs. Since the tensor-borders 185
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ts and (the split) t̄ are not reparameterized, their degree in hor-186

izontal direction is 2. Therefore, t̂0, t̂2, t̂3, t̂5 are presented in187

bi-degree (4, 2) and t̂1, t̂4 in bi-degree (3, 2) form. This implies188

that tensor-borders ts and (the split) t̄ are presented as t̂s
, ˆ̄t

s
in189

bi-degree (2, 4) form. The resulting tensor-border frame is C1.190

Appendix A lists the explicit formulas.191

3.2. Setting the free parameters192

Fig. 9 a shows as • the ‘spine’ of 6 BB-coefficients that to-193

gether with the surrounding tensor-border surface frame (Fig. 8 b194

and, equivalently, the green net in Fig. 9 a) determine a space of195

C1 macro-patches: The two BB-coefficients marked × are de-196

fined so that the central vertical curve is C1, i.e. are set by the197

stencil of Fig. 9 b. With the vertical spine fixed, C1 continuity in198

the horizontal direction defines the remaining BB-coefficients as199

averages of their two neighbors, one on the spine and the other200

on the tensor-border.201

0

1
2
3
4

5

(a) BB-coefficients •

7
4− 3

4

(b) stencil for ×

Figure 9: Completion of the FC4 macro-patch. (a) BB-coefficients indicate that
bottom three and top three patches are of bi-degree (2, 4) while middle three
patches are of bi-degree (2, 3). The ‘spine’ of six •s, s = 0, . . . , 5 are uncon-
strained. (b) The stencil (rule) to join C1 a degree 3 segment with BB-coefficients
• to a degree 4 segment with BB-coefficient ×. The shared end-point of the seg-
ments is marked as the larger • and weight 7/4 (index (1) or (4) in (a)).

While formally smooth for any choice, good shape requires202

a careful choice of the six coefficients marked as •. We found203

the best choice, among many tested, is to minimize the func-204

tional F4 :=
∫ 1

0

∫ 1
0

∑
i+ j=4,i, j≥0

4!
i! j! (∂

i
s∂

j
t f (s, t))2 ds dt over all 9205

patches of macro-patch. The resulting surfaces have good high-206

light line distributions for challenging convex shapes, such as207

Fig. 11 a,left, but not for the △2-net Fig. 11 a,right where the sur-208

face looks creased at the meeting of the two orthogonal feature209

lines. Another option is to treat the core of the △2-net asymmet-210

rically as in Fig. 1 b, i.e. as two cascading T0-gons plus one quad.211

Refinement of this net using the rules of [5], see Fig. 10 d, yields,212

asymmetrically, one additional regular bi-2 patch in Fig. 10 e,213

where regular bi-2 patches are colored green, and additional ones214

from the refinement, colored light green. Then the algorithm for215

τ0-nets in [39] yields a 2×2 macro-patch with pieces of bi-degree216

(2, 4) for each τ0-net, see Fig. 10 e. The global shape in Fig. 10 b217

is reasonable, but slightly dips at same location where the initial218

surface Fig. 10 a peaks sharply.219

While many other approaches were investigated, the best220

choice turned out to merge the F4 minimization, of the spine of221

six •, with the refined cascade approach (’[5] followed by [39]’).222

The resulting surface is displayed in Fig. 10 c. Good highlight223

line distribution is confirmed by many other challenging inputs224

(see Limitations in Section 4 for an exception).225

Construction summary and precalculated tables. Let Cini :=226

p( 1
2 ,

1
2 ) be the central point of the six • construction, i.e. the cen-227

ter point of the central (2, 3) patch labeled 5 in Fig. 6 b, and let228

Cℓ be the point marked ◦ in the layout of Fig. 10 e of the ’[5]229

(a) six • approach (b) [5] followed by [39] (c) FC4

(d) refined net
(e) layout of ’[5] followed by
[39]’

(f) improved (g) [5] followed by [39]

Figure 10: Improving the initial macro-patch. (b) ’[5] followed by [39]’ is the
result of refinement according to [5] followed by [39].

followed by [39]’ option. Let Cr be the analogous point for the 230

left-right flipped cascade configuration. Then we set 231

C := (2Cini + Cℓ + Cr)/4 (4)

and we proceed, as for the six • approach, to minimize F4, but 232

now only over five •s since one • is symbolically set to ensure 233

interpolation of C. 234

Then for k = 0, . . . , 5, 235

•k :=
5∑

i=1

2∑
j=1

µk
i jdi j +

4∑
i=1

µk
i3di3 +

3∑
i=1

5∑
j=4

µk
i jdi j (5)

is an affine combination of the △2-net nodes di j as labeled in 236

Fig. 4 . Without loss of quality, the coefficients µ each have 5 237

decimals accuracy and are corrected by less than 0.00009 so they 238

form a partition of 1. That is, the weights µs
i j listed in Appendix 239

B are exact, not approximations of the implementation weights. 240

While the resulting 9 patches can be jointly encoded into a 241

126×20 matrix M, see below, we present the algorithm explicitly 242

in four steps: 243

FC4 Algorithm

1. Compute the tensor-border frame of Section 3.1
(light green in Fig. 9 a) by B-to-BB conversion and
Appendix A formulas.

