
Event-triggered Data and Knowledge Sharing among
Collaborating Government Organizations*

Seema Degwekar
1
, Jeff DePree

1
, Howard Beck

2
, Carla S. Thomas

3
, Stanley Y. W. Su

1

1
Database Systems R&D Center, Computer and Information Science and Engineering, University of Florida

2
Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida

Gainesville, Florida 32611
1-352-392-2693

3
Department of Plant Pathology, University of California

Davis, California 95616
1-530-752-0300

spd@cise.ufl.edu, jdepree@cise.ufl.edu, hwb@ufl.edu, cthomas@ucdavis.edu, su@cise.ufl.edu

* This project is supported by NSF under grant number IIS-0534065

ABSTRACT

Solving complex global problems such as illegal immigration,

border control, and terrorism requires government organizations

at all levels to share not only data but, more importantly,

knowledge pertinent to decision support, problem solving and

activity coordination. Responding to an emergency often requires

organizational and inter-organizational policies and complex

operating procedures to be followed. In this work, we focus on the

sharing of data associated with events of interest to collaborating

organizations. Condition-action-alternative-action rules,

logic/derivation rules, and constraint rules are used to define

organizational and inter-organizational policies, regulations, and

data and security constraints. Structures of these heterogeneous

rules are used to capture organizational processes and operating

procedures. A distributed event-triggered knowledge sharing

system enables the interoperation of distributed, heterogeneous

rules and rule structures on the data associated with each event

occurrence so that all data pertinent to the event occurrence can

be generated and delivered to relevant organizations. Presented in

this paper are: 1) the system architecture and the distributed event

and rule processing strategy, 2) algorithms used for the translation

of heterogeneous rules and rule structures into web services for

their uniform and efficient processing in a web service

infrastructure and 3) issues and solutions related to event data

aggregation, conflicting rules, and cyclic rules. The developed

user interface tool and system are for deployment in the USDA’s

National Plant Diagnostics Network to strengthen the homeland

security protection of this nation’s food and agriculture.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and

Software – distributed systems, information networks.

H.4.2 [Information Systems Applications]: Types of Systems –

decision support.

General Terms

Management, Documentation, Performance, Design, Reliability,

Experimentation, Security, Human Factors, Standardization.

Keywords

Knowledge representation and sharing, event- and rule-based

systems, decision support, collaborative federation, web services.

1. INTRODUCTION
Government agencies of today are facing complex global

problems such as border control, illegal immigration, terrorism,

bio-security threats, among others. Effective collaboration

amongst these agencies holds the key for solving these complex

problems. One important way of collaboration is for these

agencies to share not only data, but also human and organizational

knowledge useful for decision support, problem solving and

activity coordination. The basic technology of sharing distributed,

heterogeneous data has been extensively studied. Many recent

efforts that address schema matching [12, 13], data privacy [1,

31], and schema mapping [17, 30] are important for achieving

meaningful sharing of data. However, an effective way of sharing

human and organizational knowledge among collaborating

organizations is still lacking.

To facilitate knowledge sharing, we need to first decide what

constitutes the knowledge we would like to capture and how to

represent this knowledge. In this work, we are interested in

capturing the knowledge embedded in an organization’s policies,

regulations, constraints, processes and operating procedures by

using three popular types of knowledge rules [7, 19, 23]: integrity

constraints [26], logic-based derivation rules [27], and action-

oriented rules [29]. Organizational and inter-organizational

processes and operating procedures are specified by rule

structures. Thus, we can effectively capture multifaceted

knowledge of collaborating organizations.

Secondly, we need to investigate the technique and infrastructure

for sharing distributed, heterogeneous data residing in

collaborating organizations’ databases and knowledge rules and

rule structures specified by these organizations. Typically, an

organization does not want other organizations to have full access

to its database due to security reasons, nor does it need to have

access to the entire database of another organization.

Collaborating organizations are usually interested in obtaining

only those data that are pertinent to the occurrence of an event of

common interest (i.e., event data) and in processing only those

knowledge rules that are applicable to the event data. An event is

anything of significance to collaborating organizations (e.g. an

arrest, a terrorist incidence, the detection of a disease, a special

state of a database, a signal from a sensor, etc.) that occurs at a

particular point in time. Event data is a dynamic data set that

contains the initial data associated with an event occurrence

together with the data evolved by applying relevant rules and rule

structures. Thus, an event-triggered knowledge sharing system

that facilitates event subscription, event notification, delivery of

event data and processing and interoperation of applicable

knowledge rules and rule structures would be ideal for any

collaborative federation and is the focus of our research.

We define a collaborative federation as a number of collaborating

but autonomous organizations that are connected through the

Internet with the purpose of sharing event data and multifaceted

knowledge. Each such organization may publish its events and

rules at a designated site. Any other organization in the federation

can then subscribe to the published events, publish its own rules,

or use some of the published rules in its own rule structure to

achieve both data and knowledge sharing.

We acknowledge some existing systems and approaches that are

related to our work in three areas: rule markup languages, event-

and-rule based systems, and rule interoperability. Several recent

efforts like SRML [22], BRML [8] and RuleML [20] are

concerned with developing a rule markup language for business

applications. Of these, SRML and BRML address only condition-

action and derivation rules, respectively. RuleML is an ongoing

effort that aims to include all three types of rules. However, the

language has not been finalized. Event-and-rule based systems

presented in [6, 14] couple event notification with condition-

action rules alone. There are also many so-called active database

systems, which use only condition-action rules as surveyed in

[29]. E-DEVICE [4] proposes an active knowledge based system

to support the processing of all three rule types in an active

OODB system by mapping derivation rules and integrity

constraints into condition-action rules. However, the system has

no support for integrity constraints yet. The system presented in

[18] provides a web service interface to heterogeneous rule

engines, thereby providing a uniform API to access each. But, rule

execution is carried out by individual engines interpretively.

Support for rule structures is lacking and it is also not clear how

one rule engine can make use of the results generated by another.

The intended contributions of this paper are:

a) Introducing an XML-based rule specification language to

capture an organization’s rules and rule structures,

b) Introducing the idea and algorithms for translation of

heterogeneous rules and rule structures into web services for

their uniform and efficient processing in a web service

infrastructure, and

c) Presenting the system architecture, the distributed event and

rule processing strategy, and research issues and solutions for

event data aggregation, conflicting rules and cyclic rules.

