
Bloom Filtering Cache Misses for Accurate Data
Speculation and Prefetching

Jih-Kwon Peir
CISE Department

University of Florida
peir@cise.ufl.edu

Shih-Chang Lai
ECE Department

Oregon State University
laish@ece.orst.edu

Shih-Lien Lu
Jared Stark
Konrad Lai

Microprocessor Research
Intel Labs

shih-lien.l.lu@intel.com

ABSTRACT
A processor must know a load instruction’s latency to sched-
ule the load’s dependent instructions at the correct time.
Unfortunately, modern processors do not know this latency
until well after the dependent instructions should have been
scheduled to avoid pipeline bubbles between themselves and
the load. One solution to this problem is to predict the load’s
latency, by predicting whether the load will hit or miss in
the data cache. Existing cache hit/miss predictors, however,
can only correctly predict about 50% of cache misses.

This paper introduces a new hit/miss predictor that uses
a Bloom Filter to identify cache misses early in the pipeline.
This early identification of cache misses allows the processor
to more accurately schedule instructions that are dependent
on loads and to more precisely prefetch data into the cache.
Simulations using a modified SimpleScalar model show that
the proposed Bloom Filter is nearly perfect, with a predic-
tion accuracy greater than 99% for the SPECint2000 bench-
marks. IPC (Instructions Per Cycle) performance improved
by 19% over a processor that delayed the scheduling of in-
structions dependent on a load until the load latency was
known, and by 6% and 7% over a processor that always pre-
dicted a load would hit the cache and with a counter-based
hit/miss predictor respectively. This IPC reaches 99.7% of
the IPC of a processor with perfect scheduling.

Categories and Subject Descriptors
C.1.1 [Processor Architectures]: Single Data Stream Ar-
chitectures

General Terms
Algorithm, Design, Performance

Keywords
Bloom Filter, Data Cache, Data Prefetching, Instruction
Scheduling, Data Speculation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’02, June 22-26, 2002, New York, New York, USA.
Copyright 2002 ACM 1-58113-483-5/02/0006 ...$5.00.

1. INTRODUCTION
To achieve the highest performance, a processor must ex-

ecute a pair of dependent instructions with no intervening
pipeline bubbles. It must arrange for—or schedule—the de-
pendent instruction to begin execution immediately after
the instruction it depends on (i. e., the parent instruction)
completes execution. Accomplishing this requires knowing
the latency of the parent.

Unfortunately, a modern processor schedules an instruc-
tion well before it executes, and the latency of some in-
structions can only be determined by their execution. For
example, the latency of a load depends on where in the
cache/memory hierarchy its data exists, and can only be
determined by executing the load and querying the caches.
At the time the load is scheduled, its latency is unknown.
At the time its dependents should be scheduled, its latency
may still be unknown. Hence, the timely scheduling of the
instructions that are dependent on a load is a problem in
modern processors.

The Intel Pentium 4 illustrates this problem. On an Intel
Pentium 4 [6, 7], a load is scheduled 7 cycles before it be-
gins execution. Its execution (load-use) latency is 2 cycles.
At the time a load is scheduled, its execution will not begin
for another 7 cycles. Two cycles after the load is sched-
uled, if the load will hit the (first-level) cache, its dependent
instructions must be scheduled to avoid pipeline bubbles.
However, two cycles after the load is scheduled, the load has
not yet even started executing, so its cache hit/miss status
is unknown. A similar situation exists in the Compaq Al-
pha 21264 [9]. A load is scheduled 2 cycles before it begins
execution, and its execution latency is 3 cycles. If the load
will hit the (first-level) cache, its dependents must be sched-
uled 3 cycles after it has been scheduled to avoid pipeline
bubbles. However, the load’s cache hit/miss status is still
unknown 3 cycles after it has been scheduled.

One possible solution to this problem is to schedule the de-
pendents of a load only after the latency of the load is known.
The processor delays the scheduling of the dependents until
it knows the load hit the cache. This effectively increases
the load’s latency to the amount of time between when
the load is scheduled and when its cache hit/miss status is
known. This solution introduces bubbles into the pipeline,
and can devastate processor performance. Our simulations
show that a processor using this solution drops 17% of its
performance (in Instructions Per Cycle [IPC]) compared to
an ideal processor that uses an oracle to perfectly predict

load latencies and perfectly schedule their dependents.
A better solution—and the solution that is the focus of

this work—is to use data speculation. The processor specu-
lates that a load will hit the cache (a good assumption given
cache hits rates are generally over 90%), and schedules its
dependents accordingly. If the load hits, all is well. If the
load misses, any dependents that have been scheduled will
not receive the load’s result before they begin execution. All
these instructions have been erroneously scheduled, and will
need to be rescheduled.

Recovery must occur whenever instructions are erroneous-
ly scheduled due to data (mis)speculation. Although mis-
speculation is rare, the overall penalty for all mis-specula-
tions may be high, as the cost of each recovery can be high.
If the processor only rescheduled those instructions that are
(directly or indirectly) dependent on the load, the cost would
be low. However, such a recovery mechanism is expensive to
implement. The recovery mechanism for the Compaq Alpha
21264 simply reschedules all instructions scheduled since the
offending load was scheduled, whether they are dependent
or not. Although it’s cheaper to implement, the recovery
cost can be high with this mechanism due to the reschedul-
ing and re-execution of the independent instructions. Re-
gardless of which recovery mechanism is implemented, as
processor pipelines grow deeper and issue widths widen, the
number of erroneously scheduled instructions will increase,
and recovery costs will climb.

To reduce the penalty due to data mis-speculations, the
processor can predict whether the load will hit the cache,
instead of just speculating that the load will always hit.
The load’s dependents are then scheduled according to the
prediction. As an example of a cache hit/miss predictor,
the Compaq Alpha 21264 uses the most significant bit of a
4-bit saturating counter as the load’s hit/miss prediction.
The counter is incremented by one every time a load hits,
and decremented by two every time a load misses. Unfortu-
nately, even with 2-level predictors [15], only about 50% of
the cache misses can be correctly predicted.

