
Pairwise Sequence Alignment for Very Long Sequences on GPUs

Junjie Li Sanjay Ranka Sartaj Sahni
Department of Computer and Information Science and Engineering

University of Florida
Gainesville, FL 32611

Email: {jl3,ranka,sahni}@cise.ufl.edu

Abstract—We develop novel single-GPU parallelizations of
the Smith-Waterman algorithm for pairwise sequence align-
ment. Our algorithms, which are suitable for the alignment of a
single pair of very long sequences, can be used to determine the
alignment score as well as the actual alignment. Experimental
results demonstrate that our algorithm for computing the
alignment score is an order of magnitude faster than previous
algorithms. Further, the amount of memory required by our
alignment algorithms is at least one order of magnitude lower
than that required by previous GPU implementations for
alignment.

Keywords-Long sequence alignment, local alignment, Smith-
Waterman algorithm, CUDA, GPU.

I. INTRODUCTION

Sequence alignment is a fundamental problem in bioin-
formatics. In its most elementary form, known as pairwise
sequence alignment, we are given two sequences A and
B and are to find their best alignment (either global or
local). For DNA sequences, the alphabet for A and B is the
four letter set {A,C,G, T} and for protein sequences, the
alphabet is the 20 letter set {A,C−I,K−N,P−T, V WY }.
The best global and local alignments of the sequences
A and B can be found in O(|A| ∗ |B|) time using the
Needleman-Wunsch [1] and Smith-Waterman [2] dynamic
programming algorithms. In this paper, we consider only
the local alignment problem though our methods are readily
extendable to the global alignment problem.

A variant of the pairwise sequence alignment problem
asks for the best k, k > 0, alignments. In the database
alignment problem, we are to find the best k alignments
of a sequence A with the sequences in a databases D.
The database alignment problem may be solved by solving
|D| pairwise alignment problems with each pair comprised
of A and a distinct sequence from D. This requires |D|
applications of the Smith-Waterman algorithm.

When the sequences A and B are long or when the
number of sequences in the database D is large, compu-
tational efficiency is often achieved by replacing the Smith-
Waterman algorithm with a heuristic that trades accuracy
for computational time. This is done, for example in the
sequence alignment systems BLAST [3], FASTA [4] and
Sim2 [5]. However, with the advent of low-cost parallel
computers, there is renewed interest in developing compu-

tationally practical systems that do not sacrifice accuracy.
Toward this end, several researchers have developed parallel
versions of the Smith-Waterman algorithm that are suitable
for Graphics Processing Units (GPUs) [6], [7], [8], [9], [10],
[11]. The work of Khajej-Saeed, Poole, and Perot [9] and
Sriwardena and Ranasinghe [10] is of particular relevance
to us as this work specifically targets the alignment of
two very long sequences while the remaining research on
GPU algorithms for sequence alignment focuses on the
database alignment problem and the developed algorithms
and software are unable to handle very large sequences. For
example, CUDASW++2.0 [8] cannot handle strings whose
length is more than 70000 on NVIDIA Tesla C2050 GPU.

As noted in [9], biological applications often have |A| in
the range 104 to 105 and |B| in the range 107 to 1010. We
refer to instances of this size as very large. Khajej-Saeed et
al. [9] modify the Smith-Waterman dynamic programming
equations to obtain a set of equations that are more amenable
to parallel implementation. However, this modification in-
troduces significant computational overhead. Despite this
overhead, their algorithm is able to achieve a computational
rate of up to 0.7 GCUPS (billion cell updates per second)
using a single NVIDIA Tesla C2050. The instance sizes
they experimented with had |A| ∗ |B| up to 1011. Although
Sriwardena and Ranasinghe [10] develop their GPU algo-
rithms for pairwise sequence alignment specifically for the
global alignment version, their algorithms are easily adapted
to the case of local alignment. While their adaptations do
not have the overheads of [9] that result from modifying
the recurrence equations so as to increase parallelism, their
algorithm is slower than that of [9].

In this paper, we develop single-GPU parallelizations of
the unmodified Smith-Waterman algorithm and obtain a
speedup of up to 17 relative to the single-GPU algorithm
of [9] and a computational rate of 7.1 GCUPS. Our high-
level parallelization strategy is similar to that used by Melo
et al. [12] and Futamura et al. [13] to arrive at parallel
algorithms for local alignment and syntenic alignment on a
cluster of workstations, respectively. Both divide the scoring
matrix into as many strips as there are processors and each
processor computes the scoring matrix for its strip row wise.
Melo et al. [12] do the traceback needed to determine the
actual alignment serially using a single processor while

Futamura et al.’s [13] do the traceback in parallel using
a strategy similar to the one used by us. The essential
differences between our work and that of [12] and [13] are
(a) our algorithms are optimized for a GPU rather than for
a cluster, (b) we divide the scoring matrix into many more
strips than the number of streaming multiprocessors in a
GPU, and (c) the computation of a strip is done in parallel
using many threads and the CUDA cores of a streaming
multiprocessor rather than serially.

