Suppose that you have one machine and a set of n jobs a_1, \ldots, a_n to process on that machine. Each job a_j has a processing time t_j and a profit p_j, and a deadline d_j. The machine can process only one job at a time, and a job a_j must run uninterruptedly for t_j consecutive time units. If job a_j is completed by its deadline d_j, you receive a profit p_j, but if it is completed after its deadline, you receive a profit of 0. Give an efficient algorithm to find the schedule that obtains the maximum amount of profit, assuming that all processing times are integers between 1 and n. State and prove time complexity of your algorithm.
2. (10 points)

Let $A = \{A_1, \ldots, A_n\}$ be a set of distinct coin types, where $A_1 < A_2 < \ldots < A_n$. The coin-changing problem is defined as follows. Given an integer C, find the smallest number of coins from A, that add up to C, given that unlimited number of coins of each type is available. Design an efficient dynamic programming algorithm that on inputs A and C, outputs the minimum number of coins needed to solve the coin-changing problem. State and prove time complexity of your algorithm.