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ABSTRACT
Community is an important attribute of Pocket Switched Net-
works (PSN), because mobile devices are carried by people
who tend to belong to communities. We analysed commu-
nity structure from mobility traces and used for forwarding al-
gorithms [12], which shows significant impact of community.
Here, we propose and evaluate three novel distributed commu-
nity detection approaches with great potential to detect both
static and temporal communities. We find that with suitable
configuration of the threshold values, the distributed commu-
nity detection can approximate their corresponding centralised
methods up to 90% accuracy.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer Com-
munication Networks—Distributed Systems; I.6 [Computing
Methodologies]: Simulation and Modeling

General Terms
Measurement, Experimentation, Algorithms

Keywords
Distributed Community Detection, Delay Tolerant Networks,
Network Measurement, Social Networks

1. INTRODUCTION
Pocket Switched Network (PSN) [1] is a kind of Delay Toler-
ant Networks (DTN) [6] that provides intermittent communi-
cation for humans carrying mobile radio devices. Traditional
naive multiple-copy-multiple-hop flooding schemes have been
empirically shown to work well in dense environments such
as academic conferences, and they provide fair performance
in sparse settings, such as city-wide communications, in terms
of delivery ratio and delay [1]. However, in terms of delivery
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cost, the naive approach is far from satisfactory because it cre-
ates a lot of unwanted traffic as a side-effect of the delivery
scheme, and the overhead rapidly becomes unacceptable in a
contentious, vulnerable and resource-scarce mobile network.

In the research community, it is widely believed that iden-
tifying community information about recipients can help se-
lect suitable forwarders and reduce the delivery cost compared
to naive “oblivious” flooding. This is a reasonable intuition,
since people in the same community are likely to meet regu-
larly and hence be appropriate forwarders for messages des-
tined for other members of their community. Similarly, in the
area of sociology, the idea of “correlated interaction” is that
an organism of a given type is more likely to interact with an-
other organism of the same type than with a randomly chosen
member of the population [22]. If the correlated interaction
concept applies, then our intuition is that using this commu-
nity information to influence forwarding paths may be advan-
tageous. Hence identifying the local communities of each mo-
bile device can be important to improve forwarding efficiency
in PSN.

Many centralised community detection methods have been
proposed and examined in the literature (see the recent review
papers by Newman [21] and Danon et al. [3]). These cen-
tralised methods are useful for offline data analysis on mobility
traces collected to explore structures in the data and hence de-
sign useful forwarding strategies, security measures, and killer
applications. But as self-organising networks, we would also
ask whether the mobile devices can sense and detect their own
local communities instead of relying on a centralised server,
which leads to the area of distributed community detection.
Clauset [2] defines a measure of local community structure
and an algorithm that infers the hierarchy of communities that
encloses a given vertex by exploring the graph one vertex at
a time. Although its original design was for graphs with a
known topology instead of dynamics temporal graphs such as
PSN, it provides a motivation for us to examine different cen-
tralised community detection algorithms and investigate the
possibility of developing a distributed version.

The rest of this paper is structured as follows. We introduce
the experimental data sets in Section 2, followed by a sum-
mary of community detection methods and routing methods
in Section 3. We discuss three distributed community detec-
tion algorithms in Section 4. We evaluate the distributed al-
gorithms against centralised algorithm in Section 5, and intro-
duce some similarity measures. Finally we conclude the paper
with a brief discussion.



2. EXPERIMENTAL DATASETS
The experimental data we used were gathered by the Haggle
Project [4], MIT Reality Mining Project [5] and UCSD wire-
less experiment [19].

• In Cambridge, the iMotes were distributed mainly to
two groups of students from University of Cambridge
Computer Laboratory, specifically undergraduate year-
one and year-two students, and also some PhD and Mas-
ters students.

