
Outsourcing Secure Two-Party Computation
as a Black Box

Abstract. Secure multiparty computation (SMC) offers a technique to preserve
functionality and data privacy in mobile applications. Current protocols that make
this costly cryptographic construction feasible on mobile devices securely out-
source the bulk of the computation to a cloud provider. However, these outsourc-
ing techniques are built on specific secure computation assumptions and tools,
and applying new SMC ideas to the outsourced setting requires the protocols to
be completely rebuilt and proven secure. In this work, we develop a generic tech-
nique for lifting any secure two-party computation protocol into an outsourced
two-party SMC protocol. By augmenting the function being evaluated with auxil-
iary consistency checks, we can create an outsourced protocol with low overhead
cost. Our implementation and evaluation show that in the best case, our outsourc-
ing additions execute within the confidence intervals of two servers running the
same computation, and consume approximately the same bandwidth. In addition,
the mobile device itself uses minimal bandwidth over a single round of commu-
nication. This work demonstrates that efficient outsourcing is possible with any
underlying SMC scheme, and implements an outsourcing protocol that is efficient
and directly applicable to current and future SMC techniques.

1 Introduction

As the mobile computing market continues to grow, an increasing number of mobile
applications are requiring users to provide personal or context-sensitive information.
However, as the recent iCloud breach demonstrates [27], these application servers can-
not necessarily be trusted to maintain the security of the data they possess. To better
preserve privacy and the functionality of mobile applications, secure multiparty com-
putation (SMC) techniques offer protocols that allow application servers to process user
data while it remains encrypted. Unfortunately, while a plethora of SMC techniques ex-
ist, they currently require too much processing power and device memory to be practical
on the mobile platform. Furthermore, the bandwidth and power requirements for these
SMC protocols will always be a limiting requirement for mobile applications even as
the computational resources of mobile devices grow.

To bring SMC to the mobile platform in a more efficient way, recent work has
focused on developing secure techniques for outsourcing the most expensive compu-
tation. Rather than naively trusting the Cloud to stand in for the mobile device in a
standard SMC protocol, these outsourced protocols seek to use the Cloud for compu-
tation without revealing any input or output values. A number of these protocols have
been specifically developed to outsource garbled circuit protocols [26, 9, 8]. These pro-
tocols attempt to optimize the outsourcing operations without increasing the complex-
ity of the circuit being evaluated. However, because of this optimization goal, they are
constructed and proven secure using specific garbled circuit evaluation techniques. As



new techniques for SMC are developed that modify the garbled circuit construction (or
use completely different underlying constructions), it is unclear whether these specific
outsourcing protocols will be able to take advantage of the new developments.

In this work, we develop a technique for outsourcing secure two-party computation
for any two-party SMC technique. Rather than avoiding changes to the function being
evaluated, we add a small amount of overhead to the evaluated function itself. This
tradeoff allows for an outsourcing scheme that relies on the underlying two-party pro-
tocol in a black box manner, meaning the underlying protocol can be swapped for any
other protocol meeting the same definition of security This makes the task of securely
incorporating newly developed SMC techniques trivial. This protocol enables mobile
devices to participate in any secure two-party SMC protocol with minimal cost to the
device and with nominal overhead to the servers running the computation. Specifically,
we make the following contributions:

– Develop a black box outsourcing protocol: We develop and prove the security
of a novel outsourcing technique for lifting any two-party SMC protocol into the
two-party outsourced setting. To do this, we add a small amount of overhead to the
function being evaluated to ensure that none of the inputs are modified by malicious
participants. Unlike previous generic outsourcing approaches [24], this allows for
any SMC protocol to be outsourced, not strictly reactive SMC protocols.

– Implement and evaluate the overhead cost of the outsourcing operations: Us-
ing the garbled circuit protocol of shelat and Shen [43], we implement our proto-
col and evaluate the overhead cost of outsourcing. Rather than compare to previous
outsourcing schemes, we instead measure the overhead incurred by augmenting the
desired functionality. This measurement of cost better represents the value of the
scheme, as a direct comparison to previous outsourcing protocols would drastically
change depending on the underlying two-party SMC protocol used in our scheme.
Our results show that for large circuits, black box outsourcing incurs negligible
overhead (i.e., the confidence intervals for outsourced and server only execution in-
tersect) in evaluation time and in bandwidth required when compared to evaluating
the unmodified function.