2. Compute the spine (6 • in Fig. 9 a) as an affine com-
bination of the △2-net nodes by Eq. (5). The weights
µk

i j are listed in Appendix B.
3. Compute the two × in Fig. 9 a using stencil Fig. 9 b.
4. Set all remaining BB-coefficients as 1/2 equal aver-

ages of neighbor BB-coefficients to enforce C1 con-
tinuity in the horizontal direction (see Section 3.2).

244
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Running the algorithm in a symbolic solver, in terms of245

symbolicly-represented points di j of the △2-net, yields the BB-246

coefficients bk as a linear combination of the di j. The linear247

combination weights are tabulated in the matrix M. For easy im-248

plementation, given M and a generic control net modifier like [8],249

the code consists of gathering the △2-net in the vector of points250

d ∈ R20×3 and computing the vector b of the BB-coefficients as251

b = Md.252

4. Analysis: Comparisons, Examples and Alternatives253

By construction, the 3 × 3 FC4 macro-patch is internally at254

least C1 and G1 connected to the surrounding bi-2 surface. When255

the △2-net is extended as in Fig. 6 a, a frame (colored green in256

Fig. 6 b) of regular bi-2 patches surrounds the FC4 surface. This257

bi-2 frame is important to judge the quality of transition from any258

surrounding surface to FC4. As is customary, we assess good259

shape as uniform highlight line distribution [6]. Extended △2-260

nets allow shape prediction and emphasize flaws that large com-261

pound nets (e.g. Fig. 22 ) might hide or cause by poor macro-262

scale mesh layout. For visualization, we show a triangulated△2-263

net core to hint at design intent where features are introduced.264

As a baseline, Fig. 11 juxtaposes (a) three challenging △2-net265

configurations (c) with their regular counterparts (c). Remark-266

ably the highlight line distributions of the tensor-product and FC4
267

surfaces are alike.268

(a) extended △2-nets

(b) FC4 surfaces

(c) tensor-product nets

(d) tensor-product bi-2 B-spline surfaces

Figure 11: Row 1: Extended △2-nets, Row 3: Tensor-product control nets. Row
2,4: the corresponding surfaces with highlight lines.

The net of Fig. 12 a is a slight modification of that in269

Fig. 11 (c,right): the ridge corner has been pulled to the lower270

level to better mimic the ridge rounding of Fig. 11 (a,right). The271

resulting uniform bi-2 tensor-product surface Fig. 12 b disap-272

point: the tensor-product net Fig. 12 a tries to capture a feature273

(a) B-spline control net (b) bi-2 (B-)spline surface (c) FC4

Figure 12: What is the regular counterpart of △2-net in Fig. 11 top,right?

’diagonal’ to the two preferred directions of the tensor-product 274

splines, resulting in an undesirable dip. Note that the tensor- 275

product net of Fig. 11 (c,right) fully aligns with the preferred di- 276

rections and therefore succeeds in a sharp turn of the ridge (as 277

does the initial construction displayed in Fig. 10 a.) By contrast, 278

FC4 models the diagonal direction well: Fig. 12 c reorients FC4
279

of Fig. 11 (a,right) to show a well-preserved ridge. 280

(a) △2-net (b) regular net (c) △2 surface (d) regular surface

(e) △2-net (f) regular net (g) △2 surface (h) regular surface

Figure 13: Top row: crossing features. Bottom row: ’squeezing’ feature.

