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Detecting Critical Nodes in Interdependent Power
Networks for Vulnerability Assessment
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Abstract—Power networks and information systems become
more and more interdependent to ensure better supports for the
functionality as well as improve the economy. However, power
networks also tend to be more vulnerable due to the cascading
failures from their interdependent information systems, i.e., the
failures in the information systems can cause the failures of the
coupled portion in power networks. Therefore, the accurate
vulnerability assessment of interdependent power networks is of
great importance in the presence of unexpected disruptive events
or adversarial attacks targeting on critical network nodes. In
this paper, we study the Interdependent Power Network Disruptor
(IPND) optimization problem to identify critical nodes in an in-
terdependent power network whose removals maximally destroy
its functions due to both malfunction of these nodes and the
cascading failures of its interdependent communication network.
First, we show the IPND problem is NP-hard to be approximated
within the factor of (2 — €). Despite its intractability, we propose
a greedy framework with novel centrality functions based on the
networks’ interdependencies, to efficiently solve this problem in
a timely manner. An extensive experiment not only illustrates the
effectiveness of our approach on networks with different topolo-
gies and interdependencies, but also highlights some important
observations which help to sharpen the robustness of interdepen-
dent networks in the future.

Index Terms—Algorithm, computational complexity, experi-
ments, interdependent power networks, vulnerability assessment.

I. INTRODUCTION

HE RAPID development of technology has revolution-

ized the power networks and drastically increased their
interdependencies with information systems. That is, power
stations depend on communication networks for control and
management and communication networks depend on power
systems for their electricity support. In the meanwhile, such
growing interdependencies also dramatically impact the vul-
nerability of power systems by being exposed to threats not
only to themselves but also to the cascading failures induced
by information systems. In a typical attacking point of view,
an attacker would first exploit the network weaknesses, and
then only needs to target on some critical nodes in either power
networks or their interdependent communication networks,
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whose corruptions bring the whole network down to its knees.
In other words, nodes from power networks depend heavily on
nodes from their interdependent networks and vice versa. Con-
sequently, when nodes from one network fail, they cause nodes
in the other network to fail, too. For instance, an adversarial
attack to any essential Internet hosts, e.g., tier-1 ISPs such as
Qwest, AT&T or Sprint servers, once successful, may cause
tremendous breakdowns to both millions of online services
and the further large-area blackout because of the cascading
failures. A real-world example is the wide-range blackout that
affected the majority of Italy on 28 September 2003 [17], which
resulted from the cascading failures induced by the dependence
between power networks and communication networks. There-
fore, in order to guarantee the robustness of power networks
without reducing their performance by decoupling them from
information systems, it is important to identify those critical
nodes in interdependent power networks, beforehand.

There have been many studies assessing the network vulner-
ability [2], [3], [8], [10], [12], [15], [18]. Yet, these approaches
are either designed only for single networks or heavily de-
pendent on configuration models of interdependent networks.
The existing approaches [1]-[3], [14] for single networks are
based on various metrics, such as the degree of suspected nodes
or edges [2], the average shortest path length [1], the global
clustering coefficients [14], and the pairwise conductivity [2],
[3] and so on. However, when applying into interdependent
networks, their performances drop tremendously since these
metrics fail to cast the cascading failures in interdependent
networks. Later on, other researchers [8], [10], [12], [15],
[18] studied the vulnerability assessment on interdependent
networks, based on the size of largest connected component in
power networks after cascading failures. Although they showed
the effectiveness of this new metric, most of them focus on
the artificial models of interdependent networks, i.e., random
interdependency between networks, and ignore the detection of
top critical nodes in real networks.

Let us consider a simple example of interdependent networks
in Fig. 1, which illustrates a small portion of power network
(lower nodes), communication network (upper nodes) and their
interdependencies (dotted links). When we only take the single
power network into account, the failure of w7 destructs the
power network more than that of w1 since the largest connected
component is of size 6 ({1, usg, ..., ug}) when w7 fails, which
is smaller than 9 ({ws,...,u10}) When wu; fails. However,
if considering its interdependence upon the communication
network, the failure of u; will destroy the power network more
than that of u7. This is because the failure of #; causes the
failure of v1 in the communication network, which further fails
vg, v3, and vy since they are disconnected from the largest
connected component. Due to their interdependence of the
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Fig. 1. Example of Interdependent Power Network and Communication Net-
work.

nodes vy and w7 in the power network, these cascading failures
finally result in the largest connected component of the power
network to be {ug, ug, w19} of size only 3. Yet, the largest
connected component remains the same as in a single power
network after the failure of ur7.