The rest of the paper is organized as follows. In section II,
we review the NVIDIA GPU architecture used by us and
in Section III, we describe the Smith-Waterman algorithm
for pairwise sequence alignment. In section IV, we describe
our GPU adaptation of the Smith-Waterman algorithm for
the case when we want to report only the score of the best
alignment and in Section V, we describe our adaptation for
the case when the best alignment as well as its score are to be
reported. Experimental results comparing the performance of
our GPU adaptations with those of [9] and [10] are presented
in Section VI and we conclude in section VII.

II. GPU ARCHITECTURE

Our work targets the NVIDIA C2050 GPU. Figure 1
shows the architecture of the NVIDIA Fermi line of GPUs
of which the C2050 is a member. The C2050 comprises 448
processor cores grouped into 14 streaming multiprocessors
(SM) with 32 cores per SM. Each SM has 64KB of shared
memory/L1 cache that may be set up as either 48KB of
shared memory and 16KB of L1 cache or 16KB of shared
memory and 48KB of L1 cache. In addition, each SM
has 32K registers. The 14 SMs access a common 3GB
of DRAM memory, called device or global memory, via
a 768KB L2 cache. A C2050 is capable of performing
up to 1.288 TFLOPS of single-precision operations and
515 GFLOPS of double precision operations. A C2050
connects to the host processor via a PCIexpress bus. The
master-slave programming model in which one writes a
program for the host or master computer and this program
invokes kernels that execute on the GPU is supported. The
programming language is CUDA, which is an extension of
C to include GPU support. The key challenge in deriving
high performance on this machine is to be able to effectively
minimize the memory traffic between the SMs and the global
memory of the GPU. This effectively requires design of
novel algorithmic and implementation approaches and is the
main focus of this paper.

III. SMITH-WATERMAN ALGORITHM

Let A = a1a2...am and B = b1b2...bn be the two
sequences that are to be locally aligned. Let c(ai, bj) be
the score for matching or aligning ai and bj and let α be
the gap opening penalty, and β the gap extension penalty.
So, the penalty for a gap of length k is α + kβ. Gotoh’s
[15] variant of the Smith-Waterman dynamic programming

Dispatch Unit

Warp Scheduler

Instruction Cache

Dispatch Unit

Warp Scheduler

Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

SFU

SFU

SFU

SFU

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

Core

Register File (32,768 x 32-bit)

CUDA Core

Operand Collector

Dispatch Port

Result Queue

FP Unit INT Unit

Figure 1. Architecture of Nvidia Fermi [14]

algorithm with an affine penalty function uses the following
three recurrences.

H(i, j) = max

H(i− 1, j − 1) + c(ai, bj)

E(i, j)

F (i, j)

0

E(i, j) = max

{
E(i− 1, j)− β
H(i− 1, j)− α− β

F (i, j) = max

{
F (i, j − 1)− β
H(i, j − 1)− α− β

where 1 ≤ i ≤ m, 1 ≤ j ≤ n

Where the score matrices H , E, and F have the following
meaning:

1) H(i, j) is the score of the best local alignment for
(a1...ai) and (b1...bj).

2) E(i, j) is the score of the best local alignment for
(a1...ai) and (b1...bj) under the constraint that ai is
aligned to a gap.

3) F (i, j) is the score of the best local alignment for
(a1...ai) and (b1...bj) under the constraint that bj is
aligned to a gap.

The initial conditions are: H(0, 0) = H(i, 0) = H(0, j) =
0; E(0, 0) = −∞; E(i, 0) = −α − iβ; E(0, j) = −∞;
F (0, 0) = −∞; F (i, 0) = −∞; F (0, j) = −α − jβ; 1 ≤
i ≤ m, 1 ≤ j ≤ n.

As mentioned in the introduction, the GPU adaptations
of Khajej-Saeed, Poole, and Perot [9] and Sriwardena and
Ranasinghe [10] are most suited for the pairwise alignment
of very long sequences. Khajej-Saeed, Poole, and Perot [9]
enhance parallelism by rewriting the recurrence equations.
This rewrite eliminates the E terms and so their algorithm
initially computes H values that differ from those computed
by the original set of equations. Let H ′ be the computed
H values. In a follow up step, modified E values, E′,
are computed. The correct H values are then computed
in a final step from H ′ and E′. Although the resulting 3-
step computation increases parallelism, it also increases I/O
traffic between device memory and the SMs.

Sriwardena and Ranasinghe [10] propose two GPU algo-
rithms for global alignment using the Needleman-Wunsch
dynamic programming algorithm [1]. These strategies can be
readily deployed for local alignment using Gotoh’s variant
of the Smith-Waterman algorithm. Both of the strategies of
Sriwardena and Ranasinghe [10] are based on the obser-
vation that for any (i, j), the H , E, and F values depend
only on values in the positions immediately to the north,
northwest, and west of (i, j) (see Figure 2). Consequently,
it is possible to compute all H , E, and F values on the
same antidiagonal, in parallel, once these values have been
computed for the preceding two antidiagonals. The first
algorithm, Antidiagonal, of Sriwardena and Ranasinghe [10]
does precisely this. The GPU kernel computes H , E, and
F values on a single antidiagonal using values stored in
device/global memory for the preceding two antidiagonals.
The host program sends the two strings A and B to device
memory and then invokes the GPU kernel once for each
of the m + n − 1 antidiagonals. Additional (but minor)
speedup can be attained by recognizing that the computation
for the first and last few antidiagonals can be done faster
on the host CPU and invoking the GPU kernel only for
sufficiently large antidiagonals. When we desire to determine
only the score of the best alignment, the device memory
needed by Antidiagonal is O(min{m,n}). However, when
the best alignment also is to be reported, we need to save,
for each (i, j), the direction (north, northwest, west) and
the scoring matrices (H , E, F) that yielded the values
for this position. O(mn) memory is required to save this
information. Following the computation of the H , E, and
F values a serial traceback is done to determine the best
alignment.