Fig. 13 ,top shows that crossing features in preferred directions 281

create bumps both for B-spline surfaces and FC4. Nets (a) and 282

(b) result in similar highlight lines for the more flexible FC4 as 283

well as the regular tensor-product spline, see Fig. 13 c,d. The 284

reduced highlight line variation on top of the ridge advertises 285

FC4 for changing mesh line density. 286

Fig. 14 systematically reviews the effect on FC4 of feature 287

lines touching or straddling the △2-net core. Row 1 shows a 288

partial, spine-aligned ridge (a) at the contracted and (b) at the 289

spread-out end; both are well-shaped. Row 2 shows a partial, 290

spine-aligned ridege combined with a horizontal ridge. This 291

yields a slight bulge where the ridges meet – as do regular tensor- 292

product surfaces. Row 3 compares a ridge along the contracting 293

direction touching vs cutting through the core. Row 4 tests a 294

full horizontal feature, see also Fig. 11 a,middle, with direction 295

change. We applied plain shading to emphasize the global shape 296

and so complement the highlight line distributions of other fig- 297

ures. 298

Limitations. FC4 nicely follows the control net and so models the 299

likely design intent in almost all cases of Fig. 14 , including the 300

rounding of the right angle ridge feature. FC4 seems less appro- 301

priate only for a single ridge running in the contraction direction 302

through the core, see Fig. 14 k. We focus on this limitation with 303

Fig. 15 a. Linking to the cross direction causes a dip Fig. 15 b. 304

This same defect is well-known also for T1-junctions and for T- 305

splines. It is caused by the support of the spline on the ridge 306

incorporating data from its lower neighbors. 307

The special case can be (partially) mended by replacing C in 308
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(a) △2-net (b) FC4 (c) △2-net (d) FC4

(e) △2-net (f) FC4 (g) △2-net (h) FC4

(i) △2-net (j) FC4 (k) △2-net (l) FC4

(m) △2-net (n) FC4 (o) △2-net (p) FC4

Figure 14: Gallery of feature lines touching or straddling the red core.

(4) by309

C := α
d32 + d24

2
+ (1 − α)

d23 + d33

2
, α := 0.85 (6)

inspired by the core connectivity of Fig. 15 c,d. Here α was de-310

termined by experiment comparing highlight line distributions.311

Proceeding as in first approach (see Section 3.2) minimizing F4312

yields the dip reduction shown in Fig. 15 e. A better choice may313

be refinement, see Fig. 20 b.314

5. Nonexistence of a 3× 3 C1 bi-3 macro-patch that smoothly315

joins to a given input bi-2 frame316

This section shows that an analogous C1 bi-3 surface construc-317

tion that joins smoothly with a given bi-2 surrounding surface is318

not possible when using a 3 × 3 macro-patch. Such lower-bound319

findings characterize the complexity of the task and are therefore320

of scientific value. A reader purely interested in algorithms might321

skip this section.322

5.1. Left and right reparameterizations323

To obtain a 3 × 3 layout, and since the goal is an internally C1
324

macro-patch, the top bi-2 tensor-border is uniformly split into 3325

pieces, and the top and bottom borders are degree-raised to bi-3,326

see Fig. 16 a. To match, the left and right pieces of the tensor-327

border frame must be reparametrized, see Fig. 8 a: for s = 0, 1, 2328

t̃s := ts ◦ ρ̃s, t̃3+s := t3+s ◦ ρ̃3+s, ρs(u, v) := (u, as(u)v).

(a) △2-net (b) △2 surface

(c) alternative core (d) alternative net (e) alternative surface

Figure 15: An alternative (rare) triangulation of a core displayed in (c) illustrates
possible treatment of a poor net design.

Lemma 1 (left,right frame). The reparameterization functions 329

as(u), s = 0, 1, 2 must be pieces of one uniformly-split linear 330

function ℓ(u) = 1 − u + 1
3 u. That is, the BB-coefficients of the 331

pieces are 332

[a0
0, a

0
1] = [9, 7]/9; [a1

0, a
1
1] = [7, 5]/9; [a2

0, a
2
1] = [5, 3]/9. (7)

Proof. Since the t̃s are to be C1-connected and not exceed degree 333

3, the as(u) must be linear and C1-connected, i.e. are part of one 334

linear function ℓ. Consistency of t̃ with top and bottom boundary 335

curves at the coefficient marked ◦ in Fig. 16 a, imply the form 336

(7). 337

Then the boundary BB-coefficients t̃s
i0, i = 0, . . . , 3, of the 338

left piece of the frame are those of the those of the boundary 339

quadratics degree-raised to 3. For the interior layer of the tensor- 340

border, omitting the superscripts of the pieces s = 0, 1, 2, 341

t̃01 :=
(
1 −

2
3

a0
)
t00 +

2
3

a0t01,

t̃11 :=
(1
3
−

2
9

a1
)
t00 +

(2
3
−

4
9

a0
)
t10 +

2
9

a1t01 +
4
9

a0t11.

(8)

The remaining BB-coefficients t21 and t31 are defined by the sym- 342

metry ti j ↔ t2−i, j, i = 0, 1, 2, j = 0, 1; ai ↔ a1−i, i = 0, 1. By the 343

same logic applied along the right border, ρ̃3+s := ρ̃s. 344

t̃0

t̃1

t̃2

t̃3

t̃4

t̃5

0 1 2

u u
v v

00

01

20

21

00

01

21 3101 11

↑ρ̃
0

↑ρ̃
1

↑ρ̃
2

t0 t1 t2

t̃0 t̃1 t̃2

u
v

(a) (b)

Figure 16: (a) Mismatch at the locations marked ◦. (b) Labels and markers □, ◦,
⃝ for the proof of Theorem 1.