This paper is organized as follows. Section 2 describes the

collaborative federation for which the developed system is to be

deployed. Section 3 describes the three different types of rules and

gives the algorithm for translating rules to web services. Section

4 describes the system architecture, the distributed event and rule

processing strategy and some research problems and solutions.

Section 5 describes the implementation framework. Section 6

summarizes the paper and describes our ongoing efforts.

2. COLLABORATIVE FEDERATION
The collaborative federation that serves as our application domain

is the National Plant Diagnostic Network hereafter referred to as

NPDN [16]. The U.S. Department of Agriculture’s (USDA)

Cooperative State Research, Education and Extension Service

launched a multi-year national project in May 2002 to build

NPDN to link plant diagnostic facilities across the United States.

This was done to strengthen the homeland security protection of

the nation’s food and agriculture by facilitating quick and accurate

detection of disease and pest outbreaks in crops. Such outbreaks

can occur as foreign pathogens are introduced into the U.S. either

through accidental importation, by wind currents that traverse

continents, or by an act of bioterrorism [24, 28]. NPDN achieves

its mission by creating a functional nationwide network of public

agricultural institutions with a cohesive, distributed system.

The network allows land grant universities’ diagnosticians and

faculty, state regulatory personnel, and first detectors to

communicate information, images, and methods of detection

efficiently and in a timely manner. The network is organized into

three tiers, with the top tier being the NPDN national repository.

The next tier is the regional level. Here, lead universities have

been selected and designated as Regional Hubs to represent 5

regions across the country, and they are located at Cornell

University (Northeast region), Michigan State University (North

Central region), Kansas State University (Great Plains region),

University of Florida (Southern region), and University of

California at Davis (Western region). Regional Hubs connect the

systems in the states within their regions and send the collected

data to the NPDN national data center at Purdue University. The

national repository housed at the Center for Environmental and

Regulatory Information System (CERIS) of Purdue University is

the central repository for archiving this collected data.

The individual labs within each region form the third tier of the

network. Information about plant samples collected by or

submitted to any of the member labs are analyzed, and the lab

diagnoses are sent to NPDN. Sample collection is done routinely.

Member labs routinely diagnose pests/diseases observed on the

sample and report to NPDN. Occasionally, all labs are on alert,

looking for some particular pests/diseases. APHIS has designated

8 pests to be of particularly high concern nationally. These are

called select agents. Each region also has a Pest-of-Concern list.

A Pest-of-Concern Standard Operating Procedure details the

steps to be taken when such a bio-security event takes place,

especially for pests of regulatory concern.

As these diseases can spread rapidly from region to region, there

is an overwhelming need for plant samples and diagnosis results

to be transmitted to many organizations for suitable analyses.

There is a need for event notification, automatic delivery of event

data, and distributed processing of multifaceted knowledge and

application operations among these organizations. This work

builds upon a prototype system reported in [10] that processes

only action-oriented rules in the NPDN environment.

3. KNOWLEDGE REPRESENTATION

3.1 Heterogeneous Knowledge Rules
We have designed a rule specification language for specifying the

three different types of rules as well as rule structures. We adopt

some constructs from RuleML for derivation rules. The concepts

used for defining action-oriented rules and rule structures are

based on our earlier work [15]. Since these rules and rule

structures are to be interoperable and exchangeable, our rule

language is XML-based. Due to space limitations, we cannot

describe the entire language. Instead, we give a brief description

of each rule type and the rule structure. Interested readers can

refer to the complete schema at [21].

3.1.1 Integrity Constraints
Integrity constraints model the constraints or conditions that

application data should adhere to. They are dictated by domain

requirements and the effect of the violation of a constraint can

range from a mild nuisance to a catastrophe. They aim to preserve

the data integrity by avoiding a potentially damaging system state.

There are basically two types of integrity constraints. The first

type is what we call attribute constraints. They dictate the

acceptable values that any data attribute may have at any point in

time. Thus, an attribute constraint is of the form

x θ n or x γ {n1,n2,…,na}

where x is an attribute of an entity, n is a value from x’s domain, θ

is one of the six arithmetic comparison operators (>,>=,<,<=,=,≠),

{n1,n2,…,na} represents a set of enumerated values from x’s

domain, and γ is the set operator {in, not in}.

The second type is inter-attribute constraints. They model the

relationship between multiple attributes. Based on this

relationship, they are further divided into two sub-types. The

relationship can be either mathematical (e.g., A+B * (C-D)>=E

+F) yielding so-called formula constraints or conditional, (e.g. If

A>B then C=50) yielding so-called conditional constraints. Thus,

an inter-attribute constraint is of the form

f1(x1,x2, …, xb) θ f2(y1, y2, …yc), or

If (P1 α P2 α …α Pd) then (Q1 α Q2 α …α Qe)

where f1(x1,x2, …, xb) and f2(y1, y2, …yc) are mathematical

formulas relating the attributes x1,x2, …, xb, and y1, y2, …yc,

respectively. θ is an arithmetic comparison operator. P1, P2, …, Pd

and Q1, Q2, …, Qe are predicate expressions of the form f1(x1,x2,

…, xb) θ f2(y1, y2, …yc) connected by the logical operator α in

{AND,OR}. Each of P1, P2, …, Pd and Q1, Q2, …, Qe can be in its

assertive or negated form. All the attributes of entities referenced

in a constraint rule are its input data. The output of the rule is the

truth value indicating whether the constraint was satisfied or not.

3.1.2 Derivation Rules
Derivation rules provide new data, if some premises on existing

data are satisfied. They are generally used by expert systems to

derive some new facts based on the given premises. The new data

so derived can feed back into the system, till a point of

convergence is reached, or till the intended results about

interesting facts are obtained. Derivation rules are of the form

P → Q or P => Q

where P is the body of the implication, and Q is the head or

conclusion. Both P and Q are Boolean expressions of the form

p1 α p2 α … α pm,

where each pi , (1≤i≤m) is a premise if pi Є P, and a part of the

conclusion if pi Є Q. The attributes of entities referenced in P are

the rule’s input data and those referenced in Q are its output data.