This example illustrates an important point that the role of
one node could be totally different between single and inter-
dependent networks with respect to the vulnerability assess-
ment. Unfortunately, most of the existing works only illustrate
the low disruption tolerance in random interdependent networks
[8], [10], [12], [15], [18] and neglect to explore the significance
of each node in general interdependent networks. In this paper,
we study a new optimization problem, namely interdependent
power network disruptor, to assess the vulnerability of generic
power networks using the well-accepted measure, the size of the
largest connected component [8], [10], [12], [15], [18], when a
given number of nodes in power networks fail. We first show the
non-trivial NP-hardness proof of the IPND problem, which also
implies the inapproximability result. Due to its intractability, it
seems unrealistic for one to quickly obtain optimal solutions for
IPND problem within time constraint. To this end, we propose
a greedy framework with novel centralities to effectively solve
the IPND problem in a timely manner. The various novel greedy
functions are further empirically evaluated to be very effective
to various interdependent networks.

Our main contributions are summarized as follows:

— Show the (2 — €)-inapproximability of the IPND problem

on interdependent networks.

— Provide the greedy framework with various centralities,

solving IPND problem with competitive results.

— Validate the performance of our proposed algorithm on

a wide range of interdependent networks with different
scales, topologies, and interdependencies.

The rest of the paper is organized as follows. In Section II, we
introduce the interdependent network model, a well-accepted
cascading failure model and the formal definition of the IPND
problem. Section III includes the hardness and inapproxima-
bility results. The greedy framework is proposed in Section IV,
along with various centrality metrics. The experimental eval-
uation is illustrated in Section V. Finally, Section VI provides
some concluding remarks.

II. NETWORK MODELS AND PROBLEM DEFINITION

In this section, we first introduce our interdependent network
model and the well-accepted model of cascading failure. Using
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these models, we study the Interdependent Power Network Dis-
ruptor problem, to minimize the size of largest connected com-
ponent in the power network after cascading failures by se-
lecting a certain number of target nodes.

A. Interdependent Network Model

Considering an interdependent system, we abstract it into two
graphs, G, = (V;, E;) and G, = (V,, E..), and their interde-
pendencies, E,.. GG, and (. represent the power network and
communication network respectively. Each of them has a set of
nodes V,, V. and a set of links F,, £, which are referred to
as intra-links. In addition, E ;. are inter-links coupling GG, and
G, ie, Ey. = {(u,0)|lu € V,,v € V.}. Anode u € V, is
functional if it is connected to the giant connected component
of (G4 and at least one of its interdependent nodes in GG, is in a
working state. The whole interdependent system is referred to
as J(Gs, G, Es.).

B. Cascading Failures Model

In this paper, we use a well-accepted cascading failure model,
which has been validated and applied in many previous works
[8],[10], [12], [15], [18]. Initially, there are a few critical nodes
failed in network (¢, which disconnect a set of nodes from the
largest connected component of G;. Due to the interdependency
of two networks, all nodes in (7. only connecting to failed nodes
in G are also impacted, and therefore stop working. Further-
more, the failures cascade to nodes which are disconnected from
the largest connected component in (G, and cause further fail-
ures back to GG. The process continues back and forth between
two networks until there is no more failure nodes.

C. Problem Definition

Definition 1 (IPND Problem): Given an integer k and an in-
terdependent system J(G, G, F;.), which consists of two net-
works G, = (V,, E,), G. = (V., E.) along with their inter-
dependencies FE... Let LG+(T) be the size of the largest con-
nected component of G after the cascading failures caused by
the initial removal of the set of nodes 7" C V, in G,. The IPND
problem asks for a set T' of size at most & such that LG (T') is
minimized.

In the rest of paper, the pairs of terms interdependent, net-
works and coupled networks, node and vertex, as well as edge
and link, are used interchangeably.

III. COMPUTATIONAL COMPLEXITY

In this section, we first show the NP-completeness of
IPND problem by reducing it from maximum independent set
problem, which further implies that IPND problem is NP-hard
to be approximated within the factor 2 — ¢ for any ¢ > 0.

Theorem 1: IPND problem is NP-complete.

Proof: Consider the decision of IPND that asks whether
the graph Gy = (Vi.E;) in an interdependent system
J(Gs, Ge, Eq.) contains a set of vertices T C V; of size &
such that the largest connected component in G [V, \ T after
cascading failures is at most z for a given positive integer z.
Given T' € V,, we can compute in polynomial time the size
of the largest connected component in G, after the cascade
failures when removing 7' by iteratively identifying the largest
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Fig. 2. An example of reduction from MIS to IPND.

connected component and removing disconnected vertices in
(i, and G.. This implies IPND € NP.

