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ABSTRACT
Kernel-mode rootkits hide objects such as processes and threads
using a technique known as Direct Kernel Object Manipulation
(DKOM). Many forensic analysis tools attempt to detect these hid-
den objects by scanning kernel memory with handmade signatures;
however, such signatures are brittle and rely on non-essential fea-
tures of these data structures, making them easy to evade. In this
paper, we present an automated mechanism for generating signa-
tures for kernel data structures and show that these signatures are
robust: attempts to evade the signature by modifying the structure
contents will cause the OS to consider the object invalid. Using
dynamic analysis, we profile the target data structure to determine
commonly used fields, and we then fuzz those fields to determine
which are essential to the correct operation of the OS. These fields
form the basis of a signature for the data structure. In our exper-
iments, our new signature matched the accuracy of existing scan-
ners for traditional malware and found processes hidden with our
prototype rootkit that all current signatures missed. Our techniques
significantly increase the difficulty of hiding objects from signature
scanning.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Design, Security

Keywords
Data structures, memory analysis, security

1. INTRODUCTION
Many successful malware variants now employ kernel-mode root-

kits to hide their presence on an infected system. A number of large
botnets such as Storm, Srizbi, and Rustock have used rootkit tech-
niques to avoid detection. This has led to an arms race between
malware authors and security researchers, as each side attempts to
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find new methods of hiding and new detection techniques, respec-
tively. For example, the FU Rootkit [7] introduced a means of pro-
cess hiding known as Direct Kernel Object Manipulation (DKOM),
which unlinks the malicious process from the list of active pro-
cesses maintained by the system. In response, some forensic mem-
ory analysis tools [5, 36, 46] have started scanning kernel memory
using signatures for process data structures, and comparing the re-
sults with the standard process list. Because signature-based scan-
ning only requires access to physical memory, scanners are most
useful in an offline forensic context, but can be used for live analy-
sis as well.

However, a signature-based search can only be effective if it is
difficult for an attacker to evade. As Walters and Petroni [47] note,
many current signatures for process data structures in particular can
easily be fooled by modifying a single bit in the process header.
Although this field is normally constant, its value is irrelevant to
the correct operation of the process, and so an attacker with the
ability to write to kernel memory can easily modify it and evade
detection. This leads naturally to the question of which fields in a
given data structure are, in fact, essential to its function and would
therefore be good features on which to base a signature.

In this paper, we describe a principled, automated technique for
generating robust signatures for kernel data structures such as pro-
cesses. We employ a feature selection process that ensures that the
features chosen are those that cannot be controlled by an attacker—
attempting to evade the signature by modifying the features will
cause the operating system to crash or the functionality associated
with the object to fail. We use our methods to derive a signature for
EPROCESS, the data structure used to represent a running process
in Windows. By construction, an attacker attempting to evade the
signature by altering the fields of the process structure will harm the
functionality of the OS or process. In addition, we will show con-
clusively that current, manually generated signatures are trivially
evadable by attackers that can write to kernel memory.

Our feature selection mechanism uses two methods to determine
which portions of the data structure are critical to its function. First,
we monitor operating system execution and note which fields it
reads and writes in the target structure. The intuition is that fields
that are never accessed cannot cause a crash if modified by an at-
tacker and hence are poor features for robust signatures. Next, we
attempt to determine which fields can be modified by an attacker
without preventing the data structure from working correctly. This
stage of feature selection simulates the behavior of an attacker at-
tempting to evade a signature: if an attacker can arbitrarily modify a
field, then any constraint we devise for that field could be bypassed.

After robust features have been selected, we collect samples of
those features in the data structure from a large number of instances
in memory images. We then use a dynamic invariant detection tech-



nique [12] to find constraints on their values that can be used in a
signature. Our signature generator uses these constraints to create a
plugin for the Volatility memory analysis framework [46] that can
find these data structures in memory.

We demonstrate the advantage of our automatically generated
signatures over existing solutions by creating a prototype rootkit
(based on FU [7]). This custom malware hides processes using
a combination of DKOM and signature evasion techniques. By
altering unused fields in the process structure that current signatures
depend on, the rootkit successfully evades existing signature-based
process scanners. We show that our scanner is capable of detecting
processes hidden using this method in Windows memory images.

We chose to apply our technique to the problem of finding pro-
cesses in Windows memory images for several reasons. Reliable
identification of running programs is a basic security task that is a
prerequisite for many other types of analysis. In addition, process
hiding is common feature of kernel malware; a single rootkit may
be used to hide the presence of wide variety of user-level malware.
However, our techniques are general, and we will discuss the pos-
sible application of our techniques to other kernel data structures in
Section 7.

We make the following contributions: first, we provide strong
empirical evidence that existing signatures are trivially evadable.
Second, we develop a systematic method for securely selecting fea-
tures from a data structure that can be used to create highly robust
signatures. Finally, we present a method for generating a signature
based on robust features, and use it to create a specific signature
for process objects on Windows that is as accurate as existing sig-
natures for current malicious and non-malicious processes, but is
resistant to evasion.

These results are of immediate importance to a number of secu-
rity tools which rely on being able to locate data structures in ker-
nel memory. The virtual machine-based “out-of-the-box” malware
detection system proposed by Jiang et al. [17], for example, uses
several invariant bytes found in the header of a process structure to
find processes under Windows. Cross-view detection approaches
to detect hidden processes used by memory analysis tools such as
Volatility [46], memparser [5], and PTFinder [36] also make use of
signatures to locate key kernel structures. Finally, virtual machine
introspection libraries such as XenAccess [30] often use signature
scans of guest memory to identify processes and provide user-space
address translation. The ability to locate data structures such as pro-
cesses, independent of any operating system-level view, is critical
to the correct operation of these tools, and all of them would benefit
from the use of more robust signatures.