Now only a mismatch of BB-coefficients remains at the four 345

locations marked as ◦ in Fig. 16 a. 346

5.2. Focus on the corner mismatch 347

To resolve the bottom mismatch at ◦, the bottom bi-2 tensor- 348

borders ts, s = 0, 1, 2, (note the under-bar) must be reparameter- 349
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ized:350

t̃s := ts ◦ ρ̃s, ρ̃s := (u + bs(u)v, v). (9)

Lemma 2 (bottom frame). The reparameterization functions351

bs(u), s = 0, 1, 2, are of degree 2 and the leftmost, b0 has BB-352

coefficients353

[b0
0, b

0
1, b

0
2] = [0,−

1
9
, 0]. (10)

354

Proof. For t̃s not to exceed degree 3, bs(u) can have up to degree355

2. The BB-coefficients t̃s
i0, i = 0..3, define the input quadratic356

boundary segment in degree-raised form. Omitting the super-357

script, we express the reparameterized BB-coefficients in terms358

of the bottom tensor-borders:359

t̃01 :=
(1
3
−

2
3

b0
)
t00 +

2
3

b0t10 +
2
3

t01; (11)

t̃11 :=
(1
9
−

4
9

b1
)
t00 +

(2
9
−

2
9

b0 +
4
9

b1
)
t10 +

2
9

b0t20 +
2
9

t01 +
4
9

t11;

t̃21 := −
2
9

b2t00 +
(2
9
−

4
9

b1 +
2
9

b2
)
t10 +

(1
9
+

4
9

b1
)
t20 +

4
9

t11 +
2
9

t21

t̃31 := −
2
3

b2t10 +
(1
3
+

2
3

b2
)
t20 +

2
3

t21.

We now compare the four coefficients with index 00, 10, 01, 11,360

where the left and the bottom frame overlap. In particular, we use361

the formulas (8) and (11) and the fact that the input bi-2 tensor-362

borders are consistent, i.e t0
i j = t0

ji, i = 0, 1, j = 0, 1. Since363

the outer boundaries of the reparameterized tensor-borders are364

degree-raised boundary quadratics, inserting the values for a0
0 =365

1 and a0
1 = 7/9, equating the tensor-border BB-coefficients t̃0

10 =366

t̃0
01 (marked □) in Fig. 16 ) results in367

t̃0
10 :=

1
3

t0
00 +

2
3

t0
01 =

1
3

t0
00 +

2
3

t0
01 +

2b0
0

3
(t0

00 + t0
10)(11) =: t̃0

01.

This implies b0
0 := 0; furthermore, matching t̃0

11 = t̃0
11 (marked ◦368

in Fig. 16 a) leads to369

t̃0
11 :=

13
81

t0
00 +

2
9

t0u01 +
14
81

t0
10 +

4
9

t0
11 =
(1
9
−

4
9

b0
1
)
t0
00 + . . . =: t̃0

11

and this implies b0
1 := − 1

9 .370

C1-continuity between t̃0 and t̃1 implies t̃1
11 := 2t̃0

31 − t̃0
21, but371

the expression for t̃0
21 in (11) contains the term − 2

9 b0
2t0

00 that is372

missing in t̃0
31 and no coefficient of t1 depends on t0

00. Hence373

b0
2 := 0 and t̃0

31 := 1
3 t20 +

2
3 t21.374

We can now prove the promised (sharp) lower bound result.375

Theorem 1. There does not exist a 3 × 3 C1 bi-3 macro-patch376

construction that guarantees a smooth join to any given bi-2377

frame.378

Proof. Lemma 2 and structural left-right symmetry imply379

[b2
0, b

2
1, b

2
2] = [0, 1

9 , 0] (note the change of sign due to reversal380

of direction) Since t1
0 j = t0

2 j, j = 0, 1, the same argument as381

for b0
0 = 0 yields b1

0 := 0. Therefore C1 continuity of b0 with382

b1 implies [b1
0, b

1
1, b

1
2] = [0, 1

9 , 0]. Retracing the arguments to C1
383

continuity of b1 with b2 implies b1
2 = −

1
9 , a contradiction.384

For illustration, calculating t̃2
21 for b2

1 = −
1
9 to ensure C1 con-385

tinuity with the b0 yields an inconsistency at the right location386

emphasized in Fig. 16 b by replacing the initial ◦ by a larger one.387

6. A C1 bi-3 macro-patch FC3
388

We now leverage the findings of Section 5 and allows more 389

pieces to successfully construct a bi-cubic FC3 surface. The bi- 390

3 macro-patch FC3 consists of 11 pieces laid out in Fig. 17 b. 391

The central patch m is borrowed from the FC4 construction and 392

degree-raised to degree bi-3. This choice turned out superior to 393

any direct construction using functionals or heuristics. Splitting 394

m uniformly into two patches in the horizontal direction yields a 395

4 × 3 layout of bi-3 patches. 396

To derive the bi-3 macro-patch we call two adjacent segments 397

ps and ps+1 of the bi-2 tensor-border frame connected with ratio 398

1 : κ iff 399

ps+1
0 j := ps

2 j, ps+1
1 j := (1 + κ)ps

2 j − κp
s
1 j, j = 0, 1.