– Develop a practical mobile SMC application: To demonstrate the practical per-
formance of our protocol, we develop a mobile-specific facial recognition appli-
cation and analyze its performance. Building on the Scifi protocol [40] for server
based facial recognition, we motivate a use case for a mobile version and empiri-
cally show that our outsourcing protocol makes this application practically possible.
The rest of this work is organized as follows: Section 2 describes related research,

Section 3 outlines definitions of security, Section 4 formally defines the protocol, Sec-
tion 5 describes our implementation and performance evaluation, Section 6 presents a
new mobile-specific application for SMC, Section 7 compares the overhead of our black
box technique to previous work, and Section 8 provides concluding remarks.

2 Related Work

Since it was initially conceived in the early 1980’s [44, 17], secure multiparty compu-
tation (SMC) has grown from a theoretical novelty to a potentially useful and practical



cryptographic construction. The FairPlay implementation [35] provided one of the first
schemes for performing secure multiparty computation in practice. Since then, a num-
ber of other protocols and implementations have shown that privacy-preserving com-
putation in the semi-honest threat model can be performed relatively efficiently [22,
5, 2]. However, this security model is weak in practice, and does not provide enough
security for most real-world situations. To resolve this, recent study has focused on de-
veloping protocols that are secure in the malicious setting. For two-party computation,
the garbled circuit construction has seen a large amount of new development [32, 33,
36, 41, 29, 42, 43] that has drastically reduced the cost of circuit checking and the asso-
ciated consistency verification. Because the cut-&-choose construction that is typically
applied in this setting is very costly, recent work has sought to minimize the cost of the
cut-&-choose [13, 31, 20] or amortize that cost over a batch of circuit executions [34,
23]. Besides the garbled circuit technique, other techniques using somewhat homomor-
phic encryption [11, 10] and oblivious transfer [39] have shown promise of producing
efficient protocols for secure multiparty computation in the malicious threat model.
However, all of these techniques still have significant overhead cost that makes them
infeasible to execute without sizable computational resources.

With smartphone applications retrieving private user data at an increasing rate, se-
cure multiparty computation could potentially offer a way to maintain privacy and func-
tionality in mobile computing. However, the efficiency challenges of SMC are com-
pounded when considered in the resource-constrained mobile environment. Previous
work has shown that smartphones are generally limited to simple functions in the semi-
honest setting [7, 21]. Demmler et al. [12] showed how to incorporate pre-computation
on hardware tokens to improve efficiency on mobile devices, but still in the semi-honest
setting. In addition to the cost of evaluating these SMC protocols, Mood et al. [38] and
Kreuter et al. [30] demonstrated that even with significant optimization, the task of
compiling circuits on the mobile device can also be quite costly.

Given these limitations, evaluating SMC protocols directly on mobile hardware
does not seem possible in the immediate future. Because of this, mobile secure compu-
tation research has recently focused on applying techniques from server-assisted cryp-
tography [4] to move the most costly cryptographic operations off of the mobile device
and onto a more capable Cloud server. To achieve this, many authors have focused on
developing protocols for outsourcing secure computation of specific algorithms such
as graph algorithms [6], set intersection [28], and linear algebra functions [3]. The first
protocol to outsource SMC for any function was developed by Kamara et al. [25, 26]. In
this work, the authors established a definition of security that assumes specific parties in
the computation, while malicious, are not allowed to collude. Following on this defini-
tion, several other protocols and efficiency improvements have been developed for the
outsourced setting [9, 37, 8]. Unfortunately, these protocols are built on specific secure
multiparty computation assumptions and techniques. With new and varying techniques
for SMC being developed at a rapid pace, it is unclear how to apply the outsourcing
techniques used in these protocols to new schemes to allow them to benefit from new
efficiency improvements. In this work, we seek to develop a protocol that can lift any

two-party SMC protocol into the outsourced setting with little overhead.



In concurrent work to our own, Jakobsen et al. [24] develop a framework for out-
sourcing secure computation that is similar to our protocol. However, their protocol
requires more specific properties in the underlying SMC protocol, where our protocol
is designed to be truly generic. Furthermore, our work provides an implementation, an
empirical performance analysis, and develops a mobile-specific application with a per-
formance characterization. We examine the tradeoffs between these two protocols in
Section 7.