In this paper, we describe a new approach to hit/miss pre-
diction that is very accurate and space (and hence power) ef-
ficient compared to existing approaches. This approach uses
a Bloom Filter (BF), which is a probabilistic algorithm to
quickly test membership in a large set using hash functions
into an array of bits [2]. We investigate two variants of this
approach: the first is based on partitioned-address matching,
and the second is based on partial-address matching. Ex-
perimental results show that, for modest-sized predictors,
Bloom Filters outperform predictors that used a table of
saturating counters indexed by load PC. These table-based
predictors operate just like the predictor for the Compaq
Alpha 21264, except they have multiple counters instead of
just one. As an example, for an 8K-bit predictor, the Bloom
Filter mispredicts 0.4% of all loads, whereas the table-based
predictor mispredicts 8% of all loads. This translates to
an 7% improvement in IPC over the table-based predictor.
Compared to a machine with a perfect predictor, a machine
with a Bloom Filters has 99.7% of its IPC.

The remainder of the paper is organized as follows: The
next section explains data speculation fundamentals and re-
lated work. Section 3 explains BFs and how they can be
used as hit/miss predictors. Section 4 describes how the
SimpleScalar microarchitecture [3] must be modified to sup-
port data speculation using a BF as a hit/miss predictor.

Section 5 evaluates the performance of BFs, reporting their
accuracy as hit/miss predictors and the performance benefit
(in IPC) they can provide. Finally, Section 6 concludes.

2. DATA SPECULATION

2.1 The Fundamentals
To facilitate the presentation and discussion, we consider

a baseline pipeline model that is similar to the Compaq Al-
pha 21264 [9]. In the baseline model, the front-end pipeline
stages are: instruction fetch and decode/rename. After de-
code/rename, the ALU instructions go through the back-end
stages: schedule, register read, execute, writeback, and com-
mit. Additional stages are required for executing a load.
After decode/rename, loads go through schedule, register
read, address generation, two cache access cycles, an addi-
tional cycle for hit/miss determination (data access before
hit/miss using way prediction [4]), writeback, and commit.
Thus, there are a total of 7 and 10 cycles for ALU and load
instructions, respectively.

Figure 1 shows the problem in scheduling the instructions
that are dependent on a load. For simplicity, the front-end
stages are omitted. In this example, the add instruction con-
sumes the data produced by the load instruction. After the
load is scheduled, it takes 5 cycles to resolve the hit/miss.
However, the dependent add must be scheduled the third
cycle after the load is scheduled to achieve the minimum
3-cycle load-use latency and allow back-to-back execution
of these two dependent instructions. If the processor spec-
ulatively schedules the add assuming the load will hit the
cache, the add will get incorrect data if load actually misses
the cache. In this case, the add along with any other de-
pendent instructions scheduled within the illustrated 3-cycle
speculative window must be canceled and rescheduled.

To show the performance potential of using data spec-
ulation for scheduling instructions that are dependent on
loads, we simulated the SPECint2000 benchmarks. We com-
pare two scheduling techniques. The first is a no-speculation
scheme: the dependents are delayed until the hit/miss of the
parent load is known. The second uses a perfect hit/miss
predictor that knows the hit/miss of a load in time to (per-
fectly) schedule its dependents to achieve minimum load la-
tency. The performance gap (in IPC) between these two
extremes shows the performance potential of speculatively
scheduling the dependents of loads. Figure 2 shows the re-
sults. In these simulations, we modified the SimpleScalar
out-of-order pipeline to match our baseline model; and dou-
bled the default SimpleScalar issue width to 8, scaling the
other parameters accordingly. A more detailed description
of the simulation model is given in Section 5. On aver-
age, the IPC for perfect scheduling is 17% higher than the
IPC for the no-speculation scheme. Thus, the main focus of
this paper is to recover this 17% performance gap, by using
mechanisms for efficient load data speculation.

2.2 Related Work
The Compaq Alpha 21264 uses a mini-restart mechanism

to cancel and reschedule all instructions scheduled since a
mis-speculated load was scheduled [9]. While this mini-
restart is less costly than restarting the entire processor
pipeline, it is still expensive to reschedule (and re-execute)
both the dependent and the independent instructions. To
alleviate this problem, the Compaq Alpha 21264 uses the

load r1 <− 0(r2) schedule register addgen cache1 cache2 hit/miss writeback commit

add r3 <− r2, r1 (stall) (stall) (stall) schedule register execute writeback commit

3−cycle speculative window
Speculative issue for hitMinimum 3−cycle latency

Figure 1: Example of Data Speculation for a Load

0

0.5

1

1.5

2

2.5

3

Bzip Gap Gcc
Gzip Mcf

Par
se

r
Per

l
Twolf

Vor
tex Vpr

Ave
ra

ge

IP
C

no-speculation
perfect scheduling

Figure 2: No-Speculation vs. Perfect Scheduling

most significant bit of a 4-bit saturating counter as the load’s
hit/miss prediction. The counter is incremented by one ev-
ery time a load hits, and decremented by two every time a
load misses. The load’s dependents are scheduled accord-
ing to the prediction. If the prediction is wrong, either the
load was predicted to miss and it hit, in which case the ex-
ecution of the dependents will be unnecessarily delayed; or
the load was predicted to hit and it missed, in which case
dependents may have been erroneously scheduled and will
need to be rescheduled.

Yoaz et al. [15] used 2-level local predictors, 2-level global
predictors, and hybrid predictors for cache hit/miss predic-
tion. Their results show that these predictors only correctly
identify half of the misses (for SPECint95), leaving the other
half predicted as hits. Furthermore, they incorrectly identify
a small percentage of the hits as being misses.

The MIPS R10000 speculatively issues instructions that
are dependent on a load and reschedules them if the load
misses the cache [14].

The Intel Pentium 4 achieves a minimum 2-cycle load-
use latency by leveraging the fact that most accesses hit
the first-level (L1) cache. The scheduler issues the depen-
dent micro-operations (called uops) before the parent load
has finished executing [6, 7]. In most cases, the scheduler
assumes the load will hit the L1 cache. A ‘replay’ mecha-
nism is used to handle the case where the load misses the L1

cache. The replay logic keeps track of the dependent uops of
each speculative load. When a load misses, all its dependent
uops are re-executed with the correct data when that data
becomes available.