3.1.3 Action-Oriented Rules
Of all the three types of rules, action-oriented rules are most

commonly found in event-based systems. They are usually seen as

Event-Condition–Action (ECA) rules [29]. In an ECA rule, the

CA portion is the actual action-oriented rule. The event E only

determines when the rule is to be considered. The truth value of

the condition expression C is evaluated. If it is determined to be

true, the action clause A is executed. One can envision the need

for the facility of executing an alternative action if the condition

expression C evaluates to false. We allow organizations to define

condition-action-alternative-action (CAA) rules [15, 25]. A CAA

rule has the following format:

If C then A else B

where C is the condition to be evaluated, A is the action clause

which is executed if C is true, and B is the alternative action

clause which is executed if C is false. Each of these two action

clauses can specify a number of manual and automated operations

to be performed. In this rule type, attributes referenced in C as

well as the input to the operations specified in A and B form the

rule’s input data and the result of performing the operations

specified in A or B forms its output data.

3.1.4 Rule Structure

When a particular event occurs, an organization typically will

have a number of rules that need to be executed in a specific order

to carry out a workflow process or an operating procedure. It is

very natural to model such a procedure or process by specifying

the structural relationships between individual rules. A rule

structure can be used to model the main constructs of a workflow

process since conditional transitions and tasks specified in

activities of a workflow process model can be specified by a

structure of CAA rules that activate manual and automated

operations. Also, constraint rules can serve as preconditions for

performing activities and derivation rules can determine the

appropriate input data value to an activity. The structural

relationships captured by our specification are as follows.

In a rule structure, a rule r may be required to be executed before

another rule s. Typically, rule r generates data that can be used by

Algorithm 1 createWebService

1. for each rule r do

2. rule_interface = r.input + r.output;

3. rule_code = convertToCode(r.body);

4. compiled_code = compile(rule_code);

5. wsdl_doc = generateWSDL(rule_interface);

6. ws = deploy(compiled_code, wsdl_doc);

7. publish(ws);

8. end for

Figure 1. Algorithm for web service synthesis

rule s, thus establishing a direct link between r and s. Similarly, a

rule r may be required to be executed before the execution of

multiple rules s1, s2, … sm, m>1. In this case, rule r may generate

data that can be used by rules s1, s2, … sm and thus rule r and rules

si (1≤i≤m) are connected in a split construct. A rule s may be

required to wait for all of a given set of rules r1, r2, … rn, n>1 to

finish before it can start its own execution. In this case, r1, r2, … rn

are connected to s in an and-join construct, and the data generated

by rules ri (1≤i≤n) can be used by rule s. Finally, s may be

required to wait for, either all or a subset of rules r1, r2, … rn , n>1

to finish execution. This establishes an or-join relationship

between r1, r2, … rn and s. In each type of relationship, the rule(s)

that govern(s) the execution of other rule(s) is called a

predecessor(s), and the rule(s) that execute(s) after the

predecessor(s) is called a successor(s).

A rule structure can now be defined as a directed graph with

different types of rules as nodes, which are connected by link,

split, and-join, and or-join constructs.

3.1.5 Triggers
Based on the registered information about shared events, rules and

rule structures at the host site, an organization can explicitly

specify a trigger to link a registered event(s) to a registered rule or

rule structure. It can also be implicitly specified by the host if a

registered rule or rule structure is applicable to the event data. A

rule or rule structure is applicable to an event if the set of entities

and attributes required by the rule or rule structure as its input

data is a subset of the set of entities and attributes that constitute

the event data. Any site that contains an applicable rule or rule

structure would become an implicit subscriber of the event. When

an event occurs, explicit and implicit subscribers are notified and

rules and rules structures that are linked to the event by explicit

and implicit triggers are activated to process the event data.

We have implemented a user interface tool for defining events,

rules, rules structures and triggers and for generating rule

language specifications for registration at the host site of a

collaboration network. The tool as well as the prototype system

will be demonstrated at the conference.

3.2 Rules and Rule Structures as Web

Services
From Section 3.1, we can see that each of the rules has very

different syntax and semantics. One possible approach to process

these heterogeneous rules is to use multiple rule engines, each

processing rules of a specific type, and build wrappers to convert

the output of one rule engine to the input of the other to achieve

rule interoperability. However, there are a couple of disadvantages

of this approach. First, it is costly to install and maintain multiple

rule systems. Second, most of the existing rule engines process

rules interpretively. The resulting network system will not be very

efficient. To avoid these drawbacks, we translate rules and rule

structures into program code, wrap them as web services at

definition time, and process them in a web service infrastructure

at runtime. By doing so, rules can now interoperate

programmatically without using different types of rule engines.

Also, different organizations are free to use different

programming languages for converting their rules and rule

structures to code and deploy the rule code as web services at

their own sites. The interoperation of heterogeneous rules and rule

structures can thus be achieved by invoking the rule web services.

Figure 1 outlines the general algorithm for converting a given rule

into a web service. For a rule r given in our rule specification

language, we parse the rule to obtain the rule body (r.body) which

is then converted to code and compiled (compiled_code). The

WSDL document for this rule (wsdl_doc) is generated from the

rule interface; i.e. from the rule input and the rule output

(rule_interface). The compiled code and the WSDL document are

then deployed and the resulting web service (ws) is published in a

web service registry at the host site to make it accessible to all

collaborating organizations.

The web service for a rule structure can also be generated in a

similar manner. The only requirement is that all rules used in a

rule structure should have been deployed earlier as web services,

i.e. a rule structure can only refer to existing rules. Creating the

rule structure then consists of composing the individual rule web

services to reflect the relationships specified by the rule structure.

A link relationship only requires the successor rule web service to

be invoked after the predecessor rule web service. A split

relationship requires the creation of multiple threads to process all

the indicated successor rule web services in parallel, and the and-

join and or-join relationships require the use of thread

synchronization to ensure either all or the given number of

predecessor rule web services have been executed.

3.3 Real-world Examples for Rules and Rule

Structures
We demonstrate the use of the three rule types by modeling the

Standard Operating Procedure (SOP) for a Pest-of-Concern

Scenario in the NPDN environment. This procedure is obtained

from the Plant Pathology Department at the University of

California-Davis of the Western Plant Diagnostic Network. It is a

national SOP used in all regions and regularly updated in

collaboration with APHIS and state departments of agriculture.