3 Background

Outsourced two-party SMC protocols are designed to allow two parties of asymmet-
ric computational capability to engage in a privacy-preserving computation with the
assistance of an outsourcing party. We consider the situation where a mobile device
possessing limited computational resources wishes to run an SMC protocol with an ap-
plication server or other well-provisioned entity. To allow this, outsourcing protocols
move the majority of the costly operations off of the mobile device and onto a Cloud
provider without revealing to the Cloud either party’s input or output to the computa-
tion. These protocols aim to provide security guarantees of privacy and correctness, and
also attempt to minimize the computation required at the mobile device while still main-
taining efficiency between the application server and the Cloud. To meet these goals in
the outsourced setting, a number of careful security assumptions must be made.

3.1 Two-party SMC security

Our black box protocol is based on the execution of a two-party SMC protocol to obliv-
iously compute the result. We make no assumptions about the techniques used or struc-
ture of this underlying protocol except that it meets the canonical definition of security
against malicious adversaries using the ideal/real world paradigm [16]. Informally, this
states that for any adversary participating in the two-party SMC protocol, there exists
a simulator in an ideal world with a trusted third party running the computation where
the output in both worlds is computationally indistinguishable. In this definition, the
simulator in the ideal world is given oracle access to the malicious adversary in the real
world, and must simulate both the adversary’s view of a real execution and the adver-
sary’s arbitrary input to the computation. A secure two-party SMC protocol meeting
this definition of security provides two guarantees. The first is privacy, which means
that a malicious adversary cannot learn anything about the other party’s input or output
value beyond what is revealed by his own output value. The second guarantee is correct-
ness. This implies that even in the presence of a malicious adversary, the output of the
protocol will be the correct output of the agreed upon function except with negligible
probability. For a formal definition of security and further discussion, refer to [16].

3.2 Collusion assumptions

Previous work in outsourcing SMC makes careful assumptions about who in the compu-
tation is allowed to collude. Kamara et al. [26] discuss at length the theoretical justifica-
tion for these assumptions. Essentially, to achieve an n-party outsourcing protocol with
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Fig. 1. The process of augmenting a circuit for outsourcing. The original circuit is boxed in red.
Essentially, we require that the mobile device’s input be verified using a MAC and decrypted
using a one-time pad before it is input into the function. After the result is computed, it must
be re-encrypted using a one-time pad and delivered to both parties to guarantee that the mobile
device will detect if either party tampers with the result.

better complexity than a two-party SMC protocol, it must be assumed that the Cloud
(i.e., the server aiding computation but not providing input to the function) cannot col-
lude with any other party. Other outsourcing protocols have sought ways to relax this
restriction without significantly increasing the complexity of the evaluated function [9,
8]. However, these protocols still assume that the application server and the Cloud can-
not collude. We follow this assumption in our construction. As stated by Kamara et
al., the existence of an outsourcing protocol where this particular collusion is allowed
would imply an efficient two-party SMC scheme where one party performs work that is
sub-linear with respect to the size of the function being evaluated. While there are tech-
niques for such a two-party SMC protocol, it is either unclear how they can be applied
to create an outsourced protocol [18], or they are prohibitively inefficient [15].

Formally, we follow the security definition established by Kamara et al. [26] but
specified for the two-party scenario as in the work of Carter et al. [9, 8]. We provide a
summary of the definition in Appendix A, and refer the reader to previous work for a
complete discussion.

4 Protocol

In this section, we outline our black box outsourcing protocol and discuss the security
guarantees provided.

4.1 Participants

– SERVER: the application or web server participating in a secure computation with
the mobile device. This party provides input to the function being evaluated.

– MOBILE: the mobile device accessing SERVER to jointly compute some result.
This party also provides input to the function being evaluated.



– CLOUD a Cloud computation provider tasked with assisting MOBILE in the expen-
sive operations of the secure computation. This party executes a two-party SMC
protocol in a black box manner with SERVER, but does not provide an input to the
function being evaluated.

4.2 Protocol

The outsourcing protocol can be informally described as follows: first, MOBILE pre-
pares its input by encrypting with a one-time pad and producing a MAC tag for ver-
ifying the input is not tampered with before it is entered into the computation. Since
SERVER and CLOUD are assumed not to collude, one party receives the encrypted in-
put, and the other party receives the decryption key. Both of these values are input
into the secure two-party computation, and are verified during this evaluation using the
associated MAC tags (see Figure 1). If the check fails, the protocol outputs a failure
message. Otherwise, the second phase of the protocol evaluates the actual SMC pro-
gram. The third and final phase encrypts and outputs MOBILE’S result to both parties,
who in turn deliver these results back to MOBILE. Intuitively, since our security model
assumes that SERVER and CLOUD are never simultaneously malicious, at least one of
these two will return the correct result to MOBILE. From this, MOBILE will detect any
tampering from the malicious party by a discrepancy in these returned values, eliminat-
ing the need for an output MAC. If no tampering is detected, MOBILE then decrypts the
output of computation. We provide a formal protocol description in Appendix B.