2. RELATED WORK
Signature-based methods have repeatedly been proposed to iden-

tify particular classes of security threats, and, in general, these
methods have been found vulnerable to evasion in the face of ad-
versaries. In the area of virus detection, for example, the earliest
detectors (and, indeed, many modern commercial utilities) matched
byte strings found in viral code that were unlikely to occur in in-
nocuous programs. As the volume of viral code in the wild in-
creased, automated methods were developed to generate signatures
based on known viral samples [20]. These methods were thwarted
by the appearance of polymorphic and metamorphic [42] viruses;
with these techniques, virus creators could transform the malicious
code into a form that was functionally equivalent but had no mean-
ingful strings in common with the original code. As a complex-
ity theory problem, reliable detection of bounded length metamor-
phic viruses has been shown to be NP-complete [41]. Empirical
results have confirmed the difficulty of the problem: by mutating

Visual Basic viruses found in the wild using techniques similar to
fuzzing [15,24,25] and random testing, Christodorescu and Jha [9]
found that most malware detectors are vulnerable to even simple
obfuscation techniques.

The response to network-based worms followed a similar path.
Initial attempts to detect network worms used simple, handmade
signatures for intrusion detection systems such as Snort [33] that
searched for static byte patterns in the network payload of the worm.
However, such manual processes did not scale to the large number
of worm variants that soon appeared, and numerous systems for
automatic signature generation were proposed [21, 22, 38]. These
too, however, were soon defeated by polymorphic shellcode that al-
tered the syntactic structure of the worm payload without affecting
its functionality [11]. Although later signature generation systems
[23,28] were able to create signatures based on invariant features in
certain classes of polymorphic shellcode, Gundy et al. [16] found
that there were some vulnerabilities that could not be captured by
such systems. Indeed, further work by Song et al. [40] demon-
strated that the general problem of modeling polymorphic shell-
code was likely to be infeasible, and Fogla and Lee [14] found that
detecting polymorphic blending attacks is an NP-complete prob-
lem.

Although these results do not make the search for reliable kernel
data structure signatures look promising, there are key differences
that allow signature-based methods to be effective in this case. In
the case of viruses and shellcode, the syntax of the malicious input
is under the control of the attacker; only its semantics must remain
the same in order to produce an effective attack. By contrast, the
syntax of kernel data structures is controlled by the code of the
operating system; an attacker can only modify the data contained in
the structure to the extent that the operating system will continue to
treat it as a valid instance of the given type. By identifying portions
of these data structures that cannot be modified by the attacker, we
are able to generate signatures that resist evasion.

Our signature generation system uses dynamic analysis to pro-
file field usage in kernel data structures. A similar technique is em-
ployed by Chilimbi et al. [8] for a different goal; their tool, bbcache,
analyzes field access patterns in user-space data structures in order
to optimize cache performance. After the profiling step, we use a
technique similar to fuzzing [24] to identify unused fields in kernel
data structures. Fuzzing was also applied by Solar Eclipse [39] to
determine which fields in the Portable Executable (PE) file format
were required by the Windows loader, in order to develop ways of
decreasing the size of Windows executables. Finally, our system
finds invariants on the fields in the data structure and produces a
Python script that can be used to find instances of the structure in
memory images.

Another system that makes use of data structure invariants is
Gibraltar by Baliga et al. [2]. Their system creates a graph of
all kernel objects in memory and records the values of those ob-
jects’ members as the system runs. The dynamic invariant detec-
tor Daikon [12] is then used to derive constraints on the objects’
data. Deviations from the inferred invariants are considered to be
attacks against kernel data. The goals and assumptions of our own
system, however, are substantially different: whereas Gibraltar as-
sumes that the locations of all kernel data structures can be found
a priori and then attempts to enforce constraints on those objects,
our system seeks to find features of specific data structures in or-
der to locate them in memory. The two approaches can be seen as
complementary; once security-critical objects such as processes are
located using our signatures, techniques similar to Gibraltar may be
employed to detect and enforce invariants on the data.

A number of approaches to detect hidden processes have been



Type == 0x03

Size == 0x1b

ThreadListHead >= 0x80000000

DirectoryTableBase is aligned to 0x20

Figure 1: A naïve signature for the EPROCESS data structure.
The constraints shown are a subset of those used in PTFinder’s
process signature. Because the Size field is not used by the
operating system, an attacker can change its value, hiding the
process from a scanner using this signature.

featured in other work. Antfarm [18] and Lycosid [19] track the
value of the CR3 register as a virtual machine executes to identify
unique virtual address spaces, which correspond to distinct pro-
cesses. Although this approach is quite useful in a live environ-
ment, it cannot be used for offline forensic analysis. Some offline
methods have been proposed as well: Klister [34], for example,
attempted to find hidden processes by relying on the scheduler’s
thread list rather than the systemwide process list, which thwarts
some kinds of DKOM attacks. An evasion for this kind of detec-
tion has been demonstrated [1], however: an attacker can replace
the OS scheduler with a modified copy, bypassing any tool which
relies on the original list. Signature scanning is less vulnerable to
such attacks, as any changes an attacker makes to the layout of a
data structure must be reflected in any OS code that uses the struc-
ture.

Finally, other recent work has focused on finding data structures
in memory. Laika [10] infers the layout of data structures and at-
tempts to find instances in memory using unsupervised Bayesian
learning. Because their system assumes that the data structures are
not known in advance, it may be useful in cases where data struc-
ture definitions are not available. This flexibility comes the cost
of accuracy, however: whereas our process scanner found all in-
stances of the structure in all tested memory images with no false
positives, Laika had false positive and negative rates of 32% and
35%, respectively.

We anticipate that rootkit authors will soon add signature eva-
sion techniques to their standard toolkits. Evasion of signatures
for kernel data has already been publicly discussed: Walters and
Petroni [47] demonstrated that changing a single bit in the Windows
process data structure was sufficient to evade all known signatures
without harming the functionality of the running process. Similarly,
in response to Rutkowska’s signature-based modGREPER [35], va-
lerino [43] described an evasion technique that altered a number of
fields in the driver and module structures. Finally, bugcheck [6]
described a number of methods (including signatures that match
fixed strings) for finding kernel data structures in Windows mem-
ory and explored several evasion techniques that could be used to
hide objects from those techniques. As tools that find hidden ob-
jects through memory scans become more common, we believe
malware authors will adapt by attempting to evade signatures. This
threat motivates our work to generate signatures for kernel data that
are resistant to evasion.