To prove that IPND is NP-hard, we reduce it from the decision
version of the maximum independent set (MIS) problem, which
asks for a subset I C V with the maximum size such that no
two vertices in / are adjacent. Let an undirected graph G =
(V, E) where |V| = n and a positive integer k& < |V| be any
instance of MIS. Now we construct the interdependent system
J(Gs, G, Ey.) as follows. We select G, = G and G.. to be a
clique of size |V;|. Since G, and G, have the same size in our
construction, to construct the interdependency between GG and
G, we randomly match each node in V; to some arbitrary nodes
in V.. so as to form a one-to-one correspondence between V, and
V.. An example is illustrated in Fig. 2. We show that there is an
MIS of size at most & in G iff G in J(G, G, E;.) has an IPND
of size n — k such that the largest connected component in G,
after cascading failures is of size at most 1.

First, suppose I C V is an MIS for G with || < k. By our
construction, the largest connected component of G,[/] has the
size 1 since there is no more cascading failure in the clique G...
That is, V; \ T is also an IPND of J(G, G.. Es.).

Conversely, suppose that 77 C V, with |T'| = n — k is an
IPND of J(Gy, G,. Es..), that is, the largest connected compo-
nent of G4[V; \ T7] is of size 1. We show that V, \ T” is also
an MIS of &. Since the failure of nodes in GG. will not cause
any cascading failure in G, the largest connected component
of G4[Vi \ T’] is of size 1 iff V, \ T” is an independent set in
G. Thatis, V, \ T" is also an MIS of G. [ ]

As IPND is NP-complete, one will question how tightly we
can approximate the solution, leading to the theory of inap-
proximability. The inapproximability factor gives us the lower
bound of near-optimal solution with theoretical performance
guarantee. That said, no-one can design an approximation algo-
rithm with a better ratio than the inapproximability factor. Then,
we show that the above reduction implies the (2 — ¢)-inapprox-
imability factor for IPND in the following corollary.

Corollary 1: TPND problem is NP-hard to be approximated
into 2 — ¢ for any ¢ > (.

Proof: We use the reduction in the proof of Theorem 1.
Suppose that there is a (2 — £)-approximation algorithm .4 for
IPND. Then A can return the largest connected component in
G, of size less than 2 in our constructed instance if the optimal
size is 1. Thus algorithm .4 can be applied to solve MIS on G in
polynomial time because this size is integral. This contradicts
to the NP-hardness of MIS. ]

IV. GREEDY FRAMEWORK FOR IPND PROBLEM

In this part, we present different algorithms to detect the top
critical nodes using the greedy framework, which has been il-
lustrated as one of the most popular and effective approaches to
solve hard problems. The idea is to iteratively choose the most
critical node, whose removal degrades the functionality of the
network as much as possible. In detail, we propose three fol-
lowing different strategies to select a critical node in the system
at each iteration:

1) Select a node that maximizes the number of failed nodes

after the cascading failure.

2) Select a node that decreases the structural strength of the
system as much as possible. That is, when the number of
removed nodes is large enough, the system will become
weak. Therefore, the number of failed nodes increases con-
siderably under the effect of cascading failures.

3) Select a node that not only increases the number of failed
nodes but decreases the structural strength as well.

In the rest of this section, we describe three algorithms cor-
responding to the above strategies.

A. Maximum Cascading (Max-Cas) Algorithm

In maximum cascading (Max-Cas) algorithm, we iteratively
select a node = that leads to the most number of new failed
nodes, i.e., the maximum marginal gain to the current set of at-
tacked nodes T". When a new node « fails, it results in a chain
of cascading failures. The number of new failed nodes, referred
to as cascading impact number, can be computed by simulating
the cascading failures with the initial set 7 U {u} on the inter-
dependent system J as described in Section II-B. However, the
simulation of cascading failures is time-consuming due to its
calculation of cascading failures between two networks. Each
step in the cascading requires to identify the largest connected
component of each network.

To this end, we further improve the running time of our algo-
rithm by reducing the number of simulations. The idea is only to
check potential nodes whose removal creates at least one more
failed node in the same network due to the cascading failures.
That is, this node (or its coupled node) disconnects the network
which it belongs to, i.e., it (its coupled node) is an articulation
node of G (or G.), which is defined as any vertex whose re-
moval increases the number of connected components in G, (or
(). The reason is illustrated in the following lemma.