Security Our protocol intuitively provides both correctness and privacy for the MO-
BILE input and output based on the underlying components. Privacy is achieved based
on the security of the underlying SMC protocol as well as the input and output one-time
pads. Correctness is based on three main points. The MAC evaluated within the circuit
ensures that the MOBILE input is correct. The correctness of the circuit evaluation itself
is guaranteed by the underlying SMC protocol. Finally, the correctness of the output is
ensured by the security model assumption that at least one of the SERVER and CLOUD
are behaving semi-honestly. Thus, any tampering with the MOBILE output by the mali-
cious party will be detected when compared to the output provided by the semi-honest
party. For a formal simulation proof of security, refer to our technical report [1].

5 Performance Evaluation

To demonstrate the practical efficiency of our black box outsourcing protocol, we imple-
mented the protocol and examined the actual overhead incurred by the overhead opera-
tions. We initially considered comparing our black box protocol to existing implemen-
tations of outsourcing protocols [26, 9, 8]. However, these existing protocols are built on
fixed underlying SMC techniques. As new protocols for two-party SMC are developed,
the plug-and-play nature of our protocol allows for these new techniques to be applied,
which would provide a different comparison for each underlying protocol. Instead, we
chose to compare the overhead execution costs of our black box protocol to performing
the same computation in the underlying two-party protocol. Because the mobile device



Program Name SS13 Total BB Total Increase SS13 Non-XOR BB Non-XOR Increase
Dijkstra10 259,232 456,326 1.8x 118,357 179,641 1.5x
Dijkstra20 1,653,542 1,949,820 1.2x 757,197 849,445 1.1x
Dijkstra50 22,109,732 22,605,018 1.0x 10,170,407 10,324,317 1.0x

MatrixMult3x3 424,748 1,020,196 2.4x 161,237 345,417 2.1x
MatrixMult5x5 1,968,452 3,360,956 1.7x 746,977 1,176,981 1.6x
MatrixMult8x8 8,069,506 11,354,394 1.4x 3,060,802 4,075,082 1.3x

MatrixMult16x16 64,570,969 77,423,481 1.2x 24,494,338 28,458,635 1.2x
RSA128 116,083,727 116,463,648 1.0x 41,082,205 41,208,553 1.0x

Table 1. Comparing the original function size to the augmented outsourcing circuit. As the size
of the circuit grows, the increase in gates incurred by outsourcing becomes vanishingly small.

computation requires seconds or less to execute, we focus our attention on the cost at
the two executing servers. This performance analysis demonstrates two key benefits of
our protocol. First, it gives a rough overhead cost for an entire class of two-party SMC
protocols (in our case, garbled circuit protocols). Second, it allows us to demonstrate
that our outsourcing technique allows a mobile device with restricted computational ca-
pability to participate in a privacy-preserving computation in approximately the same
amount of time as the same computation performed between two servers. Essentially,
we show that our protocol provides a mobile version of any two-party SMC protocol
with nominal overhead cost to the servers. This is a novel evaluation methodology not
used to evaluate previous black box SMC constructions, and provides a more intuitive
estimate for performance when applying a new underlying SMC construction.

5.1 System Design

Our implementation of the black box outsourcing protocol uses the two-party garbled
circuit protocol developed by shelat and Shen [43] as the underlying two-party SMC
protocol. We selected this protocol because it is among the most recently developed
garbled circuit protocols and it has the most stable public release. We emphasize that
it is possible to implement our outsourcing on any two-party SMC protocol, such as
the recent protocols developed to reduce the cost of cut-&-choose [20, 31]. We imple-
ment our MAC within the augmented circuit using AES in cipher-block chaining mode
(CBC-MAC), as the AES circuit is well-studied in the context of garbled circuit execu-
tion. This MAC implementation adds an invocation of AES per 128-bit block of input.
Using the compiler developed by Kreuter et al. [29], the overhead non-XOR gate count
in the augmented circuit based on input size is ( |x|15686128 ) for input x. We provide exact
gate counts with overhead measurements for each tested application in Table 1. Our
code will be made available upon publication.