3. OVERVIEW
A signature-based scanner examines each offset in physical mem-

ory, looking for predefined patterns in the data that indicate the

Process A Process BHidden Process

Type: 0x03
Size: 0x1b

ThreadListHead:
0x8182dfd4

DirectoryTableBase:
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Figure 2: A portion of the process list while a process hiding
attack is underway. The hidden process has been removed from
the doubly linked list, and its Size field has been changed to
evade the signature above.

presence of a particular data structure. These patterns take the form
of a set of constraints on the values of various fields in the struc-
ture. For example, Figure 1 shows a simple signature for a process
data structure in Windows (called EPROCESS; this structure holds
accounting information and metadata about a task). The constraints
check to see that the Type and Size fields match predefined con-
stants, that the ThreadListHead pointer is greater than a certain
value, and that the DirectoryTableBase is aligned to 0x20
bytes. These invariants must be general enough to encompass all
instances of the data structure, but specific enough to avoid match-
ing random data in memory.

An adversary’s goal is to hide the existence of a kernel data struc-
ture from a signature-based scanner while continuing to make use
of that data structure. We assume that the attacker has the ability to
run code in kernel-mode, can read and modify any kernel data, and
cannot alter existing kernel code. This threat model represents a re-
alistic attacker: it is increasingly common for malware to gain the
ability to execute code in kernel mode [13], and there are a number
of solutions available that can detect and prevent modifications to
the core kernel code [31,37], but we are not aware of any solutions
that protect kernel data from malicious modification.

To carry out a process hiding attack, such as the one shown in
Figure 2, an attacker conceals the process from the operating sys-
tem using a technique such as DKOM. This attack works by remov-
ing the kernel data structure (EPROCESS) representing that process
from the OS’s list of running processes. The process continues to
run, as its threads are known to the scheduler, but it will not be vis-
ible to the user in the task manager. However, it will still be visible
to a signature-based scanner [5, 36] that searches kernel memory
for process structures rather than walking the OS process list.

To evade such scanners, the attacker must modify one of the
fields in the process data structure so that some constraint used by
the signature no longer holds. The field must also be carefully cho-
sen so that the modification does not cause the OS to crash or the
malicious program to stop working. In the example shown in Fig-
ure 2, the attacker zeroes the Size field, which has no effect on
the execution of his malicious process, but which effectively hides
the data structure from the scanner.

In order to defend against these kinds of attacks, signatures for
data structures must be based on invariants that the attacker cannot
violate without crashing the OS or causing the malicious program
to stop working. The signature’s constraints, then, should be placed
only on those fields of the data structure that are critical to the cor-
rect operation of the operating system. Rather than relying on hu-
man judgement, which is prone to errors, our solution profiles OS
execution in order to determine the most frequently accessed fields,
and then actively tries to modify their contents to determine which



are critical to the correct functioning of the system. Such fields will
be difficult for an attacker to modify without crashing the system,
and are good candidates for robust signatures.

Finally, we will demonstrate that it is possible to automatically
infer invariants on these robust fields and construct a scanner that
is resistant to evasion attacks.

4. ARCHITECTURE
Our system architecture generates signatures using a three step

process. We first profile the data structure we wish to model to de-
termine which fields are most commonly accessed by the operating
system (Section 4.1). This is done to narrow the domain of the data
that we must test in the fuzzing stage: if a field is never accessed in
the course of the normal operation of the OS, it is safe to assume
that it can be modified without adversely affecting OS functionality.
Next, the most frequently accessed fields are fuzzed (Section 4.2)
to determine which can be modified without causing a crash or oth-
erwise preventing the structure from serving its intended purpose.
Finally, we collect known-good instances of the data structure, and
build a signature based on these instances that depends only on the
features that could not be safely modified during fuzzing (Section
4.3).

Profiling and fuzzing are both essentially forms of feature se-
lection. Each tests features of the data structure to determine their
suitability for use in a signature. Features that are unused by the
operating system or are modifiable without negative consequences
are assumed to be under the control of the attacker and eliminated
from consideration. Including such weak features would allow an
attacker to introduce false negatives by violating the constraints of
a signature that used them, in the same way that a polymorphic
virus evades an overly specific antivirus signature. At the other end
of the spectrum, if too few features remain at the end of feature se-
lection, the resulting signature may not be specific enough and may
match random data, creating false positives.

The profiling and fuzzing stages are implemented using the Xen
hypervisor [3] and VMware Server [45], respectively. Because pro-
filing requires the ability to monitor memory access, we chose to
use Xen, which is open source and allowed us to make the neces-
sary changes to the hypervisor to support this monitoring. How-
ever, Xen lacks the ability to save and restore system snapshots, a
feature needed for reliable fuzz testing, so we use VMware Server
for this stage. Also, because VMware’s snapshots save the con-
tents of physical memory to disk, we were able to easily modify
the memory of the guest OS by altering the on-disk snapshot file.

4.1 Data Structure Profiling
In the profiling stage (shown in Figure 3), we attempt to deter-

mine which structure fields are most commonly accessed by the op-
erating system during normal operation. Fields which are accessed
by the OS frequently are stronger candidates for use in a signa-
ture because it is more likely that correct behavior of the system
depends upon them. By contrast, fields which are rarely accessed
are most likely available to the attacker for arbitrary modification;
if the OS never accesses a particular field in the data structure, its
value cannot influence the flow of execution.