Lemma 1: Given an interdependent system J(G, G, Fs.),
removing a node u € V; from the system causes at least one
more node fail due to the cascading failure iff « (or its coupled
node v € V.) is an articulation node in GG, (or G..).

Proof: If u is an articulation node of G, the removal of
u will increase the number of connected components in G at
least to two. By the definition of cascading failures in G, all
nodes disconnected from the largest connected component will
be failed. Similarly, when v is an articulation node of G, re-
moving u causes v fail, then there is at least one more node in
(.. fail. After that, these nodes make coupled nodes in GG, fail as
well. On the other hand, if neither u nor v are articulation nodes,
the removal of v only makes v fail, and the rest of two networks
are still connected, which terminates the cascading failures. W

According to this property, the proposed algorithm first
identifies all articulation nodes in both residual networks using
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Hopcroft and Tarjan’s algorithm [11]. Note that this algorithm
runs in linear time on undirected graphs, which is faster than one
simulation of cascading failures. Thus, the running time of each
iteration is significantly improved especially when the number
of articulation nodes is small. Denote Max-Cas (G, T, {u})
as the impact number of u, Algorithm 1 describes the details to
detect critical nodes. In Algorithm 1, since it takes O(n) time
to compute the cascading impact number for each node and at
most | A| < n articulation nodes will be evaluated, the running
time is O(kn?) in the worst case. In practice, the actual running
time is much less due to the small size of A, which is further
illustrated in Section V.

Algorithm 1 Max-Cas Greedy Algorithm

Input: Interdependent system J(G, G, Es.), an integer k
Output: Set of £ critical nodes in T € V;
T+ 0
for i =1to k do
A, A
respectively
A—{ueViue As vV ((u,v) € Esc Av e A}
if A # 0 then
u <— argmax,ec 4 Max-Cas(Gs, T, {u})
T+ TU{u}
else
u < any node in V; \ T
end if
Update J[V; \ T
end for
Return T

set of articulation nodes of G5 and G

B. [Iterative Interdependent Centrality (IIC) Algorithm

As one can see, Max-Cas algorithm prefers to choose nodes
that can decrease the size of networks immediately. This can
mislead the algorithm to select boundary nodes and affect its
efficiency for large % since the residual networks still remain
highly connected even many critical nodes have been removed.
An alternative strategy is to identify the hub nodes which plays
a role to connect other nodes together in the network. Actu-
ally, this strategy has been proved to be efficient in single com-
plex networks by Albert ef al. [2], in which the removal of a
small fraction of nodes with highest degree centrality has been
shown to fragmentize the network to small components. How-
ever, since this centrality method is only for single networks, the
development of a new centrality measure is in an urgent need for
interdependent systems.

Intuitively, this new centrality measure is required to capture
both the intra-centrality (the centrality of nodes in each net-
works) and inter-centrality (the centrality formed by the inter-
connections between two networks). Given an interdependent
system J(G,, G., Fs.), node u in V; is more likely to be critical
if its coupled node v € G.. is critical. Furthermore, when node
is considered as a critical node, its neighbors are also more likely
to become important since the failures of these nodes can cause
w fail. That said, the criticality of these nodes implies the criti-
cality of their coupled nodes. To capture this complicated rela-
tion in interdependent systems, we develop an iterative method
to compute the centralities of nodes, called lterative Interdepen-
dent Centrality (IIC). Initially, the centralities of all nodes in
G are computed by the traditional centrality, e.g., degree cen-
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trality, betweenness centrality, etc. After that, these centralities
of nodes in GG are reflected to coupled nodes in .. and the cen-
tralities of nodes in (.. are updated based on the reflected values.
The centralities of nodes in G continue to be reflected on nodes
of G5 and update centralities of these nodes. Two key points of
IIC are the updating function and the convergence.

1) Updating Function: Considering the reflected values
from the other network as the weight of nodes, we modify the
weighted degree as the updated centrality of nodes, which is
defined as

w(v)

v

Clu) = aw(u) + (1 — ) Z

vi{u,w)EE

where w(-) is the reflected values (or the weight of nodes) and
the reservation factor « lying in the interval [0, 1]. The under-
lying reason we use weighted degree is that a node is usually
more critical if most of its neighbors are critical nodes. The
reservation factor shows that the importance of each node is not
only dependent on the reflected values from the other network,
but also the role in its own network.