• In Reality, 100 smart phones were deployed to students
and staff at MIT over a period of 9 months. These
phones ran software that logged contacts with other
Bluetooth enabled devices by performing Bluetooth de-
vice discovery every five minutes, as well as logging
information about the cellular tower with which they
are associated (a total of 31,545 different towers were
logged).

• In UCSD, PDAs were used to log the visibility of ac-
cess points (APs) from WiFi networks, for a duration of
three months. We required data about device-to-device
transmission opportunities, so the raw data sets were
pre-processed as in [1].

Previously the characteristics of these data, such as inter-
contact and contact distribution, have been explored in several
studies [1] [16], to which we refer the reader for further back-
ground information. Table 1 summarises these three datasets:

Experimental data set Cambridge UCSD Reality

Device iMote PDA Phone

Network type Bluetooth WiFi Bluetooth

Duration (days) 11 77 246

Granularity (seconds) 600 120 300

Number of Experimental Devices 54 273 97

Number of External Devices 11,357 NA NA

Number of internal contacts 10,873 195,364 54,667

Average # Contacts/pair/day 0.345 0.034 0.024

Number of external contacts 30,714 NA NA

Table 1: Characteristics of the three experiments

3. RELATED WORKS
Community detection in complex networks has attracted a lot
of attention in recent years. Community structures are usually
substructures/subgraphs corresponding to important functions,
and examples can be found in many areas, such as World Wide
Web [7], biological networks [9], social networks [21], and
also the Internet [18]. In PSN, community structure would cor-
respond to human communities or some structures which are
beneficial for forwarding efficiency [12]. The recent reviews
[21] and [3] may serve as introductory reading in community
detection methods. Besides the methods mentioned in the two
reviews papers, we also introduce the k-CLIQUE community
detection method by Palla et al. [23] and the weighted com-
munity analysis methods by Newman [13], which are used to
compare with our distributed algorithms in this paper.

For routing and forwarding in DTN and mobile ad hoc net-
works, there is much existing literature. Vahdat et al. proposed

the epidemic routing [26] which is similar to the “oblivious”
flooding scheme we evaluated in this paper. Spray and Wait
[25] is another “oblivious” flooding scheme but with a self-
limited number of copies. Grossglauser et al. proposed the
two-hop relay schemes [8] to improve the capacity of dense
ad hoc networks. Lindgren et al. proposed PROPHET [17],
which is a probability routing scheme based on the very early
belief that community will help with routing decisions. There
are also many other varied schemes such as the adaptive rout-
ing [20] by Musolesi et al., the practical routing scheme [14]
by Jones et al. and Mobyspace [15] by Leguay et al., these
are all examples of how to use system and mobility informa-
tion to improve the efficiency of routing and forwarding from
“oblivious” flooding. So far, there are few empirical evalua-
tions of the impact of community information on forwarding
efficiency except a very early study by Hui et al. [12] based
on a priori affiliation information and a technical report [11]
based on centralised detected communities.

4. DISTRIBUTED COMMUNITY DETEC-
TION

Human society is composed of many relationships and com-
munities. Two persons can be strangers, familiar strangers,
community members, friends or families. We think contact
duration and number of contacts, which are correlated to fa-
miliarity and regularity, are two key criteria by which to cate-
gorize these relationships.

Figure 1 shows these four kinds of relationship from the
Cambridge data. This categorisation may not be very accurate
but it did give us some hints on how to use our mobile devices
to infer different categories of social contexts from our daily
contact patterns by setting thresholds for the contact duration
and number of contacts.

In this section, we will introduce three distributed com-
munity detection algorithms, named SIMPLE, k-CLIQUE, and
MODULARITY. We will first introduce definitions and terms,
followed by the details of three algorithms we propose here.