As in the preceding section, let ρs := (u + bs(u)v, v), where bs(u) 400

is a quadratic function with BB-coefficients bs
i , i = 0, 1, 2 and 401

define p̃s := ps ◦ ρs. Then retracing the argument in Section 5.2 402

with the ratio 1 : κ proves the following. 403

Lemma 3. Let adjacent segments ps and ps+1 of the bi-2 tensor- 404

border frame be C1-connected with ratio 1 : κ. 405

Then the re-parameterized tensor-borders p̃s and p̃s+1 are C1- 406

connected with ratio 1 : κ, 407

p̃s+1
0 j = p̃s

3 j, p̃s+1
1 j = (1 + κ)p̃s

3 j − κp̃
s
2 j, j = 0, 1, (12)

if and only if bs+1
0 = bs

2 = 0 and bs+1
1 = −bs

1. 408

Based off this Lemma, the tensor-border frame is adjusted as 409

follows. 410

6.1. Adjusting the tensor-border frame 411

First we consider the bottom part of frame, Fig. 17 a. For the 412

4 × 3 layout, ρ̃
0

and ρ̃
1

is defined as in Section 5.2, and ρ̃
2

:= ρ̃
0
, 413

ρ̃
3

:= ρ̃
1
: 414

[bs
0, b

s
1, b

s
2] := [0,

(−1)s+1

9
, 0], s = 0, . . . , 3. (13)

We set t0 := t0, t3 := t2, split t1 uniformly in u into two pieces 415

t1, t2 and define t̃s := ts ◦ ρ̃s, s = 0, . . . , 3. 416

u
v

u
v

uv

u
v

˜̄t
s= 0 1 2 3

t̃0 t̃1 t̃2

t̃3

t̃0

t̃1

t̃2

t̃3

t̃4

t̃5

(a) correct bi-3 frame

m

(b) layout with central
bi-3 patch m (white)

Figure 17: (a) Correct bi-3 tensor-border frame. (b) 11 piece layout of the bi-3
macro-patch: the central patch m is not split.

The analogous considerations are applied to the top part of 417

frame. To match a bottom layout of tensor-border frame in 418

Fig. 17 a, the input bi-2 tensor-border t̄ (see Fig. 8 a) is split in 419
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the u-direction with ratio (1 : 1
2 : 1

2 : 1) into four pieces t̄s,420

s = 0, . . . , 3. The four bi-2 pieces s = 0, . . . , 3 are reparameter-421

ized with422

˜̄ρs := (u + bs(u)v, v), where [bs
0, b

s
1, b

s
2] := [0,

(−1)s

3
, 0].

That is, the explicit formulas for t̃s from ts (respectively for the423

top ˜̄t
s

from t̄s), for s = 0, . . . , 3 (superscript omitted) are that the424

boundary BB-coefficients are obtained by degree-raising and425

q01 :=
1
3

p00 +
2
3

p01, q31 :=
1
3

p20 +
2
3

p21,

q11 :=
(1
9
−

4
9
γ
)
p00 +

(2
9
+

4
9
γ
)
p10 +

2
9

p01 +
4
9

p11,

q21 :=
(2
9
−

4
9
γ
)
p10 +

(1
9
+

4
9
γ
)
p20 +

4
9

p11 +
2
9

p21,

(14)

where p denotes the BB-coefficients of ts (t̄s) and q of t̃s ( ˜̄t
s

)426

and427

bottom: γ :=
(−1)s+1

9
, top: γ :=

(−1)s

3
.

6.2. C1 completion of bi-3 macro-patch428

The central patch of FC4 (labeled 5 in Fig. 6 b) is degree-raised429

to form the central bi-3 patch m of FC3, see Fig. 17 b (where the430

tensor-border frame from Fig. 17 a is displayed as ’light green’).431

The C1-extension of m towards the frame (displayed cyan) is uni-432

formly split in the horizontal direction where needed, i.e. top and433

bottom. The resulting bi-3 macro-patch has 11 pieces. Splitting434

m yields a tensor-product 4 × 3 layout.435

(a) 11 piece bi-3 macro-
patch based on m

(b) direct application of
functional

Figure 18: Comparison of the 11-piece construction and a bi-3 construction based
on functionals. The input net is Fig. 11 top,left.