Each state has a number of University Extension labs, or State

Department of Agriculture labs where a sample collection or

submission originates. If during diagnosis, the pest detected is on

the select agent list, or is a pest of regulatory concern, the

following procedure is adopted. The first detector or sample

submitter sends the sample to the NPDN Triage Lab; the state

facility designated to receive and examine suspect samples. The

NPDN Triage Lab conducts tests on the sample. The USDA

Animal Plant Health Inspection Service (APHIS) [2] is

responsible for protecting and promoting U.S. agricultural health,

administering the Animal Welfare Act, and carrying out wildlife

damage management activities. The sample is sent to the APHIS-

CDD, and the triage lab notifies the State Plant Regulatory

Official (SPRO), and the State Plant Health Director (SPHD), and

the regional NPDN Director that this has been done. The APHIS-

CDD is the Confirming Diagnosis Designate, and makes the final

decision on whether a submitted sample is confirmed positive for

the suspected disease/pest. APHIS makes the confirming

diagnosis and informs all other interested organizations. At each

step, it is important to control the nature and the amount of

information available to other relevant organizations to prevent

any false alarms.

The overall operation is dictated by the communication between

the individual labs. A single sample entry starts the following

chain of events and rules being executed. Let us start with the

NPDN Triage Lab receiving a sample from a sample submitter or

first detector. The rules and rule structures triggered by the event

are shown in Figures 2-5. In these figures, the data

introduced/modified is italicized and displayed next to the rule or

event that modifies/introduces it. C stands for the condition

expression in a CAA rule, A for the action clause and AA for the

alternative action clause.

NPDN Triage Lab: The NPDN Triage Lab assigns a unique ID

to the sample. The sample is then examined, and stored in a secure

location with monitored access. Since the sample has been viewed

by a diagnostician, it is classified as “presumptive positive”. The

lab staff contacts SPHD, SPRO, NPDN Regional Director and

APHIS-CDD by posting the NPDN_Sample_Event event. Then, a

portion of the sample is sent to the APHIS-CDD lab. Figure 2

describes the above procedure as a rule structure.

APHIS-CDD: Once the APHIS-CDD lab receives the sample, it

checks if the sample fulfilled the proper sample shipping rules.

This rule is modeled as an integrity constraint. If it is violated, the

CDD instructs the sender on proper packaging the next time.

Otherwise, the APHIS-CDD acknowledges the receipt to NPDN

along with an expected date of result notification. If this expected

date is more than 7 days after the sample receipt date, the APHIS

administrator contacts the NPDN Regional directors to inform

them that a presumptive positive sample is in the system, and to

be on alert for similar samples. The APHIS-CDD then conducts

the confirming diagnosis on the sample, as illustrated in Figure 3.

SPHD, SPRO: When a “presumptive positive” sample is known

to be present, SPHD and SPRO contact their counterparts in the

state of origin and prepare for response procedures to follow when

the results are obtained. After receiving the expected date of result

notification from APHIS-CDD, they pass it on to the Triage Lab

who passes it onto the NPDN Regional Directors. Figure 4

describes the above procedure as a rule structure.

NPDN Triage Lab: Once the Triage Lab receives the result from

the APHIS-CDD by way of the APHIS Regional office and then

the SPHD, it contacts the NPDN Regional Director and the

Sample_Received_Event (StateOfOrigin)

N1(SampleID, SampleExamined)

N2 (Classification) N3

N4

N1: CAA Rule

C: StateOfOrigin = LabState

A: 1. Acknowledge Receipt.

 2. Assign sample ID and

 examine sample.

AA: Report to administrator.

N2: Derivation Rule

SampleExamined = true =>

Classification = ‘presumptive

positive’

N3: CAA Rule

C: SampleExamined = true

A: Store sample securely.

AA: Report to administrator.
N4: CAA Rule

C: true

A: 1. Post NPDN_Sample_Event

 2. Send sample to APHIS-CDD

AA: (none)

Figure 2. NPDN Triage Lab rules on sample receipt

AND

NPDN_Sample_Event (SampleID,StateOfOrigin)

A2(ExpectedDate)

A3 A4

A2: CAA Rule

C : true

A : Send expected date

 of result notification.

AA: (none)

A3: CAA Rule

C : true

A : Conduct confirming

 diagnosis.

AA: (none)

A4: CAA Rule

C : ExpectedDate – SampleReceiptDate > 7

A : Notify Regional NPDNDirectors.

AA: none.

Figure 3. APHIS-CDD rules on sample receipt

A1

A1: Integrity Constraint

Sample double bagged = true, Form 391 included = true,

Sample Label = ‘Plant Samples for Diagnosis’

Figure 4. SPHD, SPRO rules on sample and results receipt

(At SPHD, SPRO)

 (SampleID, State)

R3 or R4 R1 or R2

R3 or R4: CAA Rule

C : true

A : Inform Triage Lab of

presumptive positive sample.

R1 or R2: CAA Rule

C : true

A : Notify State of Origin

SPHD/SPRO and discuss plan

of action

 (SampleID,State,ExpectedDate)

Results Received (SampleID,Result)

Figure 5. Triage Lab rules on receipt of sample results

N5 N7 N6

N8

N5: CAA Rule

C : true

A : Coordinate with SPRO,

 SPHD to inform sample

 submitter of results.

AA: (none)

N6: CAA Rule

C : Results = ‘positive’

A : Destroy Sample

AA: (none)

N7: CAA Rule

C : Results in

 SelectAgentList

A : Submit APHIS “Report Select Agent” form to APHIS

AA: (none)

N8: CAA Rule

C :

A : Insert into database.

AA: (none)

AND

NPDN Regional Hub Lab with the confirmed diagnosis results.

The Triage Lab then coordinates with State of Origin SPRO and

SPHD to contact the person who initially submitted the sample

with the diagnosis results. If the sample is confirmed positive, it is

destroyed. Further if the confirmed positive sample was on the

select agent list, the Triage Lab completes and sends an APHIS

“Report of Select Agent” form to APHIS and the Center for

Disease Control lab. The record is then inserted into the Triage

Lab database, from where it is forwarded to the regional center,

and through the regional center to the NPDN national repository.