Morancho, Llabeŕıa, and Olivé describe a recovery mech-
anism for load latency misprediction [11]. A recovery buffer

retains all speculatively scheduled instructions. After a la-
tency misprediction, the load’s dependent instructions can
be re-scheduled directly from the recovery buffer as soon as
the load data becomes available. The recovery buffer allows
the processor to remove instruction from the scheduler early,
providing more space for other instructions.

3. BLOOM FILTERS
A Bloom Filter (BF) is a probabilistic algorithm to quickly

test membership in a large set using multiple hash functions
into an array of bits [2]. A BF quickly filters (i. e., identifies)
non-members without querying the large set by exploiting
the fact that a small percentage of erroneous classifications
can be tolerated. When a BF identifies a non-member, it is
guaranteed to not belong to the large set. When a BF iden-
tifies a member, however, it is not guaranteed to belong to
the large set. To put it more simply, the result of the mem-
bership test is either: it is definitely not a member, or, it is
probably a member. In this paper, we consider two variants
of the BF for filtering cache misses: one based on partitioned-
address matching, and the other based on partial-address
matching. To simplify our discussion, we first assume both
the BF and the cache use physical addresses. Afterwards,
we will describe using virtual addresses.

3.1 Partitioned-Address Bloom Filter
Consider a cache line address with n bits (ignoring the

offset bits). A large, direct-mapped array of 2n bits is re-
quired to precisely record whether each cache line address is
in the cache. To reduce the space and allow a quick access, a
partitioned-address BF can be constructed. Instead of using
the entire line address, the address can be split into m par-
titions, with each partition using its own array of bits. The
result is m sub-arrays with 2n/m bits, each of which records
the membership of the respective address partitions of lines
stored in the cache. A cache miss is identified when one or
more of the address partitions for the address of a requested
line does not belong to the respective address partition of
any line in the cache. A filter error is encountered when
a cache miss cannot be identified. This situation happens
when the line is not in the cache, but all m partitions of the
line’s address match address partitions of other cache lines.
The filter rate represents the percentage of cache misses that
can be identified.

Figure 3 illustrates how the partitioned-address BF works.
A load address is partitioned, in this example, into 4 equally
divided groups, A1, A2, A3, and A4. Each of the four ad-
dress partitions is used to index separate BF arrays, BF1,
BF2, BF3, and BF4, respectively. Each entry in the BF

Cache
Miss

R2R1

A1

R3

A2 A4

R4

A3

BF1 BF3 BF4BF2

Replaced Line Address:

Requested Line Address:

counter on
cache miss

decrement
counter on
cache miss

True if cache miss.
False if (maybe) cache hit.

increment

Figure 3: Partitioned-Address Bloom Filter for
Cache Miss Detection

arrays contains the information of whether the address par-
tition belongs to the corresponding address partition of any
line in the cache. If any of the 4 BF arrays indicates one
of the address partitions is absent from the cache, the re-
quested line is not in the cache. Otherwise, the requested
line is probably in the cache, but it’s not guaranteed to be.

Given the fact that a single address partition can exist
for multiple lines in the cache, the primary difficulty of the
partitioned-address BF is to maintain the correct member-
ship information. When a line is removed from the cache,
an exhaustive search is necessary to check if the address par-
titions for the address of the removed line still exist for any
of the remaining lines. To avoid such a search, each entry in
the BF array contains a reference counter that keeps track of
the number of cache lines with the entry’s corresponding ad-
dress partition. When a cache miss occurs, each counter for
the address partitions for the address of the newly-requested
line is incremented, while the counters for the address par-
titions for the address of the replaced line are decremented.
A zero count indicates the corresponding address partition
does not belong to any line in the cache. Although accurate,
this counter technique requires extra space in the BF arrays
for the counters along with adders to handle the updates.
A similar idea has been considered to reduce the number
of comparators for a set-associative cache [8] and to filter
cache-coherence traffic in a multiprocessor environment [12].

3.2 Partial-Address Bloom Filter
The partial-address BF uses the least-significant bits of the

line address to index a small array of bits. Each bit indicates
whether the partial address matches any corresponding par-
tial address of a line in the cache. The array size is reduced
to 2p bits, where p is the number of partial address bits. A
filter error occurs when the partial address of the requested
line matches the partial address of an existing cache line, but
the other portion of the line address does not match. We
call such cases collisions. The least-significant bits are se-

Cache Hit/Miss

BF Array

I n d e xT a g
Requested Line Address:

Offset

L1 Cache Tags

collision? (yes/no)

Partial Address (p bits)

Partial Address (p bits)
of Replaced Cache Line

reset bit on
cache miss

but no collision

set bit on
cache miss

Collision Detector

False if cache miss.
True if (maybe) cache hit.

Figure 4: Partial-Address Bloom Filter for Cache
Miss Detection

lected rather than more-significant bits to reduce the chance
of collisions. Due to memory reference locality, the more-
significant line address bits tend to change less frequently.
With a sufficient number of low-order partial address bits to
represent cache line addresses, collisions are rare [10].

The design of a partial-address BF is illustrated in Fig-
ure 4. A BF array with 2p bits indicates whether the cor-
responding partial address matches that of any cache line.
The BF array is updated to reflect any cache content change.
When a cache miss occurs, except for the caveat described
in the paragraph below, the entry in the BF array for the re-
placed line is reset to indicate that the line with that partial
address is no longer in the cache. Then, the entry for the
requested line is set to indicate that a line with that partial
address now exists in the cache.

If the partial address is wider than the cache index, when
two cache lines share the same partial address, they must
be in the same set in a set-associative cache. The BF array
indicates which partial addresses exist in the cache, so if
one of these lines is replaced, the BF entry for the replaced
line should not be reset, since the partial address still exists
for the line that was not replaced. When a cache line is
replaced, the collision detector checks the remaining cache
lines in the same set as the replaced line to see if any of
them have the same partial address as the replaced line. If
any do have the same partial address, the BF entry is not
reset. Otherwise, the entry is reset. The collision detection
is done in parallel with the cache hit/miss detection. The
BF array is updated on the detection of a cache miss.