4.1 Definitions
The common terminologies for all these algorithms are:
Familiar set: we assume each vertex (mobile device) will
keep a map of vertices they have encountered with the cor-
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responding cumulative contact durations. When the cumula-
tive contact duration with a vertex exceeds a certain threshold
Tth, it is promoted to be included into its familiar set z. In
the language of graph theory, these two vertices now have an
undirected edge between them. For a given vertex, υi, it has
perfect knowledge of its own familiar set (by definition), de-
noted zi. The same vertex also could have gathered some
incomplete knowledge of other vertices’ familiar sets, e.g. a
local approximation of the familiar set for vertex υj would be
denoted z̃j .
Local Community: a vertex’s local community, denoted by
C, contains all the vertices in its familiar set (its direct neigh-
bors) and also the vertices that are selected by our following
community detection algorithms (the selection criteria of each
algorithm to be further elaborated). Because of temporal non-
synchronisation, each vertex supposed to be in the same com-
munity may have detected a different local community.

The basic structure of our algorithms is as follows. When a
mobile device υ0 first initialises its community detection pro-
cedure, the local community C0 only contains this source ver-
tex. Whenever it encounters another device υi, they will ex-
change part of their local knowledge of the network. υ0 then
has to decide on the following based on certain acceptance cri-
teria:

1. whether to place the encountered vertex υi in its familiar
set z0 and/or local community C0.

2. whether C0 should merge with the whole or part of Ci.

All the three algorithms we introduce here differ only in the
admission criteria into the familiar set, local community and
merging of communities above.

Before we move to next section, we need to give a brief in-
troduction to MODULARITY. MODULARITY is a variation of
Clauset’s community detection using local modularity [2]. In
the paper, Clauset defines a measure of local community struc-
ture and an algorithm that infers the hierarchy of the commu-
nities that enclose a given vertex by exploring the graph one
vertex at a time. In this case, we need to treat the PSN as unex-
plored relation graph. The following terminology is relevant
to MODULARITY:
Adjacency set: the adjacency set of a particular local commu-
nity C0 is denoted u0. In terms of graph theory, it is the set of
vertices which are outside the local community C0, but each
vertex in it is adjacent (has direct edges connecting) to one or
more members of the local community C0, e.g.

u0 = {υi | υi ∈
[

υj∈C0

zj \ C0}

Boundary Set: in terms of graph theory, for a given vertex v0

and its local community C0, the associated boundary set B0 is
defined as the subset of vertices in C0, whose members have
edges connecting to one or more vertices outside C0, i.e.

B0 = {υi | (υi ∈ C0) ∧ ((zi \ C0) 6= ∅)}

Boundary-Adjacency Matrix: for a vertex v0 and its bound-
ary set B0, the associated boundary-adjacency matrix of B0 is
defined as follows: (B0)ij = 1 if vertex υ0 has knowledge
that the vertices υi and υj are connected, and at least one of
them is in the boundary set B0, otherwise (B0)ij = 0; i.e.
(B0)ij = 1 iff

(vi ∈ B0 ∨ vj ∈ B0) ∧ (vi ∈ z̃j ∨ vj ∈ z̃i)

Local Modularity: for a given vertex v0, the entire local
knowledge, G̃0, it has of the network, comprises the vertices in
C0 and u0, together with its partial knowledge of the connec-
tions between those vertices. Clauset introduced Local Mod-
ularity, so that each vertex can measure the sharpness of its
local community boundary, and the measures are independent
of the size of the enclosed communities. The local modularity
R for a given C0 with B0 is defined

R0 =

X

s,t

(B0)st

X

i,j

(B0)ij

=
I

|T |
, (1)

where ∀s,t υs, υt ∈ C0, ∀i,j υi, υj ∈ C0 ∪ u0, and hence T
is the set of edges in G̃0 with one or more endpoints in B0,
while I is the number of those edges with neither endpoints in
u0. If B0 = ∅, R0 is defined to have value of 1.
∆ Local Modularity: when adding a new vertex υj ∈ u0 to
an existing community C0 with B0, the change in R value,
∆R0, can be calculated by

∆R0 =
x − R0 ∗ y − z(1 − R0)

|T | − z + y
, (2)

where x is the number of edges in T that terminate at υj , y is
the number of edges that will be added to T by the agglomer-
ation of υj and z is the number of edges that will be removed
from T by the agglomeration.