Figure 5 describes this procedure as a rule structure.

As can be seen from the examples, several manual operations are

involved in the procedure. When converted to a rule web service,

each manual operation is modeled by notifying the appropriate

person to perform the manual operation with an instruction to let

the system know when the operation has been performed so that

the event and rule processing can continue.

The above real-world examples serve to demonstrate that the

interoperation of different types of rules is required. In the plant

diagnostics environment that we are working in, we see more

CAA rules than integrity constraints or derivation rules. However,

this is application domain specific. The flow of logic is mainly

procedural in our example case, thus yielding more CAA rules. It

is possible that other collaboration federations may have a more

even mix of these three types of rules. For example, in an e-

business domain [11] we have found it to be so.

4. SYSTEM ARCHITECTURE AND RULE

PROCESSING

4.1 System Architecture
The event-triggered knowledge sharing system has a peer-to-peer

server architecture. All participating organizations have the

identical subsystem installed at their sites (see the main

component servers in Figure 6). Since the existence of shared

events and web services that implement knowledge rules and rule

structures should be made known to collaborating organizations,

there is a need to store their meta-information in a central

repository. Thus, in addition to the common subsystem, one

designated site that serves as the host of a federation has some

additional components including a web service registry shown.

Each collaborating site creates and manages its own events, rules

and triggers. When an organization defines a shared event, the

Event Server at that site stores the event information in the local

database as well as registers this event with the host site. The

Event Server is responsible for managing information about

events defined at that particular site and the information about

event subscribers. An Event Server at any site can serve as the

coordinator for a particular knowledge sharing session initiated by

an event occurrence at that site. It carries out event notification by

sending event data to explicit and implicit subscribers and handles

the aggregation of event data returned by them. When a rule or a

rule structure is defined by an organization, the Rule Server at that

site converts it into a web service, stores the rule information in

the local database and registers the generated web service with the

Registry at the host site. The Rule Server is responsible for

processing the applicable rule web services when an event occurs.

4.2 Event and Rule Processing
To explain the event-triggered processing of distributed rules and

rule structures, we use the scenario depicted in Figure 7. This

scenario is a part of the rule structure explained in Section 3.3.

The occurrence of the event, NPDN_Sample_Event generated at

the NPDN site, causes the event data containing the sample id

(SID) and the state of origin (State) information to be sent to

APHIS, SPHD and SPRO sites in an XML document ED (step 1

shown in the figure). APHIS has an applicable rule structure and

SPHD has rule R1 and SPRO has rule R2 as the applicable rules.

Each site applies its own rules and sends back a possibly updated

event data file. APHIS generates a new data item to return the

expected date of result notification (EDate). This item is shown in

bold font in the event data file. The updated file ED’ is returned to

NPDN. SPHD and SPRO use the event data ED to formulate their

plans of action, but neither site produces any new data item nor

updates any data item. This phase of processing is depicted as step

2.

NPDN then merges the event data returned from APHIS, and

sends the merged document ED’’ to the applicable sites SPHD

and SPRO (depicted as step 3). SPHD applies rule R3 and SPRO

applies rule R4, and both send the updated event data back to

NPDN (not shown in the figure). Multiple rounds of event data

transmission and rule processing can take place until no rule or

Rule Server

Event Server

HOST

Remote Call

Local Call

Figure 6. System Architecture

CS Collaborating Site

WS Registry

DB

CS 1

Rule Server

Event Server

 DB

Rule Server

Event Server

 DB

CS n

NPDN_Sample_Event

<SID>NPD_123</SID>

<State>FL</State>

NPDN

APHIS
<SID>NPD_123</SID>

<State>FL</State>

<EDate>2006-12-20</EDate>

SPHD (SPRO)

 A1

A2

A3 A4

R1 (R2)

ED

ED

ED’

1

1 2

Figure 7. Event-and rule-processing

ED’’

R3 (R4) 3

ED

rule structure is applicable to the last version of event data. We

note here that, once processed, a rule or rule structure will not be

activated again unless its input data specification makes reference

to at least one attribute whose value has been updated in the last

round of event and rule processing. The updated value may cause

the rule to produce a different result.

After all applicable sites have applied their applicable rules and

rule structures, the final version of the event data document would

contain all the data pertaining to the event occurrence. All

applicable sites would receive the final document, which can be

used for further decision-making and problem solving.

4.3 Research Issues

4.3.1 Event Data Aggregation
The site of an event occurrence is termed as the coordinating site

or coordinator for the event occurrence. During successive rounds

of event and rule processing, the event data are wrapped in an

XML document (termed as the parent document) and sent to all

applicable sites. Each collaborating site may add to or modify the

event data items. These data items are returned to the coordinator

as updated event data documents (child documents). The

coordinator is responsible for aggregating the parent and child

documents before starting the next round of processing.

At the end of each round of processing, the coordinator compares

the contents of the parent document with the child documents in

the following way. For each entity occurrence in the parent

document, it creates an event data structure to store that entity

instance’s attributes and values. It then systematically goes

through each of the child documents. For each child entity

instance that has the same unique identifier value as the parent

entity instance, the coordinator updates the parent instance with

the updated values shown in the child instance and adds to the

event data structure those new attributes and values shown in the

child instance. Any new entity instance in a child document that is

not in the parent document is also added to the event data

structure. When all child documents have been examined, the

event data structure contains the most current states of all the

entities in the parent and child documents. Its contents are written

into an XML document. If there are rules that refer to the updated

event data or new event data in their input data specifications, a

new round of event and rule processing starts by sending the

XML document to the applicable sites. Otherwise, it terminates.

4.3.2 Inconsistencies and Contradictions
Rules and rule structures capture the knowledge of collaborating

organizations. This knowledge reflects the opinions and

experience of policy makers and experts in the organizations. In

the real world, it is very possible for experts’ opinions to differ.

When these differing opinions are processed as knowledge rules,

inconsistencies and/or contradictions may arise.

Knowledge rules (converted to web services) process the data

items in the event data document and as a result may generate new

data items (additions) or update the existing data items (updates).