Testbed Our experiments were run on a single server equipped with 64 cores and 1 TB
of RAM. For each execution, the application server and cloud were run as 32 processes
communicating via the Message Passing Interface (MPI) framework. The mobile device
was a Samsung Galaxy Nexus with a 1.2 GHz dual-core ARM Cortex-A9 processor and
1 GB of RAM, running Android version 4.0. The mobile device communicated with the
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Fig. 2. Dijkstra and Matrix multiplication execution time in seconds. Note that the execution
overhead diminishes even as the mobile input size increases.

test server over an 802.11n wireless connection in an isolated network environment. We
ran each experiment 10 times and averaged the results with 95% confidence intervals.

Test applications We selected a representative set of test applications from previous
literature [8, 29, 43, 30] to examine the performance of our protocol over varying circuit
and input sizes. We use all applications as implemented by Kreuter et al. [29] except
for Dijkstra’s algorithm, which was implemented by Carter et al. [9].
1. Dijkstra: this application takes a weighted graph from one party and two node in-

dices from the other party (i.e., start and end nodes), and calculates the shortest
path through the graph from the start to the end node. We consider n-node graphs
with 16 bit edge weights, 8 bit node identifiers, and a maximum node degree of 4.
We chose this problem as a representative application for the mobile platform.

2. Matrix Multiplication: this application accepts a matrix from both parties and out-
puts the matrix product. We consider this application for input size n, where each
matrix is an n ⇥ n matrix of 32-bit integers. This test application demonstrates
protocol behavior for increasing input sizes.

3. RSA: this application accepts a modulus N and an exponent e from one party, and
a message x from the other party, and computes the modular exponentiation xe

mod N . We consider input values where each value is 128 bits in length. While
this is certainly too short for secure practical use, the size of the circuit provides a
good benchmark for evaluating extremely large circuits.

5.2 Execution Time

With the mobile operations minimized to O(|x| + |o
m

|) symmetric key operations,
our experiments showed a diminishing cost of server overhead as the size of the test
application increased. Considering Dijkstra’s algorithm in Figure 2 shows that for a
graph of 10 nodes, the outsourcing operations incur a 2.1x slowdown from running the
protocol between two servers. However, as the number of graph nodes increases to 50,
the confidence intervals for outsourced and server-only execution overlap, indicating a



Program Name SS13 (ex) BB (ex) Increase (ex) SS13 (bw) BB (bw) Increase (bw)
Dijkstra10 16 ± 1% 33 ± 1% 2.1x 2.44 x 109 3.87 x 109 1.6x
Dijkstra20 77 ± 1% 100 ± 1% 1.3x 1.52 x 1010 1.73 x 1010 1.1x
Dijkstra50 940 ± 2% 980 ± 2% 1.0x 2.02 x 1011 2.05 x 1011 1.0x

MatrixMult3x3 28.6 ± 0.8% 73.2 ± 0.5% 2.6x 3.43 x 109 7.66 x 109 2.2x
MatrixMult5x5 110 ± 2% 200 ± 2% 1.9x 1.57 x 1010 2.56 x 1010 1.6x
MatrixMult8x8 400 ± 2% 627 ± 0.9% 1.6x 6.43 x 1010 8.73 x 1010 1.4x

MatrixMult16x16 2900 ± 1% 3800 ± 2% 1.3x 5.11 x 1011 6.01 x 1011 1.2x
RSA128 4700 ± 2% 4900 ± 3% 1.0x 8.69 x 1011 8.72 x 1011 1.0x

Table 2. Comparing SS13 and Black Box execution time (ex) and bandwidth use (bw). All times
in seconds and bandwidth in bytes. Note that as the circuit size increases, the increase in execution
time caused by outsourcing becomes insignificant. Likewise, as this circuit grows in size, the
overhead bandwidth required for outsourcing is amortized

virtually non-existent overhead cost. When we compare these results to the gate counts
shown in Table 1, we see that as the gate count for the underlying protocol increases,
the additive cost of running the input MAC and output duplication amortize over the
total execution time. This is to be expected from our predicted overhead of 15686 non-
XOR gates for each CBC-MAC block in the input. However, since the mobile input for
Dijkstra’s algorithm is of a fixed size, we observe that increasing the application server
input size does not add to the outsourcing overhead, showing the black box protocol to
be more efficient for large circuit sizes with small mobile input.

