Homework assignment 3,

- 1. A set U is \leq_m^C -complete for a class D if every set X in D is reducible to U by a \leq_m^C -reduction, i.e, there is a function f in the class C, such that $x \in X \iff f(x) \in U$.
 - (i) Show that the set $A_{pseudocode} = \{(M, x) : \text{the pseudocode } M \text{ accepts } x\}$ is \leq_m^{rec} -complete for the class of r.e. sets.
 - (ii) Give a set that is \leq_m^{rec} -complete for the class co-r.e., and justify your answer.
 - (iii) Can a set A that is \leq_m^{rec} -complete for the class of r.e. sets be decidable. Why (not)?
- 2. The class Diff consists of the intersections of sets in r.e with the sets in co r.e.. I.e, $Diff = \{A \cap B : A \in r.e., B \in co r.e.\}$. (This is different from $r.e. \cap co r.e$. which we know to be the class of recursive or decidable sets).
 - (i) Show that

$$r.e. \cup co - r.e. \subseteq Diff$$

and

- (ii) (Recalling the definition of complete given above) starting from a a set U that is known to be is \leq_m^{rec} -complete for r.e., construct a set, and show that it is \leq_m^{rec} -complete for Diff. Hint: how about $\{(x,y): x \in U \land y \notin U\}$??
- 3. Read Chapter 6.4 in book. Answer 6.13 (A_{TM} is our $A_{pseudocode}$), 6.16, 6.17 (Turing-recognizable = recursively enumerable).
- 4. (bonus) Show that the set $A_{Halt} = \{M : \text{the pseudocode } M \text{ halts on input } M \text{ (may or maynot accept) } \}$ is \leq_m^{rec} -complete for the class of r.e. sets.