2) Convergence: Next, we show that the centralities of nodes
can be computed based on matrix multiplications and prove the
convergence via this property. Let x! = [zrfjl Ty s,
vyl = [yi’,f,yzg, -+ Yp: ] be the normalized centrality vector
after ¢** iteration of G, and G... Suppose that two interdepen-
dent nodes have the same position vectors x* and y*, i.e., vf and

vi are interdependent. Then, we have

t—1
ay, Zayffl + (1 - «) Z y;} , YueV
vi{u,v)EE, v
t t-1 zi !
Yy = Oy, +(1—O[) Z d Yu € ‘/C
vi{u,v)EFE, v

Note that if we divide these vectors by a constant, then they
still represent the centralities of nodes in the system. Thus, after
each iteration, these centrality vectors are divided by some con-
stants C; and C,, which are chosen later to prove the conver-
gence.

Xt = X—t yt = y—t
c’ c.
Let M*® and M€ be n X n matrices such that
« ifu=w
M, = { d;b if (u,v) € B,
0 otherwise,
I’ ifu=w
Mg, =< d;b if(u,v) € E.
0 otherwise.

Then the relationship between x* and y* is rewritten as:
o AMsytfln o Mext-1
Cs Ce
Therefore
o Mo Mexi=?  Mxt~?
0.C. C.C.

where M = M?*MF¢ is called the characteristic matrix. Next,
we analyze the condition of this matrix to guarantee that x* con-
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verges by using the Jordan canonical form of M, defined as fol-
lows.

Theorem 2 (Jordan Canonical Form [19]): Any n X n ma-
trix M with n eigenvalues |[A;| > [A2] > -+ > |\, can be
represented as M = P.JP~! where P is an invertible matrix
and .J is Jordan matrix which has form

J = dlag(Jljp)

where each block .J;, called Jordan block, is a square matrix of
the form

1
i
According to its above definition, the power of the matrix M
can be computed as follows

Mk =(PJP YHYk=psFpL

Hence, M* converges when k — oc if and only if J* con-
verges. The powers of J is computed via the powers of Jordan
block Jf, .]2’“, e .]If.

where
I (YR (4 P PR Y
/\IS (]I)/\i.cfl e (d 112) )\f*(di*m

Ab

Note that the powers of J converges if and only if the powers
of all Jordan blocks converge. Thus, we focus on the conver-
gence of a block J* as stated in the following lemma.

Lemma 2: The convergence of a d x d Jordan block .J; only
depends on d and ;:

(1) If|A;| > 1 then J¥ does not converge when k — oc.

(2) If|A;] < 1 then J¥ converges to 0 when k — oc.

(3) If|\;| = L and A; # 1, then .J¥ does not converge when

(4) If\; = landd = 1, then J¥ = [1].
(5) IfX; = 1 and d > 1, then J¥ does not converge when

Proof: Cases (1), (3), (4), and (5) are trivial, thus we only
show the proof for case (ii). With |A;| < 1, every element of .J*
has form (¥)A¥ ™7 which converge to 0 as k — oc. [

According to this lemma, when normalized factors C,, C.
satisfies C;C, = [A1], we will have

t/2 t/2
(@) 5= ) e

Clearly, x* will converge when (.J/| A\ |)t/ ? converges. Then,
we have the following theorem.

Theorem 3: The centrality vector converges if and only if
the characteristic matrix has exactly one maximum magnitude
eigenvalue.

To compute the converged centrality vector, we first choose
« such that M has Ay > A,. In practice, we choose &« = 0.5
and centrality vectors always converge. Although it seems nec-
essary to compute the largest eigenvalue of M, we propose an
alternative method to avoid this time-consuming computation
as follows. Suppose that x2* converges to a vector X after #g it-
erations i.e., x = M™x%/|A;|*. Now we define the sequence
of vectors zg = x°, 2,11 = Mz;/|Mz;|, then:

P *Mto Z0 _ A4t0 X0
ty = — = — .
’ H:(J:ol | M 2] HEU:ol |M 2]

It means that x = Az;, where A is a scalar value. Therefore
zt, = X/||x||. Thus we can compute the centrality vector using
the recursive formula of z as described in Algorithm 2, then use
this algorithm as sub-routine to detect critical nodes in Algo-
rithm 3.