3.3 Bloom Filters using Virtual Addresses
The hit/miss prediction for a load must be done before

the scheduling of its dependents. If the physical address is
not available in time to perform the prediction, the virtual
address must be used. When a virtual address is used to
access a BF, it is called a virtual-address BF. If the cache
is virtually indexed and tagged, the virtual-address BF op-

BF Array

p2 p2

Collision & Update Table
(CUT)

Cache Hit/Miss

TLB and
Cache Tag

Access
(p0+p1)

I n d e xT a g
Requested Line Address:

Offset

Partial Address (p0+p2)

p0

collision? (yes/no)

victim information

Collision Detector
reset bit on
cache miss

but no collision

set bit on
cache miss

of Replaced Cache Line
Partial Address (p0+p2)

False if cache miss.
True if (maybe) cache hit.

Figure 5: Partial-Virtual-Address Bloom Filter for
Cache Miss Detection

erates analogously to the BF and cache that both use only
physical addresses. However, if the cache is either virtually-
indexed physically-tagged or physically-indexed physically-
tagged, the BF array update for the virtual-address BF must
be modified. In this section, we describe these modifications.

With virtual addresses, two virtual addresses can map
to the same physical address, causing an address synonym.
With a virtual-address BF, the BF might identify the first
address as missing the cache, even though the line is in the
cache set identified by the second address. That is, the BF
identifies a load as missing the cache even though it hits.
This situation can arise regardless of whether the cache is
physically or virtually indexed. In this situation, the proces-
sor simply delays scheduling the load’s dependent instruc-
tions. Since cache hits by synonyms are rare, the perfor-
mance loss caused by the delayed scheduling is minimal. In
fact, for some virtually-indexed caches, the load-use latency
for a synonym hit is longer than for a non-synonym hit. For
scheduling, the processor may initially treat the synonym
hit as a cache miss, in which case the BF should identify the
synonym hit as a cache miss anyway.

A more essential issue is correctly updating the BF array
on cache misses. Let’s first focus on the partial-address BF
shown in Figure 5. To simplify our discussion, assume the
cache is physically indexed and tagged with p0+p1 index
bits, where p0 bits are within the page offset and p1 bits
are beyond the offset. During a cache access, p1 bits are
translated. Also assume p0+p2 partial virtual address bits
are used to access the BF, where p2 bits are beyond the page
offset. To correctly update the BF array, the p2 bits of each
cache line are stored in a Collision and Update Table (CUT).
When a line is replaced, its p2 bits are read from the CUT.
These p2 bits are then combined with the requested line’s
p0 bits to update the BF array.

The CUT is organized as a two-dimensional array and
indexed by the p0 bits. During each cache access, the set of
p2 bits indexed by p0 are read from the CUT. If a cache miss

is detected, the p2 bits of the victim (e. g., LRU) line in the
accessed cache set are compared to the p2 bits for the other
lines in that CUT set. If the victim’s p2 bits don’t match
any other line’s p2 bits, there is no collision, and the victim’s
p2 bits are used along with the p0 bits to reset the BF array
to indicate that the line with the p0+p2 partial address is no
longer in the cache. If the victim’s p2 bits do match another
line’s p2 bits, the victim and the other line share the same
partial address, and there is a collision. In this case, the BF
entry for the victim line is left alone. Then, the BF entry
for the requested line is set using the partial virtual address
of the requested line. Note that when the cache is virtually-
indexed physically-tagged, all the cache index bits are used
to access the CUT. In this case, only the partial address bits
beyond the virtual cache index bits need to be saved in the
CUT and compared for collision detection.

Handling a virtual partitioned-address BF is straightfor-
ward. Virtual address tags must be stored in the cache tag
array along with the physical tags. When a line is replaced,
the replaced line’s virtual address tag is used to update the
counter in each partitioned BF.

For the remainder of the paper, we will assume virtual-
address BFs. The virtual address needed to access the BF
is available after the address generation cycle. Due to its
rarity, we will omit discussions of synonym hits. If fact, for
our benchmarks there are no synonyms.

4. THE MICROARCHITECTURE
In our baseline model, ALU instructions require a min-

imum of 7 cycles: instruction fetch (IFE), decode/rename
(DEC), schedule (SCH), register read (REG), execute (EXE),
writeback (WRB), and commit (CMT). Loads extend the
execute stage to 4 cycles: address generation (AGN), two
cache access cycles (CA1, CA2), and hit/miss determina-
tion (H/M). Assuming a load hits the L1 cache, there is a
3-cycle speculative window in which the load’s dependents
and their children are scheduled. When a miss occurs, all of
the dependent instructions and their children scheduled in
these 3 cycles must be canceled and re-executed using the
correct data when it becomes available.

4.1 Predictor Timing and Mini-Restart
If data cache misses can be predicted early enough and

accurately enough, the processor’s scheduler can avoid in-
serting pipeline bubbles between a load and its dependent
instructions. To be effective, the load’s cache hit/miss pre-
diction must be done before its dependents must be sched-
uled. Thus, there are two basic issues: (1) when, and (2)
how fast the hit/miss prediction can be performed. Hit/miss
predictors that use saturating counters, like the one used by
the Compaq Alpha 21264, can access the counter at the be-
ginning of the pipeline. Since our pipeline has a minimum
3-cycle load latency, the prediction is available before any
of the load’s dependents need to be scheduled. If a miss is
predicted, the dependents are blocked from scheduling un-
til either the data comes back from the outer levels of the
memory hierarchy or the prediction is found to be incorrect.

The proposed Bloom Filter approach, on the other hand,
requires the load address to accurately identify (filter) misses.
This filtering can only be performed after the load address
is calculated in the address generation cycle. As shown in
Figure 1, the load’s dependent instructions must be sched-
uled the cycle after the load’s address generation to avoid

pipeline bubbles. By using a small BF, cache misses can be
filtered in the cycle after the address generation, which is
two cycles before the hit/miss determination. However, it is
still one cycle too late to prevent the dependent instructions
from scheduling.