4.2 Algorithms
In the following algorithms, we will use SIMPLE, k-CLIQUE,
and MODULARITY to denote the variations of the skeleton al-
gorithm. The main differences are that k-CLIQUE and MOD-
ULARITY have more data to maintain and there are some
changes to step 5 and step 6. When a mobile device υ0 en-
counters another device υi, the following algorithm will exe-
cute:

1. Each vertex, υ0, needs to maintain the following infor-
mation: a list of encountered nodes and their contact
durations (practically encounters that do not meet cer-
tain criteria will be discarded from the list), its familiar
set z0 (its familiar set of vertices), its local community
C0 detected so far, and

(k-CLIQUE ) a local approximation of the Familiar Sets
of all vertices in its Local Community C0:

FSoLC0 = {z̃j | υj ∈ C0}

(MODULARITY) as in k-CLIQUE: FSoLC0.

2. Initialisation: C0 is set to {υ0}, z0 = ∅ and
FSoLC0 = ∅

3. When υ0 encounters another υi, they exchange local in-
formation, i.e. υ0 will acquire from υi the following:
Ci, zi and

(k-CLIQUE ) FSoLCi

(MODULARITY) FSoLCi. v0’s first use of this newly
acquired information is to improve its own approxima-
tion of z̃i and FSoLC0 Each local approximation of
familiar set in FSoLC0 is merged (by taking the set
union) with the corresponding version in FSoLCi just
obtained from vi.
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Figure 2: Admission criteria for SIMPLE

4. If υi is not in z0, v0 updates the total contact dura-
tion counter of υi which is stored at υ0, until υi falls
out of contact and meanwhile the algorithm forks and
proceeds to the next step (5). When the total con-
tact duration count has exceed a certain threshold (a
design parameter), v0 will insert υi in z0 and C0,
(MODULARITY): also add zi to (or merge with exist-
ing entry in) FSoLC0, then the algorithm proceeds to
step 6.

5. If υi is not in C0, then add υi to C0 if it satisfies the
following algorithm-specific criteria:

(SIMPLE) if |zi ∩ C0|/|zi| > λ (where λ is the merg-
ing threshold which we will vary in this paper to see the
different of final communities detected). See Figure 2.

(k-CLIQUE) if the familiar set, zi contains at least k−1
members of the local community, C0, (see Figure 3), i.e.

|zi ∩ C0| ≥ k − 1.

(MODULARITY) if (Fi 6= ∅)∧ ((zi ⊆ C0∧B0 6= ∅)∨
∆R0 > 0)(the difference between the local modularity
measure before and after adding υi to C0 is +ve, see
Figure 4).

6. If υi is added to C0 in the previous steps, the aggressive
variants of the algorithm behave as follows:

(SIMPLE) if the number of vertices overlapping C0 and
Ci, (i.e. |C0 ∩ Ci|), is higher than γ of
|C0 ∪ Ci| (γ is the merging threshold as well which
can be different from λ in step 5, but we will use the
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Figure 3: Admission criteria for k-CLIQUE
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Figure 4: The higher the local modularity of a community,
the fewer the number of edges connecting it to its Adjacent
Set. A community has a Local Modularity value of 1 when
it has an empty Boundary Set.

same value for both cases in this section), then merge
(by taking the set union of) the two communities. i.e.
the merging criteria is

|C0 ∩ Ci| > γ|C0 ∪ Ci|

(k-CLIQUE) consider each vertex υj inside Ci (the local
community of υi), if its familiar set, z̃j contains at least
k − 1 members of C0 (the local community of υ0), υj

is added to the local community C0, i.e. if

|z̃j ∩ C0| ≥ k − 1

If this criteria is satisfied, then FSoLC0 also needs to
be updated to include z̃j

(MODULARITY) the algorithm only considers adding
the vertices in the set K :