In our implementation, we make use of a modified Xen hypervi-
sor and the “stealth breakpoint” technique described by Vasudevan
and Yerraballi [44] to profile access to the data structure. Stealth
breakpoints on memory regions work by marking the memory page
that contains the data to be monitored as “not present” by clearing
the Present bit in the corresponding page table entry. When the
guest OS makes any access to the page, the page fault handler is
triggered, an event which can be caught by the hypervisor. The hy-

pervisor then logs the virtual address that was accessed (available
in the CR2 register), emulates the instruction that caused the fault,
and allows the guest to continue. These logs can later be examined
to determine what fields were accessed, and how often.

For example, to monitor the fields of the Windows EPROCESS
data structure, we launch a process and determine the address in
memory of the structure. We then instruct the hypervisor to log
all access to that page, and then allow the process to run for some
time. Finally, the logs are examined and matched against the struc-
ture’s definition to determine how often individual fields were read
or written. This process is repeated using several different applica-
tions; only the fields that are accessed during the execution of every
program will be used as input for the fuzzing stage.

We note in passing that determining the precise field accessed
requires access to the data structure’s definition. On open source
operating systems, this information is easy to come by, but for
closed source OSes such as Windows it may be more difficult to
obtain. For our implementation, which targets Windows XP, we
used the debugging symbols provided by Microsoft; these symbols
include structure definitions for many kernel structures, including
EPROCESS.

4.2 Fuzzing
Although a field that is accessed frequently is a stronger candi-

date than one which is never accessed, this condition alone is not
sufficient to identify truly robust features for use in signatures. For
example, the operating system may update a field representing a
performance counter quite frequently, but its value is not signifi-
cant to the correct operation of the OS. Thus, to be confident that a
signature based on a particular field will be robust against evasion
attacks, we must ensure that the field cannot be arbitrarily modified.

The actual fuzzing (shown in Figure 4) is done by running the
target operating system inside VMware Server [45]. As in the pro-
filing stage, we first create a valid instance of the data structure.
Next, the state of the guest VM is saved so that it can be easily re-
stored after each test. For each field, we then replace its contents
with test data from one of several classes:

1. Zero: null bytes. This is used because zero is often a signif-
icant special case; e.g., many functions check if a pointer is
NULL before dereferencing.

2. Random: n random bytes from a uniform distribution, where
n is the size of the field.

3. Random primitive type: a random value appropriate to the
given primitive type. In particular, pointer fields are fuzzed
using valid pointers to kernel memory.

4. Random aggregate type: a random value appropriate to the
given aggregate type (i.e., structure). Embedded structures
are replaced by other valid instances of that structure, and
pointers to structures of a given type are replaced by pointers
to that same type. Currently implemented as a random choice
of value from that field in other instances of the target data
structure.

After the data is modified, we resume the guest VM and monitor
the operating system to observe the effects of our modifications.
To determine whether our modification was harmful, we must con-
struct a test, φ, which examines the guest and checks if the OS is
still working and the functionality associated with the target data
structure instance is still intact.

For a process data structure, φ could be a test that first checks to
see if the OS is running, and then determines whether the associated
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Figure 3: The profiling stage of our signature generation system. As the OS executes, accesses to the target data structure are logged.
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Figure 4: The architecture of the fuzzing stage. Starting from
some baseline state, a test pattern is written into a field in the
target data structure in the memory of the virtual machine. The
VM is then resumed and tested to see if its functionality is in-
tact. If so, the modification was not harmful and we consider
the field a weaker candidate for a signature.

program is still running. This check may be simpler to program if
the behavior of the application in question is well-known. In our
experiments (described in Section 5.1), we used an application we
had written that performed some simple functions such as creating
a file on the hard drive. This allowed φ to check if the program had
continued to run successfully by simply testing for the existence of
the file created by the program.

To actually inject the data, we pause the virtual machine, which
(in VMware) writes the memory out to a file. We then use the
memory analysis framework Volatility [46] (which we modified to
support writing to the image) to locate the target instance and mod-
ify the appropriate field with our random data. Volatility was ideal
for this purpose, because it has the ability to locate a number of
kernel data structures in images of Windows memory and provides
a way to access the data inside the structures by field name. The
modifications to allow writing to the image (a feature not normally
supported by Volatility, as it is primarily a forensics tool) required
303 lines of additional code.

Finally, we resume the virtual machine and check to see if φ
indicates the system is still functioning correctly after some time
interval. This interval is currently set to 30 seconds to allow time
for the VM to resume and any crashes to occur. Software engineer-
ing studies [26] have found that crashes typically occur within an
average of one million instructions from the occurrence of mem-
ory corruption; thus, given current CPU speeds, it is reasonable to
assume that this 30 second delay will usually be sufficient to deter-
mine whether the alteration was harmful to program functionality.
The result of the test is logged, and we restore the saved virtual ma-
chine state before running the next test. Any fields whose modifi-

class Scan ( RobustPsScanner ,
PoolScanProcessFast2 . Scan ) :

def i n i t ( s e l f , p o f f s e t , outer ) :
RobustPsScanner . i n i t ( s e l f ,

p o f f s e t , outer )
s e l f . add cons t ra in t (

s e l f . c h e ck ob j e c t t ab l e
)
s e l f . add cons t ra in t (

s e l f . check g rantedacce s s
)

[ . . . ]

def ch e ck ob j e c t t ab l e ( s e l f , buf , o f f ) :
va l = read ob j f r om bu f ( buf ,

types , [ ‘ EPROCESS ’ ,
‘ ObjectTable ’ ] , o f f )

r e s = ( va l == 0 or
( va l & 0xe0000000 ==

0xe0000000 and
va l % 0x8 == 0))

return r e s

def check grantedacce s s ( s e l f , buf , o f f ) :
va l = read ob j f r om bu f ( buf ,

types , ‘ EPROCESS ’ ,
‘ GrantedAccess ’ ] , o f f )

r e s = va l & 0 x1 f07 fb == 0 x1 f07 fb
return r e s

Listing 1: Two sample constraints found by our signa-
ture generator. If all constraints match for a given data
buffer, the plugin will report that the corresponding lo-
cation in memory contains an EPROCESS instance.