To reap the prediction accuracy benefit provided by the
BF, the load’s dependents are always aggressively scheduled
assuming a cache hit. At the end of the cycle the depen-
dents are scheduled, the parent load has finished accessing
the BF. If a miss is identified, the dependents are canceled
and recovered in the next cycle. Since there is only a single-
cycle speculative window, a precise recovery of the load’s de-
pendents may be feasible without excessive hardware com-
plexity. This could be achieved by preventing the load’s
scheduled dependents from broadcasting their tags to their
dependents, inhibiting the wakeup of their dependents. All
independent instructions scheduled during this single-cycle
window would be allowed to continue.

The Compaq Alpha 21264 has a similar precise recovery
scheme to handle the dependents of floating-point loads. It
also has a 3-cycle minimum load-use latency (1 for address
generation and 2 for cache access). The cache hit/miss de-
tection is done in the second cache access cycle, so the spec-
ulative window is only 2 cycles. The dependents of floating-
point loads are always delayed from scheduling by one cycle.
Consequently, the two-cycle speculative window for integer
loads is reduced to a one-cycle window for floating-point
loads. When the dependents of a floating-point load are be-
ing scheduled, the hit/miss detection is being performed in
the same cycle. If a miss is detected, the dependents in this
one-cycle window are precisely recovered in the next cycle
[1]. This recovery should incur minimum penalty, as these
dependents have to wait for the load data to return from
the outer levels of the memory hierarchy anyway. The only
potential adverse impact is that these dependents unneces-
sarily occupy functional units.

If a load is predicted to hit the cache, and it is later
identified by the normal cache access as a miss, all depen-
dent instructions scheduled during the entire 3-cycle specu-
lative window have been or will be incorrectly executed. It
is not sufficient to only re-schedule those instructions that
directly depend on the load. Descendants of those depen-
dent instructions may have been scheduled, and also need
to be canceled and re-scheduled. A simple and workable
scheme is to squash all instructions scheduled during the 3-
cycle speculative window, as is done by the Compaq Alpha
21264. This simple recovery scheme reduces the hardware
complexity needed to track all the dependencies and spec-
ulative states. However, both dependent and independent
instructions scheduled in this 3-cycle window are canceled
and re-scheduled. Independent instructions are rescheduled
the cycle after the misprediction is detected. Dependent
instructions are rescheduled according to the correct com-
pletion time of the load, which in most cases is determined
by the level 2 cache access time.

Figure 6 illustrates the recovery mechanism for data mis-
speculation. Again, the first two pipeline stages are omitted
to simplify the figure. When the BF identifies a load as miss-
ing the cache, only those dependent instructions scheduled
in the same cycle are canceled. The cancellation does not
affect any independent instructions scheduled in this cycle,
as shown in Part (a) of the figure. When a miss cannot be
correctly filtered by the BF, and the miss is detected during

SCH REG EXE WRB CMT

SCH REG EXE WRB CMT

SCH REG EXE WRB CMT

SCH REG EXE WRB CMT

SCH REG EXE WRB CMT

SCHDependent: REG EXE Flush

SCH REG AGN CA2 M/HCA1
BF

Load: L2 Access

Dependent: SCH Flush

SCHIndependent: REG EXE Flush SCH REG EXE CMTWRB

Independent: SCH Flush

(4−cycle penalty)

(2−cycle penalty)

Cache Miss

(a) Cache Miss Filtered by BF: Canceled Only Dependents in 1−Cycle Window.

(b) Cache Miss Not Filtered by BF: Canceled All Instructions in 3−Cycle Window

Miss Filtered

Independent:

SCH REG AGN CA2 M/HCA1
BF

Load:

Dependent: SCH

(no penalty)

L2 Access

Speculative Window

Figure 6: Recovery and Re-execution for: (a) Cache
Miss Filtered by BF, and (b) Cache Miss Not Fil-
tered by BF

the regular cache access, all of the instructions that were
scheduled during the 3-cycle speculative window are can-
celed. Cancellation and re-execution involves resetting the
canceled instructions’ processor state. We assume it takes a
separate flush cycle before the canceled instructions can be
re-scheduled. Although independent instructions can be re-
scheduled right away, they encounter a minimum 2–4 cycle
penalty depending on where they reside in the speculative
window. For example, a 4-cycle penalty occurs for those in-
structions that were scheduled in the first of the three spec-
ulative cycles as marked in Part (b) of the figure. Other
factors such as data and resource dependencies may further
increase the number of penalty cycles.

4.2 Prefetching and Memory Dependencies
Compared with other cache hit/miss predictors, the BF

is unique in that misses that are identified must not exist
in the L1 cache. Therefore, once a miss is identified, it is
safe to issue a miss request to the second-level cache (L2). In
our pipeline model, this effectively reduces the L2 cache and
memory latencies by two cycles. Although other predictors
also allow early L2 cache access, they may incorrectly iden-
tify some L1 cache hits as being misses, introducing extra
penalties and complexity into the processor.

In our simulator, a Load-Store Queue (LSQ) is used to
detect and enforce memory dependencies. It also allows
loads to fetch data directly from an aliasing store in the LSQ
without accessing the cache. The memory dependence is de-
tected after the address of the load is generated (AGN). The
load is forced to wait if the address of any potentially aliasing
store in the LSQ is unknown. In our processor model, we as-
sume this memory dependence detection is done early and
accurately in the pipeline, which we model with a perfect
memory dependence predictor. This allows the scheduling

Fetch/Decode/Issue Width 8
Branch Predictor 8K-entry 4-way BTB

16-bit Gshare
RUU/LSQ Size 64
L1 Inst/Data 16KB 4-way

L2 Cache 4MB 8-way
Access Latency: L1/L2/Mem 2/7/100

Memory Ports 4
Integer Add/Mult ALU 4/2

Floating-P Add/Mult ALU 4/2

Table 1: Simulation parameters

of the cache access to be inhibited if the load depends on
a store in the LSQ. For the SPECint2000 benchmarks we
tested, half of them have a very low percentage (1–3%) of
loads which fetch data from the LSQ. However, the other
half have higher percentages, indicating the importance of
knowing memory dependencies before scheduling a cache
access. If memory dependence detection can not be done
early enough to avoid pipeline bubbles, cache accesses can
be speculatively scheduled before memory dependencies are
known. The speculative cache access—and any instructions
dependent on the load that were scheduled/executed—are
canceled and potentially re-scheduled and re-executed if a
memory dependence is later detected. The BF may also be
used in conjunction with a memory dependence predictor [5]
to provide more accurate scheduling of loads and their de-
pendents. Further discussion in this direction is out of the
scope of this paper.