When we consider a growing mobile input size, we observe the overhead cost of
the MAC operation performed on the mobile input. In the matrix multiplication test
program, we observed a 2.6x slowdown for the smallest input size of a 3 ⇥ 3 matrix
(Figure 2). As in the previous experiment, this overhead diminished to a 1.3x slowdown
for the largest input size, but diminished at a slower rate when compared to the circuit
size. This is a result of additional AES invocations to handle the increasing mobile
input size. However, the reduction in overhead shows that even as input sizes increase,
the circuit size is still the main factor in amortizing overhead.

In our final experiment, we considered a massive circuit representing one of the
most complex garbled circuit programs evaluated to date. When comparing the out-
sourced execution to a standard two-party execution, the overhead incurred by the
outsourcing operations is almost non-existent, as shown in Table 2. This experiment
confirms the trends of diminishing overhead cost observed in the previous two experi-
ments. From this and previous work, we know that evaluating large circuits from mo-
bile devices is not possible without outsourcing the bulk of computation. Given that
many real-world applications will require on the order of billions of gates to evaluate,
this experiment shows that our black box outsourcing technique allows mobile devices
to participate in secure two-party computation at roughly the same efficiency as two
server-class machines executing the same computation.

5.3 Bandwidth

Because transmitting data from a mobile device is costly in terms of time and power
usage, we attempted to minimize the amount of bandwidth required from the mobile de-
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vice. Our protocol requires only 2(|x|+2k)+4(|o
m

|) bits to be transmitted to and from
the mobile, were x is the mobile input, o

m

is the mobile output, and k is the security
parameter. For the RSA circuit, this would amount to 136 bytes of bandwidth used. To
perform the same computation without outsourcing, Carter et al. [9] show that several
gigabytes of bandwidth would be required if the mobile device possessed enough mem-
ory to perform the computation at all. Because our mobile bandwidth is nearly minimal
and easily calculated for any program, we focused our evaluation on measuring the
bandwidth overhead incurred between the application server and the Cloud.

As in the case of execution time, Table 2 shows an inverse relation between circuit
size and overhead cost. Before running the experiment, we predicted that the bandwidth
overhead would approximately match the overhead in circuit size shown in Table 1.
The experiments confirmed that the actual bandwidth overhead was equal to or slightly
larger than the overhead in non-XOR gates in the circuit. The reason for this correla-
tion is twofold. First, the free-XOR technique used in the shelat-Shen protocol allows
XOR gates to be represented without sending any data over the network. Thus, adding
additional XOR gates does not incur bandwidth cost. Second, in cases where the actual
overhead is slightly larger than the circuit size overhead, we determined that the added
cost was a result of additional oblivious transfers. These operations require the trans-
mission of large algebraic group elements, so the test circuits which incurred increased
overhead from the growth of the mobile input showed a slightly larger bandwidth over-
head as well. Ultimately, as in the case of execution time, our experiments demonstrate
that black box outsourcing incurs minimal bandwidth usage at the mobile device with
diminishing bandwidth overhead between the application server and the Cloud.

6 Application: Facial Recognition

The growing number of mobile applications available present a wealth of potential for
applying privacy-preserving computation techniques to the mobile platform. Carter et
al. [9] demonstrated one potential application with their privacy-preserving navigation
app, and Mood et al. [37] presented a friend-finding application. We present a third
mobile-specific application: facial recognition. In this setting, a secret operative or law
enforcement agent carrying a mobile device needs to analyze a photo of a suspected
criminal using an international crime database (see Figure 3). The database, managed by
an international organization, would compare the photo to their database in a privacy-
preserving manner, returning a match if the suspect appears in the database. In this



scenario, the agent must keep the query data private to prevent insiders from learning
who is being tracked, and the international organization must keep the database private
from agents associated with any particular nation.

To implement this application, we use the facial recognition techniques developed
for the Scifi protocol of Osadchy et al. [40]. They develop a technique for two servers
to perform efficient facial recognition using discrete parameters, which can more easily
be manipulated in secure computation protocols. They combine machine learning tech-
niques in a preprocessing phase with a secure online phase that compares the hamming
distance of photos represented as bit strings. To demonstrate our application, we imple-
ment the online comparison phase of this protocol in our black box outsourcing protocol
(the F

threshold

function in their work). The mobile device provides a 928 bit represen-
tation of a photo, while the application server provides a database of representations
containing 10, 100, and 1000 faces.