2

Figure 5: Two sample constraints found by our signature gen-
erator. If all constraints match for a given data buffer, the plu-
gin will report that the corresponding location in memory con-
tains an EPROCESS instance.

cation consistently caused φ to indicate failure are used to generate
a signature for the data structure.

4.3 Signature Generation
The final signature generation step is performed using a simpli-

fied version of dynamic invariant detection [12]. For each field
identified by the feature selection as robust, we first gather a large
number of representative values from all instances of the target data
structure in our corpus of memory images. Then, for each field, we
test several constraint templates to see if any produce invariants that
apply to all known values of that field. The templates checked are:

• Zero subset: check if there is a subset of the values that is
zero. If so, ignore these values for the remaining checks.

• Constant: check if the field takes on a constant value.



• Bitwise AND: check if performing a bitwise AND of all
values results in a non-zero value. This effectively checks
whether all values have any bits in common.

• Alignment: check if there is a power of two (other than 1)
on which all values are aligned.

First, because many fields use zero as a special case to indicate
that the field is not in use, we check if any of the instances are zero,
and then remove these from the set to be examined. Constraints are
then inferred on the remaining fields, and zero will be included as
a disjunctive (OR) case in the final signature. The other templates
will produce conjunctive constraints on the non-zero field values.

The constant template determines whether a field always takes
on a particular value. This is useful, for example, for data structures
that have a “magic” number that identifies them uniquely. Because
the features that are used for signature generation are known to be
robust (as these were the selection criteria described in Sections 4.1
and 4.2), we can have some confidence that the operating system
performs sanity checking on such constant values.

The two remaining tests are particularly useful for finding con-
straints on pointer values. The bitwise AND test simply performs
a bitwise AND of all values observed. In many operating systems,
kernel memory resides in a specific portion of virtual address space,
such as (in Windows) the upper 2 gigabytes. One can determine if
a 32-bit pointer always points to kernel memory, then, by simply
checking that the highest bit is set.

Finally, the alignment test attempts to find a natural alignment
for all values. As an optimization, many OS memory managers
allocate memory aligned on a natural processor boundary, such as
eight bytes. As a result, most pointers to kernel objects will like-
wise have some natural alignment that we can discover and use as
a constraint.

Our signature generator takes as input a comma-separated file,
where each row gives the field name and a list of values observed
for that field. For each field, it applies the constraint templates to
the values listed and determines a boolean expression that is true
for every value. It then outputs a plugin for Volatility, written in
Python, that can be used to scan for the target data structure in a
memory image. An excerpt of the plugin generated to search for
instances of the EPROCESS data structure is given in Figure 5.

The signature generation mechanism produces extremely robust
results in practice: as we describe in Section 6.3, the signature we
generated for Windows process data structures found all instances
of the data structure in memory with no false positives or negatives.
Should this technique prove insufficient for some data structure,
however (for example, if only a few features are robust enough to
use in a signature), more heavyweight techniques such as dynamic
heap type inference [32] could be used.

4.4 Discussion
Our experiments (described in Section 6) show that these tech-

niques can be used to derive highly accurate signatures for kernel
data structures that are simultaneously difficult to evade. There are,
however, certain drawbacks to using probabilistic methods such as
dynamic analysis and fuzz testing. In particular, both techniques
may suffer from coverage problems. In the profiling stage, it is
highly unlikely that every field used by the operating system will
actually be accessed; there are many fields that may only be used in
special cases. Likewise, during fuzzing, it is possible that although
the operating system did not crash during the 30 seconds of testing,
it might fail later on, or in some special circumstances.

In both of these cases, however, we note that these omissions will
only cause us to ignore potentially robust features, rather than acci-

dentally including weak ones. Moreover, from an attacker’s point
of view, the malware need not work perfectly, or run in every spe-
cial case: sacrificing correct operation in a tiny fraction of config-
urations may be worth the increased stealth afforded by modifying
these fields. Thus, a short time interval for testing is conservative:
it will never cause a weak feature to be used in a signature, as only
features whose modification consistently causes OS crashes form
the basis of signatures. However, it may cause fields to be elimi-
nated that would, in fact, have been acceptable to use in a signature.
If too many fields are eliminated, the resulting signature may match
random data in memory, creating false positives. In any case, this
limitation is easily overcome by increasing the amount of time the
fuzzer waits before testing the OS functionality, or by exercising
the guest OS more strenuously during that time period.

However, there are some coverage issues that could result in
weak signatures. Because fuzzing is a dynamic process, it is pos-
sible to only inject a subset of values that causes the OS to crash,
while there exists some other set of values that can be used without
any negative effects. In this case, we may conclude that a given
feature is robust when in fact the attacker can modify it at will.
For most fields it is not practical to test every possible value (for
example, assuming each test takes only five seconds, it would still
require over 680 years to exhaustively test a 32-bit integer). In Sec-
tion 8, we will consider future enhancements to the fuzzing stage
that may improve coverage.

Finally, we note that although the features selected using our
method are likely to be difficult to modify, there is no guarantee
that they will be usable in a signature. For example, although our
testing found that the field containing the process ID is difficult to
modify, it could still be any value, and examining a large number of
process IDs will not turn up any constraints on the value. In prac-
tice, though, we found that most of the “robust” features identified
were fairly simple to incorporate into a signature, and we expect
that this will be true for most data structures.

5. METHODOLOGY
Signature search is essentially a classification problem: given an

unknown piece of data, we wish to classify it as an instance of our
data type or as something else. Our experiments, therefore, attempt
to measure the performance of the signatures using standard clas-
sification metrics: false positives and negatives. A false positive in
this case is a piece of data that matches the signature but would not
be considered a valid instance of the data structure by the operating
system. Conversely, a false negative is a valid instance that is not
classified as such by our signature. False negatives represent cases
where the attacker could successfully evade the signature, whereas
false positives could introduce noise and make it difficult for to tell
what processes are actually running.