7. Nested refinement of FC4
436

A refinement of a spline space is nested if the finer space in-437

cludes the coarser space. Refinement is useful, both for geo-438

metric manipulations and for engineering analysis since it ex-439

poses additional degrees of freedom while preserving the origi-440

nal shape or solution. The interior of FC4 and FC3 are C1 splines441

that can be nestedly refined by knot insertion. For FC4, the top442

and bottom tensor-borders are not reparameterized, only degree-443

raised to 4 in the vertical direction and the top is split in the hor-444

izontal direction. Hence top and bottom refinement is that of445

regular splines.446

The G1 transition from the input bi-2 tensor-border to FC4
447

is displayed in Fig. 19 . The bi-2 tensor-border bottom-left is448

reparametrized with ρ := (u, a(u)v) yielding a tensor-border of449

bi-degree (4, 2), top-left. For reducing the free parameters of the450

construction, degree 3 of the middle patch of FC4 in the ’vertical’451

direction was convenient. However, for nested refinement pieces452

t

↑ρ
↑ ρ̇ ↑ ρ̈

−→

−→

:

:

e 1 − e

e 1 − e

:
h

1 − h

:
h

1 − h

Figure 19: Diagram of nested G1-refinement.

of different bi-degrees complicated the exposition. Therefore the 453

initial patches of bi-degree (2, 3) are degree-raised to (2, 4) and 454

a(u) is degree-raised to 2 so that all a(u) are formally quadratic. 455

The input and reparameterized tensor-borders are split in some 456

ratio e : 1− e along the boundary (see −→ in Fig. 19 ); and with 457

ratio h : 1 − h into the macro-patch. By definition, nested re- 458

finement means that there exist reparameterizations ρ̇ and ρ̈ sat- 459

isfying 460

• (inest) the reparametrized tensor-border t ◦ ρ, split (as dis- 461

played in Fig. 19 top-right), equals the union of split in- 462

put tensor-borders pieces (bottom-right) reparameterized 463

respectively by ρ̇, and ρ̈ (a commutative diagram); and 464

• (iinest) the C1-continuity and bi-degree of the reparameter- 465

ized tensor-borders are retained when perturbing the split 466

input bi-2 data. 467

Properties (inest,iinest) are satisfied if 468

ρ̇(u, v) := (u, ȧ(u)v), ρ̈(u, v) := (u, ä(u)v), where

ȧ(u) := a(eu), ä(u) := a(e(1 − u) + u),

where the BB-coefficients of ȧ(u) and ä(u) are computed from 469

a(u) by de Casteljau’s algorithm. With the BB-coefficients of the 470

boundary obtained by degree-raising, the formulas for t̃(u, v) := 471

t ◦ ρ(u, v), ρ(u, v) := (u, a(u), v) where a(u) has BB-coefficients 472

a0, a1, a2, are 473

t̃01 :=(1 − a0)t00 + a0t01;

t̃11 :=
1
2
(
(1 − a1)t00 + (1 − a0)t10 + a1t01 + a0t11

)
;

t̃21 :=
1
6
(
(1 − a2)t00 + (1 − a0)t20 + 4(1 − a1)t10 (15)

+ a2t01 + a0t21 + 4a1t11
)
.

The BB-coefficients t̃41, t̃31 are obtained from t̃01, t̃11 by replac- 474

ing ti j by t2−i, j and ai by a2−i. More details on nested refinement 475

can be found in [39, Section 3.1]. 476

Fig. 20 ,top demonstrates that refinement in FC4 adds flexi- 477

bility to improve surface quality in the tricky case of Fig. 15 . 478

Fig. 20 ,bottom shows how a refined layout allows introducing 479

complex ridges. 480

For FC3, G1-refinement along left and right boundaries is the 481

same as for FC4, but for bi-3 tensor-border and patches, and for 482

a linear a(u), see (8). However, FC3 is not nestedly G1-refinable. 483

Lemma 4. FC3 is not nestedly G1-refinable along its bottom and 484

top borders. 485
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(a) layout (b) surface

(c) layout (d) surface

Figure 20: Top row: mimicking the surface Fig. 15 e. Bottom row: adding a
zigzag between left and right sides.