Algorithm 2 Iterative Interdependent Centrality
Input: Characterize matrix M and allowed error €
Output: Centrality vector
x<+1
error < +oo
while error > € do
y + Mx
norm < [|y||
y < y/norm
error < ||y — x||
X4y

end while

Return x

Algorithm 3 IIC-based Algorithm

Input: Interdependent system J(Gs, G, Es.), an integer k
Output: Set of £ critical nodes in T" € Vj
T+ 0
for i =1 to k do
a <+ 0.5, Compute M
€+ 1078
Compute centrality vector x using Algorithm 2.
u 4 argmaxy,\ 7 X[u]
T+ TU{u}
Update J[V; \ T
end for
Return T

Time Complexity: Since two matrices M* and M ¢ have only
(2|Eq| +|V|) and (|E.| + |V.|) non-zero elements, the product
Mx = M*M¢°x takes O2|E,| + |Vi| + 2|E:| + |V.|)
time using sparse matrix multiplication. The conver-
gence speed is |Ar|/|A2|, thus the number of iterations
is O(log(1/e)/log |A1|/|A2|). Therefore, the total run-
ning time to compute iterative interdependent centrality is
O((|Es + E.log(1/¢€)/log |A1]/|A2]). Thus, the total time to
detect critical nodes is O(k{|F. + E.|)log(1/€)/log |A1|/|A2]).

C. Hybrid Algorithm

Motivated by the advantages of Max-Cas and IIC algorithms,
we further design a hybrid algorithm by taking advantage of
them. As one can see, Max-Cas only works well when networks
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are loosely connected since it mainly aims to create as many
failed nodes as possible instead of making the network as weak
as possible. On the other hand, IIC algorithm can make the net-
work weak but it does not work well as Max-Cas when networks
are loosely connected. Thus, the idea of hybrid algorithm is to
remove as many nodes as possible and make networks weaker
in turn. That is, we use Max-Cas and IIC algorithms in odd and
even iterations respectively, as described in Algorithm 4 . Since
the running time of IIC is much smaller than Max-Cas, its run-
ning time is about a half of Max-Cas, which will be empirically
shown in Section V.

Algorithm 4 Hybrid Algorithm
Input: Interdependent system J(Gs, G., Es.), an integer k
Output: Set of £ critical nodes in T' € V;
T+ 0
for i =1to k do
if 7 is odd then
Select u as Max-Cas algorithm
else
Select u as IIC algorithm
end if
T+ TuU{u}
Update J[V, \ T
end for
Return T

V. EXPERIMENTAL EVALUATION

A. Dataset and Metric

In the experiment, we evaluate Max-Cas, IIC, and Hybrid al-
gorithms, with respect to the size of giant connected component
(GCC) and the running time, on various real-world and synthetic
datasets.

In terms of power networks, we use both real Western States
power network of the US [20] with 4941 nodes and 6594 edges,
and the synthetic scale free networks. This network as well as
other communication networks belong to a class of networks
called scale-free networks in which the number of nodes with
degree d, denoted by P(d), is proportional to d 7 i.e., P(d) ~
d~? for some exponential factor 3 > 0. According to [4], power
networks are found to have their exponential factors J between
2.5 and 4. In order to do a more comprehensive experiment, we
further generate more types of synthetic power networks with
different exponential factors, using igraph package [9].

In addition, due to the lack of data describing interdependen-
cies between any communication networks and the real-world
power network, we use the synthetic scale-free networks, repre-
senting communication networks, e.g., Internet, telephone net-
work, etc. Since most communication networks are observed to
have the scale free property with their exponential factors /3 be-
tween 2 and 2.6 [6], [21], we generate communication networks
with component factors of 2.2 or 2.6.

For the sake of coupling method, motivated by the observa-
tion from real-world interdependent systems in [16], we develop
a realistic and practical coupling approach, Random Positive
Degree Correlation Coupling (RPDCC) scheme. In this scheme,
nodes with high degrees tend to coupled together and so do
nodes with low degrees, thus the degree correlation of coupled
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nodes is positive as described in [16]. The detail of RPDCC
strategy will be discussed in the Appendix.

Finally, each experiment on synthesized systems is repeated
100 times to compute the average results.

B. Performance of Proposed Algorithms

In order to show the effectiveness of our proposed algorithms,
due to the intractability of IPND problem and the time consump-
tion to obtain optimal solutions, we focus on comparing them
with traditional centrality approaches which are often used in
network analysis [5], including degree centrality (DC), close-
ness centrality (CC), betweenness centrality (BC) [7], and brid-
geness centrality (BRC) [13]. In these approaches, the & nodes
of largest centralities in power networks are selected as crit-
ical nodes. Particularly, we test our approaches on the following
three types of datasets:

1) WS System: US Western states power network — Scale-

free communication network with 5 = 2.2.
2) SS System: Scale-free power networks with § = 3.0—
Scale-free communication network with 8 = 2.2.
3) Eqg-SS System: Scale-free power and communication net-
works with the same § = 2.6.
Here we choose the exponential factor # according to the real-
world power networks and communication networks, as men-
tioned above in V-A .