The second GPU algorithm, BlockedAntidiagonal, of
Sriwardena and Ranasinghe [10] partitions the H , E, and F
values into s× s square blocks (see Figure 3) and employs
a GPU kernel to compute the values for a block. The host
program allocates blocks to SMs and each SM computes
the H , E, and F values for its assigned block using values
computed earlier and stored in device memory for the
blocks immediately to its north, northwest, and west. Hence,
BlockedAntidiagonal attempts to enhance performance by

ith diagonali-2 i-1

Figure 2. Data dependency of Smith-Waterman algorithm

Figure 3. Illustration of BlockedAntidiagonal

utilizing both block-level parallelism and parallelism within
an antidiagonal of a block. More importantly, it seeks to
reduce I/O traffic to device memory and to utilize shared
memory. Notice that device I/O is now needed only at the
start and end of a block computation. The block assign-
ment strategy of Figure 3 does the computation in blocked
antidiagonal order with the host invoking the kernel for all
blocks on the same antidiagonal. The total number of blocks
is O(mn/s2) and the I/O traffic between global memory
and the SMs is O(mn). In contrast, the I/O traffic for
Antidiagonal is O(mn). Experimental results reported in
[10] demonstrate that BlockedAntidiagonal is roughly two
times faster than Antidiagonal. Their research shows that
BlockedAntidiagonal exhibits near-optimal performance
when the block size s is 8. The BlockedAntidiagonal
strategy of Figure 3 may be enhanced for the case when we
are interested only in the score of the best alignemnt. In this
enhancement, we write to global memory only the computed
values for the bottom and right boundaries of each block.
This reduces the global memory I/O traffic to O(mn/s).

IV. COMPUTING THE SCORE OF THE BEST LOCAL
ALIGNMENT

In our GPU adaptation, StripedScore, of the Smith-
Waterman algorithm, we assume that m ≤ n (in case this
is not so, simply swap the roles of A and B) and partition
the scoring matrices H , E, and F into dn/se m× s strips
(Figure 4). Here, s is the strip width. Let p be the number of

SMs in the GPU (for the C2050, p = 14). The GPU kernel is
written so that SM i computes the H , E, and F values for all
strips j such that j mod p = i, 0 ≤ j < dn/se, 0 ≤ i < p.
Each SM works on its assigned strips serially from left to
right. That is, if SM 0 is assigned strips 0, 14, 28, and 42
(this is the case, for example when q = 14, s = 8, and
n = 440), SM 0 first computes all H , E, and F values for
strip 0, then for strip 14, then for strip 28, and finally for strip
42. When computing the values for a strip, the SM computes
by antidiagonals confined to the strip with values along
the same antidiagonal computed in parallel. The computed
values for each antidiagonal are stored in shared memory.
Each SM uses three one-dimensional arrays (preceding two
antidiagonals and current antidiagonal) residing in shared
memory and one for each of E and F and one for swapping
purpose. The size of each of these arrays is O(min{m, s}).
Additionally, each strip needs to communicate m H values
and m F values to the strip immediately to its right. This
communication is done via global memory. First each strip
accumulates, in a buffer, a threshold number, T , of H and F
values needed by its right adjacent strip in shared memory.
When this threshold is reached, the accumulated H and F
values are written to global memory. The threshold T is
chosen to optimize the total time. Each SM polls global
memory to determine whether the next batch of H and F
values it needs from its left adjacent strip are ready in global
memory. If so, it reads this batch and computes the next T
antidiagonals for its strip. If not, it waits in an idle state.

Strip 0 Strip 1 Strip 2 Strip 3

Boundary Buffer Boundary Buffer Boundary Buffer

Figure 4. Striped Smith-Waterman algorithm

Our striped algorithm therefore requires O(min{m, s})
shared memory per SM and O(mn/s) global memory. The
I/O traffic between global memory and the SMs is O(mn/s).
To derive the computational time requirements (exclusive
of the time taken by the global memory I/O traffic), we
assume that the threshold value T is O(1). We note that
the computation for the kth strip cannot begin until the
top right value of strip k − 1 has been computed. An SM
with c processors takes Ta = O(s2/c) to compute the top

right value of the strip assigned to it and O(ms/c) time to
complete the computation for the entire strip. So, SM p− 1
cannot start working on the first strip assigned to it until time
(p−1)Ta. When an SM can go from the computation of one
strip to the computation of the next strip with no delay, the
completion time of SM p−1, and hence the time taken by the
GPU to do all its assigned work (exclusive of the time taken
by global memory I/O traffic), is O((p− 1)Ta +