For our purposes, we only consider false positives that are syn-
tactically invalid. We note that an attacker could generate any num-
ber of false positives by simply making copies of existing kernel
data structures. These structures would be semantically invalid (the
operating system would have no knowledge of their existence), but
would be detected by a signature scanner. The possibility of such
“dummy” structures is a known weakness of signature-based meth-
ods for finding kernel data structures [47]; however, a solution to
this problem is outside the scope of this work.

For our experiments, we chose to generate a signature for the
Windows EPROCESS data structure, which holds information re-
lated to each running process. This structure was chosen because
it is the most commonly hidden by malicious software, and there
are a number of existing signature-based tools that attempt to locate
this data structure in memory [5, 36, 46]. We compare the success



System Utilities
Name Version Fields
Telnet 5.1.2600.5512 112
Command shell 5.1.2600.5512 135
NTFS Defragment 5.1.2600.5512 123
Explorer 6.0.2900.5512 143

Browsers
Name Version Fields
Internet Explorer 7.0.5730.13 153
Mozilla Firefox 3.0.5 147

Games
Name Version Fields
WinQuake 1.06 129
Minesweeper 5.1.2600.0 108

Editor
Name Version Fields
Notepad 5.6.2600.5512 151

Debugger
Name Version Fields
Notepad (debugged) 5.6.2600.5512 145
Windbg (debugging) 6.9.0003.113 x86 146

Communications
Name Version Fields
Outlook Express 6.00.2900.5512 148
Pidgin 2.5.3 143

Installer
Name Version Fields
Pidgin Installer 2.4.0 188

Antivirus / Antispyware
Name Version Fields
Avira AntiVir 8.2.0.337 130
Spybot Search & Destroy 1.6.0.0 136

Network Servers
Name Version Fields
Apache HTTPd 2.2.11 108
network_listener N/A 139

Multimedia
Name Version Fields
Windows Media Player 9.00.00.4503 142
iTunes 8.0.2.20 142

Table 1: List of applications profiled, along with the number of
fields in EPROCESS accessed.

of our signature with these tools. However, our work can also be
applied to generate signatures for other data structures.

5.1 Profile Generation and Fuzzing
During the profiling stage, we examined access patterns for fields

in the EPROCESS data structure. To ensure that our data rep-
resented a wide range of possible application-level behavior, we
chose twenty different programs that performed a variety of tasks
(see Table 1 for a full list). To obtain a profile, we first launched
the application and noted the address of its associated EPROCESS
structure using the kernel debugger, WinDbg. We then instructed
the Xen hypervisor to monitor access to the page, and used the ap-
plication for a minimum of five minutes.

We note that in addition to differences caused by the unique func-
tion performed by each application, other activities occurring on
the system may cause different parts of the data structure to be ex-
ercised. In an attempt to isolate the effects caused by differences
in program behavior, as each profile was generated we also used

the system to launch several new tasks (Notepad and the command
shell, cmd.exe), switch between interactive programs, and move
and minimize the window of the application being profiled.

After profiling the applications, we picked only the features that
were accessed in all twenty applications. This choice is conserva-
tive: if there are applications which do not cause a particular field
to be exercised, then it may be possible for an attacker to design a
program that never causes the OS to access that field. The attacker
would then be able to modify the field’s value at will and evade any
signature that used constraints on its value.

As described in Section 4.2, features that were accessed by all
programs profiled were fuzzed to ensure that they were difficult to
modify. Checking that the EPROCESS data structure is still func-
tioning after each fuzz test is much simpler if the associated pro-
gram has known, well defined behavior. For this reason, we chose
to create a program called network_listener that opens a net-
work socket on TCP port 31337, waits for a connection, creates a
file on the hard drive, and finally exits successfully. The baseline
snapshot was taken just after launching network_listener in-
side the guest VM.

Because the program behavior is known in advance, the test to
see if the OS and program are still working correctly (φ) becomes
simple. From the host, we perform the following tests on the virtual
machine:

1. Determine if the virtual machine responds to pings.

2. Check that the program is still accepting connections on port
31337.

3. Check for the existence of the file written by the application
(using the VMware Tools API).

If all tests pass, then φ returns true, indicating that the modifica-
tion was accomplished without harming OS or program function-
ality. If instead φ returns false, then the OS has crashed or some
aspect of the program associated with our EPROCESS instance has
stopped functioning. This latter case indicates that the OS will not
accept arbitrary values for the field, and provides evidence that we
can safely build a signature based on the field.

5.2 Signature Generation and Evaluation
Finally, we generated a signature using the method described in

Section 4.3. The features chosen were the 15 most robust, as mea-
sured by the tests done during the fuzzing stage. For each of these
fields, we extracted from our corpus of memory images (our train-
ing set) a list of the values it contained for all processes found in
the image. The four images in the training set were not infected
by malware, and were taken from systems running the 32-bit ver-
sion of Windows XP, Service Pack 2. Processes were located in the
memory image by walking the operating system’s process list; in
the absence of maliciously hidden processes, this serves as “ground
truth” for the list of valid process data structures. We then used our
signature generator to find constraints on the observed values. The
signature generator outputs a plugin for Volatility that can be used
to search for a data structure matching the constraints found in a
memory image.

The generated scan plugin was used to search for processes in
a number of memory images. For this purpose, we used two im-
ages provided by the NIST Computer Forensic Reference Data Sets
(CFReDS) project [27] and a paused virtual machine on which a
process had been hidden by our own custom rootkit. The num-
ber of false positives and negatives were measured for each test



Field Used by
ThreadListHead.Blink Volatility (psscan2)
Pcb.Header.Type PTFinder
Pcb.Header.Size PTFinder
WorkingSetLock.Header.Type PTFinder
WorkingSetLock.Header.Size PTFinder
AddressCreationLock.Header.Type PTFinder
AddressCreationLock.Header.Size PTFinder

Table 2: Fields zeroed by our modified FU Rootkit, along with
the scanners that depend on that field.

image, and compared against two existing signature-based tools,
PTFinder [36] and Volatility’s psscan2 module.1

Our custom malware, which is a slightly modified version of the
FU Rootkit [7], hides processes using DKOM (as in the original
FU), and additionally attempts to evade known process signatures
by zeroing non-essential fields in the process data structure. The
fields modified, shown in Table 2, were chosen by finding those
fields that were used by common scanners but that our initial struc-
ture profiling indicated were unused by the OS.