Fig. 3 reports the comparison of performance between dif-
ferent approaches in these three interdependent systems. In
these figures, all of three proposed algorithms outperform CC
(the best traditional centrality approach) for any number of
k critical nodes. When & becomes larger, the interdependent
systems have totally destroyed by choosing these critical nodes
using our algorithms, while more than 60% of nodes remain
intact if selecting nodes with highest traditional centralities. Es-
pecially in WS interdependent system consisting of real-world
US Western states power system, the number of functional
nodes remains nearly 5000 even 50 nodes are identified using
CC, whereas it is sufficient to destroy the whole system only
by removing 20 nodes using our Hybrid or Max-Cas approach.
That is, these traditional approaches perform much worse
compared with our algorithms, especially when the number of
attacked nodes is large. Thus, the traditional methods cannot
identify a correct set of critical nodes in interdependent sys-
tems. The reason is that these approaches can only reflect
the importance of each node in single power networks rather
than interdependent systems, and they ignore the impact of
cascading failures to interdependent systems.

Comparing our three proposed approaches, as revealed in
Fig. 3, IIC runs fastest in spite of its worst performance, roughly
1000 times faster than Max-Cas in WS interdependent system.
We also notice that the performance of Max-Cas and Hybrid
algorithms is very close while Hybrid algorithm runs about 2
times faster than Max-Cas algorithm. In particular, Max-Cas has
better performance than Hybrid algorithm in SS interdependent
system, yet worse performance in the other two systems. This
is because the power network with 5 = 3.0 is very loosely con-
nected and fragile in SS interdependent systems. Thus, Max-Cas
strategy can destroy the system quickly and easily. However,
since nodes are better connected in the other two systems, es-
pecially Eq-SS, Hybrid algorithm is more efficient due to its
strategy that makes networks weak first and then destroys them.
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Fig. 3. Performance Comparison on Different Interdependent Systems: WS System (a, b), SS System (c, d), and Eq-SS System (e, f).

As illustrated in Fig. 3(c), the performance of Hybrid is lower
than Max-Cas initially, but higher than Max-Cas when the net-
works get weak enough. Additionally, in all of these systems,
when the number of removed nodes reach to a certain value,
the whole system is failed. These numbers are about 20 for WS
and SS system and 40 for Eq-SS system. This shows that in-
terdependent networks are vulnerable, especially when loosely
connected.

C. Vulnerability Assessment of Interdependent Systems

With the effectiveness of Hybrid algorithm observed through
the above experiments, we confidently use it to further assess
the vulnerability of interdependent systems and explore some
insight properties.

1) Different Coupled Communication Networks: We are in-
terested in investigating the vulnerability of a certain power
network when it is coupled with different communication net-
works. First, we fix one synthetic power network by generating
a scale-free network with 7 = 3 according to [4]. The coupled
communication networks are also generated as scale-free net-
works, with their exponential factors 5 between 2.5 and 2.7, as
mentioned above. All generated networks have 1000 nodes.

As illustrated in Fig. 4, the power networks tend to be more
vulnerable when their coupled communication networks are
more sparse, i.e., with larger exponential factor J. That is,
it gives us an intuition that the power networks will become
more vulnerable when their coupled networks are easy to be
attacked. In particular, in order to destroy the power networks,
the numbers of critical nodes in them are 23, 17, and 11 when
their coupled communication networks have 7 = 2.5, 5 = 2.6
and 0 = 2.7, respectively, which indicates some key thresholds
to protect the function of power networks with the knowledge
of their interdependent networks.

2) Disruptor Threshold: In this part, we evaluate an impor-
tant indicator of the vulnerability, the disruptor threshold which
is the number of nodes whose removal totally destroys the whole
system. The smaller it is, the more vulnerable the system is. We
would like to observe the dependence of the disruptor threshold
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Fig. 4. The Vulnerability Of A Fixed Power Network.

on the network size. Particularly, we generate two scale-free net-
works with the same size and exponential factors /3 of 3.0 and
2.2, corresponding to power and communication networks, then
couple them using RPDCC scheme.

As shown in Fig. 5, the disruptor threshold provided by all
proposed algorithms is small and increases slowly with respect
to the growth of the network size. When the network size is
raised by 5 times, from 1000 to 5000 nodes, the disruptor
threshold only increases roughly 3 times. When the size of
network is 5000, the disruptor thresholds of Max-Cas and
Hybrid algorithms are roughly 51 and 57. This implies that
the removal of 1% number of nodes is enough to destroy
the whole system. Even the IIC algorithm needs to destroy
only 1.5% fraction of nodes to break the system down. Large
interdependent systems seem to be extremely vulnerable under
different attack strategies due to the following reason. When the
network size grows up, the possibility that a high degree node
is dependent on a low degree node also runs up. As a result,
it is easier to disable the functionality of high degree nodes
which often play an important role in the network connectivity.
Therefore, the vulnerability of the interdependent system needs
to be reevaluated regularly, especially fast growing up systems.