ms
c ∗

n
ps) =

O(ps
2

c + mn
pc). When an SM takes less time to complete

the computation for a strip than it takes to compute the
data needed to commence on the next strip assigned to
the SM (approximately, ms

c < pTa), an SM must wait
O(pTa − ms

c) time between the computation of successive
strips assigned to it. So, the time at which SM p finishes
is O((ns − 1)Ta + ms

c) = O((m+n)s
c). We see that while

computation time exclusive of global I/O time increases as
s increases, global I/O time decreases as s increases. Our
experiments of Section VI show that for large m and n,
the reduction in global I/O memory traffic that comes from
increasing the strip size s more than compensates for the
increase in time spent on computational tasks. Although
using a larger strip size s reduces overall time, the size of
the available shared memory per SM limits the value of s
that may be used in practice.

In our GPU implementation of StripedScore, the substi-
tution matrix is stored in the shared memory of each SM
using 23 × 23 × sizeof(int) bytes. Additionally, each SM
has an output buffer of length 32 for writing values on
the boundary of each strip to global memory. This buffer
takes 32 × sizeof(int) bytes. We also use six arrays of
length min{s,m} + 2 each to hold the H values on three
adjacent antidiagonals, E values and F values, and new E
or F values to be swapped with old values. Another 1200
bytes are reserved by the CUDA compiler to store built-in
variables and pass function parameters. The shared memory
cache was configured as 48KB shared memory and 16KB
L1 cache. So, min(s,m) should be less than 1902. Since
we are aligning very large sequences, we assume s < m.
Hence, s < 1902 for our implementation.

The following are some of the key differences between
BlockedAntidiagonal and StripedScore:

1) BlockedAntidiagonal requires many kernel invoca-
tions from the host while StripedScore requires just
one kernel invocation. In other words, the synchro-
nization of BlockedAntidiagonal is done on the host
side while in StripedScore, the synchronization is
done on the device side, which significantly reduces
the overhead.

2) In BlockedAntidiagonal the assignment of blocks
that are ready for computation to SMs is done by
the GPU block scheduler while in StripedScore the
assignment of strips to SMs is programmed into the
kernel code.

3) The I/O traffic of StripedScore is O(mn/s) while
that of BlockedAntidiagonal is O(mn).

4) While for BlockedAntidiagonal near-optimal perfor-
mance is achieved when s = 8, we envision much
larger s values for StripedScore which can be up to
1900. Consequently, there is greater opportunity for
parallelism within a strip than within a block.

The above steps can lead to significant improvement in
the overall performance.

V. COMPUTING THE BEST LOCAL ALIGNMENT

In this section, we describe three GPU algorithms for the
case when we wish to determine both the best alignment
and its score.

A. StripedAlignment

With each position (u, v) of H , E, and F , we associate
a start state, which is a triple (i, j,X), where (i, j) are
the coordinates of the local start point of the optimal path
to (u, v). This local start point is either a position in the
current strip or a position on the right boundary of the
strip immediately to the left of the current strip. X is
one of H , F , and E and identifies whether the optimal
path to (say) H(u, v) begins at H(i, j), F (i, j), or E(i, j).
StripedAlignment is a 3-phase algorithm. The first phase
is an extension of StripedScore in which each strip stores,
in global memory, not only the H and F values needed by
the strip to its right but also of the local start states of the
optimal path to each boundary cell. For each boundary cell
(u, v), three start states (one for each of H(u, v), F (u, v)
and E(u, v)) are stored. So, for the 4 strips of Figure 5,
the boundary cells store, in global memory, the local start
states of subpaths that end at the boundary cells (∗, 4),
(∗, 8), (∗, 12), and (∗, 16), Additionally, we need to store
the local start state and the end state for the overall best
alignment. Since the highest H score is to (8, 9) and the
local start state for H(8, 9) is (7, 8, H), (7, 8, H) is initially
stored in registers and finally written along with (8, 9, H)
to global memory. In phase 1, the local start states for the
optimal paths to all boundary cells (not just the boundary
cells through which the overall alignment path traverses) are
written to global memory.

In phase 2, we serially determine, for each strip, the
start state and end state of the optimal alignment subpath
that goes through this strip. Suppose for our example of
Figure 5, we determine that the optimal alignment path is
comprised of a subpath from (7, 8, H) to (8, 9, H), another
subpath from (3, 4, F) to (7, 8, H) and one from (2, 3, H)
to (3, 4, F).

Finally, in phase 3, the optimal subpath for each strip the
optimal path goes through is computed by recomputing the
H , E, and F values for the strips the optimal alignment path
traverses. Using the saved boundary H and F values, it is
possible to compute the subpaths for all strips in parallel.

Strip 0 Strip 1 Strip 2 Strip 3

Boundary Buffer Boundary Buffer Boundary Buffer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

6

7

8

9

10

5

Figure 5. Example for StripedAlignment

B. ChunkedAlignment1

ChunkedAlignment1, like StripedAlignment, is a 3-
phase algorithm. In ChunkedAlignment1, each strip is
partitioned into chunks of height h (Figure 6). For each h×s
chunk we store, in global memory, the H , F , and local start
states for positions on right vertical chunk boundaries (i.e.,
vertical buffers, which are the same as boundary buffers in
StripedAlignment) and the H and E values for horizontal
buffers. The assignment of strips to SMs is the same as in
StripedScore (and StripedAlignment).