6. RESULTS
The experimental results are given below. We describe the out-

come of profiling twenty different applications and present the re-
sults of the fuzzing stage. These features are used by the signature
generator to find constraints and create a new process scan module
for Volatility. Finally, we compare the accuracy of our scanner with
other popular scanners.

Throughout, we also consider what our results tell us about the
features used by another popular signature (PTFinder’s signature
for EPROCESS). We find that after fuzzing and profiling, only two
of its nine features are resistant to evasion; the remaining invariants
are not sufficient to avoid matching random portions of memory.

6.1 Profiling
After profiling the twenty applications described in Section 5.1,

we can confirm our hypothesis that some fields are accessed only
rarely, if ever. Of the 221 fields in the EPROCESS data structure, 32
were never accessed during the execution of the profiled programs.
At the other extreme, 72 were accessed for every application and
are thus strong candidates for a process signature. In between are
117 fields that were accessed by some programs, but not others;
Figure 6(a) gives a histogram detailing precisely how many pro-
grams accessed each field.

Included in the 32 fields that were never accessed are three of
the nine used by PTFinder to locate processes in memory dumps; a
further four are only accessed by a subset of the programs profiled
(the profiling results for the fields used by PTFinder are shown in
Figure 6(b)). Because the signature used in PTFinder is conjunctive
(all of its constraints must be met in order to report a match), and
the attacker has complete control over three of the fields used in
the signature, we can conclude that this signature can be trivially
evaded. The features chosen by PTFinder’s author did not corre-
spond to those used by the OS, demonstrating that human judgment
may not be sufficient to determine what fields are appropriate for
use in data structure signatures.

9 1Note that Volatility also includes a process scanner called
psscan. This scanner uses the same constraints as PTFinder, and
hence is vulnerable to the same evasions, so we do not consider it
here.

Field Z R P A Total
ActiveProcessLinks.Flink 5 5 5 5 20
Pcb.DirectoryTableBase[0] 5 5 5 5 20
Pcb.ThreadListHead.Flink 5 5 5 5 20
Token.Value 5 5 5 3 18
Token.Object 5 5 5 1 16
VadHint 5 5 2 0 12
UniqueProcessId 1 5 5 1 12

Table 3: Selected EPROCESS fields and the results of fuzzing
them. The values indicate the number of times a given test
caused φ to return false, indicating that the OS or program
had stopped working correctly. The columns indicate number
of OS crashes when testing with the Zero, Random, Random
Primitive, and Random Aggregate patterns.

6.2 Fuzzing
We then took the 72 fields identified as always accessed during

the profiling stage and fuzzed them using the four different data
patterns (zero, random, random primitive, and random aggregate),
modifying each field with each pattern five times, for a total of
1,440 distinct tests. The overall number of failed tests for each
field is shown in Figure 7. However, this does not provide a full
picture of the fuzzing results, as it is also important to note which
data patterns caused the OS to fail. It may be acceptable to use a
field in a signature even if it is possible to write zeroes to that field,
for example, because the constraint could include zero as a special
case. We have, therefore, included several sample fields in Table 3,
in order to give an idea of what the result data looks like.

We find, as expected, that there are many “essential” fields upon
which we may base our signature. Five fields failed every attempt
at manipulation, and a further 12 failed more than half of the tests
(i.e., more than 10). This will give us a set of robust features that is
large enough to ensure that the number of false positives found by
the signature is minimized.

As in the profiling stage, we also note that these results give us
a very strong indication of what fields not to choose. Of the 72
fields from profiling, 29 passed every test (their modification did
not result in any loss of functionality); these, again, would be a
poor basis for a signature as their values can be controlled by an
attacker.

6.3 Signature Accuracy
With a list of robust features in hand, we used our signature gen-

erator to find constraints on the values of each feature. The field
values were collected from 184 processes across the four images in
our training set and constraints were inferred using the templates
described in Section 5.2, producing the constraints shown in Ta-
ble 4. The signature generator produced a plugin for Volatility that
uses the constraints found to search for EPROCESS instances in
memory images.

We then evaluated the accuracy of three process scanners: our
own automatically generated scanner, Volatility’s psscan2 mod-
ule, and PTFinder [36]. Using each scanner, we searched for in-
stances of the EPROCESS data structure in the three memory im-
ages listed in Section 5.2. The output of each tool was compared
against the OS’s list of running processes (found by walking the
linked list of process data structures using Volatility’s pslist
module). In the case of the non-NIST image, we also checked for
the presence of our hidden process, which was not visible in the
standard OS process list.

We found that all three scanners had equal detection performance
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9(a) Number of profiled programs in which EPROCESS fields were accessed. Only fields accessed by all 20 programs provide the
strongest assurance for use in a signature.
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9(b) Access prevalence of fields used by PTFinder’s EPROCESS signature. Note that the signature relies on field values never used
by the OS, so an attacker can safely change these values to evade the signature.

Figure 6: Access prevalence for EPROCESS for profiled applications.
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Figure 7: Fuzzing results for EPROCESS. The y-axis represents the total number of tests for which φ returned false, indicating that
the process was no longer functioning correctly. Higher bars indicate stronger features.

on the NIST images and found every process data structure with
no false positives. However, only our own scanner was able to
detect the hidden process in the third image, demonstrating that an
attacker could potentially evade both psscan2 and PTFinder with
minimal effort. We believe our signature will also prove resistant
to evasion against real-world attackers, as the features it uses are
demonstrably difficult for an attacker to alter.