5. PERFORMANCE EVALUATION
To evaluate the potential performance benefit of using a

BF as a cache hit/miss predictor, we modified SimpleScalar
to support BFs and other hit/miss predictors, and then ran
most of the SPECint2000 benchmarks through the simula-
tor. Our evaluation will compare the proposed BF technique
to the other hit/miss predictors. Our simulated machine is
a general-purpose out-of-order processor capable of issuing
8 instructions per cycle. The branch predictor consists of
an 8K entry 4-way set-associative BTB and a 16-bit Gshare
predictor. As described in Section 4, the pipeline is a min-
imum of 7 stages for ALU instructions and 10 stages for
loads. A small 64-entry reorder buffer (called the RUU in
SimpleScalar) was used for our studies as a larger instruction
window may affect the cycle time. We modeled a detailed
memory hierarchy, with the size and latency at each level
reflecting current trends. We slightly modified the origi-
nal SimpleScalar L1 cache: instead of updating the cache
tag array when a miss is detected, the tag array is updated
when the missed data comes back from the outer levels of
the memory hierarchy. This modification more accurately
simulates cache misses, since the LRU line is not removed
until the new data comes in.

Table 1 summarizes the simulation parameters. We simu-
lated 10 of the SPECint2000 benchmarks using the reference
input file. For each benchmark, we skip the first 500 million
instructions and collect result statistics on the next 500 mil-
lion instructions. We collect both prediction accuracy and
IPC for the BFs and other cache hit/miss predictors.

We simulated different sizes of the two BF variants. For

Prediction Method Array Size (in bits)

Partition-3 15360
Partition-4 4480
Partial-1x 512
Partial-4x 2048
Partial-16x 8192
Partial-64x 32768
Always-hit 0
Counter-1 4

Counter-128 512
Counter-512 2048
Counter-2048 8192
Counter-8192 32768

Table 2: Cache hit/miss predictors and their re-
quired storage

the partitioned-address BF, we simulated three (Partition-
3) and four (Partition-4) equal partitions of the line address
(27 bits). Each entry in the BF array maintains a counter
capable of counting the entire number of L1 cache lines. To
avoid overflow in our simulations, each counter was 10 bits.
For the partial-address BF, the BF array size ranges from
having only one entry per L1 cache line (Partial-1x) all the
way up to having 64 entries per L1 cache line (Partial-64x).
In our baseline model, the L1 data cache is 16KB with a 32-
byte line size. We also perform sensitivity studies on cache
size.

We also evaluate two previously proposed hit/miss pre-
dictors and some simple extensions to them. The first is
to always predict cache hit (Always-hit). This method does
not require any prediction table. The second is the predic-
tor in the Compaq Alpha 21264, which uses a single 4-bit
saturating counter (Counter-1). We also evaluate using an
untagged table of 4-bit saturating counters, indexed by the
PC of the load. We vary the size of the table from 128 coun-
ters (Counter-128) to 8192 counters (Counter-8192). Since
each counter is 4 bits, the total size of the Counter-128 pre-
dictor matches the size of the Partial-1x predictor. For the
counter-based predictors, the prediction is performed in the
instruction fetch cycle, and the counters are updated after
the cache hit/miss status is known. Table 2 summarizes the
predictors we simulated and the amount of storage they re-
quire. Note that besides the predictor array tables, other
logic such as adders and comparators are required to per-
form predictions.

5.1 Prediction Accuracy
Figure 7 plots the filtering rates of the BFs. Recall the fil-

tering rate is the percentage of misses identified (filtered) by
the BF. In general, partitioned-address BFs perform poorly.
The average filtering rate of Partition-3 is only about 45%.
Partition-4 (not shown) has a dismal 5% average rate. Due
to memory reference locality, the lowest partition of an ad-
dress provides the most information, with the upper parti-
tions providing almost no information. This is evident when
comparing Partition-3 to Partial-1x. The lowest partition of
Partition-3 uses the same 9 bits as Partial-1x. Yet the upper
two partitions used by Partition-3 only help to identify an
additional 3% of misses. For partial-address BFs, the filter-
ing rate improves dramatically as the size of the BF array

0

10

20

30

40

50

60

70

80

90

100

Bzip Gap Gcc
Gzip Mcf

Par
se

r
Per

l
Twolf

Vor
tex Vpr

Ave
ra

ge

C
ac

he
 M

is
s

Fi
lte

r
R

at
e

(%
)

Partition-3 Partial-1x Partial-4x Partial-16x Partial-64x

Figure 7: Cache Miss Filter Rate Using Partitioned
and Partial Address Bloom Filters

increases. For a modestly sized 8K-bit BF array, the average
filtering rate of Partial-16x is 97%.

Figure 8 shows the average (over all the benchmarks) cor-
rect and incorrect cache hit/miss prediction rates. It shows
the prediction accuracy for BFs as well as other predic-
tors. Correct predictions include both predict-hit-actual-
hit and predict-miss-actual-miss cases. Incorrect predictions
are separated into two groups. Incorrect-cancel is the case
where a hit is predicted, but the load actually misses the
cache. All speculatively scheduled dependents of the load
must be canceled and rescheduled. Incorrect-delay is the
case where a miss is predicted, but the load actually hits the
cache. This misprediction unnecessarily delays the schedul-
ing of the load’s dependents and hence injects bubbles into
the pipeline.