Proof. By (inest), the reparameterized tensor-border must, after486

the split, be an union of the reparameterized pieces of the input487

tensor-border. To not exceed degree bi-3, the reparametrizations488

must have the form ρ(u, v) := [u + b(u)v, v], with quadratic b(u).489

By (iinest), the reparameterized pieces must be C1-connected.490

Then Lemma 3 forces b(u) to be zero at the endpoints. Multi-491

plying out, we check that no such b(u) exists.492

Left and right sides of FC3 are nestedly refinable: e.g. the493

features as in Fig. 20 d can be designed. The shape of Fig. 20 b494

can be modeled by non-nested refinement at the bottom and top.495

However, such a design is more cumbersome than introducing496

the details after preserving the inital surface through nested re-497

finement.498

8. Discussion, limitations and summary499

Unsurprisingly, FC4 and FC3 generate similar surfaces, not500

least, because they share the central patch m. Options, includ-501

ing those used for deriving the free central-patch BB-coefficients502

for FC4, resulted in poorer surfaces than the m-sharing FC3 con-503

struction, as illustrated in Fig. 18 . This is likely due to the, com-504

pared to FC4, slight distortions of the FC3 tensor-borders that505

challenge derivative-based functionals.506

The derivation of the FC-surfaces is intricate, but this com-507

plexity pays off in that local features diagonal to the principal508

parameter directions can be properly handled by FC4 while reg-509

ular B-splines result in a sequence of dips. Only for ridges split-510

ting the core from top to bottom is the reverse true: FC4 result in511

a dip. We showed two options to mend this situation: to align the512

core connectivity with the new cross direction as in Fig. 15 ; or,513

preferably, to use the G1-refinability of FC4. The latter increases514

the number of polynomial pieces but improves the surface qual-515

ity.516

By contrast, the implementation is simple: gather the △2-net517

in the vector of points d and compute the vector b of the BB-518

coefficients as b = Md. The cost of surface evaluation is very519

similar to evaluating a tensor-product spline by inserting knots:520

this ca be expressed as a matrix multiplication, followed by eval-521

uation of the resulting Bézier form.522

Physical simulation, in the sense of solving partial differential523

equations on the surface by Galerkin’s approach, is no more dif-524

ficult for geometrically smooth surfaces than for parametrically 525

smooth surfaces [48, 49]. In particular, the expensive part of 526

assembling the stiffness matrix, including the first fundamental 527

form of the surface, is alike. Anyhow, geometric continuity, is 528

already required for multi-sided smooth surfaces. For large 2D 529

textures created in the domain, it is advantageous to have a sin- 530

gle parameterization. But for high-end textures that are created 531

by directly painting on the surface and pulling back the texture to 532

domain coordinates, there is no disadvantage to geometric conti- 533

nuity. 534

Much of the technical framework of Section 3.1 and Section 6 535

easily generalizes to more general contractions and configura- 536

tions. In particular, deriving the explicit reparameterizations of 537

the input tensor-border frame does not pose a challenge. Rather, 538

the challenge lies in the careful setting of free parameters (see 539

Section 3.2) since fast contraction easily spoils the shape. 540

While a uniform bi-3 degree of FC3 facilitates seamless inte- 541

gration into the bi-3 polyhedral-net spline code [8], as illustrated 542

in Fig. 22 , FC4 is preferable in applications where nested G1- 543

refinability ensures exact reproduction at a finer resolution, for 544

example when using the splines both to model the surface and to 545

solve differential equations on the surface with the same spline 546

elements. 547

Acknowledgements Erkan Gunpinar acknowledges the fund- 548

ing from The Scientific and Technological Research Council of 549

Turkey (TUBITAK, Project No: 123F259). 550

References 551

[1] N. Schertler, M. Tarini, W. Jakob, M. Kazhdan, S. Gumhold, D. Panozzo, 552

Field-aligned online surface reconstruction, ACM Trans. Graph. 36 (4) 553

(2017). 554

[2] W. Jakob, M. Tarini, D. Panozzo, O. Sorkine-Hornung, Instant field-aligned 555

meshes, ACM Trans. Graph. 34 (6) (2015). 556

[3] D. Doo, M. Sabin, Behaviour of recursive division surfaces near extraordi- 557

nary points, Computer-Aided Design 10 (1978) 356–360. 558
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[26] K. Karčiauskas, J. Peters, Minimal bi-6 G2 completion of bicubic spline617

surfaces, Computer Aided Geometric Design 41 (2016) 10–22.618

[27] M. Kapl, G. Sangalli, T. Takacs, Dimension and basis construction for619

analysis-suitable G1 two-patch parameterizations, Computer Aided Geo-620

metric Design 52-53 (2017) 75–89.621

[28] A. Blidia, B. Mourrain, G. Xu, Geometrically smooth spline bases for622

data fitting and simulation, Computer Aided Geometric Design 78 (2020)623

101814.624

[29] M. Marsala, A. Mantzaflaris, B. Mourrain, G1-smooth biquintic approxi-625

mation of Catmull-Clark subdivision surfaces, Computer Aided Geometric626

Design 99 (2022) 102158.627
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[33] K. Karčiauskas, T. Nguyen, J. Peters, Generalizing bicubic splines for mod-634

eling and IGA with irregular layout, Computer-Aided Design 70 (2016)635

23–35.636
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nuity of Bézier surfaces, Comp Aid Geom Design 7 (1) (1990) 165–179.661