3) Different Coupling Schemes: Another interesting obser-
vation is to investigate the impacts of the way nodes are cou-
pled to the vulnerability of interdependent system. Apart from
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the RPDCC scheme, we evaluate the robustness with other three
coupling strategies, as follows:

1) Same Degree Order Coupling (SDOC): The nodes of i*"
highest degree in two networks are coupled together.

2) Reversed Degree Order Coupling (RDOC): The node of
i*® highest degree in one network is coupled with the node
of i*" lowest degree in the other network.

3) Random  Negative Degree Correlation Coupling
(RNDCC): A node of higher degree in one network
are randomly, with lower probability, to couple with an-
other node of higher degree nodes in the other network.

Note that the RNDCC scheme is the opposite strategy to the
RPDCC scheme (in the Appendix). We test on the interdepen-
dent systems, consisting of a power network with # = 3 and a
communication network with § = 2.2 using the four different
coupling schemes. All networks have 1000 nodes.

Fig. 6 reports the vulnerability of power networks when cou-
pling them with communication networks in different manners.
As one can see, SDOC provides the most robust interdepen-
dent system, although it is not practical. The size of the re-
mained giant connected component decreases slowly when the
number of removed nodes increases. On the other hand, RDOC
makes the system very vulnerable, which can be destroyed by
only removing one node from the power network. This is be-
cause the nodes of lower degree in communication networks
are very easy to be failed, which, immediately, cause the fail-
ures to their coupled nodes of higher degree in power networks.
When many high degree nodes are removed, the network is easy
to be fragmented which leads to the destruction of the whole
system shortly. The interdependent systems with the other two
schemes, RPDCC and RNDCC, illustrate their robustness be-
tween those using SDOC and RDOC, due to the random factors
in RPDCC and RNDCC. Compared with RNDCC, systems cou-
pled by RPDCC are almost twice more robust because of their
positive correlations. These results point out an important prin-
ciple that the higher correlation between the degrees of coupled
nodes, the stronger the interdependent system is. In other words,
anode of high degree in one network should not be coupled with
anode of low degree in the other network; otherwise, this node
will be a weak point to attack.

VI. CONCLUSION

In this paper, we studied the optimization problem of
detecting critical nodes to assess the vulnerability of in-
terdependent power networks based on the well-accepted
cascading failure model and metric, the size of largest con-
nected component. We showed its NP-hardness, along with
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its inapproximability. Due to its intractability, we proposed
a greedy framework with various novel centralities, which
measures the importance of each node more accurately on
interdependent networks. The extensive experiment not only
illustrates the effectiveness of our approaches in networks with
different topologies and interdependencies, but also reveals
several important observations on interdependent power net-
works.

APPENDIX
RPDCC/RNDCC COUPLING SCHEME

In the appendix, we present the RPDCC scheme to randomly
couple two networks with positive degree correlation. Given
two network G4 and G, we form two weighted sets that con-
tain vertices of G and G, as elements and their degrees as
weights. Then we generate two random weighted permutations
(o0, ... 00 Y and {uf 0 ... ¢ } of nodes in G, and
G . as described in in Algorithm 5, then v’ is coupled with 4°
1 € ¢ < n. In the following theorem, we show that a node
of larger weight has smaller expected index in each permuta-
tion, that is, nodes of high degrees in two permutations tend to
have low indices. In other words, this results in the positive cor-
relation between degrees of coupled nodes. (For RNDCC, we
couple 4° with 7 _..)

n—1°

Algorithm 5 Random weighted permutation

Input: A weighted set of n elements X = {z1, 2o, ...
with weights w(-)
Output: Weighted random permutation Y of X.
total « >0 w(z;)
for :=1ton do

e + arandom selected element in X with probability
w(e)/total

Y[i] + e; X + X \ {e}; total < total — w(e)
end for
Return Y

y Tn}

Theorem 4: In the random weighted permutation, an ele-
ment with larger weight has lower expected index than an ele-
ment with smaller weight.

Sketch of Proof: Let E( X, e) be the expected index of an
element e in the random weighted permutation. Then, we have:

z 3 )<1+E<X\{z} ).

ex\{},E\

E(X,e) =
TEY

Therefore, E(X, e1) < E(X, e2) ifw(e1) > w(ez). [ ]
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