The predictors using saturating counters have a signifi-
cant percentage of predictions in the Incorrect-delay group,
and this percentage is insensitive to the predictor size. For
Counter-2048, 5.2% of predictions are in the Incorrect-delay
group and 2.7% are in the Incorrect-cancel group. The
BFs, on the other hand, don’t have any predictions in the
Incorrect-delay group. In addition, the percentage in In-
correct-cancel decreases dramatically with larger BFs. The
total misprediction rate is only 0.4% for Partial-16x using a
moderately sized 8K-bit BF array. As expected, the simple
Counter-1 and Always-hit predictors have the two highest
average misprediction rates.

5.2 IPC Improvement
Figure 9 compares the IPCs for several data speculation

methods. In addition to the different types of hit/miss pre-
dictors, we include the IPC of a machine that doesn’t use
any data speculation and of a machine that uses a perfect
hit/miss predictor (Perfect-sch). Also, the benefit of data
prefetching using Partial-16x and Perfect-sch are shown (la-
beled with -DP in the legend of the figure). We show results
for all the individual benchmarks since the IPC improve-
ments are very different among them. Partial-16x with-
out data prefetching shows a 17% improvement over No-
speculation and a 4% improvement over Always-hit. Com-
pared to Counter-1 and Counter-2048, the improvements
are 9% and 6%. With data prefetching, the improvements
rise to 19%, 6%, 11% and 8%, respectively. It is important
to point out that Partial-16x reaches 99.7% of the IPC of
Perfect-sch, and Partial-16x-DP reaches 99.7% of the IPC

50

60

70

80

90

100

Cou
nte

r-1

Cou
nte

r-1
28

Cou
nte

r-5
12

Cou
nte

r-2
04

8

Cou
nte

r-8
19

2

Alw
ay

s-h
it

Par
titi

on
-3

Par
tia

l-1
x

Par
tia

l-4
x

Par
tia

l-1
6x

Par
tia

l-6
4x

P
er

ce
nt

ag
e

C
or

re
ct

/In
co

rr
ec

t

Incorrect-cancel
Incorrect-delay
Correct hit/miss

Figure 8: Prediction Accuracies for Different Cache
Hit/Miss Predictors

of Perfect-sch-DP.
Among the benchmarks, Gcc, Perl, and Vortex show lit-

tle difference between the different data speculation meth-
ods. Analysis reveals that these three programs have a large
number of L1 instruction cache (I-cache) misses. The high
I-cache miss rate prevents instructions from entering the
pipeline, reducing the benefit of data speculation. The lower
instruction fetch rate greatly reduces the RUU occupancy,
which is measured as the average number of RUU entries oc-
cupied. Since the RUU occupancy is much lower, loads and
their dependents can stay in the RUU longer without block-
ing other instructions, so there is less of a difference between
No-speculation and aggressive speculation such as Partial-
16x. Table 3 summarizes the performance improvement of
Partial-16x over No-speculation for 3 different I-cache sizes.
Note the IPC improvement grows as the I-cache size in-
creases. The IPC improvement for Always-hit also grows as
I-cache size increases (not shown in the table), but not as
quickly as it does for Partial-16x.

5.3 Sensitivity Studies
In this section we examine the effect of BFs on processor

performance for various data cache sizes, RUU sizes, and
different branch predictors.

Figure 10 plots the IPC improvement of Always-hit, Par-
tial-16x, Partial-16x-DP, and Perfect-sch-DP over No-spec-
ulation for four different data cache sizes. We make three
observations. First, the bigger the cache, the better the IPC
improvement for all 4 data speculation methods. With big-
ger caches, scheduling becomes more important, because the
performance bottleneck caused by data cache misses is re-
duced. Thus, delaying the scheduling of a load’s dependents
until after its cache hit/miss status has been determined (as
is done by the No-speculation method) is a bigger loss of
opportunity. Second, the IPC of Always-hit improves faster
than the other methods as cache size increases. This is be-
cause its prediction accuracy is directly tied to the cache hit
rate, so it sees the biggest improvement in prediction accu-
racy as the cache size increases. The IPC improvement of
Partial-16x-DP over Always-hit reduces from 5.9% to 5.4%
to 4.9% to 4.3% as the cache size is increased from 8KB
to 64KB. Nevertheless, we expect future high-performance
processors will use smaller first-level caches to enable higher
clock frequencies. Third, due to high accuracy, Partial-16x-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Bzip Gap Gcc Gzip Mcf Parser Perl Twolf Vortex Vpr Average

IP
C

No-speculation Counter-1 Counter-2048 Always-hit Partition-3

Partial-16x Partial-16x-DP Perfect-sch Perfect-sch-DP

Figure 9: IPC Comparisons for Different Data Speculation Methods

Gcc Perl Vortex
I-cache IPC% I-miss% RUU-ocu. IPC% I-miss% RUU-ocu. IPC% I-miss% RUU-ocu.
8KB 7.7 6.3 15.5 5.3 8.5 14.3 1.5 10.5 14.7
16KB 10.7 4.2 19.8 7.0 6.0 17.6 4.6 6.9 22.2
32KB 16.3 2.0 27.6 13.6 2.9 26.4 7.9 4.3 30.5

Table 3: Percent IPC improvement, I-cache miss rate, and RUU occupancy for 3 I-cache sizes

8

10

12

14

16

18

20

8KB 16KB 32KB 64KB

Cache Size

IP
C

 Im
pr

ov
em

en
t (

%
)

Perfect-sch-DP
Partial-16x-DP
Partial-16x
Always-hit

Figure 10: IPC Improvement Over No-speculation
for Different Data Cache Sizes

DP achieves 99.9% of the IPC of the machine with a perfect
scheduler for large caches.

Figure 11 shows the IPC improvement of Partial-16x-
DP, Partial-16x, and Always-hit over No-prediction for three
RUU sizes: 32, 64, and 128. We make several observations.

First, the IPC improvement is the greatest for the small

RUU for all three methods. To achieve high performance
with a small RUU, instructions need to flow through the
RUU freely. Without data speculation, instructions that are
dependent on loads block the flow. Thus, data speculation—
even with all the rescheduling of dependent instructions due
to mis-speculations—is essential for high performance when
the RUU size is small.