Vertical Buffer Vertical Buffer Vertical Buffer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

6

7

8

9

10

5

Horizontal Buffer

Horizontal Buffer

Horizontal Buffer

Horizontal Buffer

Figure 6. Example for ChunkedAlignment

In phase 2, we use the data stored in global memory by the
phase 1 computation to determine the start and end states of
the subpaths of the optimal alignment path within each strip.
Finally, in phase 3, the optimal subpaths are constructed by
a computation within each strip through which the optimal
alignment traverses. However, the computation with a strip
can be limited to essential chunks as shown by the shaded
chunks in Figure 6. The computation for these (sub)-strips
can be done in parallel.

There are two major differences between
StripedAlignment and ChunkedAlignment1:

1) ChunkedAlignment1 generates more I/O traffic than
does StripedAlignment and also requires more

global memory on account of storing horizontal buffer
data. Assuming that the height and width of the
chunk are nearly equal, the I/O traffic and the global
memory requirement are roughly twice the amount
for StripedAlignment for the same strip size as the
width of the chunk.

2) Unlike StripedAlignment, the computation begins at
the start point of a chunk rather than at the first row
of the strip. In practice, this should reduce the amount
of computation significantly.

C. ChunkedAlignment2

ChunkedAlignmment2 is a natural extension of
ChunkedAlignment1. Phase 1 is modified to additionally
store, for the horizontal buffers, the local start state (local
to the chunk) of the optimal path that goes through that
buffer. Similarly, for vertical buffers the start state local
to the chunk (rather than local to the strip) is stored. In
Phase 2, we use the data stored in global memory during
Phase 1 to determine the chunks through which the optimal
alignment path traverses as well as the start and end states
of the subpath through these chunks. In Phase 3, the subpath
within each chunk is computed by using data stored in
Phase 1 and the knowledge of the subpath end states deter-
mined in Phase 2. As was the case for StripedAlignment
and ChunkedAlignment1, the subpaths for all identified
chunks can be computed in parallel.

Unlike ChunkedAlignment1, additional computations
and I/O need to be performed in Phase 1. The advantage
is that the computation for all the chunks can be performed
in parallel in Phase 3. So, for a given dataset if a large
number of chunks corresponding to the shortest path are
present in a given strip, this work will be assigned to a
single streaming processor for ChunkedAlignment1 and
will effectively be performed sequentially. However, these
chunks can potentially be assigned to multiple streaming
processors. For Example, in Figure 6, strip 2 has 3 chunks.
These will be assigned to same streaming processor using
ChunkedAlignment1, but can be assigned to 3 different
Streaming processors using ChunkedAlignment2. Thus,
the amount of parallelism available is significantly increased.

D. Memory Requirements

The code of [9] to find the actual alignment stores 3m×n
matrices in global memory. Since each matrix element is a
score, each is a 4-byte int and so the code of [9] needs 12mn
bytes of global memory. The code of [10] when extended
to affine cost functions also needs 12mn bytes of global
memory. The global memory required by our methods is
instance dependent. For each position encountered in Phase
3, we store direction information for all three matrices. For
H , 6 possibilities exist for one cell, which are NEW (this
cell starts a new alignment), DIAGONAL (this cell comes
from diagonal direction), E UP (this cell comes from the

lenQuery 5103 10206 20412 30618 51030
lenDB 7168 14336 28672 43008 71680
s = 64 67.2 260.2 1031.7 2316.7 6427.1
s = 128 36.2 132.9 518.9 1161.4 3216.0
s = 256 23.1 72.6 269.8 597.5 1645.2
s = 512 22.3 50.1 160.9 344.9 932.3
s = 1024 - 59.4 135.5 261.7 664.4
s = 1900 - - 175.0 279.9 625.7

Figure 7. Running time (ms) of StripedScore for different s values

above cell in matrix E), H UP (this cell comes from the
above cell in matrix H), F LEFT (this cell comes from
the left cell in matrix F), H LEFT (this cell comes from
the left cell in matrix H). 3 bits are enough to store this in-
formation for each cell. For E, 2 possibilities exist which are
E UP and H UP . 1 bit is enough for this information. For
F , 1 bit is enough to distinguish F LEFT and H LEFT .
So, in the worst-case, StripedAlignment requires 5mn/8
bytes of global memory while ChunkedAlignment1 and
ChunkedAlignment2 require 5(ms+nh)/8 bytes. Hence,
StripedAlignment, for example, can handle problems with
an mn value about 19 times as large as that can be handled
by [9] and [10]. Besides, when more memory space is
required, Phase 3 can be split into multiple iterations. The
same memory space required for one SM to compute part
of the alignment within one strip can be reused in different
iterations while computing for different strips.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results for scoring
and alignment respectively. All of these experiments were
conduced on an NVIDIA Tesla C2050 GPU.