Aside from the active processes in the images, we also noted
some discrepancies between the three scanners with respect to ter-

minated processes whose EPROCESS structure was still in memory
and had not yet been overwritten. Although PTFinder and psscan2
were vulnerable to the evasion by our custom malware, they also
found these terminated processes, which our scanner missed.

As terminated processes could be of forensic interest, we checked
whether there was some subset of our “robust” features that would
find such processes without introducing false positives. By mod-
ifying our scanner to report the result of each constraint for the
terminated processes, we found that Windows appears to zero the



Field Constraint
Pcb.ReadyListHead.Flink val & 0x80000000 == 0x80000000 && val % 0x8 == 0

Pcb.ThreadListHead.Flink val & 0x80000000 == 0x80000000 && val % 0x8 == 0

WorkingSetLock.Count val == 1 && val & 0x1 == 0x1

Vm.VmWorkingSetList val & 0xc0003000 == 0xc0003000 && val % 0x1000 == 0

VadRoot val == 0 || (val & 0x80000000 == 0x80000000 && val % 0x8 == 0)

Token.Value val & 0xe0000000 == 0xe0000000

AddressCreationLock.Count val == 1 && val & 0x1 == 0x1

VadHint val == 0 || (val & 0x80000000 == 0x80000000 && val % 0x8 == 0)

Token.Object val & 0xe0000000 == 0xe0000000

QuotaBlock val & 0x80000000 == 0x80000000 && val % 0x8 == 0

ObjectTable val == 0 || (val & 0xe0000000 == 0xe0000000 && val % 0x8 == 0)

GrantedAccess val & 0x1f07fb == 0x1f07fb

ActiveProcessLinks.Flink val & 0x80000000 == 0x80000000 && val % 0x8 == 0

Peb val == 0 || (val & 0x7ffd0000 == 0x7ffd0000 && val % 0x1000 == 0)

Pcb.DirectoryTableBase.0 val % 0x20 == 0

Table 4: Constraints found for “robust” fields in the EPROCESS data structure. The operators shown have the same meaning as
in C; % stands for the mod operation, and & represents bitwise AND. && and || are the boolean operators for “and” and “or”,
respectively.

Token.Object and Token.Value fields, which refer to the
process’s security token, when the process exits. Once we removed
these constraints from our signature, we were able to find the ter-
minated processes reported by other tools without introducing false
positives. We note that our scanner remains resistant to evasions,
as the remaining fields are all robust. The terminated processes
demonstrate the importance of generating signatures from a train-
ing set that represents the full range of objects one wishes to detect.

7. OTHER STRUCTURES
Although our experiments have only been run on EPROCESS,

we are confident that the technique will generalize to other data
structures. Certain structures in particular, such as threads (rep-
resented by ETHREAD in Windows) and files (FILE_OBJECT),
would be good candidates for signature generation, as they contain
a wealth of information about the runtime state of the system that is
useful for forensic analysis. We will briefly consider what changes
might be needed to generate signatures for these structures.

The profiling stage is essentially the same for any structure: the
objects are created by some user-level program (i.e., by spawning
a thread or opening a file), their location in memory is determined,
and the memory region is monitored to log access to the structure.
In the fuzzing stage, the only significant challenge is creating an ap-
propriate functionality test φ. As threads contain executable code,
one could simply use the same test as for processes: attempt to
create a file and ensure that the file is created successfully. For
file objects, one could test functionality by performing a range of
operations on the open file, such as reading, writing, seeking, and
closing the file. Finally, our signature generator is not specific to
any one object type and could be used as-is: the only input required
is a list of observed values for each field in the data structure.

One final complication may arise if the target structure is fairly
small. In this case, it may be that after eliminating weak features,
there will not be enough left to create a reliable signature (in the
sense of having few false positives). In this case, we might employ
a more sophisticated search technique: rather than simply using
basic pattern matching to find instances of the structure, we could
take advantage of information such as the types of objects to which
it points. This technique has previously been used successfully in
other work to identify the types of objects on the heap [32], and

this additional contextual information could improve signature ac-
curacy.

8. FUTURE WORK
As discussed in Section 4.4, obtaining full coverage during fuz-

zing is impractical; however, but it may be possible to improve our
coverage through more judicious selection of random data. For
example, we might incorporate mutation fuzzing [29], which gen-
erates fuzz data by creating small, random variations on existing
values. This would help us more efficiently explore the space of
possible values, as for many fields legal values will be clustered
fairly close together.

The profiling stage could also be made more accurate by switch-
ing from simply monitoring whether a field is accessed to attempt-
ing to determine how it is used. This would involve the use of taint
tracking [4] to find out whether the value of a given field actually
influences the execution of the OS. We expect that this could sig-
nificantly reduce the number of fields that would need to be fuzzed.

Finally, although the automatically generated signatures from
our method appear to work well, they are based on dynamic anal-
ysis and may therefore suffer from coverage problems. Gaps in
coverage could lead to false negatives and evasions in the signature
matching process: a constraint inferred on a small number of sam-
ples may not be representative of the full range of values that field
uses, and thus be overly restrictive. To improve confidence in such
constraints, one could also use static analysis to attempt to prove
that the inferred constraints do, indeed, hold in all cases.

9. CONCLUSIONS
We have successfully demonstrated that it is possible to automat-

ically select robust features of data structures and generate evasion-
resistant signatures based on them. More importantly, we have
described a systematic way of determining which features to use
when creating a data structure signature. To our knowledge, no
such method was previously available, and we believe that many
applications will benefit from this technique.

Our work resulted in a new signature for process data structures
on Windows, which can be used immediately by applications which
require the ability to locate processes in memory. We also showed
that existing signatures used by memory analysis applications were



vulnerable to evasion, and in the case of PTFinder we described
precisely which constraints could be violated by an attacker. These
concrete contributions significantly increase the difficulty of hiding
process objects from signature scans on Windows systems.
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