Second, immediately prefetching the data when the BF
identifies a miss improves IPCs by an additional 2–3%.

Third, the IPC improvement for Always-hit drops faster
with increasing RUU size than the other two methods. And
the performance gap between Partial-16x and Always-hit
widens with bigger RUUs. To better illustrate this behav-
ior, Figure 12 plots the IPC improvement of Partial-16x-DP
and Partial-16x over Always-hit. In addition to the default
Gshare predictor, the figure plots the performance of the
two methods using a perfect branch predictor (labeled with
-perfectBR in the legend of the figure). The results clearly
show that the IPC improvement over Always-hit increases
for bigger RUUs. Our simulation results show that with a
small RUU, Partial-16x and Always-hit have similar RUU
occupancies even though Always-hit produces more mispre-
dictions. With a larger RUU, Partial-16x produces fewer
RUU-full stalls than Always-hit. Effectively, Partial-16x has
a larger instruction window in which to find instruction level

0

5

10

15

20

25

RUU=32 RUU=64 RUU=128

IP
C

 Im
pr

ov
em

en
t (

%
)

Partial-16x-DP
Partial-16x
Always-hit

Figure 11: IPC Improvement Over No-speculation
for Different RUU Sizes

0

2

4

6

8

10

RUU=32 RUU=64 RUU=128

IP
C

 Im
pr

ov
em

en
t (

%
)

Partial-16x Partial-16x-DP
Partial-16x-perfectBR Partial-16x-DP-perfectBR

Figure 12: IPC Improvement Over Always-Hit for
Different RUU Sizes

parallelism.
Lastly, in Figure 12, the IPC improvement of Partial-16x

grows faster with increasing RUU size for the perfect branch
predictor than for the default Gshare predictor. With a
perfect branch predictor, the performance bottleneck due to
branch mispredictions is eliminated, and instruction schedul-
ing becomes more important. In addition, RUU occupancy
is very high, since there are never any branch mispredictions
that flush the RUU. A critical scheduling resource—RUU
entries—becomes incredibly scarce. Partial-16x makes bet-
ter use of this critical resource than Always-hit, as it cancels
and reschedules fewer instructions. For a 128 entry RUU and
a perfect branch predictor, the proposed partial-address BF
improves IPC by more than 9% over the Always-hit method.
Note that as branch prediction technology improves, the per-
formance characteristics of real processors approach the per-
formance characteristics of processors with perfect branch
predictors.

6. CONCLUSION
Data speculation allows instructions that are dependent

on a load to be scheduled before the latency of the load is
known. A simple approach is to speculate (predict) that the
load will always hit the L1 cache and schedule its dependents
accordingly. Unfortunately, whenever a prediction is wrong,
the machine must recover all the mis-scheduled dependents,
and performance suffers. In this paper we described how a

Bloom Filter (BF) can be used to accurately predict cache
misses. With a reasonably sized BF, we can correctly pre-
dict 99% of all misses. For the SPECint2000 benchmarks
running on a modified SimpleScalar out-of-order model, the
performance of a machine with a BF improved by 19% over
a machine that delayed the scheduling of the load’s depen-
dents until the load’s hit/miss status was known, and by
6% over a machine that speculated loads always hit the
cache. We have also shown that this performance improve-
ment grows as the window size and branch prediction accu-
racy increase. We expect that our BF technique will have
an even greater performance advantage as pipelines deepen
and cache latencies increase.

ACKNOWLEDGEMENTS
Jih-Kwon Peir thanks Windsor Hsu at IBM Almaden Re-
search Center for early feedback on this paper. We also
thank the anonymous referees for their helpful comments.
This work is supported in part by NFS grants MIP-9624498
and EIA-0073473, and by Intel research donations.

REFERENCES
[1] Compaq Computer Corporation. Alpha 21264 Microproces-

sor Hardware Reference Manual, 1999.
[2] B. Bloom. Space/Time Tradeoffs in Hash Coding with Al-

lowable Errors. Communications of The ACM, 13(7):422–
426, 1970.

[3] D. Burger and T. Austin. The SimpleScalar Tool Set, Ver-
sion 2.0. Technical Report #1342, CS Department, Univ. of
Wisconsin-Madison, June 1997.

[4] B. Calder, D. Grunwald, and J. Emer. Predictive Sequen-
tial Associative Cache. Proc. of 2nd Int’l Symp. on High
Performance Computer Architecture, 1996.

[5] G. Chrysos and J. Emer. Memory Dependence Prediction
using Store Sets. Proc. of 25th Int’l Symp. on Computer
Architecture, 1998.

[6] P. Glaskowsky. Pentium 4 (Partially) Previewed. Micropro-
cessor Report, Aug. 2000.

[7] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The Microarchitecture of the Pen-
tium 4 Processor. Intel Technical Journal, Q1 2001.

[8] R. Kessler, R. Jooss, A. Lebeck, and M. Hill. Inexpensive Im-
plementations of Set-Associativity. Proc. of 16th Int’l Symp.
on Computer Architecture, 1989.

[9] R. Kessler. The Alpha 21264 Microprocessor. IEEE Micro,
19(2):24–36, 1999.

[10] L. Liu. Cache Design with Partial Address Matching. Proc.
of 27th Int’l Symp. on Microarchitecture, 1994.

[11] E. Morancho, J. Llabeŕıa, and A. Olivé. Recovery Mecha-
nism for Latency Misprediction. Proc. of 10th Int’l Conf. on
Parallel Architectures and Compilation Techniques, 2001.

[12] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary.
Jetty: Filtering Snoops for Reduced Energy Consumption
in SMP Servers. Proc. of 7th Int’l Symp. on High Perfor-
mance Computer Architecture, 2001.

[13] D. Papworth. Tuning the Pentium Pro Microarchitecture.
IEEE Micro, 16(2):8–15, 1996.

[14] K. Yeager. The MIPS R10000 Superscalar Microprocessor.
IEEE Micro, 16(2):28–41, 1996.

[15] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. Speculation
Techniques for Improving Load Related Instruction Schedul-
ing. Proc. of 26th Int’l Symp. on Computer Architecture,
1999.