StripedScore: First, we measured the running time
of StripedScore as a function of strip width s (Figures 7
and 8). lenQuery is the length of the query sequence and
lenDB is the length of the subject sequence. As predicted by
the analysis of Section IV, for sufficiently large sequences,
the running time decreases as s increases. However if
sequences are relatively small, when s increases, the running
time decreases first and then increases.

Next, we compared the relative performance of
StripedScore with s = 1900, PerotRecurrence (the code
of [9] modified to report the best score rather than the best
200 scores), BlockedAntidiagonal [10], EnhancedBA
(our enhancement of BlockedAntidiagonal in which only
the values on the right and bottom boundaries of each
block are stored in global memory thus reducing global
memory usage significantly), and CUDASW++2.0 [8].
Figures 9 and 10 give the run time for these algorithms.
As can be seen, PerotRecurrence takes 13 to 17 times
the time taken by StripedScore. The speedup ranges
of StripedScore relative to BlockedAntidiagonal,
EnhancedBA, and CUDASW + +2.0 are, respectively,
20 to 33, 2.8 to 9.3, and 7.7 to 22.8. BlockedAntidiagonal

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

5103/7168 10206/14336 20412/28672 30618/43008 51030/71680

T
im

e
(m

s)

lenQuery/lenDB

s=64
s=128
s=256
s=512

s=1024
s=1900

Figure 8. Plot of running time (ms) of StripedScore for different s
values

lenQuery 1× 104 2× 104 3× 104 5× 104 1× 105

lenDB 1× 104 2× 104 3× 104 5× 104 1× 105

PerotRecurrence 815.3 1917.7 3061.7 7014.9 20437.3
StripedScore 48.4 113.0 216.3 449.8 1543.1
BlockedAntidiagonal 957.2 3719.9 - - -
EnhancedBA 137.4 527.0 1185.9 3438.6 14327.4
CUDASW ++2.0 374.5 1530.4 3404.0 10259.1 -

Figure 9. Running time (ms) of scoring algorithms

and CUDASW++2.0 were unable to solve large instances
because of the excessive memory required by them.

StripedAlignment: For ease of coding, our imple-
mentation uses a char to store the direction information at
each position encountered in Phase 3 rather than 3 bits as in
the analysis of Section V-D. We tested StripedAlignment
with different s values and the results are shown in Fig-
ures 11 and 12. Using a similar analysis as used in Section
IV, we determine the maximum strip size, which is limited
by the amount of shared memory per SM, to be 410.
The time for Phase 2 is negligible and is not reported
separately. The time for all three phases generally decrease
as s increases. For really large s, the number of strips is
comparable to or smaller than the number of streaming
processors leading to idle time on some processors. Gen-
erally, choosing s = 256 gives the best overall performance
for sequences of size up to 37000. Choosing a larger s
allows for larger sequences to be aligned (as I/O is inversely
proportional to s).

We do not compare StripedAlignment with the algo-
rithms of [10], [8], [9] for the following reasons (a) in
[10], the traceback is done serially in the host CPU, (b)
CUDASW++2.0 [8] does not have a traceback capability,
and (c) the traceback of [9] is specifically designed for the
benchmark suite SSCA#1 [16] and so only aligns multiple
but small subsequences of length less than 128.

ChunkedAlignment1: There are two parameters in
ChunkedAlignment1 - s representing for the width of

 0

 5000

 10000

 15000

 20000

 25000

10000 20000 30000 50000 100000

T
im

e
(m

s)

lenQuery and lenDB

PerotRecurrence
StripedScore

BlockedAntidiagonal
EnhancedBA

CUDASW++2.0

Figure 10. Comparison of different scoring algorithms

lenQuery 10430 15533 20860
lenDB 14560 21728 29120
Phase 1 3 Total 1 3 Total 1 3 Total
s = 64 616.9 440.1 1066.4 1352.9 973.5 2343.5 2402.4 1745.1 4176.5
s = 128 328.6 298.9 633.5 707.4 650.2 1367.2 1245.4 1147.0 2408.1
s = 256 183.9 318.0 505.6 384.0 715.7 1104.5 670.4 1273.5 1952.6
s = 410 136.4 380.9 520.7 264.6 827.3 1096.0 484.2 1531.8 2020.9

Figure 11. Running time (ms) of StripedAlignment for different s
values

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

64 128 256 410

T
im

e
(m

s)

s

Phase1
Phase3

Total

Figure 12. Running time (ms) of StripedAlignment when lenQuery =
20860 and lenDB = 29120

one strip, and h representing for the height of one chunk.
Effectively, the scoring matrix is divided into blocks of size
h×s. The data of Figures 13-15 shows that, as was the
case for StripedAlignment, performance improves as we
increase s. Large values of h and s have the potential to
reduce the amount of parallelism in Phase 3. A good choice
from our experimental results is s = 410 and h = 128.