The event data documents of collaborating sites are returned to

the coordinator. When the coordinator aggregates all the event

data documents, it may find that inconsistent data values are given

to an attribute of the same entity. A special case of inconsistency

arises when the attribute is of the Boolean type and contradictory

truth values are returned. From here on, we shall use the term

conflict to mean either an inconsistency or a contradiction.

When a conflict is detected, we propose to resolve it in the

following manner. Collaborating organizations can decide to

adopt a global resolution rule to determine the value of a

particular data item in case of a conflict (e.g., by taking the

minimum, maximum or average of conflicting values). However,

if there is no such global resolution rule for a data item, one

approach is to require all sites to attach their identities with the

values they produce and the coordinator to transmit event data

with site ids in the next round of event and rule processing. When

a collaborating site receives conflicting values tagged with site

ids, it can adopt a local resolution policy to decide which site it

trusts the most and adopt the value supplied by that site. In the

absence of both global and local resolution policies, rules and

sites that generated the conflict values can be recorded and

appropriate organizations can be informed to resolve the conflict

by eliminating or modifying some rule(s). The algorithm shown

in Figure 8 describes the detection and the resolution mechanism

employed by the coordinator.

Let EDi (Ei + Di) be the event data file sent out in round i. Ei is the

portion of the event data file sent in round (i-1) that was not

updated, if i >1. If i = 1, Ei is empty. Di is the portion of the event

data file which includes updates and/or additions from round (i-

1), if i > 1. If i = 1, Di is the initial event data that was made

available from the event occurrence. Let Uis denote the updates

Ei+1 = Ei, Di+1 = Φ, UC = Φ, AC = Φ

For s from 1 to n

If Uis ≠ Φ

 For each u Є Uis

If (u Є Di+1) UC = UC + u

Else Di+1 = Di+1 U u

Ei+1 = Ei+1 – u

 End for

End if

If Ais ≠ Φ

 For each a Є Ais

 If (a Є Di+1) AC = AC + a

Else Di+1 = Di+1 U a

 End for

End if

End for

Di+1 = Di+1 – (UC U AC)

For each u Є UC

If(global_resolution_policy(u) = true)

Di+1 = Di+1 U resolve(u)

Else

Di+1 = Di+1 U us

End for

For each a Є AC

If(global_resolution_policy(a) = true)

Di+1 = Di+1 U resolve(a)

Else

Di+1 = Di+1 U as

End for

Figure 8. Algorithm to detect and resolve conflicts

sent to the coordinator by site s for round i. Let Ais denote the

additions sent to the coordinator by site s for round i. Let n be the

number of sites that were applicable for round i. Let us and as

denote the value of an update or addition respectively tagged with

the source site s. Let Φ denote the empty set. Let UC be the set of

conflicting data items due to updates and let AC be the set of

conflicting data items due to additions.

The above algorithm looks at each data item sent in from a site s,

and determines if there is a conflict for that data item. If so, it

applies the global resolution policy if one exists. If not, it tags a

particular value of the data item with its source and includes it in

the event data document to be sent out.

4.3.3 Termination of Rules
Distributed knowledge rules are independently defined by

collaborating organizations. During event and rule processing,

each applicable collaborating site processes the relevant rules and

returns the data items produced by these rules, which may trigger

some other rules in the next round of processing. It is very much

possible that a set of distributed rules may get locked into a cycle.

There has been a lot of work on the analysis of a static set of rules

to determine if rule execution will terminate [3, 9]. In our system,

knowledge rules are highly dynamic. Multiple rules can be

defined, updated, suspended or reactivated. Static analysis is a

conservative approach, which is based on the syntactical

properties of rules and is carried out after all rules have been

defined. It can correctly determine that a set of rules either will

not form a cycle or there is a possibility of forming a cycle. Since

it does not consider the runtime values of data items, it can not be

sure what rules will be actually executed and that a cycle will

definitely occur at runtime. For the above reason, we resort to a

run-time approach to guarantee the termination of rule processing.

We derive some concepts of rule termination from the theory on

deadlock detection and deadlock avoidance in modern operating

systems. Let us consider the concept of detection and recovery

first. This approach allows a cycle to occur, detect it and

deactivate some rule(s) to break the cycle. In an operating system,

it is not disastrous or irreparable to allow a deadlock to occur,

since deadlocked processes are stalled till the deadlock is broken.

For distributed rule processing, however, it can be irreparable for

a cycle to continue since the cyclic rules are constantly being

processed. The data values they produce may activate other rules,

causing some non-idempotent operations to occur. Recovery from

such a scenario is not always possible. As there is no guarantee

that every cycle is self-contained and does not affect other rules,

this approach is not desirable for rule termination.

Rule termination can best be guaranteed by avoiding cycles

altogether. We have identified three strategies for the same. The

first one is pre-computing the rule cycles that can occur for every

event. The second strategy involves the use of a rule’s data

characteristics that are sent from collaborating sites back to the

event coordinator at the end of every round of processing. The

third strategy combines the first two.

• Pre-computing Possible Rule Cycles:

All shared distributed knowledge rules are registered at the host

site. Thus, the host site has full knowledge of the input and output

specifications of each rule. When an event is registered at the host

site, it determines the applicable rules based on the initial event

data specification and each applicable rule’s input data

specifications (i.e., only attributes of entities referenced but not

their data value conditions). It then simulates the processing of

that event. Starting with the set of rules that are applicable to the

event data, the host site examines the output of these rules to

determine those rules that will become applicable to the new

version of event data. It records this information in a data

structure to keep track of all the execution paths in each round of

event and rule processing. For example, let us assume that during

the processing of a particular event E, rules R1, R2, R3 will be

executed in the first round, and rules R4 and R5 in the second

round. R4 will acquire the necessary input data items, if either

both R1 and R2 execute, or R3 alone executes, whereas R5

requires input from R1 alone. The host site then records the

following two execution paths:

R1&R2 | R3 → R4, and R1 → R5

where the ‘→’ symbol indicates the beginning of a new round of

processing, the ‘&’ symbol indicates that both these rules need to

execute for a rule in the next round to be applicable, and the ‘|’

symbol indicates that at least one of these rules needs to execute

for the rule to be applicable in the next round.

The host also maintains a list of rules that have “executed” so far.