Our results show that given a database of 10 faces, the outsourced protocol can
run the online phase in approximately 87 seconds. For 100 and 1000 face databases,
we observed execution times of 170 seconds and 1000 seconds, respectively. As the
size of the facial database increases, the execution time for comparing across the entire
database grows. This growing cost is a result of the large cost of representing the facial
database as garbled input. Provided with a two-party SMC protocol that more efficiently
computes over large data sets, our black box protocol could be used to move this ap-
plication from feasible to practical. This demonstrates that an application designed and
implemented to run between two servers can be feasibly executed from a mobile device.
As new, more heavyweight applications are developed, our technique for outsourcing
allows any of those applications to be executed from a mobile device with comparable
efficiency to the server platform.

7 Comparison to Previous Techniques

While our implementation and evaluation in the previous section represents the first
empirical analysis of black box outsourcing, two other protocols have been proposed
in the literature, which we term KMR [26] and JNO [24]. We evaluate the tradeoffs
between each technique in this section.

KMR While the main focus of their work is the fixed outsourcing protocol Salus [26],
Kamara et al. sketch a black box technique for outsourcing any two-party computa-
tion protocol. Essentially, their protocol encodes each bit of the MOBILE input as a bit
string of length k for some computational security parameter k. This encoded input,
along with the mappings for reversing this encoding, is secret shared between SERVER
and CLOUD, and then restored using only XOR gates inside the circuit. A similar en-
coding technique is used to maintain both privacy and integrity of the output from the
circuit. This technique has the advantage of adding only XOR gates to the circuit, which
can be transmitted and evaluated cheaply using many SMC techniques. However, it also
requires that the mobile input and output be expanded by a factor of k. By contrast, our
evaluation demonstrates that the overhead caused by adding AND gates to the compu-
tation is minimal, and the MOBILE bandwidth use is kept to O(|x| + |o

m

|) with small



constant multiples. This is particularly advantageous on smartphones, where data usage
is often restricted by slow network speeds or provider-imposed bandwidth caps.

JNO Developed concurrently to our protocol, Jakobsen et al. [24] presented a frame-
work for outsourcing SMC protocols across any number of “worker” servers. Their
protocol follows a similar procedure to our own, but they describe a novel MAC con-
struction that allows the MOBILE input to be checked using only inexpensive linear op-
erations in the circuit. Essentially, their technique requires that the MAC key be com-
mitted at the start of the protocol, then opened once the rest of the input values are
committed to the computation. Once the key is opened, it can be multiplied as a known
constant with the MOBILE input, which is secret shared according to the underlying
SMC protocol. A simple multiplicative MAC can then be verified before computation
continues. The advantage of this scheme is that it does not incur the k factor expansion
of KMR while still adding only linear operations to the underlying circuit (e.g., XOR
for boolean circuits). The tradeoff is that the underlying SMC protocol must allow for
reactive computation (i.e., private values can be opened in the middle of computation).
While this property is common in secret-sharing SMC protocols, it is difficult to achieve
with garbled circuits. The generic technique for making garbled circuits into a reactive
SMC protocol requires additional, MAC operations inside the circuit [19]. More effi-
cient reactive garbled circuit protocols exist [14, 37], but require special constructions
that cannot be combined with all garbled circuit protocols in a generic way. Our protocol
allows for true black box outsourcing of any SMC protocol (reactive or non-reactive),
and our empirical performance evaluation demonstrates that the overhead of adding
AND operations to the circuit is minimal when the circuit size is large. This setting is
preferable for computation that is more efficiently evaluated using garbled circuits than
arithmetic secret-sharing SMC schemes. Furthermore, Jakobsen et al. provide no empir-
ical analysis or application study for their outsourcing technique, providing only a proof
of concept with limited insight into the practicality of black box SMC outsourcing.

8 Conclusion

The growing popularity of the mobile platform is creating a strong need for privacy-
preserving computation in mobile applications. However, as most SMC techniques cur-
rently require significant processing and bandwidth resources, secure outsourcing pro-
tocols have been developed to assist mobile devices in performing the most expensive
cryptographic operations associated with these protocols. In this work, we develop a
technique for outsourcing any two-party SMC protocol in a black box manner. Our
protocol securely offloads the cost of the SMC protocol to the Cloud, providing maxi-
mal efficiency to the mobile device while maintaining strong security guarantees. Our
performance evaluation shows that as the complexity of the program being evaluated
increases, the cost of outsourcing diminishes. As a result, we enable execution of any
SMC protocol from a mobile device at approximately the same efficiency as running
the protocol between two servers.
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10. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly
secure mpc for dishonest majority or: Breaking the spdz limits. In: Computer Security–
ESORICS (2013)
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A Outsourced Security Definition