As expected, the Phase 3 time for ChunkedAlignment1
is significantly less than for StripedAlignment. Although
this reduction comes with additional computational and I/O
cost in Phase 1, the overall time for ChunkedAlignment1

h ↓ /s→ 64 128 256 410
Phase 1 3 Total 1 3 Total 1 3 Total 1 3 Total
64 728.5 8.9 742.3 390.0 10.8 404.7 220.1 11.6 235.3 159.2 21.1 183.7
128 702.7 10.7 718.0 376.9 12.5 393.1 212.8 13.0 229.2 154.5 23.8 181.5
256 689.4 14.6 708.7 368.7 15.5 387.9 208.3 15.7 227.4 152.2 30.0 185.4
512 682.9 20.1 707.7 364.8 19.0 387.6 205.5 20.7 229.7 151.0 38.4 192.5

Figure 13. Running time (ms) of ChunkedAlignment1 (lenQuery = 10430 lenDB = 14560)

h ↓ /s→ 64 128 256 410
Phase 1 3 Total 1 3 Total 1 3 Total 1 3 Total
64 1596.6 13.1 1616.7 838.7 16.0 859.9 459.0 16.3 479.9 309.2 31.2 344.5
128 1540.4 15.9 1562.8 810.1 18.2 833.1 443.5 18.4 465.8 300.0 34.5 338.2
256 1511.3 21.6 1539.4 792.9 22.8 820.5 434.2 23.5 461.5 295.5 44.8 344.0
512 1497.0 30.3 1533.9 784.6 28.3 817.6 428.6 30.7 463.1 293.0 56.3 352.9

Figure 14. Running time (ms) of ChunkedAlignment1 (lenQuery = 15533 lenDB = 21728)

h ↓ /s→ 64 128 256 410
Phase 1 3 Total 1 3 Total 1 3 Total 1 3 Total
64 2833.3 17.9 2861.2 1475.0 21.4 1503.4 803.8 21.7 830.9 571.2 40.3 616.5
128 2733.6 21.5 2764.4 1424.0 24.4 1454.7 774.3 24.3 803.4 553.3 45.0 602.7
256 2683.0 28.4 2720.6 1395.1 29.4 1430.7 756.2 29.1 789.9 544.8 57.2 606.0
512 2657.5 42.4 2709.2 1381.5 38.3 1425.8 747.1 43.8 795.3 539.1 77.9 621.0

Figure 15. Running time (ms) of ChunkedAlignment1 (lenQuery = 20860 lenDB = 29120)

h ↓ /s→ 64 128 256 410
Phase 1 3 Total 1 3 Total 1 3 Total 1 3 Total
64 797.3 13.2 817.0 426.4 18.8 451.0 241.7 26.4 273.4 174.2 38.7 218.3
128 739.8 15.1 760.7 403.4 17.4 425.8 229.2 21.2 255.0 164.1 27.9 196.3
256 710.2 21.7 737.5 383.1 22.0 409.8 219.8 23.7 247.7 158.6 35.1 197.6
512 695.8 36.5 737.9 373.6 30.1 408.2 211.8 40.2 255.8 154.7 53.9 212.4

Figure 16. Running time (ms) of ChunkedAlignment2 (lenQuery = 10430 lenDB = 14560)

h ↓ /s→ 64 128 256 410
Phase 1 3 Total 1 3 Total 1 3 Total 1 3 Total
64 1745.0 19.6 1774.2 916.8 28.0 952.8 504.2 39.5 550.9 338.4 56.3 401.9
128 1619.8 22.6 1650.5 866.2 26.2 898.9 477.2 32.3 515.2 318.7 40.5 364.8
256 1555.6 32.8 1595.9 823.7 32.5 862.0 457.7 34.5 497.2 308.2 51.9 364.8
512 1524.0 55.8 1587.4 802.9 44.0 852.5 441.2 58.2 504.0 300.2 81.5 386.0

Figure 17. Running time (ms) of ChunkedAlignment2 (lenQuery = 15533 lenDB = 21728)

h ↓ /s→ 64 128 256 410
Phase 1 3 Total 1 3 Total 1 3 Total 1 3 Total
64 3105.7 1.6 3119.3 1612.1 37.6 1660.7 880.8 53.2 943.7 629.5 2.6 640.4
128 2886.5 1.7 2898.0 1521.3 35.0 1564.7 831.1 42.2 880.6 592.6 53.8 653.3
256 2762.9 43.6 2817.0 1449.4 43.7 1500.5 796.7 45.2 848.1 574.1 65.9 645.7
512 2706.2 73.6 2790.3 1413.3 58.1 1478.4 771.2 76.5 853.2 557.2 108.7 670.9

Figure 18. Running time (ms) of ChunkedAlignment2 (lenQuery = 20860 lenDB = 29120)

lenQuery/lenDB 10430/14560 15533/21728 20860/29120
Phase 1 3 Total 1 3 Total 1 3 Total
ChunkedAlignment1 154.5 23.8 181.5 300.0 34.5 338.2 553.3 45.0 602.7
ChunkedAlignment2 164.1 27.9 196.3 318.7 40.5 364.8 629.5 2.6 640.4

Figure 19. Best running time (ms) of ChunkedAlignment1 and ChunkedAlignment2

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

10430/14560 15533/21728 20860/29120

T
ot

al
 T

im
e

(m
s)

lenQuery/lenDB

ChunkedAlignment1
ChunkedAlignment2

Figure 20. Plot of best running time (ms) of ChunkedAlignment1 and ChunkedAlignment2

is much less than for StripedAlignment. For sequences of
size 20860 and 29120, the best time for StripedAlignment
is 1952.6ms while that for ChunkedAlignment1 is
602.7ms (s = 410, h = 128); the ratio is slightly more
than 3.

