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Introduction

 What are Elliptic Curves?
 Curve with standard form y2 = x3 + ax + b    a, b ϵ ℝ

 Characteristics of Elliptic Curve
 Forms an abelian group
 Symmetric about the x-axis
 Point at Infinity acting as the identity element



Examples of Elliptic Curves



Finite Fields

 aka Galois Field

 GF(pn) = a set of integers {0, 1, 2, …, pn -1)
where p is a prime, n is a positive integer

 It is denoted by {F, +, x}
where + and x are the group operators



Group, Ring, Field



Why Elliptic Curve Cryptography?

 Shorter Key Length

 Lesser Computational Complexity

 Low Power Requirement

 More Secure



Comparable Key Sizes for 
Equivalent Security

Symmetric Encryption
(Key Size in bits)

RSA and Diffie-Hellman 
(modulus size in bits)

ECC Key Size 
in bits

56 512 112

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 512



What is Elliptic Curve Cryptography?

 Implementing Group Operations
 Main operations - point addition and point multiplication
 Adding two points that lie on an Elliptic Curve – results in a 

third point on the curve
 Point multiplication is repeated addition
 If P is a known point on the curve (aka Base point; part of 

domain parameters) and it is multiplied by a scalar k, Q=kP
is the operation of adding P + P + P + P… +P (k times)

 Q is the resulting public key and k is the private key in the 
public-private key pair



 Adding two points on the curve
 P and Q are added to obtain P+Q which 

is a reflection of R along the X axis

What is Elliptic Curve Cryptography?



 A tangent at P is extended to cut the curve at a point; 
its reflection is 2P

 Adding P and 2P gives 3P
 Similarly, such operations can be performed as many 

times as desired to obtain Q = kP

What is Elliptic Curve Cryptography?



What is Elliptic Curve Cryptography?

 Discrete Log Problem
 The security of ECC is due the intractability or 

difficulty of solving the inverse operation of finding k 
given Q and P

 This is termed as the discrete log problem
 Methods to solve include brute force and Pollard’s 

Rho attack both of which are computationally 
expensive or unfeasible

 The version applicable in ECC is called the Elliptic 
Curve Discrete Log Problem

 Exponential running time



ECC in Windows DRM v2.0
A Practical Example : 

Finite field chosen
p = 785963102379428822376694789446897396207498568951

Gx = 771507216262649826170648268565579889907769254176
Gy = 390157510246556628525279459266514995562533196655

y2 = x3 + 317689081251325503476317476413827693272746955927x + 
790528966078787587181205720257185354321100651934

Gx and Gy constitute the agreed upon base point (P) and the numbers in 
the above equation are values for the parameters a and b



Elliptic Curve Schemes

 Elliptic Curve Digital Signature Algorithm 
(ECDSA)

 Elliptic Curve Pintsov Vanstone 
Signature(ECPVS)

 Elliptic Curve Diffie-Hellman (ECDH)



Elliptic Curve Digital Signature 
Algorithm (ECDSA)

 Elliptic curve variant of Digital Signature 
Algorithm

Canadian postage stamp that uses ECDSA



ECDSA
 Signature Generation

Once we have the domain parameters and have decided on 
the keys to be used, the signature is generated by the 
following steps.

1. A random number k, 1 ≤ k ≤ n-1 is chosen
2. kG = (x1,y1) is computed. x1 is converted to its 
corresponding integer x1’
3. Next, r = x1 mod n is computed
4. We then compute k-1 mod q
5. e = HASH(m) where m is the message to be signed
6. s = k-1(e + dr) mod n. 

We have the signature as (r,s)



ECDSA
 Signature Verification

At the receiver’s end the signature is verified as follows:
1. Verify whether r and s belong to the interval [1, n-1] for the signature to be valid.
2. Compute e = HASH(m). The hash function should be the same as the one used for 
signature generation.
3. Compute w = s-1 mod n.
4. Compute u1 = ew mod n and u2 = rw mod n.
5. Compute (x1,y1) = u1G + u2Q.
6. The signature is valid if r = x1 mod n, invalid otherwise.

This is how we know that the verification works the way we want it to: 

We have, s = k-1(e + dr) mod n which we can rearrange to obtain, k = s-1(e + dr) which is 
s-1e +  s-1rd

This is nothing but we + wrd = (u1 + u2d) (mod n)

We have u1G + u2Q = (u1 + u2d)G = kG which translates to v = r.



Elliptic Curve Pintsov Vanstone 
Signature (ECPVS)

 Signature scheme using Elliptic Curves

 More efficient than RSA as overhead is 
extremely low



ECPVS
 Signature Generation

The plaintext message is split into two parts: part C representing the data 
elements requiring confidentiality and part V representing the data elements 
presented in plaintext. Both the parts are signed. The signature is generated 
as follows:

1. A random number k, 1 ≤ k ≤ n-1 is chosen.
2. Calculate the point R on the curve (R = kG).
3. Use point R and a symmetric encryption algorithm to get e = TR(C).
4. Calculate a variable d such that d = HASH(e || IA || V) 
where IA is the identity of the mailer terminal.
5. Now calculate the other part of the signature s as follows: s= ad + k(mod 
n).

The signature pair (s,e) is transmitted together with the portion V of the 
plaintext.



ECPVS
 Signature Verification

1. Retrieve QA (QA is mailer A’s public key)
2. Calculate the variable d = HASH(e || IA || V) using the 

same HASH algorithm as the one used for generating 
the signature.

3. Compute U = sG – dQA.
4. Recover C = Tu

-1(e).
5. Run a redundancy test on C. If the test fails, discard the 

message. Else, the plaintext is recovered.
We have, s = ad + k. Multiply by base point G to obtain sG = 

adG + kG which is dQA + R
Therefore, R = sG – dQA   which is U. Comparing the 

decrypted versions, m and m’ obtained using U and R, 
we ascertain the validity of the signature



Elliptic Curve Diffie-Hellman 
(ECDH)

 Elliptic curve variant of the key exchange 
Diffie-Hellman protocol.

 Decide on domain parameters and come 
up with a Public/Private key pair

 To obtain the private key, the attacker 
needs to solve the discrete log problem



ECDH
 How the key exchange takes place:

1. Alice and Bob publicly agree on an elliptic curve E 
over a large finite field F and a point P on that curve.
2. Alice and Bob each privately choose large random 
integers, denoted a and b
3. Using elliptic curve point-addition, Alice computes 
aP on E and sends it to Bob. Bob computes bP on E 
and sends it to Alice.
4. Both Alice and Bob can now compute the point 
abP Alice by multiplying the received value of bP by 
her secret number a and Bob vice-versa.
5. Alice and Bob agree that the x coordinate of this 
point will be their shared secret value.



Pros and Cons
 Pros

 Shorter Key Length
○ Same level of security as RSA achieved at a much shorter 

key length
 Better Security

○ Secure because of the ECDLP
○ Higher security per key-bit than RSA

 Higher Performance
○ Shorter key-length ensures lesser power requirement –

suitable in wireless sensor applications and low power 
devices

○ More computation per bit but overall lesser computational 
expense or complexity due to lesser number of key bits



Pros and Cons
 Cons

 Relatively newer field
○ Idea prevails that all the aspects of the topic may not 

have been explored yet – possibly unknown 
vulnerabilities

○ Doesn’t have widespread usage
 Not perfect

○ Attacks still exist that can solve ECC (112 bit key length 
has been publicly broken)

○ Well known attacks are the Pollard’s Rho attack 
(complexity O(√n) ), Pohlig’s attack, Baby Step,Giant
Step etc
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