{vk | ∃j s.t. υj ∈ C0 ∩Ci ∧ vk ∈ z̃j ∧ vk ∈ Ci \C0}

Figure 5 illustrates how and why set K is chosen. The
shaded area in Figure 5(a) shows the vertices in the set
K. When considering merging parts of two communi-
ties together, one first considers locating all the vertices
that are common to the local communities of both ver-
tices (C0 ∩ Ci, shaded area in Figure 5(b)). Then we
consider those vertices that are adjacent to the set of ver-
tices in C0 ∩ Ci (shaded area in Figure 5(c)), which are
more closely connected to the common vertices of the
two local communities and hence suitable for merging
into C0. But since portion of them are already in C0,
and portion of them are in neither of the local communi-
ties, so we only consider the set of vertices in K. During
the encounter with vi, v0 acquired the information z̃k

for all vertices in K from vi, and now for each vk ∈ K,

K =
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Figure 5: Explanation of set K in MODULARITY in step 6
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Figure 6: Impact of FamiliarSet threshold, k-CLIQUE and SIMPLE

it evaluates whether z̃k ⊆ C0. If this condition is sat-
isfied, the corresponding vk is added to C0. For the rest
of the vk, these are then considered in descending order
of ∆R0 (the difference in the R value before and after
adding vk to C0). Vertices with a negative or zero con-
tribution to ∆R will not be added to C0, and the values
of ∆R are re-evaluated after each addition to C0. For
each addition of vk to C0, z̃k is also added to the set
FSoLC0.

Clearly, the SIMPLE algorithm requires less storage and less
computation. The k-CLIQUE algorithm is in the middle and
MODULARITY is the most demanding one - because of the
need to re-evaluate ∆R in each iteration, hence in Step 6 of
the algorithm only part of the community (K) is considered to
be merged, as a resource/performance tradeoff.

5. RESULTS AND EVALUATIONS
In this section, we evaluate the communities detected by the
distributed methods against the centralised methods. In order
to do the comparison, we need to first develop the similarity
measurements.

5.1 Similarity Measures
Newman [21] introduce a metric called fraction of ver-
tices correctly identified to evaluate the communities detected
against the pre-known communities. Another measurement
metric is used in [3] by Danon et al., which is called nor-
malised mutual information(NMI) measure.

NMI(A,B) =
−2

PcA
i=1

PcB
j=1

Nij log(
NijN

Ni.N.j
)

PcA
i=1

Ni.log(Ni.

N
) +

PcB
j=1

N.j log(
N.j

N
)
(3)

where cA is the number of real communities, cB is the the
number of found communities, Ni. is the sum over row i of
matrix Nij and N.j is the sum over column j.

We can adapt these two measurements to evaluate our
distributed community detection algorithm against its corre-
sponding centralized method. However before moving for-
ward, we need to first consider the fairness problem about
comparison. Since, for distributed community detection, each
node will detect the local communities to which it belongs to,
if a system has N nodes, there would be at least N commu-
nities detected (i.e. cB ≥ N ). Denote the number of real
communities as cA as above, if N � cA, the evaluation of
cA against cB would be unfair, especially if over weighted by
the big community. Also, considering that the network is a

temporal graph and some nodes are more popular than others,
nodes belonging to the real community may not have the same
local view of the communities detected. Therefore we need to
consider a modification to address this problem. Our approach
is to chose the biggest detected community, move it to the core
community list and then discard the communities detected by
all the nodes included in it, and then repeat this for the re-
maining biggest one on the list and continue until no more
communities are left. We then evaluate cA against the core
community list. The biggest communities are not necessarily
the best communities detected: they may contains a lot of re-
dundance so our selection of the biggest communities does not
necessarily favor our algorithms. This shrinking process will
remove the smaller groups of the overlapping communities,
which may also penalise our results.