Whenever a rule is set to be “executed” for a second time, the host

site treats this as the beginning of a cycle. For each cycle, the host

site traces the path of rule execution back to the very first round of

event processing. This path of execution is stored as one estimated

cycle for the event. For example, if in the third round of

processing the same event E, R1 is made applicable again due to

the fact that some of its input data items have been modified by

the execution of both R4 and R5. The cyclic path

(R1&R2 | R3) & R1→ R4 & R5 → R1 …. (1)

will be recorded. The host stores information about all the rule

execution paths until it determines that no new rules can be

executed in the next round of processing. This rule termination

information is store for every registered event and is incrementally

updated whenever a rule is registered or updated.

When an event occurs at a collaborating site, the site downloads

the rule termination structure information from the host site.

Every applicable collaborating site needs to return the rules that

were executed in a given round of event and rule processing back

to the coordinating site. The coordinator then examines the rules

that were actually executed and the rule termination structure to

determine if the next round of event and rule processing will lead

to a rule cycle. If so, the site where the cyclic rule will be

executed is asked to deactivate the rule. For example, assume that

the above event E occurred and R1 and R3 were executed in

round 1. With this information, the coordinator matches the cyclic

path (1) and determines that the expression for the first round

((R1&R2 | R3) & R1) is satisfied. If in the next round, only R4

was executed, the coordinator again checks the expression for the

next round (R4&R5) and determines that it is not satisfied, and

hence no cycle can result. If, on the other hand, during the

processing of round 2, rule R5 was also executed, the coordinator

would know that R1 will be executed in the next round causing a

cycle. R1 should be deactivated to avoid the cycle.

The above approach is better than static termination analysis

methods because it assumes that rules are dynamically introduced

and updated, and takes runtime information to avoid rule cycles.

However, it is still conservative as it determines the existence of a

possible cycle based on the syntactic properties of rule input and

output specifications without considering the runtime values of

data items in the event data. Only the runtime data values can

determine if the input data condition of a rule is satisfied and if

the rule is executed to produce its output.

• Using Rule’s Data Characteristics:

In this method, the coordinating site of an event occurrence

receives the data characteristics of those rules that are executed in

each round of event and rule processing from every applicable

site. These data characteristics enable the coordinator to determine

whether the next round of event processing will cause a rule cycle

to be initiated. Specifically, each site returns the condition that

will invoke the rule and the equality/inequality relationship

between the input and output of the rule. For example, let us

consider the following two rules,

R1: (If A > 0) B = A+1, and

R2: (If B > 0), A = B+1

being executed at a collaborating site in two different rounds of

event and rule processing. This site will return the following data

characteristics to the coordinator:

R1: Condition: A>0, I/O Relationship B>A,

R2: Condition: B>0, I/O relationship: A>B

The coordinator keeps track of all data items linked with the same

inequality sign, to check if there is any cyclic relationship between

data items. If such a cyclic relationship is found, it applies the

rule conditions for each rule producing the data items under

consideration to make the educated conclusion of whether or not a

true rule execution cycle will result. For example, with rules R1,

and R2 above, the coordinator has the following relationship

between A and B,

B>A>B

which is cyclic in nature. The coordinator now looks at the values

of A and B, and applies the conditions of R1 and R2. If the

coordinator can conclude that the conditions will always be

satisfied (since the values of A and B will always be greater than

those in the previous rounds, and the conditions are A>0 and B>0

and both R1 and R2 have been processed once), then R1 and R2

will be processed indefinitely. It can then make the correct

decision of not executing either R1 or R2 in the next round of

processing. If, on the other hand, rule R2 is as follows:

R2: (If B<15), A = B+1

The coordinator can determine that sooner or later R2’s input

condition is not going to be satisfied since B always increases in

value after processing R1, and there is a definite upper bound on

the value of B in R2’s condition. Thus, it can determine that this is

not a real cycle and will not suppress the processing of R1 and R2.

5. IMPLEMENTATION
We use Java, Sun Application Server 9.0, Enterprise JavaBeans

3.0, the Apache jUDDI project, MySQL 5.0, and AJAX

technologies to implement our prototype system. The system

includes the user interface for specifying shared events, rules, rule

structures and triggers as well as the event and rule servers for

distributed event and rule processing. The standard operating

procedure that we have implemented and used to demonstrate the

utility of our technology has a total of 42 rules, most of which are

CAA rules. The system will be demonstrated at the conference if

our proposal for demonstration is accepted.

The work reported here is an ongoing research project. A

limitation of our current implementation is that we assume the

event data contains data of a single entity type. Also, for conflict

resolution, we assume that either a global or a local resolution

policy is available for resolving conflicting values. The

implementation of the third strategy for rule cycle avoidance is an

ongoing effort. In this work, we assume that organizational and

inter-organizational knowledge can be manually specified in the

form of knowledge rules and rule structures by using the user

interface we provide. Automatic extraction of policies,

regulations, constraints and procedures that have been

implemented in program code is a non-trivial task. It is out of the

scope of this research.

Our plan to evaluate the system is to deploy the system at several

key NPDN sites. These would include the NPDN site itself, a few

of the regional centers and a sizeable number of state systems.

Feedback obtained will be used to improve the functionality and

performance of the system. We have used our system to process

the Business Rules Group’s EU-rent rule set [7] in the e-business

domain. Interested readers are referred to [11] for a performance

evaluation discussion.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented our idea of capturing multi-faceted

human and organizational knowledge by using three popular types

of knowledge rules and rule structures. We also introduced the

technique of managing dynamic event data and processing

distributed and heterogeneous rules to achieve knowledge sharing.

The occurrence of an event may trigger multiple rounds of

processing and interoperation of distributed, heterogeneous rules

and rule structures to derive all the data that are pertinent to the

event occurrence. The approach for achieving the interoperation

of different types of rules is to translate them into code at rule

definition time and wrap them as web services for their uniform

discovery, invocation and interoperation in a web service

infrastructure. We also presented the architecture of our system,

and approaches to deal with event data aggregation, conflicting

rules and rule cycles.