The real world setting is made up of three parties. Two of these parties provide input to
the computation, while the third party takes on computational load for one of the two
input parties. All three parties provide auxiliary random inputs to the protocol. Some
subset of the three parties A = (A1, A2, A3) can behave maliciously, but we assume
that the application server and the Cloud cannot collude. For the ith honest party, OUT

i

is defined as its output, and for the ith corrupted party, OUT
i

is its view of the protocol.
Then we define the ith partial output as:

REAL(i)
(k, x; r) = {OUT

j

: j 2 H} [OUT
i

Here, k is the security parameter, x is all inputs to the computed function, r is the
auxiliary randomness, and H is the set of all honest parties.

The ideal world setting is made up of the same parties with the same inputs as
the real world with the addition of a trusted third party that receives all parties’ inputs,
computes the desired function, and returns the output to all parties except the outsourced
party that is not providing inputs to the function. Any party may abort the computation
early or refuse to send input, in which case the trusted party sends no output. As in the
standard two-party definition [16], it is possible for one party, upon receiving output
from the trusted third party, to terminate the protocol, preventing the other party from
receiving its output. For the ith honest party, OUT

i

is defined as its output received
from the trusted party, and for the ith corrupted party, OUT

i

is an arbitrary output
value. Then we define the ith partial output in the presence of independent malicious
simulators S = (S1, S2, S3) as:

IDEAL(i)
(k, x; r) = {OUT

j

: j 2 H} [OUT
i

Here, k, x, r, and H are defined as above. In this real/ideal world setting, outsourced
security is defined as follows:

Definition 1 An outsourcing protocol securely computes the function f if there exists a

set of probabilistic polynomial-time (PPT) simulators {Sim1, Sim2, Sim3} such that

for all PPT adversaries (A1, A2, A3), inputs x, and for all i 2 {1, 2, 3}:

{REAL(i)
(k, x; r)}

k2N

c⇡ {IDEAL(i)
(k, x; r)}

k2N

Where S = (S1, S2, S3), Si

= Sim
i

(A
i

), and r is uniformly random.

We provide a complete proof of security following this definition in our technical
report [1].



B Protocol Description

Common Input: All parties agree on a computational security parameter k, a mes-
sage authentication code (MAC) scheme (Gen(),Mac(), V er()), and a malicious se-
cure two-party computation protocol 2PC(). All parties agree on a two-output function
f(x, y) ! f

m

, f
s

that is to be evaluated.

Private Input: MOBILE inputs x while SERVER inputs y. We denote the bit length of
a value as |x| and concatenation as x||y.

Output: SERVER receives f
s

and MOBILE receives f
m

.

1. Input preparation: MOBILE generates a one-time pad k
fm

where |k
fm

| = |f
m

|.
Mobile then generates two MAC keys v

s

= Gen(k) and v
c

= Gen(k). Finally,
MOBILE generates a one-time pad k

m

where |k
m

| = |x|+ |k
fm

|.
2. Input delivery: MOBILE encrypts its input as a = (x||k

fm

)�k
m

. It then generates
two tags t

s

= Mac(a||v
c

, v
s

) and t
c

= Mac(k
m

||v
s

, v
c

). MOBILE delivers a, v
c

,
and t

s

to SERVER and k
m

, v
s

, and t
c

to CLOUD.
3. Augmenting the target function: All parties agree on the following augmented

function g(y, a, v
c

, t
s

; k
m

, v
s

, t
c

) to be run as a two-party SMC computation:
(a) If V er(a||v

c

, t
s

, v
s

) 6= 1 or V er(k
m

||v
s

, t
c

, v
c

) 6= 1 output ?.
(b) Set x||k

fm

= a� k
m

(c) Run the desired function f
s

, f
m

= f(x, y)
(d) Set output values o

s

= f
s

and o
m

= f
m

� k
fm

(e) Output o
s

||o
m

to SERVER and o
m

to CLOUD
4. Two-party computation: SERVER and CLOUD execute a secure two-party compu-

tation protocol 2PC(g(); y, a, v
c

, t
s

; k
m

, v
s

, t
c

) evaluating the augmented function.
5. Output verification: CLOUD delivers its output from the two-party computation,

o
m

to MOBILE. SERVER also delivers the second half of its output o0
m

to MOBILE.
MOBILE verifies that o

m

= o0
m

.
6. Output recovery: SERVER receives output f

s

= o
s

and MOBILE receives output
f
m

= o
m

� k
fm