Considering Newman’s method is little bit harsh as he men-
tioned in his paper there are cases in which one might consider
some of the vertices to have been identified correctly, and this
method would not. Also considering that for all three data
sets, there are many more single node communities than bigger
communities, this will make the NMI measure tend towards 1.
Hence here we consider another modified similarity measure-
ment. Here we introduce the similarity by using the classic
Jaccard index [24] which was proposed by Jaccard over hun-
dred years ago to evaluate the similarity of two communities.

σJaccard =
|Γi

T

Γj |

|Γi

S

Γj |
(4)

where Γi is the members of community i and |Γi| is the cardi-
nality of the set Γi, that is equal to the number of member in
community i. In this paper, we will compare the core commu-
nities detected by distributed methods with the communities
detected by centralised algorithms using this similarity mea-
surement.

5.2 Results of detection
To evaluate the community detection algorithm, we replay the
mobility traces of the three experiments and emulate the gos-
siping of community information on each encounter as the al-
gorithms described in section 4.2. Here we only evaluate the
communities detected after the whole traces, which lasted 9
months for Reality, 3 months for UCSD and 11 days for Cam-
bridge, are replayed. As a first step we do not evaluate the time
need for the communities to be well developed at the middle
of the emulation.

Figure 6 shows the similarity between the communities de-
tected by distributed SIMPLE method and k-CLIQUE against
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the communities detected by the centralised k-CLIQUE algo-
rithm with a threshold of 389k seconds for Reality dataset, 78k
seconds for UCSD, and 36k seconds for Cambridge. These
threshold values for the centralised methods were selected fol-
lowing many trials and also by studying the nature of the group
of experimental objects. Some of them are found to agree with
the real experimental groups, such as for the Cambridge data,
the two groups detected correspond to the two main participant
groups. Figure 6 also shows the different similarity values with
different familiar set thresholds. We can see that the k-CLIQUE
methods shows better results most of time than the SIMPLE
method. With a suitable threshold, the distributed algorithms
for both SIMPLE and k-CLIQUE can reach around 80% of the
performance of the centralised algorithm. For the SIMPLE
case, we use a merging threshold, λ, of 0.6. We also find out
that varying the merging threshold from 0.5 to 0.9 makes lit-
tle difference; whereas the Familiar Set threshold changes the
similarity values quite significantly. Figure 7 shows an exam-
ple for the Reality data using the SIMPLE approach.

Since we know the network is highly intermittently con-
nected, the local community information for each node within
the same community may not be synchronised. We want to
know how different these local community views are. From
the Core Communities, we compare the local community de-
tected by each member in each Core Community with its Core
Community, we calculate the similarity values and then plot
the distributions of all these similarity values. Figure 8 shows
these distributions for the three datasets (from left to right,
they are Reality, UCSD and Cambridge respectively) using
distributed k-CLIQUE. We can see that for both Reality and
Cambridge, the local community views are quite similar to

the selected largest Core Community, this would be probably
because of relatively smaller dataset size and higher connec-
tivity. And these two groups of nodes also agree with the
two main groups of students participating the experiment.The
UCSD data relies on users connecting to the centralised ac-
cess points instead of peer contacts and hence is more sparse.
In general, the local community views have bigger variation
when using SIMPLE. Figure 9 gives an example of the Real-
ity case, similar variations are also observed in the other two
datasets. And we also find out that there is no impact of the
merging threshold, λ (from 0.5 to 0.9) on the distribution if
using the same Familiar Set threshold.

Figure 10 also shows the comparisons of the MODULARITY
and SIMPLE with the the centralised Newman weighted net-
work analysis [13]. Since the MODULARITY and the Newman
method both used modularity, it is fairer to compare them than
comparing with the centralised k-CLIQUE method. We can see
that in the Reality case, MODULARITY has better performance
than SIMPLE with the same threshold, and it has a best perfor-
mance of around 80% similarity. The SIMPLE approach also
generally has good performance with a 75% similarity for a
suitable threshold setting. For UCSD, the similarity values are
in general low for both algorithms and this is also true for the
k-CLIQUE algorithm, this is probably because of the charac-
teristics of the dataset. For the Cambridge data, at high thresh-
old values, MODULARITY behaves better than SIMPLE and the
other way round at low threshold values, but they both reach
at a maximum point of above 80%.

