Illumination & Lighting

Computer Graphics Jorg Peters

Ray Tracing: not supported by openGL Path from light source to object to observer

Ray-object intersection reduces to root finding

Illumination & Lighting

Computer Graphics Jorg Peters

Interreflection: soft shadows, color bleeding, umbra, penumbra, shadows

Global Illumination

Computer Graphics Jorg Peters

energy preservation

OpenGL's approximation of global illumination and ray tracing

Computer Graphics Jorg Peters

OpenGL's approximation of global illumination and ray tracing

Computer Graphics Jorg Peters

Ambient (global energy) background glow, equal scattering

Specular (Phong) laser beam, mirror

Diffuse (Lambertian) nature, equal scattering (but still directional light source)

OpenGL lighting model

Computer Graphics Jorg Peters

intensity :=emission_m + ambient_l · ambient_m +
$$\sum_{\text{lights}} \frac{1}{k_0 + k_1 d + k_2 d^2}$$
 · spot_l · . . .

$$\left(\text{ambient}_{\ell} \cdot \text{ambient}_m + \max\{\frac{\mathbf{p} - \mathbf{v}}{d} \star \mathbf{n}, 0\} \text{diffuse}_{\ell} \cdot \text{diffuse}_m \dots \right.$$
+ $\max\{\mathbf{s} \star \mathbf{n}, 0\}^{\text{shininess}} \text{specular}_{\ell} \cdot \text{specular}_m\right)$

$$m = \text{material} \quad \ell = \text{light source} \quad l = \text{lighting model}$$
where $\mathbf{v} = \text{vertex} \quad \mathbf{n} = \text{normal} \quad \mathbf{p} = \text{light position}$

$$\mathbf{e} = \text{eye position} \quad d := \|\mathbf{p} - \mathbf{v}\| \quad \mathbf{s} := \frac{\mathbf{s}'}{\|\mathbf{s}'\|} \quad \mathbf{s}' := \frac{\mathbf{p} - \mathbf{v}}{\|\mathbf{p} - \mathbf{v}\|} + \frac{\mathbf{e} - \mathbf{v}}{\|\mathbf{e} - \mathbf{v}\|}$$

Formula applies separately to RGB

Here specular, specular, etc. are scalars.

Lights are objects affected by model-view transformations.

OpenGL Lighting

Computer Graphics Jorg Peters

Given a unit sphere, where is the highlight (= point of highest intensity)? Compute this for some choice of e and p. (Reduce to plane through 0, e, p since n lies in that plane.)

screenshot?

Translucency

If vertex v_j has opaqueness value α_j and intensity i_j is drawn before v_{j+1} then the intensity is

$$\alpha_0 \mathbf{i}_0 + (1 - \alpha_0)(\alpha_1 \mathbf{i}_1 + (1 - \alpha_1)(\ldots))$$

Given a unit sphere, where is the highlight (= point of highest intensity)? Compute this for some choice of e and p. (Reduce to plane through 0, e, p since n lies in that plane.)

Computing Normals

Computer Graphics Jorg Peters

Surface in *implicit* representation $p(\mathbf{x}) = p(x, y, z) = 0$.

The normal direction is the (normalized) gradient $\nabla p = \begin{bmatrix} \frac{\partial}{\partial x} p \\ \frac{\partial}{\partial y} p \\ \frac{\partial}{\partial z} p \end{bmatrix}$ Surface in parametric representation $\mathbf{x}(u, v) = \begin{bmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{bmatrix}$.

Surface in parametric representation
$$\mathbf{x}(u, v) = \begin{bmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{bmatrix}$$

The normal direction is $\frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v}$. To obtain the normal, normalize the normal direction to length 1.

Blackboard Examples:
$$p(\mathbf{x}) = x^2 + y^2 + z^2 - 1$$
, $\mathbf{x}(u, v) = \begin{bmatrix} \cos(u)\cos(v)\\ \cos(u)\sin(v)\\ \sin(u) \end{bmatrix}$

Polygon Shading

Computer Graphics Jorg Peters

Flat

Gouraud: averaged vertex color using barycentric weights.

Phong: averaged vertex normal (and other lighting factors)