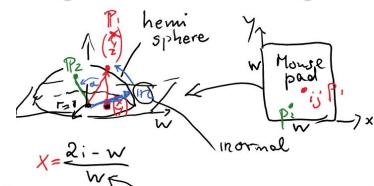


Computer Graphics Jorg Peters

- Associate each mouse position = (i, j) with the point on a unit hemisphere:
 - (1) For w=width, scale the x component to (2i - w)/w and the y component to -(2j - w)/w. (2) set $z := \sqrt{1 - x^2 - y^2}$. centered, but mouse starts at 0



- Two consecutive points P_1 and P_2 on the hemisphere define a normal direction $n = P_1 \times P_2$.
- Rotate about n.

Euler angles: rotation about axes

Computer Graphics Jorg Peters

- Anisotropy, Coordinate system dependence:
 - Ordering and orientation of coordinate axes is important.
 (Parameters lack a simple, local geometric interpretation.)
- > Finding the Euler angles for a given orientation is difficult
 - getMatrix () helps
- Gimbal Lock: a degree of freedom can vanish
- Easy to implement and widely used

Euler angles: Gimbal Lock

Computer Graphics Jorg Peters

Mechanical problem:

gyroscopes using three nested rotating frames. after a y-rotation by $\pi/2$ (rotates x-axis onto -z-axis) an x-rotation by α equals z-rotation by $-\alpha$.

- · Objects seem to 'stick'.
- Some orientations are difficult to obtain from 'the wrong direction'.
- interpolation through singularity behaves unpredictable.

Euler angles: Gimbal Lock

Computer Graphics Jorg Peters

If
$$\alpha_y = \pi/2$$
 $c_y = cos(\alpha_y)$ etc.

If
$$\alpha_y = \pi/2$$
 $c_y = cos(\alpha_y)$ etc.
$$R_y = \begin{bmatrix} c_y & 0 & -s_y & 0 \\ 0 & 1 & 0 & 0 \\ s_y & 0 & c_y & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_x R_y R_z = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_x & -s_x & 0 \\ 0 & s_x & c_x & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_z & -s_z & 0 & 0 \\ s_z & c_z & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & -1 & 0 \\ s & c & 0 & 0 \\ c & -s & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$c = \cos(\alpha_x - \alpha_z) \text{ and } s = \sin(\alpha_x - \alpha_z)$$

only one degree of freedom!

Quaternions: motivating analogy

Computer Graphics Jorg Peters

2D rotation x = (x1, x2) by angle
$$\alpha$$
: $\begin{vmatrix} c & -s \\ s & c \end{vmatrix}$, $c := \cos(\alpha)$, $s := \sin(\alpha)$.

or, alternatively, expressing x as the complex number x_1+ix_2 where $i:=\sqrt{-1}$ as multiplication in the complex field by $e^{i\alpha}=\cos(\alpha)+i\sin(\alpha)$

Quaternions: Definition and rules

Computer Graphics Jorg Peters

$$\hat{\mathbf{q}} := q_0 + iq_1 + jq_2 + kq_3 = (q_0, q_1, q_2, q_3) =: (q_0, \mathbf{q}),$$

where $\mathbf{q} := (q_1, q_2, q_3)$ is a vector in \mathbb{R}^3 . Quaternions have the multiplication table

This multiplication table is used to compute the product of two quaternions $\hat{\mathbf{p}}$ and $\hat{\mathbf{q}}$ which is again a quaternion:

$$\hat{\mathbf{p}} \odot \hat{\mathbf{q}} = (p_0 q_0 - (p_1 q_1 + p_2 q_2 + p_3 q_3), p_0 \mathbf{q} + q_0 \mathbf{p} + \mathbf{p} \times \mathbf{q}).$$