There are several issues yet to be investigated, one of which is

transaction management. Generally speaking, multiple rounds of

rule processing that are triggered by an event occurrence and

application operations activated by rules should be treated as a

transaction. If a collaborating site aborts for any reason, its rules

will not be processed, thus affecting the contents of the event data

document. However, data generated by a subset of applicable

rules may still contain valuable information to collaborating

organizations. The enforcement of ACID properties in database

systems may not be applicable to event-triggered knowledge

sharing. These properties need to be examined. The second issue

is regarding trust and security policies. Collaborating

organizations need to negotiate and establish the policies to be

enforced by the knowledge sharing system. We are interested in

specifying these policies by different types of knowledge rules

and rules structures so that they can be processed uniformly with

other knowledge rules. The third issue is about ontology. Since

events, rules and triggers are defined by different organizations,

the terms used to name data entities and attributes may have

semantic discrepancies. Manually mapping terms used in event

specifications to those in rule specifications would be rather

tedious and error-prone. We are investigating the use of a domain

ontology managed by an ontology manager [5] to either

automatically or semi-automatically deal with ontological

mappings by reasoning on the underlying concepts of terms.

7. REFERENCES
[1] Agrawal, R., Evfimievski, A., and Srikant, R. Information

Sharing across Private Databases. SIGMOD, USA, 2003, 86-

97.

[2] Animal Plant and Health Inspection Service,

http://www.aphis.usda.gov.

[3] Baralis, E., Ceri, S., and Paraboschi, S. Compile-Time and

Runtime Analysis of Active Behaviors. IEEE Transactions

on Knowledge and Data Engg., 10, 3 (May 1998), 353-370.

[4] Bassiliades, N., Vlahavas, I., and Elmagarmid, A. E-

DEVICE: An Extensible Active Knowledge Base System

with Multiple Rule Type Support. IEEE Transactions on

Knowledge and Data Engineering, 2, 5, 2000, 824-844.

[5] Beck, H.W. On-line Content Development Tools.

http://orb.at.ufl.edu/ObjectEditor.

[6] Buchmann, A., et al. DREAM: Distributed Reliable Event-

Based Application Management. Web Dynamics Adapting to

Change in Content, Size, Topology and Use, M. Levene and

A. Poulovassilis (eds.), Springer-Verlag, Germany, 2004,

319-352.

[7] Business Rules Group. Defining Business Rules – What Are

They Really? Final report, http://www.businessrulesgroup

.org/first_paper/BRG-whatisBR_3ed.pdf, 2000.

[8] Business Rules Markup Language,

http://xml.coverpages.org/brml.html, 2002.

[9] Couchot, A. Termination analysis of active rules modular

sets. International Conference on Information and

Knowledge Management, Atlanta, 2001, 326-333.

[10] Degwekar, S. et al. Application of An Event-Trigger-Rule

System to Agricultural Homeland Security. International

Conference on Knowledge Sharing and Collaborative

Engineering, St. Thomas, US Virgin Islands, Nov. 22-24,

2004, 50-56

[11] Degwekar, S., and Su, S. Knowledge Sharing in a

Collaborative Business Environment Workshop on e-

Business, USA, 2006, abstract (pp. 60), paper on CD, 12 pgs.

[12] Dhamankar, R. et al. iMAP: Discovering Complex Semantic

Matches between Database Schemas. SIGMOD, France,

2004, 383-394.

[13] He, B., and Chang, K. A holistic paradigm for large scale

schema matching. SIGMOD, France, 2004, 20-25.

[14] Krishnamurthy, B., and Rosenblum, D.S. Yeast: A general

purpose Event-Action System. IEEE Transactions on

Software Engineering, 21, 10, 1995, 845-857.

[15] Lee, M., Su, S., and Lam, H. A Web-based Knowledge

Network for Supporting Emerging Internet Applications.

WWW Journal, 4, 1/2 (March 2001), 121-140.

[16] National Plant Diagnostic Network, http://www.npdn.org.

[17] Pantel, P., Philipot, A., and Hovy, E. Aligning Database

Columns using Mutual Information. National conference on

Digital Government Research, Georgia, 2005, 205-210.

[18] Rosenberg, F., and Dustdar, S. Towards a Distributed

Service-Oriented Business Rules System. IEEE European

Conference on Web Services, Sweden, 2005, 14-24.

[19] Rouvellou, I., et al. Combining Different Business Rules

Technologies: A Rationalization. OOPSLA 2000 Workshop

on Best-practices in Business Rule Design and

Implementation, Minnesota, USA, Oct. 15, 2000.

[20] Rule Markup Initiative. http://www.ruleml.org, 2000.

[21] The Rule and Rule Structure Definition Schemas,

http://www.cise.ufl.edu/~spd/RuleBase.xsd,

http://www.cise.ufl.edu/~spd/RuleStruc.xsd.

[22] Simple Rule Markup Language,

http://xml.coverpages.org/srml.html, 2001.

[23] Sowa, J. Knowledge Representation: Logical, Philosophical

and Computational Foundations. Brooks Cole, Pacific

Grove, CA, 2000.

[24] Stack, J. et al. The National Plant Diagnostic Network. Plant

Disease, 90, 2, 2006, 128-136.

[25] Su, S.Y.W., et al. Transnational Information Sharing, Event

Notification, Rule Enforcement and Process Coordination.

International Journal of Electronic Government Research, 1,

2 (Apr-Jun 2005), 1-26.

[26] Ullman, J. Principles of Database Systems, 2nd Ed,

Computer Science Press, Rockville, MD, 1982.

[27] Ullman, J. Principles of Database and Knowledge-Base

Systems, Computer Science Press, Rockville, MD, 1988.

[28] U.S. Congress. Office of Technology Assessment, Harmful

Non-Indigenous Species in the United States, OTA-F-565

Washington, DC, U.S. Government Printing Office,1993,3-5.

[29] Widom, J., and Ceri, S. Active Database Systems, Triggers

and Rules for Advanced Database Processing. Morgan

Kaufmann, San Mateo, CA, 1996.

[30] Yu, C., and Popa, L. Semantic Adaptation of Schema

Mappings when Schemas Evolve. VLDB, Norway, 2005,

1006-1017.

[31] Zhang, N., and Zhao, W. Distributed Privacy Preserving

Information Sharing. VLDB, Norway, 2005, 889-900.