We conclude this section with Table 2 which summarizes
the highest similarity values calculated by each distributed al-
gorithm. For SIMPLE, we show both its comparison with
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the centralised k-CLIQUE (first) and the centralised Newman
method (second). We can see that generally MODULARITY
and k-CLIQUE have slightly better performance than their SIM-
PLE counterpart. That is to be expected since they require
more information and calculation, especially the computa-
tion complexity of MODULARITY is O(n4) in the worst case,
where n is the size of the network explored so far. However,
since a factor of n2 is contributed by the evaluation of each
∆R, which in reality is likely to be bounded by O(k2) where
k is the average degree of a vertex in the graph, the worst case
performance is thus O(n2k2). Considering its computational
and storage requirements, the performance of SIMPLE is quite
acceptable, so we would suggest SIMPLE, with O(n), for the
mobile devices with strong constraints on storage and com-
putational complexity. If the mobile devices can afford the
storage for a local copy of the Familiar Set of its community
members, k-CLIQUE would be a good choice for its reason-
ably good similarity values and also quite low computational
complexity, O(n2) in the worst case. MODULARITY requires
the most computational power but it has no significant better
performance in these cases. This maybe biased by the limi-
tations of the experimental datasets, but we will not strongly
recommend it at this moment.

Experimental data set SIMPLE k-CLIQUE MODULARITY

Reality 0.79/0.76 0.87 0.82

UCSD 0.47/0.56 0.55 0.40

Cambridge 0.85/0.85 0.85 0.87

Table 2: Summary of best performance of the algorithms

5.3 Limitations
There are several limitations to our study in this paper, and we
want to point them out here:

• As a first study, we only evaluate the communities de-
tected after the replaying of the whole traces, but did not
evaluate the communities at different stages of the emu-
lation. Evolution of the communities detected at differ-
ent times could also be an interesting study topic.

• The Familiar Set threshold values we used in the emu-
lations are traces dependent and were chosen based on
the whole duration of a trace. In a real application, we
may want to specify them in more general terms such as
number of hours or number of times per day, per week

or per month. Here we just want to compare the perfor-
mance of the distributed algorithms with the centralised
ones so we simply specify them in relative to the whole
experimental durations.

• We did not evaluate the detection of different categories
of relationship in this paper. In real applications, how-
ever, the mobile devices should be able to detect the dif-
ferent categories of relationship in Figure 1 by specify-
ing the Familiar Set thresholds for contact durations and
number of contacts.

• In the current version of the algorithms, we need to spec-
ify a static Familiar Set threshold, but maybe in future
versions some more dynamic methods such as fuzzy
logic or other AI methods could be used to reduce man-
ual configuration.

• We didn’t consider aging of the contacts at this moment,
but we need to look into it in the future. Some previ-
ous contacts may become irrelevant after some time, but
which takes up storage and may cause false-positive im-
pact for the detection, so good aging mechanisms about
the contacts should be considered.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed three distributed community
detection algorithms with different levels of computational
complexity and resource requirements. We evaluated them
on three human mobility experimental datasets and discov-
ered that the communities detected by the distributed algo-
rithms can satisfactorily approximate the centralised algo-
rithms which require the whole network topology. We com-
pared the performance of these three algorithms and proposed
a scenario in which each could be used.

In this future, we would like to evaluate our algorithms on
more mobility traces such as the WiFi traces from the Craw-
dad project, and also some forthcoming iMote experiments to
make more conclusive statement about the accuracy and appli-
cation scenarios of these algorithms. And we would also like
to develop our studies further with regard to the limitations we
listed in section 5.3.

Detail analysis of the impact of the detected communities
on the PSN forwarding efficiency can be found in our technical
report [11].
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