We define $\|\hat{\mathbf{q}}\|^2 := q_0^2 + \mathbf{q} \cdot \mathbf{q}$. This implies (check that $\hat{\mathbf{q}}^{-1} \odot \hat{\mathbf{q}}$ is real)

$$\hat{\mathbf{q}}^{-1} = (q_0, -\mathbf{q}) / \|\hat{\mathbf{q}}\|^2$$

Quaternions: Construction and Use

Computer Graphics Jorg Peters

Quaternion for rotation about $\mathbf{h} \in \mathbb{R}^3$ by α :

$$\hat{\mathbf{q}} := (\cos(\alpha/2), \sin(\alpha/2) \frac{\mathbf{h}}{\|\mathbf{h}\|})$$

To rotate the point $\mathbf{v} := (v_1, v_2, v_3)$, we multiply the quaternions as

$$\hat{\mathbf{q}}^{-1} \odot (0, \mathbf{v}) \odot \hat{\mathbf{q}}. \tag{1}$$

Note: $\hat{\mathbf{q}}$ and $-\hat{\mathbf{q}}$ represent the same rotation and rotation by 0 and 360 degrees coincide.

Quaternions: Example

Computer Graphics Jorg Peters

Example: Let $\mathbf{h} := (1,1,1)$, $\alpha := 2\pi/3$, $\mathbf{v} := (1,0,0)$. That is, we look along the diagonal axis \mathbf{h} and see the three coordinate axes equally distributed with an angle of $2\pi/3$ between each pair. We therefore assume that the rotation will map the x-axis \mathbf{v} to one of the other two axes. Since $\cos(\alpha/2) = 1/2$ and $\sin(\alpha/2) = \sqrt{3}/2$

$$\frac{\mathbf{h}}{\|\mathbf{h}\|} = (1, 1, 1)/\sqrt{3},$$

$$\hat{\mathbf{q}} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \frac{(1, 1, 1)}{\sqrt{3}}\right) = \frac{1}{2} (1, 1, 1, 1),$$

$$\|\hat{\mathbf{q}}\|^2 = \left(\frac{1}{2}^2 + \frac{1}{2} (1, 1, 1) \cdot \frac{1}{2} (1, 1, 1)\right) = 1,$$

$$\hat{\mathbf{q}}^{-1} = \frac{1}{2} (1, -1, -1, -1),$$

Quaternions: Example

Computer Graphics Jorg Peters

Example: Let $\mathbf{h} := (1, 1, 1), \ \alpha := 2\pi/3, \ \mathbf{v} := (1, 0, 0).$

$$\hat{\mathbf{q}}^{-1} = \frac{1}{2} (1, -1, -1, -1),$$

$$\hat{\mathbf{q}}^{-1} \odot (0, \mathbf{v}) = (0 - (-\frac{1}{2}), \frac{1}{2} (1, 0, 0) + \frac{1}{2} (-1, -1, -1) \times (1, 0, 0))$$

$$= (\frac{1}{2}, (\frac{1}{2}, 0, 0) - \frac{1}{2} (0, 1, -1))$$

$$= \frac{1}{2} (1, 1, -1, 1)$$

Quaternions: Example

Computer Graphics Jorg Peters

Example: Let $\mathbf{h} := (1, 1, 1), \ \alpha := 2\pi/3, \ \mathbf{v} := (1, 0, 0).$

$$\hat{\mathbf{q}}^{-1} \odot (0, \mathbf{v}) = \frac{1}{2} (1, 1, -1, 1)$$
 $\hat{\mathbf{q}} = \frac{1}{2} (1, 1, 1, 1),$

$$\hat{\mathbf{q}}^{-1} \odot (0, \mathbf{v}) \odot \hat{\mathbf{q}} = \frac{1}{2} \frac{1}{2} (1 - 1, (2, 0, 2) + (-2, 0, 2))$$
$$= (0, 0, 0, 1).$$

That is, we rotate the point on the x-axis onto the z-axis. (note that we look from the origin and rotate ccw; when looked at from (1,1,1)) the angle is clockwise)

Note: one can convert from Euler to Quaternion and from Quaternion to Euler Relative rotation: roll,pitch yaw angle-based: azimuth, elevation

Quaternions: some blackboard work

Computer Graphics Jorg Peters