[46] K.-P. Beier, Y. Chen, Highlight-line algorithm for realtime surface-quality662

assessment, Computer-Aided Design 26 (4) (1994) 268–277, special Issue: 663

Mathematical methods for CAD. 664
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Appendix A: Formulas for the tensor-border frame t̂s 674

The construction is symmetric and t̂s,
ˆ̄ts are bi-2 in degree- 675

raised (2, 4) form. Therefore only the first cross-derivative 676

layer of t̂s needs to be specified. Omitting s, we denote the 677

BB-coefficients of input bi-2 tensor border as bi j, i = 0, 1, 2, 678

j = 0, 1 and the reparameterized tensor-borders of bi-degree 679

(4, 2) and (3, 2) as b̃r1, r = 0, . . . , 4 and r = 0, . . . , 3. Then 680

b̃r1 :=
∑2

i=0
∑1

j=0 νi jbi j , with coefficients νi j arranged as 2 × 3 681

tables As
r1 (specific for superscript s and index r) in the format 682

A :=
( ν01 ν11 ν21
ν00 ν10 ν20

)
. Fig. 21 , displays the labels for all reparameter- 683

ized tensor-borders. 684

(4, 2)
00 10 20 30 40

01 11 21 31 41

(3, 2)

00 10 20 30

01 11 21 31 (3, 3)

00 10 20 30

01 11 21 31

(2, 2)

00 10 20

01 11 21

u
v

u
v

u
v

↙̂ρ0
ρ̂2

↖̂
ρ1

↗̃ρ
ρ̃, ˜̄ρ

A :=
( ν01 ν11 ν21
ν00 ν10 ν20

)
Figure 21: Reparameterized tensor-borders. center: reparameterization. left: ρ̂0,
ρ̂1, ρ̂2 are used for the main construction. right: ρ̃, ρ̃, ˜̄ρ are used for the bi-3
construction.

A0
01 :=

(
1 0 0
0 0 0

)
, A0

11 := 1
2

(
1 1 0
0 0 0

)
, A0

21 := 1
36

(
5 24 6
1 0 0

)
, 685

A0
31 := 1

12

(
0 5 6
0 1 0

)
, A0

41 := 1
6

(
0 0 5
0 0 1

)
; 686

A1
01 := 1

6

(
5 0 0
1 0 0

)
, A1

11 := 1
18

(
3 10 0
3 2 0

)
, A1

21 := 1
18

(
0 6 5
0 6 1

)
, 687

A1
31 := 1

2

(
0 0 1
0 0 1

)
; 688

A2
01 := 1

2

(
1 0 0
1 0 0

)
, A2

11 := 1
12

(
2 3 0
4 3 0

)
, A2

21 := 1
36

(
2 8 3
4 16 3

)
, 689

A2
31 := 1

6

(
0 1 1
0 2 2

)
, A2

41 := 1
3

(
0 0 1
0 0 2

)
. 690

Appendix B: Weights µ of the FC4 ‘spine’ 691

Table Ms lists 105


µs

15 µ
s
25 µ

s
35

µs
14 µ

s
24 µ

s
34

µs
13 µ

s
23 µ

s
33

µs
12 µ

s
22 µ

s
32

µs
11 µ

s
21 µ

s
31

 .
M0 :=

 0 0 0
412 −825 412
−1256 5423 5423

987 −782 82923
−27 −137 8662

, M1 :=

 0 0 0
1714 −3428 1714
−3273 28273 28273
3824 −10327 62985
−568 2273 −3409

, M2 :=

 0 0 0
2603 −5206 2603
−4199 45866 45866
6924 −19420 43457
−1246 4986 −7479

, 692

M3 :=

 0 0 0
2570 11526 2570
−429 42096 42096
3857 −16405 25095
−1105 4421 −6631

, M4 :=

 0 0 0
5384 39230 5384
496 24503 24503

2232 −9572 14680
−709 2838 −4254

, M5 :=

 1008 6316 1008
8564 66207 8564
793 3373 3373
303 −1369 2132
−156 627 −941

. 693

The remaining coefficients µs
i j are obtained by symmetry; i.e. 694

µs
41 := µs

21, µs
51 := µs

11; µs
42 := µs

22, µs
52 := µs

12; µs
43 := µs

13. 695
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(a) input net (b) PnS configurations (c) ’fertility’

(d) input net (e) PnS configurations (f) ’bottle’

Figure 22: Showcasing FC3 within a bi-cubic polyhedral-net spline surface color-
coded in (b,e) as surface pieces of type FC3, T0, T1, n-sided, regular bi-2, n-
valent. The BB-coefficients of the bi-3 patches are overlaid. Input nets rendered
with MeshLab, output surfaces rendered with Bezierview, algorithm integrated
into the Polyhedral-net Spline (PnS) code base.
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