The major advantage of ChunkedAlignment2 is better
parallelism in Phase 3. However, the additional overheads in
Phase 1 and Phase 3 (in terms of I/O) result in performance
that is slightly worse than that of ChunkedAlignment1
as shown in Figures 16-20. ChunkedAlignment2 will be
better than ChunkedAlignment1 only for strings in which
for the shortest distance there are many chunks in one strip,
For the strip sizes and the datasets that we used, we did not
find this to be the case.

Since StripedScore is an order of magnitude faster than
PerotRecurrence and ChunkedAlignment1 is not an
order of magnitude slower than StripedScore, we conclude,
without experiment, that ChunkedAlignment1 is faster
than the code of [9] modified to find the best alignment.

VII. CONCLUSION

In this paper, we have developed single-GPU paral-
lelizations of the unmodified Smith-Waterman algorithm for
sequence alignment. Our scoring algorithm StripedScore
achieves a speedup of 13 to 17 relative to the single-
GPU algorithm of [9]. The speedup ranges relative to
BlockedAntidiagonal [10] and CUDASW++2.0 [8] are,
respectively, 20 to 33 and 7.7 to 22.8. Our algorithms achieve
a computational rate of 7.1 GCUPS on a single GPU. Our
algorithms to determine the actual alignment are not only
faster than competing algorithms but also require much less
memory. For example, StripedAlignment, in the worst-
case, takes 1/19 the memory required by the algorithms of
[10] and [9] with traceback function. ChunkedAlignment1
and ChunkedAlignment2 require even less memory.

ACKNOWLEDGMENT

This work was supported, in part, by the National Science
Foundation under grants CNS0829916, CNS0905308 and
CCF0903430, and the National Institutes of Health under
grant R01-LM010101.

REFERENCES

[1] S. B. Needleman and C. D. Wunsch, “A general method
applicable to the search for similarities in the amino
acid sequence of two proteins,” Molecular Biology, 48,
443-453, 1970.

[2] T. F. Smith and M. S. Waterman, “Identification of
common molecular subsequences,” Molecular Biology,
147, 195-197, 1981.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman, “Basic local alignment search tool,”
Molecular Biology, 215, 403-410, 1990.

[4] D. Lipman and W. Pearson, “Rapid and sensitive
protein similarity searches,” Science, 227, 1435-1441,
1985.

[5] K. mao Chao, J. Zhang, J. Ostell, and W. Miller, “A
local alignment tool for very long DNA sequences,”
Comput. Appl. Biosci, 11, 147-153, 1995.

[6] A. Khalafallah, H. Elbabb, O. Mahmoud, and
A. Elshamy, “Optimizing Smith-Waterman algorithm
on Graphics Processing Unit,” in ICCTD 2010, 650-
654, 2010.

[7] S. Manavski and G. Valle, “CUDA compatible GPU
cards as efficient hardware accelerators for Smith-
Waterman sequence alignment,” BMC Bioinformatics,
9, S10, 2008.

[8] Y. Liu, B. Schmidt, and D. Maskell, “CUDASW++2.0:
enhanced Smith-Waterman protein database search on
CUDA-enabled GPUs based on SIMT and virtualized
SIMD abstractions,” BMC Research Notes, 3, 93, 2010.

[9] A. Khajeh-Saeed, S. Poole, and J. Blair Perot, “Ac-
celeration of the Smith-Waterman algorithm using sin-
gle and multiple Graphics Processors,” Computational
Physics, 2010.

[10] T. Siriwardena and D. Ranasinghe, “Accelerating
global sequence alignment using CUDA compatible
multi-core GPU,” in ICIAFs 2010, 201-206, 2010.

[11] L. Ligowski and W. Rudnicki, “An efficient imple-
mentation of Smith-Waterman algorithm on GPU using
CUDA, for massively parallel scanning of sequence
databases,” IPDPS 2009, 0, 1-8, 2009.

[12] A. Melo, M. Walter, R. Melo, M. Santana, and
R. Batista, “Local DNA sequence alignment in a cluster
of workstations: algorithms and tools,” Journal of the
Brazilian Computer Society 2004, 10, 81-88, 2004.

[13] N. Futamura, S. Aluru, and X. Huang, “Parallel Syn-
tenic Alignments,” in HiPC 2002, 2552, 420-430,
Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg, 2002.

[14] Nvidia, NVIDIA’s Next Generation CUDA Compute
Architecture: Fermi, 1.1 ed., 2009.

[15] O. Gotoh, “An improved algorithm for matching bio-
logical sequences,” Molecular Biology, 162, 705-708,
1982.

[16] D. A. Bader, K. Madduri, J. R. Gilbert, V. Shah,
J. Kepner, T. Meuse, and A. Krishnamurthy, “De-
signing Scalable Synthetic Compact Applications for
Benchmarking High Productivity Computing Systems,”
CTWatch Quarterly, 2(4B):41-51, 2006.

